1 /*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/bootmem.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memblock.h>
36 #include <linux/memory.h>
37 #include <linux/nmi.h>
38
39 #include <asm/debugfs.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/dt_cpu_ftrs.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 #include <asm/hw_irq.h>
71 #include <asm/feature-fixups.h>
72
73 #include "setup.h"
74
75 #ifdef DEBUG
76 #define DBG(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG(fmt...)
79 #endif
80
81 int spinning_secondaries;
82 u64 ppc64_pft_size;
83
84 struct ppc64_caches ppc64_caches = {
85 .l1d = {
86 .block_size = 0x40,
87 .log_block_size = 6,
88 },
89 .l1i = {
90 .block_size = 0x40,
91 .log_block_size = 6
92 },
93 };
94 EXPORT_SYMBOL_GPL(ppc64_caches);
95
96 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)97 void __init setup_tlb_core_data(void)
98 {
99 int cpu;
100
101 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
102
103 for_each_possible_cpu(cpu) {
104 int first = cpu_first_thread_sibling(cpu);
105
106 /*
107 * If we boot via kdump on a non-primary thread,
108 * make sure we point at the thread that actually
109 * set up this TLB.
110 */
111 if (cpu_first_thread_sibling(boot_cpuid) == first)
112 first = boot_cpuid;
113
114 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
115
116 /*
117 * If we have threads, we need either tlbsrx.
118 * or e6500 tablewalk mode, or else TLB handlers
119 * will be racy and could produce duplicate entries.
120 * Should we panic instead?
121 */
122 WARN_ONCE(smt_enabled_at_boot >= 2 &&
123 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
124 book3e_htw_mode != PPC_HTW_E6500,
125 "%s: unsupported MMU configuration\n", __func__);
126 }
127 }
128 #endif
129
130 #ifdef CONFIG_SMP
131
132 static char *smt_enabled_cmdline;
133
134 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)135 void __init check_smt_enabled(void)
136 {
137 struct device_node *dn;
138 const char *smt_option;
139
140 /* Default to enabling all threads */
141 smt_enabled_at_boot = threads_per_core;
142
143 /* Allow the command line to overrule the OF option */
144 if (smt_enabled_cmdline) {
145 if (!strcmp(smt_enabled_cmdline, "on"))
146 smt_enabled_at_boot = threads_per_core;
147 else if (!strcmp(smt_enabled_cmdline, "off"))
148 smt_enabled_at_boot = 0;
149 else {
150 int smt;
151 int rc;
152
153 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
154 if (!rc)
155 smt_enabled_at_boot =
156 min(threads_per_core, smt);
157 }
158 } else {
159 dn = of_find_node_by_path("/options");
160 if (dn) {
161 smt_option = of_get_property(dn, "ibm,smt-enabled",
162 NULL);
163
164 if (smt_option) {
165 if (!strcmp(smt_option, "on"))
166 smt_enabled_at_boot = threads_per_core;
167 else if (!strcmp(smt_option, "off"))
168 smt_enabled_at_boot = 0;
169 }
170
171 of_node_put(dn);
172 }
173 }
174 }
175
176 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)177 static int __init early_smt_enabled(char *p)
178 {
179 smt_enabled_cmdline = p;
180 return 0;
181 }
182 early_param("smt-enabled", early_smt_enabled);
183
184 #endif /* CONFIG_SMP */
185
186 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)187 static void __init fixup_boot_paca(void)
188 {
189 /* The boot cpu is started */
190 get_paca()->cpu_start = 1;
191 /* Allow percpu accesses to work until we setup percpu data */
192 get_paca()->data_offset = 0;
193 /* Mark interrupts disabled in PACA */
194 irq_soft_mask_set(IRQS_DISABLED);
195 }
196
configure_exceptions(void)197 static void __init configure_exceptions(void)
198 {
199 /*
200 * Setup the trampolines from the lowmem exception vectors
201 * to the kdump kernel when not using a relocatable kernel.
202 */
203 setup_kdump_trampoline();
204
205 /* Under a PAPR hypervisor, we need hypercalls */
206 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
207 /* Enable AIL if possible */
208 pseries_enable_reloc_on_exc();
209
210 /*
211 * Tell the hypervisor that we want our exceptions to
212 * be taken in little endian mode.
213 *
214 * We don't call this for big endian as our calling convention
215 * makes us always enter in BE, and the call may fail under
216 * some circumstances with kdump.
217 */
218 #ifdef __LITTLE_ENDIAN__
219 pseries_little_endian_exceptions();
220 #endif
221 } else {
222 /* Set endian mode using OPAL */
223 if (firmware_has_feature(FW_FEATURE_OPAL))
224 opal_configure_cores();
225
226 /* AIL on native is done in cpu_ready_for_interrupts() */
227 }
228 }
229
cpu_ready_for_interrupts(void)230 static void cpu_ready_for_interrupts(void)
231 {
232 /*
233 * Enable AIL if supported, and we are in hypervisor mode. This
234 * is called once for every processor.
235 *
236 * If we are not in hypervisor mode the job is done once for
237 * the whole partition in configure_exceptions().
238 */
239 if (cpu_has_feature(CPU_FTR_HVMODE) &&
240 cpu_has_feature(CPU_FTR_ARCH_207S)) {
241 unsigned long lpcr = mfspr(SPRN_LPCR);
242 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
243 }
244
245 /*
246 * Fixup HFSCR:TM based on CPU features. The bit is set by our
247 * early asm init because at that point we haven't updated our
248 * CPU features from firmware and device-tree. Here we have,
249 * so let's do it.
250 */
251 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
252 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
253
254 /* Set IR and DR in PACA MSR */
255 get_paca()->kernel_msr = MSR_KERNEL;
256 }
257
258 unsigned long spr_default_dscr = 0;
259
record_spr_defaults(void)260 void __init record_spr_defaults(void)
261 {
262 if (early_cpu_has_feature(CPU_FTR_DSCR))
263 spr_default_dscr = mfspr(SPRN_DSCR);
264 }
265
266 /*
267 * Early initialization entry point. This is called by head.S
268 * with MMU translation disabled. We rely on the "feature" of
269 * the CPU that ignores the top 2 bits of the address in real
270 * mode so we can access kernel globals normally provided we
271 * only toy with things in the RMO region. From here, we do
272 * some early parsing of the device-tree to setup out MEMBLOCK
273 * data structures, and allocate & initialize the hash table
274 * and segment tables so we can start running with translation
275 * enabled.
276 *
277 * It is this function which will call the probe() callback of
278 * the various platform types and copy the matching one to the
279 * global ppc_md structure. Your platform can eventually do
280 * some very early initializations from the probe() routine, but
281 * this is not recommended, be very careful as, for example, the
282 * device-tree is not accessible via normal means at this point.
283 */
284
early_setup(unsigned long dt_ptr)285 void __init early_setup(unsigned long dt_ptr)
286 {
287 static __initdata struct paca_struct boot_paca;
288
289 /* -------- printk is _NOT_ safe to use here ! ------- */
290
291 /* Try new device tree based feature discovery ... */
292 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
293 /* Otherwise use the old style CPU table */
294 identify_cpu(0, mfspr(SPRN_PVR));
295
296 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
297 initialise_paca(&boot_paca, 0);
298 setup_paca(&boot_paca);
299 fixup_boot_paca();
300
301 /* -------- printk is now safe to use ------- */
302
303 /* Enable early debugging if any specified (see udbg.h) */
304 udbg_early_init();
305
306 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
307
308 /*
309 * Do early initialization using the flattened device
310 * tree, such as retrieving the physical memory map or
311 * calculating/retrieving the hash table size.
312 */
313 early_init_devtree(__va(dt_ptr));
314
315 /* Now we know the logical id of our boot cpu, setup the paca. */
316 if (boot_cpuid != 0) {
317 /* Poison paca_ptrs[0] again if it's not the boot cpu */
318 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
319 }
320 setup_paca(paca_ptrs[boot_cpuid]);
321 fixup_boot_paca();
322
323 /*
324 * Configure exception handlers. This include setting up trampolines
325 * if needed, setting exception endian mode, etc...
326 */
327 configure_exceptions();
328
329 /* Apply all the dynamic patching */
330 apply_feature_fixups();
331 setup_feature_keys();
332
333 /* Initialize the hash table or TLB handling */
334 early_init_mmu();
335
336 /*
337 * After firmware and early platform setup code has set things up,
338 * we note the SPR values for configurable control/performance
339 * registers, and use those as initial defaults.
340 */
341 record_spr_defaults();
342
343 /*
344 * At this point, we can let interrupts switch to virtual mode
345 * (the MMU has been setup), so adjust the MSR in the PACA to
346 * have IR and DR set and enable AIL if it exists
347 */
348 cpu_ready_for_interrupts();
349
350 /*
351 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
352 * will only actually get enabled on the boot cpu much later once
353 * ftrace itself has been initialized.
354 */
355 this_cpu_enable_ftrace();
356
357 DBG(" <- early_setup()\n");
358
359 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
360 /*
361 * This needs to be done *last* (after the above DBG() even)
362 *
363 * Right after we return from this function, we turn on the MMU
364 * which means the real-mode access trick that btext does will
365 * no longer work, it needs to switch to using a real MMU
366 * mapping. This call will ensure that it does
367 */
368 btext_map();
369 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
370 }
371
372 #ifdef CONFIG_SMP
early_setup_secondary(void)373 void early_setup_secondary(void)
374 {
375 /* Mark interrupts disabled in PACA */
376 irq_soft_mask_set(IRQS_DISABLED);
377
378 /* Initialize the hash table or TLB handling */
379 early_init_mmu_secondary();
380
381 /*
382 * At this point, we can let interrupts switch to virtual mode
383 * (the MMU has been setup), so adjust the MSR in the PACA to
384 * have IR and DR set.
385 */
386 cpu_ready_for_interrupts();
387 }
388
389 #endif /* CONFIG_SMP */
390
panic_smp_self_stop(void)391 void panic_smp_self_stop(void)
392 {
393 hard_irq_disable();
394 spin_begin();
395 while (1)
396 spin_cpu_relax();
397 }
398
399 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)400 static bool use_spinloop(void)
401 {
402 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
403 /*
404 * See comments in head_64.S -- not all platforms insert
405 * secondaries at __secondary_hold and wait at the spin
406 * loop.
407 */
408 if (firmware_has_feature(FW_FEATURE_OPAL))
409 return false;
410 return true;
411 }
412
413 /*
414 * When book3e boots from kexec, the ePAPR spin table does
415 * not get used.
416 */
417 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
418 }
419
smp_release_cpus(void)420 void smp_release_cpus(void)
421 {
422 unsigned long *ptr;
423 int i;
424
425 if (!use_spinloop())
426 return;
427
428 DBG(" -> smp_release_cpus()\n");
429
430 /* All secondary cpus are spinning on a common spinloop, release them
431 * all now so they can start to spin on their individual paca
432 * spinloops. For non SMP kernels, the secondary cpus never get out
433 * of the common spinloop.
434 */
435
436 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
437 - PHYSICAL_START);
438 *ptr = ppc_function_entry(generic_secondary_smp_init);
439
440 /* And wait a bit for them to catch up */
441 for (i = 0; i < 100000; i++) {
442 mb();
443 HMT_low();
444 if (spinning_secondaries == 0)
445 break;
446 udelay(1);
447 }
448 DBG("spinning_secondaries = %d\n", spinning_secondaries);
449
450 DBG(" <- smp_release_cpus()\n");
451 }
452 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
453
454 /*
455 * Initialize some remaining members of the ppc64_caches and systemcfg
456 * structures
457 * (at least until we get rid of them completely). This is mostly some
458 * cache informations about the CPU that will be used by cache flush
459 * routines and/or provided to userland
460 */
461
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)462 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
463 u32 bsize, u32 sets)
464 {
465 info->size = size;
466 info->sets = sets;
467 info->line_size = lsize;
468 info->block_size = bsize;
469 info->log_block_size = __ilog2(bsize);
470 if (bsize)
471 info->blocks_per_page = PAGE_SIZE / bsize;
472 else
473 info->blocks_per_page = 0;
474
475 if (sets == 0)
476 info->assoc = 0xffff;
477 else
478 info->assoc = size / (sets * lsize);
479 }
480
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)481 static bool __init parse_cache_info(struct device_node *np,
482 bool icache,
483 struct ppc_cache_info *info)
484 {
485 static const char *ipropnames[] __initdata = {
486 "i-cache-size",
487 "i-cache-sets",
488 "i-cache-block-size",
489 "i-cache-line-size",
490 };
491 static const char *dpropnames[] __initdata = {
492 "d-cache-size",
493 "d-cache-sets",
494 "d-cache-block-size",
495 "d-cache-line-size",
496 };
497 const char **propnames = icache ? ipropnames : dpropnames;
498 const __be32 *sizep, *lsizep, *bsizep, *setsp;
499 u32 size, lsize, bsize, sets;
500 bool success = true;
501
502 size = 0;
503 sets = -1u;
504 lsize = bsize = cur_cpu_spec->dcache_bsize;
505 sizep = of_get_property(np, propnames[0], NULL);
506 if (sizep != NULL)
507 size = be32_to_cpu(*sizep);
508 setsp = of_get_property(np, propnames[1], NULL);
509 if (setsp != NULL)
510 sets = be32_to_cpu(*setsp);
511 bsizep = of_get_property(np, propnames[2], NULL);
512 lsizep = of_get_property(np, propnames[3], NULL);
513 if (bsizep == NULL)
514 bsizep = lsizep;
515 if (lsizep != NULL)
516 lsize = be32_to_cpu(*lsizep);
517 if (bsizep != NULL)
518 bsize = be32_to_cpu(*bsizep);
519 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
520 success = false;
521
522 /*
523 * OF is weird .. it represents fully associative caches
524 * as "1 way" which doesn't make much sense and doesn't
525 * leave room for direct mapped. We'll assume that 0
526 * in OF means direct mapped for that reason.
527 */
528 if (sets == 1)
529 sets = 0;
530 else if (sets == 0)
531 sets = 1;
532
533 init_cache_info(info, size, lsize, bsize, sets);
534
535 return success;
536 }
537
initialize_cache_info(void)538 void __init initialize_cache_info(void)
539 {
540 struct device_node *cpu = NULL, *l2, *l3 = NULL;
541 u32 pvr;
542
543 DBG(" -> initialize_cache_info()\n");
544
545 /*
546 * All shipping POWER8 machines have a firmware bug that
547 * puts incorrect information in the device-tree. This will
548 * be (hopefully) fixed for future chips but for now hard
549 * code the values if we are running on one of these
550 */
551 pvr = PVR_VER(mfspr(SPRN_PVR));
552 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
553 pvr == PVR_POWER8NVL) {
554 /* size lsize blk sets */
555 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
556 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
557 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
558 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
559 } else
560 cpu = of_find_node_by_type(NULL, "cpu");
561
562 /*
563 * We're assuming *all* of the CPUs have the same
564 * d-cache and i-cache sizes... -Peter
565 */
566 if (cpu) {
567 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
568 DBG("Argh, can't find dcache properties !\n");
569
570 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
571 DBG("Argh, can't find icache properties !\n");
572
573 /*
574 * Try to find the L2 and L3 if any. Assume they are
575 * unified and use the D-side properties.
576 */
577 l2 = of_find_next_cache_node(cpu);
578 of_node_put(cpu);
579 if (l2) {
580 parse_cache_info(l2, false, &ppc64_caches.l2);
581 l3 = of_find_next_cache_node(l2);
582 of_node_put(l2);
583 }
584 if (l3) {
585 parse_cache_info(l3, false, &ppc64_caches.l3);
586 of_node_put(l3);
587 }
588 }
589
590 /* For use by binfmt_elf */
591 dcache_bsize = ppc64_caches.l1d.block_size;
592 icache_bsize = ppc64_caches.l1i.block_size;
593
594 cur_cpu_spec->dcache_bsize = dcache_bsize;
595 cur_cpu_spec->icache_bsize = icache_bsize;
596
597 DBG(" <- initialize_cache_info()\n");
598 }
599
600 /*
601 * This returns the limit below which memory accesses to the linear
602 * mapping are guarnateed not to cause an architectural exception (e.g.,
603 * TLB or SLB miss fault).
604 *
605 * This is used to allocate PACAs and various interrupt stacks that
606 * that are accessed early in interrupt handlers that must not cause
607 * re-entrant interrupts.
608 */
ppc64_bolted_size(void)609 __init u64 ppc64_bolted_size(void)
610 {
611 #ifdef CONFIG_PPC_BOOK3E
612 /* Freescale BookE bolts the entire linear mapping */
613 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
614 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
615 return linear_map_top;
616 /* Other BookE, we assume the first GB is bolted */
617 return 1ul << 30;
618 #else
619 /* BookS radix, does not take faults on linear mapping */
620 if (early_radix_enabled())
621 return ULONG_MAX;
622
623 /* BookS hash, the first segment is bolted */
624 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
625 return 1UL << SID_SHIFT_1T;
626 return 1UL << SID_SHIFT;
627 #endif
628 }
629
alloc_stack(unsigned long limit,int cpu)630 static void *__init alloc_stack(unsigned long limit, int cpu)
631 {
632 unsigned long pa;
633
634 pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
635 early_cpu_to_node(cpu), MEMBLOCK_NONE);
636 if (!pa) {
637 pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
638 if (!pa)
639 panic("cannot allocate stacks");
640 }
641
642 return __va(pa);
643 }
644
irqstack_early_init(void)645 void __init irqstack_early_init(void)
646 {
647 u64 limit = ppc64_bolted_size();
648 unsigned int i;
649
650 /*
651 * Interrupt stacks must be in the first segment since we
652 * cannot afford to take SLB misses on them. They are not
653 * accessed in realmode.
654 */
655 for_each_possible_cpu(i) {
656 softirq_ctx[i] = alloc_stack(limit, i);
657 hardirq_ctx[i] = alloc_stack(limit, i);
658 }
659 }
660
661 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)662 void __init exc_lvl_early_init(void)
663 {
664 unsigned int i;
665
666 for_each_possible_cpu(i) {
667 void *sp;
668
669 sp = alloc_stack(ULONG_MAX, i);
670 critirq_ctx[i] = sp;
671 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
672
673 sp = alloc_stack(ULONG_MAX, i);
674 dbgirq_ctx[i] = sp;
675 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
676
677 sp = alloc_stack(ULONG_MAX, i);
678 mcheckirq_ctx[i] = sp;
679 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
680 }
681
682 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
683 patch_exception(0x040, exc_debug_debug_book3e);
684 }
685 #endif
686
687 /*
688 * Emergency stacks are used for a range of things, from asynchronous
689 * NMIs (system reset, machine check) to synchronous, process context.
690 * We set preempt_count to zero, even though that isn't necessarily correct. To
691 * get the right value we'd need to copy it from the previous thread_info, but
692 * doing that might fault causing more problems.
693 * TODO: what to do with accounting?
694 */
emerg_stack_init_thread_info(struct thread_info * ti,int cpu)695 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
696 {
697 ti->task = NULL;
698 ti->cpu = cpu;
699 ti->preempt_count = 0;
700 ti->local_flags = 0;
701 ti->flags = 0;
702 klp_init_thread_info(ti);
703 }
704
705 /*
706 * Stack space used when we detect a bad kernel stack pointer, and
707 * early in SMP boots before relocation is enabled. Exclusive emergency
708 * stack for machine checks.
709 */
emergency_stack_init(void)710 void __init emergency_stack_init(void)
711 {
712 u64 limit;
713 unsigned int i;
714
715 /*
716 * Emergency stacks must be under 256MB, we cannot afford to take
717 * SLB misses on them. The ABI also requires them to be 128-byte
718 * aligned.
719 *
720 * Since we use these as temporary stacks during secondary CPU
721 * bringup, machine check, system reset, and HMI, we need to get
722 * at them in real mode. This means they must also be within the RMO
723 * region.
724 *
725 * The IRQ stacks allocated elsewhere in this file are zeroed and
726 * initialized in kernel/irq.c. These are initialized here in order
727 * to have emergency stacks available as early as possible.
728 */
729 limit = min(ppc64_bolted_size(), ppc64_rma_size);
730
731 for_each_possible_cpu(i) {
732 struct thread_info *ti;
733
734 ti = alloc_stack(limit, i);
735 memset(ti, 0, THREAD_SIZE);
736 emerg_stack_init_thread_info(ti, i);
737 paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
738
739 #ifdef CONFIG_PPC_BOOK3S_64
740 /* emergency stack for NMI exception handling. */
741 ti = alloc_stack(limit, i);
742 memset(ti, 0, THREAD_SIZE);
743 emerg_stack_init_thread_info(ti, i);
744 paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
745
746 /* emergency stack for machine check exception handling. */
747 ti = alloc_stack(limit, i);
748 memset(ti, 0, THREAD_SIZE);
749 emerg_stack_init_thread_info(ti, i);
750 paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
751 #endif
752 }
753 }
754
755 #ifdef CONFIG_SMP
756 #define PCPU_DYN_SIZE ()
757
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)758 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
759 {
760 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
761 __pa(MAX_DMA_ADDRESS));
762 }
763
pcpu_fc_free(void * ptr,size_t size)764 static void __init pcpu_fc_free(void *ptr, size_t size)
765 {
766 free_bootmem(__pa(ptr), size);
767 }
768
pcpu_cpu_distance(unsigned int from,unsigned int to)769 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
770 {
771 if (early_cpu_to_node(from) == early_cpu_to_node(to))
772 return LOCAL_DISTANCE;
773 else
774 return REMOTE_DISTANCE;
775 }
776
777 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
778 EXPORT_SYMBOL(__per_cpu_offset);
779
setup_per_cpu_areas(void)780 void __init setup_per_cpu_areas(void)
781 {
782 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
783 size_t atom_size;
784 unsigned long delta;
785 unsigned int cpu;
786 int rc;
787
788 /*
789 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
790 * to group units. For larger mappings, use 1M atom which
791 * should be large enough to contain a number of units.
792 */
793 if (mmu_linear_psize == MMU_PAGE_4K)
794 atom_size = PAGE_SIZE;
795 else
796 atom_size = 1 << 20;
797
798 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
799 pcpu_fc_alloc, pcpu_fc_free);
800 if (rc < 0)
801 panic("cannot initialize percpu area (err=%d)", rc);
802
803 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
804 for_each_possible_cpu(cpu) {
805 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
806 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
807 }
808 }
809 #endif
810
811 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)812 unsigned long memory_block_size_bytes(void)
813 {
814 if (ppc_md.memory_block_size)
815 return ppc_md.memory_block_size();
816
817 return MIN_MEMORY_BLOCK_SIZE;
818 }
819 #endif
820
821 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
822 struct ppc_pci_io ppc_pci_io;
823 EXPORT_SYMBOL(ppc_pci_io);
824 #endif
825
826 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)827 u64 hw_nmi_get_sample_period(int watchdog_thresh)
828 {
829 return ppc_proc_freq * watchdog_thresh;
830 }
831 #endif
832
833 /*
834 * The perf based hardlockup detector breaks PMU event based branches, so
835 * disable it by default. Book3S has a soft-nmi hardlockup detector based
836 * on the decrementer interrupt, so it does not suffer from this problem.
837 *
838 * It is likely to get false positives in VM guests, so disable it there
839 * by default too.
840 */
disable_hardlockup_detector(void)841 static int __init disable_hardlockup_detector(void)
842 {
843 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
844 hardlockup_detector_disable();
845 #else
846 if (firmware_has_feature(FW_FEATURE_LPAR))
847 hardlockup_detector_disable();
848 #endif
849
850 return 0;
851 }
852 early_initcall(disable_hardlockup_detector);
853
854 #ifdef CONFIG_PPC_BOOK3S_64
855 static enum l1d_flush_type enabled_flush_types;
856 static void *l1d_flush_fallback_area;
857 static bool no_rfi_flush;
858 bool rfi_flush;
859
handle_no_rfi_flush(char * p)860 static int __init handle_no_rfi_flush(char *p)
861 {
862 pr_info("rfi-flush: disabled on command line.");
863 no_rfi_flush = true;
864 return 0;
865 }
866 early_param("no_rfi_flush", handle_no_rfi_flush);
867
868 /*
869 * The RFI flush is not KPTI, but because users will see doco that says to use
870 * nopti we hijack that option here to also disable the RFI flush.
871 */
handle_no_pti(char * p)872 static int __init handle_no_pti(char *p)
873 {
874 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
875 handle_no_rfi_flush(NULL);
876 return 0;
877 }
878 early_param("nopti", handle_no_pti);
879
do_nothing(void * unused)880 static void do_nothing(void *unused)
881 {
882 /*
883 * We don't need to do the flush explicitly, just enter+exit kernel is
884 * sufficient, the RFI exit handlers will do the right thing.
885 */
886 }
887
rfi_flush_enable(bool enable)888 void rfi_flush_enable(bool enable)
889 {
890 if (enable) {
891 do_rfi_flush_fixups(enabled_flush_types);
892 on_each_cpu(do_nothing, NULL, 1);
893 } else
894 do_rfi_flush_fixups(L1D_FLUSH_NONE);
895
896 rfi_flush = enable;
897 }
898
init_fallback_flush(void)899 static void __ref init_fallback_flush(void)
900 {
901 u64 l1d_size, limit;
902 int cpu;
903
904 /* Only allocate the fallback flush area once (at boot time). */
905 if (l1d_flush_fallback_area)
906 return;
907
908 l1d_size = ppc64_caches.l1d.size;
909
910 /*
911 * If there is no d-cache-size property in the device tree, l1d_size
912 * could be zero. That leads to the loop in the asm wrapping around to
913 * 2^64-1, and then walking off the end of the fallback area and
914 * eventually causing a page fault which is fatal. Just default to
915 * something vaguely sane.
916 */
917 if (!l1d_size)
918 l1d_size = (64 * 1024);
919
920 limit = min(ppc64_bolted_size(), ppc64_rma_size);
921
922 /*
923 * Align to L1d size, and size it at 2x L1d size, to catch possible
924 * hardware prefetch runoff. We don't have a recipe for load patterns to
925 * reliably avoid the prefetcher.
926 */
927 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
928 memset(l1d_flush_fallback_area, 0, l1d_size * 2);
929
930 for_each_possible_cpu(cpu) {
931 struct paca_struct *paca = paca_ptrs[cpu];
932 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
933 paca->l1d_flush_size = l1d_size;
934 }
935 }
936
setup_rfi_flush(enum l1d_flush_type types,bool enable)937 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
938 {
939 if (types & L1D_FLUSH_FALLBACK) {
940 pr_info("rfi-flush: fallback displacement flush available\n");
941 init_fallback_flush();
942 }
943
944 if (types & L1D_FLUSH_ORI)
945 pr_info("rfi-flush: ori type flush available\n");
946
947 if (types & L1D_FLUSH_MTTRIG)
948 pr_info("rfi-flush: mttrig type flush available\n");
949
950 enabled_flush_types = types;
951
952 if (!no_rfi_flush)
953 rfi_flush_enable(enable);
954 }
955
956 #ifdef CONFIG_DEBUG_FS
rfi_flush_set(void * data,u64 val)957 static int rfi_flush_set(void *data, u64 val)
958 {
959 bool enable;
960
961 if (val == 1)
962 enable = true;
963 else if (val == 0)
964 enable = false;
965 else
966 return -EINVAL;
967
968 /* Only do anything if we're changing state */
969 if (enable != rfi_flush)
970 rfi_flush_enable(enable);
971
972 return 0;
973 }
974
rfi_flush_get(void * data,u64 * val)975 static int rfi_flush_get(void *data, u64 *val)
976 {
977 *val = rfi_flush ? 1 : 0;
978 return 0;
979 }
980
981 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
982
rfi_flush_debugfs_init(void)983 static __init int rfi_flush_debugfs_init(void)
984 {
985 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
986 return 0;
987 }
988 device_initcall(rfi_flush_debugfs_init);
989 #endif
990 #endif /* CONFIG_PPC_BOOK3S_64 */
991