1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2017 IBM Corp.
3 #include <asm/pnv-ocxl.h>
4 #include <asm/opal.h>
5 #include <asm/xive.h>
6 #include <misc/ocxl-config.h>
7 #include "pci.h"
8
9 #define PNV_OCXL_TL_P9_RECV_CAP 0x000000000000000Full
10 #define PNV_OCXL_ACTAG_MAX 64
11 /* PASIDs are 20-bit, but on P9, NPU can only handle 15 bits */
12 #define PNV_OCXL_PASID_BITS 15
13 #define PNV_OCXL_PASID_MAX ((1 << PNV_OCXL_PASID_BITS) - 1)
14
15 #define AFU_PRESENT (1 << 31)
16 #define AFU_INDEX_MASK 0x3F000000
17 #define AFU_INDEX_SHIFT 24
18 #define ACTAG_MASK 0xFFF
19
20
21 struct actag_range {
22 u16 start;
23 u16 count;
24 };
25
26 struct npu_link {
27 struct list_head list;
28 int domain;
29 int bus;
30 int dev;
31 u16 fn_desired_actags[8];
32 struct actag_range fn_actags[8];
33 bool assignment_done;
34 };
35 static struct list_head links_list = LIST_HEAD_INIT(links_list);
36 static DEFINE_MUTEX(links_list_lock);
37
38
39 /*
40 * opencapi actags handling:
41 *
42 * When sending commands, the opencapi device references the memory
43 * context it's targeting with an 'actag', which is really an alias
44 * for a (BDF, pasid) combination. When it receives a command, the NPU
45 * must do a lookup of the actag to identify the memory context. The
46 * hardware supports a finite number of actags per link (64 for
47 * POWER9).
48 *
49 * The device can carry multiple functions, and each function can have
50 * multiple AFUs. Each AFU advertises in its config space the number
51 * of desired actags. The host must configure in the config space of
52 * the AFU how many actags the AFU is really allowed to use (which can
53 * be less than what the AFU desires).
54 *
55 * When a PCI function is probed by the driver, it has no visibility
56 * about the other PCI functions and how many actags they'd like,
57 * which makes it impossible to distribute actags fairly among AFUs.
58 *
59 * Unfortunately, the only way to know how many actags a function
60 * desires is by looking at the data for each AFU in the config space
61 * and add them up. Similarly, the only way to know how many actags
62 * all the functions of the physical device desire is by adding the
63 * previously computed function counts. Then we can match that against
64 * what the hardware supports.
65 *
66 * To get a comprehensive view, we use a 'pci fixup': at the end of
67 * PCI enumeration, each function counts how many actags its AFUs
68 * desire and we save it in a 'npu_link' structure, shared between all
69 * the PCI functions of a same device. Therefore, when the first
70 * function is probed by the driver, we can get an idea of the total
71 * count of desired actags for the device, and assign the actags to
72 * the AFUs, by pro-rating if needed.
73 */
74
find_dvsec_from_pos(struct pci_dev * dev,int dvsec_id,int pos)75 static int find_dvsec_from_pos(struct pci_dev *dev, int dvsec_id, int pos)
76 {
77 int vsec = pos;
78 u16 vendor, id;
79
80 while ((vsec = pci_find_next_ext_capability(dev, vsec,
81 OCXL_EXT_CAP_ID_DVSEC))) {
82 pci_read_config_word(dev, vsec + OCXL_DVSEC_VENDOR_OFFSET,
83 &vendor);
84 pci_read_config_word(dev, vsec + OCXL_DVSEC_ID_OFFSET, &id);
85 if (vendor == PCI_VENDOR_ID_IBM && id == dvsec_id)
86 return vsec;
87 }
88 return 0;
89 }
90
find_dvsec_afu_ctrl(struct pci_dev * dev,u8 afu_idx)91 static int find_dvsec_afu_ctrl(struct pci_dev *dev, u8 afu_idx)
92 {
93 int vsec = 0;
94 u8 idx;
95
96 while ((vsec = find_dvsec_from_pos(dev, OCXL_DVSEC_AFU_CTRL_ID,
97 vsec))) {
98 pci_read_config_byte(dev, vsec + OCXL_DVSEC_AFU_CTRL_AFU_IDX,
99 &idx);
100 if (idx == afu_idx)
101 return vsec;
102 }
103 return 0;
104 }
105
get_max_afu_index(struct pci_dev * dev,int * afu_idx)106 static int get_max_afu_index(struct pci_dev *dev, int *afu_idx)
107 {
108 int pos;
109 u32 val;
110
111 pos = find_dvsec_from_pos(dev, OCXL_DVSEC_FUNC_ID, 0);
112 if (!pos)
113 return -ESRCH;
114
115 pci_read_config_dword(dev, pos + OCXL_DVSEC_FUNC_OFF_INDEX, &val);
116 if (val & AFU_PRESENT)
117 *afu_idx = (val & AFU_INDEX_MASK) >> AFU_INDEX_SHIFT;
118 else
119 *afu_idx = -1;
120 return 0;
121 }
122
get_actag_count(struct pci_dev * dev,int afu_idx,int * actag)123 static int get_actag_count(struct pci_dev *dev, int afu_idx, int *actag)
124 {
125 int pos;
126 u16 actag_sup;
127
128 pos = find_dvsec_afu_ctrl(dev, afu_idx);
129 if (!pos)
130 return -ESRCH;
131
132 pci_read_config_word(dev, pos + OCXL_DVSEC_AFU_CTRL_ACTAG_SUP,
133 &actag_sup);
134 *actag = actag_sup & ACTAG_MASK;
135 return 0;
136 }
137
find_link(struct pci_dev * dev)138 static struct npu_link *find_link(struct pci_dev *dev)
139 {
140 struct npu_link *link;
141
142 list_for_each_entry(link, &links_list, list) {
143 /* The functions of a device all share the same link */
144 if (link->domain == pci_domain_nr(dev->bus) &&
145 link->bus == dev->bus->number &&
146 link->dev == PCI_SLOT(dev->devfn)) {
147 return link;
148 }
149 }
150
151 /* link doesn't exist yet. Allocate one */
152 link = kzalloc(sizeof(struct npu_link), GFP_KERNEL);
153 if (!link)
154 return NULL;
155 link->domain = pci_domain_nr(dev->bus);
156 link->bus = dev->bus->number;
157 link->dev = PCI_SLOT(dev->devfn);
158 list_add(&link->list, &links_list);
159 return link;
160 }
161
pnv_ocxl_fixup_actag(struct pci_dev * dev)162 static void pnv_ocxl_fixup_actag(struct pci_dev *dev)
163 {
164 struct pci_controller *hose = pci_bus_to_host(dev->bus);
165 struct pnv_phb *phb = hose->private_data;
166 struct npu_link *link;
167 int rc, afu_idx = -1, i, actag;
168
169 if (!machine_is(powernv))
170 return;
171
172 if (phb->type != PNV_PHB_NPU_OCAPI)
173 return;
174
175 mutex_lock(&links_list_lock);
176
177 link = find_link(dev);
178 if (!link) {
179 dev_warn(&dev->dev, "couldn't update actag information\n");
180 mutex_unlock(&links_list_lock);
181 return;
182 }
183
184 /*
185 * Check how many actags are desired for the AFUs under that
186 * function and add it to the count for the link
187 */
188 rc = get_max_afu_index(dev, &afu_idx);
189 if (rc) {
190 /* Most likely an invalid config space */
191 dev_dbg(&dev->dev, "couldn't find AFU information\n");
192 afu_idx = -1;
193 }
194
195 link->fn_desired_actags[PCI_FUNC(dev->devfn)] = 0;
196 for (i = 0; i <= afu_idx; i++) {
197 /*
198 * AFU index 'holes' are allowed. So don't fail if we
199 * can't read the actag info for an index
200 */
201 rc = get_actag_count(dev, i, &actag);
202 if (rc)
203 continue;
204 link->fn_desired_actags[PCI_FUNC(dev->devfn)] += actag;
205 }
206 dev_dbg(&dev->dev, "total actags for function: %d\n",
207 link->fn_desired_actags[PCI_FUNC(dev->devfn)]);
208
209 mutex_unlock(&links_list_lock);
210 }
211 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_ocxl_fixup_actag);
212
assign_fn_actags(u16 desired,u16 total)213 static u16 assign_fn_actags(u16 desired, u16 total)
214 {
215 u16 count;
216
217 if (total <= PNV_OCXL_ACTAG_MAX)
218 count = desired;
219 else
220 count = PNV_OCXL_ACTAG_MAX * desired / total;
221
222 return count;
223 }
224
assign_actags(struct npu_link * link)225 static void assign_actags(struct npu_link *link)
226 {
227 u16 actag_count, range_start = 0, total_desired = 0;
228 int i;
229
230 for (i = 0; i < 8; i++)
231 total_desired += link->fn_desired_actags[i];
232
233 for (i = 0; i < 8; i++) {
234 if (link->fn_desired_actags[i]) {
235 actag_count = assign_fn_actags(
236 link->fn_desired_actags[i],
237 total_desired);
238 link->fn_actags[i].start = range_start;
239 link->fn_actags[i].count = actag_count;
240 range_start += actag_count;
241 WARN_ON(range_start >= PNV_OCXL_ACTAG_MAX);
242 }
243 pr_debug("link %x:%x:%x fct %d actags: start=%d count=%d (desired=%d)\n",
244 link->domain, link->bus, link->dev, i,
245 link->fn_actags[i].start, link->fn_actags[i].count,
246 link->fn_desired_actags[i]);
247 }
248 link->assignment_done = true;
249 }
250
pnv_ocxl_get_actag(struct pci_dev * dev,u16 * base,u16 * enabled,u16 * supported)251 int pnv_ocxl_get_actag(struct pci_dev *dev, u16 *base, u16 *enabled,
252 u16 *supported)
253 {
254 struct npu_link *link;
255
256 mutex_lock(&links_list_lock);
257
258 link = find_link(dev);
259 if (!link) {
260 dev_err(&dev->dev, "actag information not found\n");
261 mutex_unlock(&links_list_lock);
262 return -ENODEV;
263 }
264 /*
265 * On p9, we only have 64 actags per link, so they must be
266 * shared by all the functions of the same adapter. We counted
267 * the desired actag counts during PCI enumeration, so that we
268 * can allocate a pro-rated number of actags to each function.
269 */
270 if (!link->assignment_done)
271 assign_actags(link);
272
273 *base = link->fn_actags[PCI_FUNC(dev->devfn)].start;
274 *enabled = link->fn_actags[PCI_FUNC(dev->devfn)].count;
275 *supported = link->fn_desired_actags[PCI_FUNC(dev->devfn)];
276
277 mutex_unlock(&links_list_lock);
278 return 0;
279 }
280 EXPORT_SYMBOL_GPL(pnv_ocxl_get_actag);
281
pnv_ocxl_get_pasid_count(struct pci_dev * dev,int * count)282 int pnv_ocxl_get_pasid_count(struct pci_dev *dev, int *count)
283 {
284 struct npu_link *link;
285 int i, rc = -EINVAL;
286
287 /*
288 * The number of PASIDs (process address space ID) which can
289 * be used by a function depends on how many functions exist
290 * on the device. The NPU needs to be configured to know how
291 * many bits are available to PASIDs and how many are to be
292 * used by the function BDF indentifier.
293 *
294 * We only support one AFU-carrying function for now.
295 */
296 mutex_lock(&links_list_lock);
297
298 link = find_link(dev);
299 if (!link) {
300 dev_err(&dev->dev, "actag information not found\n");
301 mutex_unlock(&links_list_lock);
302 return -ENODEV;
303 }
304
305 for (i = 0; i < 8; i++)
306 if (link->fn_desired_actags[i] && (i == PCI_FUNC(dev->devfn))) {
307 *count = PNV_OCXL_PASID_MAX;
308 rc = 0;
309 break;
310 }
311
312 mutex_unlock(&links_list_lock);
313 dev_dbg(&dev->dev, "%d PASIDs available for function\n",
314 rc ? 0 : *count);
315 return rc;
316 }
317 EXPORT_SYMBOL_GPL(pnv_ocxl_get_pasid_count);
318
set_templ_rate(unsigned int templ,unsigned int rate,char * buf)319 static void set_templ_rate(unsigned int templ, unsigned int rate, char *buf)
320 {
321 int shift, idx;
322
323 WARN_ON(templ > PNV_OCXL_TL_MAX_TEMPLATE);
324 idx = (PNV_OCXL_TL_MAX_TEMPLATE - templ) / 2;
325 shift = 4 * (1 - ((PNV_OCXL_TL_MAX_TEMPLATE - templ) % 2));
326 buf[idx] |= rate << shift;
327 }
328
pnv_ocxl_get_tl_cap(struct pci_dev * dev,long * cap,char * rate_buf,int rate_buf_size)329 int pnv_ocxl_get_tl_cap(struct pci_dev *dev, long *cap,
330 char *rate_buf, int rate_buf_size)
331 {
332 if (rate_buf_size != PNV_OCXL_TL_RATE_BUF_SIZE)
333 return -EINVAL;
334 /*
335 * The TL capabilities are a characteristic of the NPU, so
336 * we go with hard-coded values.
337 *
338 * The receiving rate of each template is encoded on 4 bits.
339 *
340 * On P9:
341 * - templates 0 -> 3 are supported
342 * - templates 0, 1 and 3 have a 0 receiving rate
343 * - template 2 has receiving rate of 1 (extra cycle)
344 */
345 memset(rate_buf, 0, rate_buf_size);
346 set_templ_rate(2, 1, rate_buf);
347 *cap = PNV_OCXL_TL_P9_RECV_CAP;
348 return 0;
349 }
350 EXPORT_SYMBOL_GPL(pnv_ocxl_get_tl_cap);
351
pnv_ocxl_set_tl_conf(struct pci_dev * dev,long cap,uint64_t rate_buf_phys,int rate_buf_size)352 int pnv_ocxl_set_tl_conf(struct pci_dev *dev, long cap,
353 uint64_t rate_buf_phys, int rate_buf_size)
354 {
355 struct pci_controller *hose = pci_bus_to_host(dev->bus);
356 struct pnv_phb *phb = hose->private_data;
357 int rc;
358
359 if (rate_buf_size != PNV_OCXL_TL_RATE_BUF_SIZE)
360 return -EINVAL;
361
362 rc = opal_npu_tl_set(phb->opal_id, dev->devfn, cap,
363 rate_buf_phys, rate_buf_size);
364 if (rc) {
365 dev_err(&dev->dev, "Can't configure host TL: %d\n", rc);
366 return -EINVAL;
367 }
368 return 0;
369 }
370 EXPORT_SYMBOL_GPL(pnv_ocxl_set_tl_conf);
371
pnv_ocxl_get_xsl_irq(struct pci_dev * dev,int * hwirq)372 int pnv_ocxl_get_xsl_irq(struct pci_dev *dev, int *hwirq)
373 {
374 int rc;
375
376 rc = of_property_read_u32(dev->dev.of_node, "ibm,opal-xsl-irq", hwirq);
377 if (rc) {
378 dev_err(&dev->dev,
379 "Can't get translation interrupt for device\n");
380 return rc;
381 }
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(pnv_ocxl_get_xsl_irq);
385
pnv_ocxl_unmap_xsl_regs(void __iomem * dsisr,void __iomem * dar,void __iomem * tfc,void __iomem * pe_handle)386 void pnv_ocxl_unmap_xsl_regs(void __iomem *dsisr, void __iomem *dar,
387 void __iomem *tfc, void __iomem *pe_handle)
388 {
389 iounmap(dsisr);
390 iounmap(dar);
391 iounmap(tfc);
392 iounmap(pe_handle);
393 }
394 EXPORT_SYMBOL_GPL(pnv_ocxl_unmap_xsl_regs);
395
pnv_ocxl_map_xsl_regs(struct pci_dev * dev,void __iomem ** dsisr,void __iomem ** dar,void __iomem ** tfc,void __iomem ** pe_handle)396 int pnv_ocxl_map_xsl_regs(struct pci_dev *dev, void __iomem **dsisr,
397 void __iomem **dar, void __iomem **tfc,
398 void __iomem **pe_handle)
399 {
400 u64 reg;
401 int i, j, rc = 0;
402 void __iomem *regs[4];
403
404 /*
405 * opal stores the mmio addresses of the DSISR, DAR, TFC and
406 * PE_HANDLE registers in a device tree property, in that
407 * order
408 */
409 for (i = 0; i < 4; i++) {
410 rc = of_property_read_u64_index(dev->dev.of_node,
411 "ibm,opal-xsl-mmio", i, ®);
412 if (rc)
413 break;
414 regs[i] = ioremap(reg, 8);
415 if (!regs[i]) {
416 rc = -EINVAL;
417 break;
418 }
419 }
420 if (rc) {
421 dev_err(&dev->dev, "Can't map translation mmio registers\n");
422 for (j = i - 1; j >= 0; j--)
423 iounmap(regs[j]);
424 } else {
425 *dsisr = regs[0];
426 *dar = regs[1];
427 *tfc = regs[2];
428 *pe_handle = regs[3];
429 }
430 return rc;
431 }
432 EXPORT_SYMBOL_GPL(pnv_ocxl_map_xsl_regs);
433
434 struct spa_data {
435 u64 phb_opal_id;
436 u32 bdfn;
437 };
438
pnv_ocxl_spa_setup(struct pci_dev * dev,void * spa_mem,int PE_mask,void ** platform_data)439 int pnv_ocxl_spa_setup(struct pci_dev *dev, void *spa_mem, int PE_mask,
440 void **platform_data)
441 {
442 struct pci_controller *hose = pci_bus_to_host(dev->bus);
443 struct pnv_phb *phb = hose->private_data;
444 struct spa_data *data;
445 u32 bdfn;
446 int rc;
447
448 data = kzalloc(sizeof(*data), GFP_KERNEL);
449 if (!data)
450 return -ENOMEM;
451
452 bdfn = (dev->bus->number << 8) | dev->devfn;
453 rc = opal_npu_spa_setup(phb->opal_id, bdfn, virt_to_phys(spa_mem),
454 PE_mask);
455 if (rc) {
456 dev_err(&dev->dev, "Can't setup Shared Process Area: %d\n", rc);
457 kfree(data);
458 return rc;
459 }
460 data->phb_opal_id = phb->opal_id;
461 data->bdfn = bdfn;
462 *platform_data = (void *) data;
463 return 0;
464 }
465 EXPORT_SYMBOL_GPL(pnv_ocxl_spa_setup);
466
pnv_ocxl_spa_release(void * platform_data)467 void pnv_ocxl_spa_release(void *platform_data)
468 {
469 struct spa_data *data = (struct spa_data *) platform_data;
470 int rc;
471
472 rc = opal_npu_spa_setup(data->phb_opal_id, data->bdfn, 0, 0);
473 WARN_ON(rc);
474 kfree(data);
475 }
476 EXPORT_SYMBOL_GPL(pnv_ocxl_spa_release);
477
pnv_ocxl_spa_remove_pe_from_cache(void * platform_data,int pe_handle)478 int pnv_ocxl_spa_remove_pe_from_cache(void *platform_data, int pe_handle)
479 {
480 struct spa_data *data = (struct spa_data *) platform_data;
481 int rc;
482
483 rc = opal_npu_spa_clear_cache(data->phb_opal_id, data->bdfn, pe_handle);
484 return rc;
485 }
486 EXPORT_SYMBOL_GPL(pnv_ocxl_spa_remove_pe_from_cache);
487
pnv_ocxl_alloc_xive_irq(u32 * irq,u64 * trigger_addr)488 int pnv_ocxl_alloc_xive_irq(u32 *irq, u64 *trigger_addr)
489 {
490 __be64 flags, trigger_page;
491 s64 rc;
492 u32 hwirq;
493
494 hwirq = xive_native_alloc_irq();
495 if (!hwirq)
496 return -ENOENT;
497
498 rc = opal_xive_get_irq_info(hwirq, &flags, NULL, &trigger_page, NULL,
499 NULL);
500 if (rc || !trigger_page) {
501 xive_native_free_irq(hwirq);
502 return -ENOENT;
503 }
504 *irq = hwirq;
505 *trigger_addr = be64_to_cpu(trigger_page);
506 return 0;
507
508 }
509 EXPORT_SYMBOL_GPL(pnv_ocxl_alloc_xive_irq);
510
pnv_ocxl_free_xive_irq(u32 irq)511 void pnv_ocxl_free_xive_irq(u32 irq)
512 {
513 xive_native_free_irq(irq);
514 }
515 EXPORT_SYMBOL_GPL(pnv_ocxl_free_xive_irq);
516