1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <linux/uaccess.h>
38 #include <linux/pkeys.h>
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/switch_to.h>
42 #include <asm/tm.h>
43 #include <asm/asm-prototypes.h>
44 #include <asm/debug.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/syscalls.h>
48
49 /*
50 * The parameter save area on the stack is used to store arguments being passed
51 * to callee function and is located at fixed offset from stack pointer.
52 */
53 #ifdef CONFIG_PPC32
54 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
55 #else /* CONFIG_PPC32 */
56 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
57 #endif
58
59 struct pt_regs_offset {
60 const char *name;
61 int offset;
62 };
63
64 #define STR(s) #s /* convert to string */
65 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
66 #define GPR_OFFSET_NAME(num) \
67 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
68 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
69 #define REG_OFFSET_END {.name = NULL, .offset = 0}
70
71 #define TVSO(f) (offsetof(struct thread_vr_state, f))
72 #define TFSO(f) (offsetof(struct thread_fp_state, f))
73 #define TSO(f) (offsetof(struct thread_struct, f))
74
75 static const struct pt_regs_offset regoffset_table[] = {
76 GPR_OFFSET_NAME(0),
77 GPR_OFFSET_NAME(1),
78 GPR_OFFSET_NAME(2),
79 GPR_OFFSET_NAME(3),
80 GPR_OFFSET_NAME(4),
81 GPR_OFFSET_NAME(5),
82 GPR_OFFSET_NAME(6),
83 GPR_OFFSET_NAME(7),
84 GPR_OFFSET_NAME(8),
85 GPR_OFFSET_NAME(9),
86 GPR_OFFSET_NAME(10),
87 GPR_OFFSET_NAME(11),
88 GPR_OFFSET_NAME(12),
89 GPR_OFFSET_NAME(13),
90 GPR_OFFSET_NAME(14),
91 GPR_OFFSET_NAME(15),
92 GPR_OFFSET_NAME(16),
93 GPR_OFFSET_NAME(17),
94 GPR_OFFSET_NAME(18),
95 GPR_OFFSET_NAME(19),
96 GPR_OFFSET_NAME(20),
97 GPR_OFFSET_NAME(21),
98 GPR_OFFSET_NAME(22),
99 GPR_OFFSET_NAME(23),
100 GPR_OFFSET_NAME(24),
101 GPR_OFFSET_NAME(25),
102 GPR_OFFSET_NAME(26),
103 GPR_OFFSET_NAME(27),
104 GPR_OFFSET_NAME(28),
105 GPR_OFFSET_NAME(29),
106 GPR_OFFSET_NAME(30),
107 GPR_OFFSET_NAME(31),
108 REG_OFFSET_NAME(nip),
109 REG_OFFSET_NAME(msr),
110 REG_OFFSET_NAME(ctr),
111 REG_OFFSET_NAME(link),
112 REG_OFFSET_NAME(xer),
113 REG_OFFSET_NAME(ccr),
114 #ifdef CONFIG_PPC64
115 REG_OFFSET_NAME(softe),
116 #else
117 REG_OFFSET_NAME(mq),
118 #endif
119 REG_OFFSET_NAME(trap),
120 REG_OFFSET_NAME(dar),
121 REG_OFFSET_NAME(dsisr),
122 REG_OFFSET_END,
123 };
124
125 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
flush_tmregs_to_thread(struct task_struct * tsk)126 static void flush_tmregs_to_thread(struct task_struct *tsk)
127 {
128 /*
129 * If task is not current, it will have been flushed already to
130 * it's thread_struct during __switch_to().
131 *
132 * A reclaim flushes ALL the state or if not in TM save TM SPRs
133 * in the appropriate thread structures from live.
134 */
135
136 if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
137 return;
138
139 if (MSR_TM_SUSPENDED(mfmsr())) {
140 tm_reclaim_current(TM_CAUSE_SIGNAL);
141 } else {
142 tm_enable();
143 tm_save_sprs(&(tsk->thread));
144 }
145 }
146 #else
flush_tmregs_to_thread(struct task_struct * tsk)147 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
148 #endif
149
150 /**
151 * regs_query_register_offset() - query register offset from its name
152 * @name: the name of a register
153 *
154 * regs_query_register_offset() returns the offset of a register in struct
155 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
156 */
regs_query_register_offset(const char * name)157 int regs_query_register_offset(const char *name)
158 {
159 const struct pt_regs_offset *roff;
160 for (roff = regoffset_table; roff->name != NULL; roff++)
161 if (!strcmp(roff->name, name))
162 return roff->offset;
163 return -EINVAL;
164 }
165
166 /**
167 * regs_query_register_name() - query register name from its offset
168 * @offset: the offset of a register in struct pt_regs.
169 *
170 * regs_query_register_name() returns the name of a register from its
171 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
172 */
regs_query_register_name(unsigned int offset)173 const char *regs_query_register_name(unsigned int offset)
174 {
175 const struct pt_regs_offset *roff;
176 for (roff = regoffset_table; roff->name != NULL; roff++)
177 if (roff->offset == offset)
178 return roff->name;
179 return NULL;
180 }
181
182 /*
183 * does not yet catch signals sent when the child dies.
184 * in exit.c or in signal.c.
185 */
186
187 /*
188 * Set of msr bits that gdb can change on behalf of a process.
189 */
190 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
191 #define MSR_DEBUGCHANGE 0
192 #else
193 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
194 #endif
195
196 /*
197 * Max register writeable via put_reg
198 */
199 #ifdef CONFIG_PPC32
200 #define PT_MAX_PUT_REG PT_MQ
201 #else
202 #define PT_MAX_PUT_REG PT_CCR
203 #endif
204
get_user_msr(struct task_struct * task)205 static unsigned long get_user_msr(struct task_struct *task)
206 {
207 return task->thread.regs->msr | task->thread.fpexc_mode;
208 }
209
set_user_msr(struct task_struct * task,unsigned long msr)210 static int set_user_msr(struct task_struct *task, unsigned long msr)
211 {
212 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
213 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
214 return 0;
215 }
216
217 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
get_user_ckpt_msr(struct task_struct * task)218 static unsigned long get_user_ckpt_msr(struct task_struct *task)
219 {
220 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
221 }
222
set_user_ckpt_msr(struct task_struct * task,unsigned long msr)223 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
224 {
225 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
226 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
227 return 0;
228 }
229
set_user_ckpt_trap(struct task_struct * task,unsigned long trap)230 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
231 {
232 task->thread.ckpt_regs.trap = trap & 0xfff0;
233 return 0;
234 }
235 #endif
236
237 #ifdef CONFIG_PPC64
get_user_dscr(struct task_struct * task,unsigned long * data)238 static int get_user_dscr(struct task_struct *task, unsigned long *data)
239 {
240 *data = task->thread.dscr;
241 return 0;
242 }
243
set_user_dscr(struct task_struct * task,unsigned long dscr)244 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
245 {
246 task->thread.dscr = dscr;
247 task->thread.dscr_inherit = 1;
248 return 0;
249 }
250 #else
get_user_dscr(struct task_struct * task,unsigned long * data)251 static int get_user_dscr(struct task_struct *task, unsigned long *data)
252 {
253 return -EIO;
254 }
255
set_user_dscr(struct task_struct * task,unsigned long dscr)256 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
257 {
258 return -EIO;
259 }
260 #endif
261
262 /*
263 * We prevent mucking around with the reserved area of trap
264 * which are used internally by the kernel.
265 */
set_user_trap(struct task_struct * task,unsigned long trap)266 static int set_user_trap(struct task_struct *task, unsigned long trap)
267 {
268 task->thread.regs->trap = trap & 0xfff0;
269 return 0;
270 }
271
272 /*
273 * Get contents of register REGNO in task TASK.
274 */
ptrace_get_reg(struct task_struct * task,int regno,unsigned long * data)275 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
276 {
277 if ((task->thread.regs == NULL) || !data)
278 return -EIO;
279
280 if (regno == PT_MSR) {
281 *data = get_user_msr(task);
282 return 0;
283 }
284
285 if (regno == PT_DSCR)
286 return get_user_dscr(task, data);
287
288 #ifdef CONFIG_PPC64
289 /*
290 * softe copies paca->irq_soft_mask variable state. Since irq_soft_mask is
291 * no more used as a flag, lets force usr to alway see the softe value as 1
292 * which means interrupts are not soft disabled.
293 */
294 if (regno == PT_SOFTE) {
295 *data = 1;
296 return 0;
297 }
298 #endif
299
300 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
301 *data = ((unsigned long *)task->thread.regs)[regno];
302 return 0;
303 }
304
305 return -EIO;
306 }
307
308 /*
309 * Write contents of register REGNO in task TASK.
310 */
ptrace_put_reg(struct task_struct * task,int regno,unsigned long data)311 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
312 {
313 if (task->thread.regs == NULL)
314 return -EIO;
315
316 if (regno == PT_MSR)
317 return set_user_msr(task, data);
318 if (regno == PT_TRAP)
319 return set_user_trap(task, data);
320 if (regno == PT_DSCR)
321 return set_user_dscr(task, data);
322
323 if (regno <= PT_MAX_PUT_REG) {
324 ((unsigned long *)task->thread.regs)[regno] = data;
325 return 0;
326 }
327 return -EIO;
328 }
329
gpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)330 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
331 unsigned int pos, unsigned int count,
332 void *kbuf, void __user *ubuf)
333 {
334 int i, ret;
335
336 if (target->thread.regs == NULL)
337 return -EIO;
338
339 if (!FULL_REGS(target->thread.regs)) {
340 /* We have a partial register set. Fill 14-31 with bogus values */
341 for (i = 14; i < 32; i++)
342 target->thread.regs->gpr[i] = NV_REG_POISON;
343 }
344
345 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
346 target->thread.regs,
347 0, offsetof(struct pt_regs, msr));
348 if (!ret) {
349 unsigned long msr = get_user_msr(target);
350 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
351 offsetof(struct pt_regs, msr),
352 offsetof(struct pt_regs, msr) +
353 sizeof(msr));
354 }
355
356 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
357 offsetof(struct pt_regs, msr) + sizeof(long));
358
359 if (!ret)
360 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
361 &target->thread.regs->orig_gpr3,
362 offsetof(struct pt_regs, orig_gpr3),
363 sizeof(struct pt_regs));
364 if (!ret)
365 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
366 sizeof(struct pt_regs), -1);
367
368 return ret;
369 }
370
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)371 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
372 unsigned int pos, unsigned int count,
373 const void *kbuf, const void __user *ubuf)
374 {
375 unsigned long reg;
376 int ret;
377
378 if (target->thread.regs == NULL)
379 return -EIO;
380
381 CHECK_FULL_REGS(target->thread.regs);
382
383 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
384 target->thread.regs,
385 0, PT_MSR * sizeof(reg));
386
387 if (!ret && count > 0) {
388 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
389 PT_MSR * sizeof(reg),
390 (PT_MSR + 1) * sizeof(reg));
391 if (!ret)
392 ret = set_user_msr(target, reg);
393 }
394
395 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
396 offsetof(struct pt_regs, msr) + sizeof(long));
397
398 if (!ret)
399 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
400 &target->thread.regs->orig_gpr3,
401 PT_ORIG_R3 * sizeof(reg),
402 (PT_MAX_PUT_REG + 1) * sizeof(reg));
403
404 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
405 ret = user_regset_copyin_ignore(
406 &pos, &count, &kbuf, &ubuf,
407 (PT_MAX_PUT_REG + 1) * sizeof(reg),
408 PT_TRAP * sizeof(reg));
409
410 if (!ret && count > 0) {
411 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
412 PT_TRAP * sizeof(reg),
413 (PT_TRAP + 1) * sizeof(reg));
414 if (!ret)
415 ret = set_user_trap(target, reg);
416 }
417
418 if (!ret)
419 ret = user_regset_copyin_ignore(
420 &pos, &count, &kbuf, &ubuf,
421 (PT_TRAP + 1) * sizeof(reg), -1);
422
423 return ret;
424 }
425
426 /*
427 * Regardless of transactions, 'fp_state' holds the current running
428 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
429 * value of all FPR registers for the current transaction.
430 *
431 * Userspace interface buffer layout:
432 *
433 * struct data {
434 * u64 fpr[32];
435 * u64 fpscr;
436 * };
437 */
fpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)438 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
439 unsigned int pos, unsigned int count,
440 void *kbuf, void __user *ubuf)
441 {
442 #ifdef CONFIG_VSX
443 u64 buf[33];
444 int i;
445
446 flush_fp_to_thread(target);
447
448 /* copy to local buffer then write that out */
449 for (i = 0; i < 32 ; i++)
450 buf[i] = target->thread.TS_FPR(i);
451 buf[32] = target->thread.fp_state.fpscr;
452 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
453 #else
454 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
455 offsetof(struct thread_fp_state, fpr[32]));
456
457 flush_fp_to_thread(target);
458
459 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
460 &target->thread.fp_state, 0, -1);
461 #endif
462 }
463
464 /*
465 * Regardless of transactions, 'fp_state' holds the current running
466 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
467 * value of all FPR registers for the current transaction.
468 *
469 * Userspace interface buffer layout:
470 *
471 * struct data {
472 * u64 fpr[32];
473 * u64 fpscr;
474 * };
475 *
476 */
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)477 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
478 unsigned int pos, unsigned int count,
479 const void *kbuf, const void __user *ubuf)
480 {
481 #ifdef CONFIG_VSX
482 u64 buf[33];
483 int i;
484
485 flush_fp_to_thread(target);
486
487 for (i = 0; i < 32 ; i++)
488 buf[i] = target->thread.TS_FPR(i);
489 buf[32] = target->thread.fp_state.fpscr;
490
491 /* copy to local buffer then write that out */
492 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
493 if (i)
494 return i;
495
496 for (i = 0; i < 32 ; i++)
497 target->thread.TS_FPR(i) = buf[i];
498 target->thread.fp_state.fpscr = buf[32];
499 return 0;
500 #else
501 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
502 offsetof(struct thread_fp_state, fpr[32]));
503
504 flush_fp_to_thread(target);
505
506 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
507 &target->thread.fp_state, 0, -1);
508 #endif
509 }
510
511 #ifdef CONFIG_ALTIVEC
512 /*
513 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
514 * The transfer totals 34 quadword. Quadwords 0-31 contain the
515 * corresponding vector registers. Quadword 32 contains the vscr as the
516 * last word (offset 12) within that quadword. Quadword 33 contains the
517 * vrsave as the first word (offset 0) within the quadword.
518 *
519 * This definition of the VMX state is compatible with the current PPC32
520 * ptrace interface. This allows signal handling and ptrace to use the
521 * same structures. This also simplifies the implementation of a bi-arch
522 * (combined (32- and 64-bit) gdb.
523 */
524
vr_active(struct task_struct * target,const struct user_regset * regset)525 static int vr_active(struct task_struct *target,
526 const struct user_regset *regset)
527 {
528 flush_altivec_to_thread(target);
529 return target->thread.used_vr ? regset->n : 0;
530 }
531
532 /*
533 * Regardless of transactions, 'vr_state' holds the current running
534 * value of all the VMX registers and 'ckvr_state' holds the last
535 * checkpointed value of all the VMX registers for the current
536 * transaction to fall back on in case it aborts.
537 *
538 * Userspace interface buffer layout:
539 *
540 * struct data {
541 * vector128 vr[32];
542 * vector128 vscr;
543 * vector128 vrsave;
544 * };
545 */
vr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)546 static int vr_get(struct task_struct *target, const struct user_regset *regset,
547 unsigned int pos, unsigned int count,
548 void *kbuf, void __user *ubuf)
549 {
550 int ret;
551
552 flush_altivec_to_thread(target);
553
554 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
555 offsetof(struct thread_vr_state, vr[32]));
556
557 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
558 &target->thread.vr_state, 0,
559 33 * sizeof(vector128));
560 if (!ret) {
561 /*
562 * Copy out only the low-order word of vrsave.
563 */
564 union {
565 elf_vrreg_t reg;
566 u32 word;
567 } vrsave;
568 memset(&vrsave, 0, sizeof(vrsave));
569
570 vrsave.word = target->thread.vrsave;
571
572 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
573 33 * sizeof(vector128), -1);
574 }
575
576 return ret;
577 }
578
579 /*
580 * Regardless of transactions, 'vr_state' holds the current running
581 * value of all the VMX registers and 'ckvr_state' holds the last
582 * checkpointed value of all the VMX registers for the current
583 * transaction to fall back on in case it aborts.
584 *
585 * Userspace interface buffer layout:
586 *
587 * struct data {
588 * vector128 vr[32];
589 * vector128 vscr;
590 * vector128 vrsave;
591 * };
592 */
vr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)593 static int vr_set(struct task_struct *target, const struct user_regset *regset,
594 unsigned int pos, unsigned int count,
595 const void *kbuf, const void __user *ubuf)
596 {
597 int ret;
598
599 flush_altivec_to_thread(target);
600
601 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
602 offsetof(struct thread_vr_state, vr[32]));
603
604 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
605 &target->thread.vr_state, 0,
606 33 * sizeof(vector128));
607 if (!ret && count > 0) {
608 /*
609 * We use only the first word of vrsave.
610 */
611 union {
612 elf_vrreg_t reg;
613 u32 word;
614 } vrsave;
615 memset(&vrsave, 0, sizeof(vrsave));
616
617 vrsave.word = target->thread.vrsave;
618
619 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
620 33 * sizeof(vector128), -1);
621 if (!ret)
622 target->thread.vrsave = vrsave.word;
623 }
624
625 return ret;
626 }
627 #endif /* CONFIG_ALTIVEC */
628
629 #ifdef CONFIG_VSX
630 /*
631 * Currently to set and and get all the vsx state, you need to call
632 * the fp and VMX calls as well. This only get/sets the lower 32
633 * 128bit VSX registers.
634 */
635
vsr_active(struct task_struct * target,const struct user_regset * regset)636 static int vsr_active(struct task_struct *target,
637 const struct user_regset *regset)
638 {
639 flush_vsx_to_thread(target);
640 return target->thread.used_vsr ? regset->n : 0;
641 }
642
643 /*
644 * Regardless of transactions, 'fp_state' holds the current running
645 * value of all FPR registers and 'ckfp_state' holds the last
646 * checkpointed value of all FPR registers for the current
647 * transaction.
648 *
649 * Userspace interface buffer layout:
650 *
651 * struct data {
652 * u64 vsx[32];
653 * };
654 */
vsr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)655 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
656 unsigned int pos, unsigned int count,
657 void *kbuf, void __user *ubuf)
658 {
659 u64 buf[32];
660 int ret, i;
661
662 flush_tmregs_to_thread(target);
663 flush_fp_to_thread(target);
664 flush_altivec_to_thread(target);
665 flush_vsx_to_thread(target);
666
667 for (i = 0; i < 32 ; i++)
668 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
669
670 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
671 buf, 0, 32 * sizeof(double));
672
673 return ret;
674 }
675
676 /*
677 * Regardless of transactions, 'fp_state' holds the current running
678 * value of all FPR registers and 'ckfp_state' holds the last
679 * checkpointed value of all FPR registers for the current
680 * transaction.
681 *
682 * Userspace interface buffer layout:
683 *
684 * struct data {
685 * u64 vsx[32];
686 * };
687 */
vsr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)688 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
689 unsigned int pos, unsigned int count,
690 const void *kbuf, const void __user *ubuf)
691 {
692 u64 buf[32];
693 int ret,i;
694
695 flush_tmregs_to_thread(target);
696 flush_fp_to_thread(target);
697 flush_altivec_to_thread(target);
698 flush_vsx_to_thread(target);
699
700 for (i = 0; i < 32 ; i++)
701 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
702
703 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
704 buf, 0, 32 * sizeof(double));
705 if (!ret)
706 for (i = 0; i < 32 ; i++)
707 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
708
709 return ret;
710 }
711 #endif /* CONFIG_VSX */
712
713 #ifdef CONFIG_SPE
714
715 /*
716 * For get_evrregs/set_evrregs functions 'data' has the following layout:
717 *
718 * struct {
719 * u32 evr[32];
720 * u64 acc;
721 * u32 spefscr;
722 * }
723 */
724
evr_active(struct task_struct * target,const struct user_regset * regset)725 static int evr_active(struct task_struct *target,
726 const struct user_regset *regset)
727 {
728 flush_spe_to_thread(target);
729 return target->thread.used_spe ? regset->n : 0;
730 }
731
evr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)732 static int evr_get(struct task_struct *target, const struct user_regset *regset,
733 unsigned int pos, unsigned int count,
734 void *kbuf, void __user *ubuf)
735 {
736 int ret;
737
738 flush_spe_to_thread(target);
739
740 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
741 &target->thread.evr,
742 0, sizeof(target->thread.evr));
743
744 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
745 offsetof(struct thread_struct, spefscr));
746
747 if (!ret)
748 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
749 &target->thread.acc,
750 sizeof(target->thread.evr), -1);
751
752 return ret;
753 }
754
evr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)755 static int evr_set(struct task_struct *target, const struct user_regset *regset,
756 unsigned int pos, unsigned int count,
757 const void *kbuf, const void __user *ubuf)
758 {
759 int ret;
760
761 flush_spe_to_thread(target);
762
763 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
764 &target->thread.evr,
765 0, sizeof(target->thread.evr));
766
767 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
768 offsetof(struct thread_struct, spefscr));
769
770 if (!ret)
771 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
772 &target->thread.acc,
773 sizeof(target->thread.evr), -1);
774
775 return ret;
776 }
777 #endif /* CONFIG_SPE */
778
779 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
780 /**
781 * tm_cgpr_active - get active number of registers in CGPR
782 * @target: The target task.
783 * @regset: The user regset structure.
784 *
785 * This function checks for the active number of available
786 * regisers in transaction checkpointed GPR category.
787 */
tm_cgpr_active(struct task_struct * target,const struct user_regset * regset)788 static int tm_cgpr_active(struct task_struct *target,
789 const struct user_regset *regset)
790 {
791 if (!cpu_has_feature(CPU_FTR_TM))
792 return -ENODEV;
793
794 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
795 return 0;
796
797 return regset->n;
798 }
799
800 /**
801 * tm_cgpr_get - get CGPR registers
802 * @target: The target task.
803 * @regset: The user regset structure.
804 * @pos: The buffer position.
805 * @count: Number of bytes to copy.
806 * @kbuf: Kernel buffer to copy from.
807 * @ubuf: User buffer to copy into.
808 *
809 * This function gets transaction checkpointed GPR registers.
810 *
811 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
812 * GPR register values for the current transaction to fall back on if it
813 * aborts in between. This function gets those checkpointed GPR registers.
814 * The userspace interface buffer layout is as follows.
815 *
816 * struct data {
817 * struct pt_regs ckpt_regs;
818 * };
819 */
tm_cgpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)820 static int tm_cgpr_get(struct task_struct *target,
821 const struct user_regset *regset,
822 unsigned int pos, unsigned int count,
823 void *kbuf, void __user *ubuf)
824 {
825 int ret;
826
827 if (!cpu_has_feature(CPU_FTR_TM))
828 return -ENODEV;
829
830 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
831 return -ENODATA;
832
833 flush_tmregs_to_thread(target);
834 flush_fp_to_thread(target);
835 flush_altivec_to_thread(target);
836
837 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
838 &target->thread.ckpt_regs,
839 0, offsetof(struct pt_regs, msr));
840 if (!ret) {
841 unsigned long msr = get_user_ckpt_msr(target);
842
843 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
844 offsetof(struct pt_regs, msr),
845 offsetof(struct pt_regs, msr) +
846 sizeof(msr));
847 }
848
849 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
850 offsetof(struct pt_regs, msr) + sizeof(long));
851
852 if (!ret)
853 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
854 &target->thread.ckpt_regs.orig_gpr3,
855 offsetof(struct pt_regs, orig_gpr3),
856 sizeof(struct pt_regs));
857 if (!ret)
858 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
859 sizeof(struct pt_regs), -1);
860
861 return ret;
862 }
863
864 /*
865 * tm_cgpr_set - set the CGPR registers
866 * @target: The target task.
867 * @regset: The user regset structure.
868 * @pos: The buffer position.
869 * @count: Number of bytes to copy.
870 * @kbuf: Kernel buffer to copy into.
871 * @ubuf: User buffer to copy from.
872 *
873 * This function sets in transaction checkpointed GPR registers.
874 *
875 * When the transaction is active, 'ckpt_regs' holds the checkpointed
876 * GPR register values for the current transaction to fall back on if it
877 * aborts in between. This function sets those checkpointed GPR registers.
878 * The userspace interface buffer layout is as follows.
879 *
880 * struct data {
881 * struct pt_regs ckpt_regs;
882 * };
883 */
tm_cgpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)884 static int tm_cgpr_set(struct task_struct *target,
885 const struct user_regset *regset,
886 unsigned int pos, unsigned int count,
887 const void *kbuf, const void __user *ubuf)
888 {
889 unsigned long reg;
890 int ret;
891
892 if (!cpu_has_feature(CPU_FTR_TM))
893 return -ENODEV;
894
895 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
896 return -ENODATA;
897
898 flush_tmregs_to_thread(target);
899 flush_fp_to_thread(target);
900 flush_altivec_to_thread(target);
901
902 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
903 &target->thread.ckpt_regs,
904 0, PT_MSR * sizeof(reg));
905
906 if (!ret && count > 0) {
907 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
908 PT_MSR * sizeof(reg),
909 (PT_MSR + 1) * sizeof(reg));
910 if (!ret)
911 ret = set_user_ckpt_msr(target, reg);
912 }
913
914 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
915 offsetof(struct pt_regs, msr) + sizeof(long));
916
917 if (!ret)
918 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
919 &target->thread.ckpt_regs.orig_gpr3,
920 PT_ORIG_R3 * sizeof(reg),
921 (PT_MAX_PUT_REG + 1) * sizeof(reg));
922
923 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
924 ret = user_regset_copyin_ignore(
925 &pos, &count, &kbuf, &ubuf,
926 (PT_MAX_PUT_REG + 1) * sizeof(reg),
927 PT_TRAP * sizeof(reg));
928
929 if (!ret && count > 0) {
930 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
931 PT_TRAP * sizeof(reg),
932 (PT_TRAP + 1) * sizeof(reg));
933 if (!ret)
934 ret = set_user_ckpt_trap(target, reg);
935 }
936
937 if (!ret)
938 ret = user_regset_copyin_ignore(
939 &pos, &count, &kbuf, &ubuf,
940 (PT_TRAP + 1) * sizeof(reg), -1);
941
942 return ret;
943 }
944
945 /**
946 * tm_cfpr_active - get active number of registers in CFPR
947 * @target: The target task.
948 * @regset: The user regset structure.
949 *
950 * This function checks for the active number of available
951 * regisers in transaction checkpointed FPR category.
952 */
tm_cfpr_active(struct task_struct * target,const struct user_regset * regset)953 static int tm_cfpr_active(struct task_struct *target,
954 const struct user_regset *regset)
955 {
956 if (!cpu_has_feature(CPU_FTR_TM))
957 return -ENODEV;
958
959 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
960 return 0;
961
962 return regset->n;
963 }
964
965 /**
966 * tm_cfpr_get - get CFPR registers
967 * @target: The target task.
968 * @regset: The user regset structure.
969 * @pos: The buffer position.
970 * @count: Number of bytes to copy.
971 * @kbuf: Kernel buffer to copy from.
972 * @ubuf: User buffer to copy into.
973 *
974 * This function gets in transaction checkpointed FPR registers.
975 *
976 * When the transaction is active 'ckfp_state' holds the checkpointed
977 * values for the current transaction to fall back on if it aborts
978 * in between. This function gets those checkpointed FPR registers.
979 * The userspace interface buffer layout is as follows.
980 *
981 * struct data {
982 * u64 fpr[32];
983 * u64 fpscr;
984 *};
985 */
tm_cfpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)986 static int tm_cfpr_get(struct task_struct *target,
987 const struct user_regset *regset,
988 unsigned int pos, unsigned int count,
989 void *kbuf, void __user *ubuf)
990 {
991 u64 buf[33];
992 int i;
993
994 if (!cpu_has_feature(CPU_FTR_TM))
995 return -ENODEV;
996
997 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
998 return -ENODATA;
999
1000 flush_tmregs_to_thread(target);
1001 flush_fp_to_thread(target);
1002 flush_altivec_to_thread(target);
1003
1004 /* copy to local buffer then write that out */
1005 for (i = 0; i < 32 ; i++)
1006 buf[i] = target->thread.TS_CKFPR(i);
1007 buf[32] = target->thread.ckfp_state.fpscr;
1008 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1009 }
1010
1011 /**
1012 * tm_cfpr_set - set CFPR registers
1013 * @target: The target task.
1014 * @regset: The user regset structure.
1015 * @pos: The buffer position.
1016 * @count: Number of bytes to copy.
1017 * @kbuf: Kernel buffer to copy into.
1018 * @ubuf: User buffer to copy from.
1019 *
1020 * This function sets in transaction checkpointed FPR registers.
1021 *
1022 * When the transaction is active 'ckfp_state' holds the checkpointed
1023 * FPR register values for the current transaction to fall back on
1024 * if it aborts in between. This function sets these checkpointed
1025 * FPR registers. The userspace interface buffer layout is as follows.
1026 *
1027 * struct data {
1028 * u64 fpr[32];
1029 * u64 fpscr;
1030 *};
1031 */
tm_cfpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1032 static int tm_cfpr_set(struct task_struct *target,
1033 const struct user_regset *regset,
1034 unsigned int pos, unsigned int count,
1035 const void *kbuf, const void __user *ubuf)
1036 {
1037 u64 buf[33];
1038 int i;
1039
1040 if (!cpu_has_feature(CPU_FTR_TM))
1041 return -ENODEV;
1042
1043 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1044 return -ENODATA;
1045
1046 flush_tmregs_to_thread(target);
1047 flush_fp_to_thread(target);
1048 flush_altivec_to_thread(target);
1049
1050 for (i = 0; i < 32; i++)
1051 buf[i] = target->thread.TS_CKFPR(i);
1052 buf[32] = target->thread.ckfp_state.fpscr;
1053
1054 /* copy to local buffer then write that out */
1055 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1056 if (i)
1057 return i;
1058 for (i = 0; i < 32 ; i++)
1059 target->thread.TS_CKFPR(i) = buf[i];
1060 target->thread.ckfp_state.fpscr = buf[32];
1061 return 0;
1062 }
1063
1064 /**
1065 * tm_cvmx_active - get active number of registers in CVMX
1066 * @target: The target task.
1067 * @regset: The user regset structure.
1068 *
1069 * This function checks for the active number of available
1070 * regisers in checkpointed VMX category.
1071 */
tm_cvmx_active(struct task_struct * target,const struct user_regset * regset)1072 static int tm_cvmx_active(struct task_struct *target,
1073 const struct user_regset *regset)
1074 {
1075 if (!cpu_has_feature(CPU_FTR_TM))
1076 return -ENODEV;
1077
1078 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1079 return 0;
1080
1081 return regset->n;
1082 }
1083
1084 /**
1085 * tm_cvmx_get - get CMVX registers
1086 * @target: The target task.
1087 * @regset: The user regset structure.
1088 * @pos: The buffer position.
1089 * @count: Number of bytes to copy.
1090 * @kbuf: Kernel buffer to copy from.
1091 * @ubuf: User buffer to copy into.
1092 *
1093 * This function gets in transaction checkpointed VMX registers.
1094 *
1095 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1096 * the checkpointed values for the current transaction to fall
1097 * back on if it aborts in between. The userspace interface buffer
1098 * layout is as follows.
1099 *
1100 * struct data {
1101 * vector128 vr[32];
1102 * vector128 vscr;
1103 * vector128 vrsave;
1104 *};
1105 */
tm_cvmx_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1106 static int tm_cvmx_get(struct task_struct *target,
1107 const struct user_regset *regset,
1108 unsigned int pos, unsigned int count,
1109 void *kbuf, void __user *ubuf)
1110 {
1111 int ret;
1112
1113 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1114
1115 if (!cpu_has_feature(CPU_FTR_TM))
1116 return -ENODEV;
1117
1118 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1119 return -ENODATA;
1120
1121 /* Flush the state */
1122 flush_tmregs_to_thread(target);
1123 flush_fp_to_thread(target);
1124 flush_altivec_to_thread(target);
1125
1126 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1127 &target->thread.ckvr_state, 0,
1128 33 * sizeof(vector128));
1129 if (!ret) {
1130 /*
1131 * Copy out only the low-order word of vrsave.
1132 */
1133 union {
1134 elf_vrreg_t reg;
1135 u32 word;
1136 } vrsave;
1137 memset(&vrsave, 0, sizeof(vrsave));
1138 vrsave.word = target->thread.ckvrsave;
1139 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1140 33 * sizeof(vector128), -1);
1141 }
1142
1143 return ret;
1144 }
1145
1146 /**
1147 * tm_cvmx_set - set CMVX registers
1148 * @target: The target task.
1149 * @regset: The user regset structure.
1150 * @pos: The buffer position.
1151 * @count: Number of bytes to copy.
1152 * @kbuf: Kernel buffer to copy into.
1153 * @ubuf: User buffer to copy from.
1154 *
1155 * This function sets in transaction checkpointed VMX registers.
1156 *
1157 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1158 * the checkpointed values for the current transaction to fall
1159 * back on if it aborts in between. The userspace interface buffer
1160 * layout is as follows.
1161 *
1162 * struct data {
1163 * vector128 vr[32];
1164 * vector128 vscr;
1165 * vector128 vrsave;
1166 *};
1167 */
tm_cvmx_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1168 static int tm_cvmx_set(struct task_struct *target,
1169 const struct user_regset *regset,
1170 unsigned int pos, unsigned int count,
1171 const void *kbuf, const void __user *ubuf)
1172 {
1173 int ret;
1174
1175 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1176
1177 if (!cpu_has_feature(CPU_FTR_TM))
1178 return -ENODEV;
1179
1180 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1181 return -ENODATA;
1182
1183 flush_tmregs_to_thread(target);
1184 flush_fp_to_thread(target);
1185 flush_altivec_to_thread(target);
1186
1187 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1188 &target->thread.ckvr_state, 0,
1189 33 * sizeof(vector128));
1190 if (!ret && count > 0) {
1191 /*
1192 * We use only the low-order word of vrsave.
1193 */
1194 union {
1195 elf_vrreg_t reg;
1196 u32 word;
1197 } vrsave;
1198 memset(&vrsave, 0, sizeof(vrsave));
1199 vrsave.word = target->thread.ckvrsave;
1200 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1201 33 * sizeof(vector128), -1);
1202 if (!ret)
1203 target->thread.ckvrsave = vrsave.word;
1204 }
1205
1206 return ret;
1207 }
1208
1209 /**
1210 * tm_cvsx_active - get active number of registers in CVSX
1211 * @target: The target task.
1212 * @regset: The user regset structure.
1213 *
1214 * This function checks for the active number of available
1215 * regisers in transaction checkpointed VSX category.
1216 */
tm_cvsx_active(struct task_struct * target,const struct user_regset * regset)1217 static int tm_cvsx_active(struct task_struct *target,
1218 const struct user_regset *regset)
1219 {
1220 if (!cpu_has_feature(CPU_FTR_TM))
1221 return -ENODEV;
1222
1223 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1224 return 0;
1225
1226 flush_vsx_to_thread(target);
1227 return target->thread.used_vsr ? regset->n : 0;
1228 }
1229
1230 /**
1231 * tm_cvsx_get - get CVSX registers
1232 * @target: The target task.
1233 * @regset: The user regset structure.
1234 * @pos: The buffer position.
1235 * @count: Number of bytes to copy.
1236 * @kbuf: Kernel buffer to copy from.
1237 * @ubuf: User buffer to copy into.
1238 *
1239 * This function gets in transaction checkpointed VSX registers.
1240 *
1241 * When the transaction is active 'ckfp_state' holds the checkpointed
1242 * values for the current transaction to fall back on if it aborts
1243 * in between. This function gets those checkpointed VSX registers.
1244 * The userspace interface buffer layout is as follows.
1245 *
1246 * struct data {
1247 * u64 vsx[32];
1248 *};
1249 */
tm_cvsx_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1250 static int tm_cvsx_get(struct task_struct *target,
1251 const struct user_regset *regset,
1252 unsigned int pos, unsigned int count,
1253 void *kbuf, void __user *ubuf)
1254 {
1255 u64 buf[32];
1256 int ret, i;
1257
1258 if (!cpu_has_feature(CPU_FTR_TM))
1259 return -ENODEV;
1260
1261 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1262 return -ENODATA;
1263
1264 /* Flush the state */
1265 flush_tmregs_to_thread(target);
1266 flush_fp_to_thread(target);
1267 flush_altivec_to_thread(target);
1268 flush_vsx_to_thread(target);
1269
1270 for (i = 0; i < 32 ; i++)
1271 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1272 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1273 buf, 0, 32 * sizeof(double));
1274
1275 return ret;
1276 }
1277
1278 /**
1279 * tm_cvsx_set - set CFPR registers
1280 * @target: The target task.
1281 * @regset: The user regset structure.
1282 * @pos: The buffer position.
1283 * @count: Number of bytes to copy.
1284 * @kbuf: Kernel buffer to copy into.
1285 * @ubuf: User buffer to copy from.
1286 *
1287 * This function sets in transaction checkpointed VSX registers.
1288 *
1289 * When the transaction is active 'ckfp_state' holds the checkpointed
1290 * VSX register values for the current transaction to fall back on
1291 * if it aborts in between. This function sets these checkpointed
1292 * FPR registers. The userspace interface buffer layout is as follows.
1293 *
1294 * struct data {
1295 * u64 vsx[32];
1296 *};
1297 */
tm_cvsx_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1298 static int tm_cvsx_set(struct task_struct *target,
1299 const struct user_regset *regset,
1300 unsigned int pos, unsigned int count,
1301 const void *kbuf, const void __user *ubuf)
1302 {
1303 u64 buf[32];
1304 int ret, i;
1305
1306 if (!cpu_has_feature(CPU_FTR_TM))
1307 return -ENODEV;
1308
1309 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1310 return -ENODATA;
1311
1312 /* Flush the state */
1313 flush_tmregs_to_thread(target);
1314 flush_fp_to_thread(target);
1315 flush_altivec_to_thread(target);
1316 flush_vsx_to_thread(target);
1317
1318 for (i = 0; i < 32 ; i++)
1319 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1320
1321 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322 buf, 0, 32 * sizeof(double));
1323 if (!ret)
1324 for (i = 0; i < 32 ; i++)
1325 target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1326
1327 return ret;
1328 }
1329
1330 /**
1331 * tm_spr_active - get active number of registers in TM SPR
1332 * @target: The target task.
1333 * @regset: The user regset structure.
1334 *
1335 * This function checks the active number of available
1336 * regisers in the transactional memory SPR category.
1337 */
tm_spr_active(struct task_struct * target,const struct user_regset * regset)1338 static int tm_spr_active(struct task_struct *target,
1339 const struct user_regset *regset)
1340 {
1341 if (!cpu_has_feature(CPU_FTR_TM))
1342 return -ENODEV;
1343
1344 return regset->n;
1345 }
1346
1347 /**
1348 * tm_spr_get - get the TM related SPR registers
1349 * @target: The target task.
1350 * @regset: The user regset structure.
1351 * @pos: The buffer position.
1352 * @count: Number of bytes to copy.
1353 * @kbuf: Kernel buffer to copy from.
1354 * @ubuf: User buffer to copy into.
1355 *
1356 * This function gets transactional memory related SPR registers.
1357 * The userspace interface buffer layout is as follows.
1358 *
1359 * struct {
1360 * u64 tm_tfhar;
1361 * u64 tm_texasr;
1362 * u64 tm_tfiar;
1363 * };
1364 */
tm_spr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1365 static int tm_spr_get(struct task_struct *target,
1366 const struct user_regset *regset,
1367 unsigned int pos, unsigned int count,
1368 void *kbuf, void __user *ubuf)
1369 {
1370 int ret;
1371
1372 /* Build tests */
1373 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1374 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1375 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1376
1377 if (!cpu_has_feature(CPU_FTR_TM))
1378 return -ENODEV;
1379
1380 /* Flush the states */
1381 flush_tmregs_to_thread(target);
1382 flush_fp_to_thread(target);
1383 flush_altivec_to_thread(target);
1384
1385 /* TFHAR register */
1386 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1387 &target->thread.tm_tfhar, 0, sizeof(u64));
1388
1389 /* TEXASR register */
1390 if (!ret)
1391 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1392 &target->thread.tm_texasr, sizeof(u64),
1393 2 * sizeof(u64));
1394
1395 /* TFIAR register */
1396 if (!ret)
1397 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1398 &target->thread.tm_tfiar,
1399 2 * sizeof(u64), 3 * sizeof(u64));
1400 return ret;
1401 }
1402
1403 /**
1404 * tm_spr_set - set the TM related SPR registers
1405 * @target: The target task.
1406 * @regset: The user regset structure.
1407 * @pos: The buffer position.
1408 * @count: Number of bytes to copy.
1409 * @kbuf: Kernel buffer to copy into.
1410 * @ubuf: User buffer to copy from.
1411 *
1412 * This function sets transactional memory related SPR registers.
1413 * The userspace interface buffer layout is as follows.
1414 *
1415 * struct {
1416 * u64 tm_tfhar;
1417 * u64 tm_texasr;
1418 * u64 tm_tfiar;
1419 * };
1420 */
tm_spr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1421 static int tm_spr_set(struct task_struct *target,
1422 const struct user_regset *regset,
1423 unsigned int pos, unsigned int count,
1424 const void *kbuf, const void __user *ubuf)
1425 {
1426 int ret;
1427
1428 /* Build tests */
1429 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1430 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1431 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1432
1433 if (!cpu_has_feature(CPU_FTR_TM))
1434 return -ENODEV;
1435
1436 /* Flush the states */
1437 flush_tmregs_to_thread(target);
1438 flush_fp_to_thread(target);
1439 flush_altivec_to_thread(target);
1440
1441 /* TFHAR register */
1442 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1443 &target->thread.tm_tfhar, 0, sizeof(u64));
1444
1445 /* TEXASR register */
1446 if (!ret)
1447 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1448 &target->thread.tm_texasr, sizeof(u64),
1449 2 * sizeof(u64));
1450
1451 /* TFIAR register */
1452 if (!ret)
1453 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1454 &target->thread.tm_tfiar,
1455 2 * sizeof(u64), 3 * sizeof(u64));
1456 return ret;
1457 }
1458
tm_tar_active(struct task_struct * target,const struct user_regset * regset)1459 static int tm_tar_active(struct task_struct *target,
1460 const struct user_regset *regset)
1461 {
1462 if (!cpu_has_feature(CPU_FTR_TM))
1463 return -ENODEV;
1464
1465 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1466 return regset->n;
1467
1468 return 0;
1469 }
1470
tm_tar_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1471 static int tm_tar_get(struct task_struct *target,
1472 const struct user_regset *regset,
1473 unsigned int pos, unsigned int count,
1474 void *kbuf, void __user *ubuf)
1475 {
1476 int ret;
1477
1478 if (!cpu_has_feature(CPU_FTR_TM))
1479 return -ENODEV;
1480
1481 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1482 return -ENODATA;
1483
1484 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1485 &target->thread.tm_tar, 0, sizeof(u64));
1486 return ret;
1487 }
1488
tm_tar_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1489 static int tm_tar_set(struct task_struct *target,
1490 const struct user_regset *regset,
1491 unsigned int pos, unsigned int count,
1492 const void *kbuf, const void __user *ubuf)
1493 {
1494 int ret;
1495
1496 if (!cpu_has_feature(CPU_FTR_TM))
1497 return -ENODEV;
1498
1499 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1500 return -ENODATA;
1501
1502 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1503 &target->thread.tm_tar, 0, sizeof(u64));
1504 return ret;
1505 }
1506
tm_ppr_active(struct task_struct * target,const struct user_regset * regset)1507 static int tm_ppr_active(struct task_struct *target,
1508 const struct user_regset *regset)
1509 {
1510 if (!cpu_has_feature(CPU_FTR_TM))
1511 return -ENODEV;
1512
1513 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1514 return regset->n;
1515
1516 return 0;
1517 }
1518
1519
tm_ppr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1520 static int tm_ppr_get(struct task_struct *target,
1521 const struct user_regset *regset,
1522 unsigned int pos, unsigned int count,
1523 void *kbuf, void __user *ubuf)
1524 {
1525 int ret;
1526
1527 if (!cpu_has_feature(CPU_FTR_TM))
1528 return -ENODEV;
1529
1530 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1531 return -ENODATA;
1532
1533 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1534 &target->thread.tm_ppr, 0, sizeof(u64));
1535 return ret;
1536 }
1537
tm_ppr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1538 static int tm_ppr_set(struct task_struct *target,
1539 const struct user_regset *regset,
1540 unsigned int pos, unsigned int count,
1541 const void *kbuf, const void __user *ubuf)
1542 {
1543 int ret;
1544
1545 if (!cpu_has_feature(CPU_FTR_TM))
1546 return -ENODEV;
1547
1548 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1549 return -ENODATA;
1550
1551 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1552 &target->thread.tm_ppr, 0, sizeof(u64));
1553 return ret;
1554 }
1555
tm_dscr_active(struct task_struct * target,const struct user_regset * regset)1556 static int tm_dscr_active(struct task_struct *target,
1557 const struct user_regset *regset)
1558 {
1559 if (!cpu_has_feature(CPU_FTR_TM))
1560 return -ENODEV;
1561
1562 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1563 return regset->n;
1564
1565 return 0;
1566 }
1567
tm_dscr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1568 static int tm_dscr_get(struct task_struct *target,
1569 const struct user_regset *regset,
1570 unsigned int pos, unsigned int count,
1571 void *kbuf, void __user *ubuf)
1572 {
1573 int ret;
1574
1575 if (!cpu_has_feature(CPU_FTR_TM))
1576 return -ENODEV;
1577
1578 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1579 return -ENODATA;
1580
1581 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1582 &target->thread.tm_dscr, 0, sizeof(u64));
1583 return ret;
1584 }
1585
tm_dscr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1586 static int tm_dscr_set(struct task_struct *target,
1587 const struct user_regset *regset,
1588 unsigned int pos, unsigned int count,
1589 const void *kbuf, const void __user *ubuf)
1590 {
1591 int ret;
1592
1593 if (!cpu_has_feature(CPU_FTR_TM))
1594 return -ENODEV;
1595
1596 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1597 return -ENODATA;
1598
1599 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1600 &target->thread.tm_dscr, 0, sizeof(u64));
1601 return ret;
1602 }
1603 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1604
1605 #ifdef CONFIG_PPC64
ppr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1606 static int ppr_get(struct task_struct *target,
1607 const struct user_regset *regset,
1608 unsigned int pos, unsigned int count,
1609 void *kbuf, void __user *ubuf)
1610 {
1611 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1612 &target->thread.ppr, 0, sizeof(u64));
1613 }
1614
ppr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1615 static int ppr_set(struct task_struct *target,
1616 const struct user_regset *regset,
1617 unsigned int pos, unsigned int count,
1618 const void *kbuf, const void __user *ubuf)
1619 {
1620 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1621 &target->thread.ppr, 0, sizeof(u64));
1622 }
1623
dscr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1624 static int dscr_get(struct task_struct *target,
1625 const struct user_regset *regset,
1626 unsigned int pos, unsigned int count,
1627 void *kbuf, void __user *ubuf)
1628 {
1629 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1630 &target->thread.dscr, 0, sizeof(u64));
1631 }
dscr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1632 static int dscr_set(struct task_struct *target,
1633 const struct user_regset *regset,
1634 unsigned int pos, unsigned int count,
1635 const void *kbuf, const void __user *ubuf)
1636 {
1637 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1638 &target->thread.dscr, 0, sizeof(u64));
1639 }
1640 #endif
1641 #ifdef CONFIG_PPC_BOOK3S_64
tar_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1642 static int tar_get(struct task_struct *target,
1643 const struct user_regset *regset,
1644 unsigned int pos, unsigned int count,
1645 void *kbuf, void __user *ubuf)
1646 {
1647 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1648 &target->thread.tar, 0, sizeof(u64));
1649 }
tar_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1650 static int tar_set(struct task_struct *target,
1651 const struct user_regset *regset,
1652 unsigned int pos, unsigned int count,
1653 const void *kbuf, const void __user *ubuf)
1654 {
1655 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1656 &target->thread.tar, 0, sizeof(u64));
1657 }
1658
ebb_active(struct task_struct * target,const struct user_regset * regset)1659 static int ebb_active(struct task_struct *target,
1660 const struct user_regset *regset)
1661 {
1662 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1663 return -ENODEV;
1664
1665 if (target->thread.used_ebb)
1666 return regset->n;
1667
1668 return 0;
1669 }
1670
ebb_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1671 static int ebb_get(struct task_struct *target,
1672 const struct user_regset *regset,
1673 unsigned int pos, unsigned int count,
1674 void *kbuf, void __user *ubuf)
1675 {
1676 /* Build tests */
1677 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1678 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1679
1680 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1681 return -ENODEV;
1682
1683 if (!target->thread.used_ebb)
1684 return -ENODATA;
1685
1686 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1687 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1688 }
1689
ebb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1690 static int ebb_set(struct task_struct *target,
1691 const struct user_regset *regset,
1692 unsigned int pos, unsigned int count,
1693 const void *kbuf, const void __user *ubuf)
1694 {
1695 int ret = 0;
1696
1697 /* Build tests */
1698 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1699 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1700
1701 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1702 return -ENODEV;
1703
1704 if (target->thread.used_ebb)
1705 return -ENODATA;
1706
1707 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1708 &target->thread.ebbrr, 0, sizeof(unsigned long));
1709
1710 if (!ret)
1711 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1712 &target->thread.ebbhr, sizeof(unsigned long),
1713 2 * sizeof(unsigned long));
1714
1715 if (!ret)
1716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1717 &target->thread.bescr,
1718 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1719
1720 return ret;
1721 }
pmu_active(struct task_struct * target,const struct user_regset * regset)1722 static int pmu_active(struct task_struct *target,
1723 const struct user_regset *regset)
1724 {
1725 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1726 return -ENODEV;
1727
1728 return regset->n;
1729 }
1730
pmu_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1731 static int pmu_get(struct task_struct *target,
1732 const struct user_regset *regset,
1733 unsigned int pos, unsigned int count,
1734 void *kbuf, void __user *ubuf)
1735 {
1736 /* Build tests */
1737 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1738 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1739 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1740 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1741
1742 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1743 return -ENODEV;
1744
1745 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1746 &target->thread.siar, 0,
1747 5 * sizeof(unsigned long));
1748 }
1749
pmu_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1750 static int pmu_set(struct task_struct *target,
1751 const struct user_regset *regset,
1752 unsigned int pos, unsigned int count,
1753 const void *kbuf, const void __user *ubuf)
1754 {
1755 int ret = 0;
1756
1757 /* Build tests */
1758 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1759 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1760 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1761 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1762
1763 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1764 return -ENODEV;
1765
1766 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1767 &target->thread.siar, 0,
1768 sizeof(unsigned long));
1769
1770 if (!ret)
1771 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1772 &target->thread.sdar, sizeof(unsigned long),
1773 2 * sizeof(unsigned long));
1774
1775 if (!ret)
1776 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1777 &target->thread.sier, 2 * sizeof(unsigned long),
1778 3 * sizeof(unsigned long));
1779
1780 if (!ret)
1781 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1782 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1783 4 * sizeof(unsigned long));
1784
1785 if (!ret)
1786 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1787 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1788 5 * sizeof(unsigned long));
1789 return ret;
1790 }
1791 #endif
1792
1793 #ifdef CONFIG_PPC_MEM_KEYS
pkey_active(struct task_struct * target,const struct user_regset * regset)1794 static int pkey_active(struct task_struct *target,
1795 const struct user_regset *regset)
1796 {
1797 if (!arch_pkeys_enabled())
1798 return -ENODEV;
1799
1800 return regset->n;
1801 }
1802
pkey_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1803 static int pkey_get(struct task_struct *target,
1804 const struct user_regset *regset,
1805 unsigned int pos, unsigned int count,
1806 void *kbuf, void __user *ubuf)
1807 {
1808 BUILD_BUG_ON(TSO(amr) + sizeof(unsigned long) != TSO(iamr));
1809 BUILD_BUG_ON(TSO(iamr) + sizeof(unsigned long) != TSO(uamor));
1810
1811 if (!arch_pkeys_enabled())
1812 return -ENODEV;
1813
1814 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1815 &target->thread.amr, 0,
1816 ELF_NPKEY * sizeof(unsigned long));
1817 }
1818
pkey_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1819 static int pkey_set(struct task_struct *target,
1820 const struct user_regset *regset,
1821 unsigned int pos, unsigned int count,
1822 const void *kbuf, const void __user *ubuf)
1823 {
1824 u64 new_amr;
1825 int ret;
1826
1827 if (!arch_pkeys_enabled())
1828 return -ENODEV;
1829
1830 /* Only the AMR can be set from userspace */
1831 if (pos != 0 || count != sizeof(new_amr))
1832 return -EINVAL;
1833
1834 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1835 &new_amr, 0, sizeof(new_amr));
1836 if (ret)
1837 return ret;
1838
1839 /* UAMOR determines which bits of the AMR can be set from userspace. */
1840 target->thread.amr = (new_amr & target->thread.uamor) |
1841 (target->thread.amr & ~target->thread.uamor);
1842
1843 return 0;
1844 }
1845 #endif /* CONFIG_PPC_MEM_KEYS */
1846
1847 /*
1848 * These are our native regset flavors.
1849 */
1850 enum powerpc_regset {
1851 REGSET_GPR,
1852 REGSET_FPR,
1853 #ifdef CONFIG_ALTIVEC
1854 REGSET_VMX,
1855 #endif
1856 #ifdef CONFIG_VSX
1857 REGSET_VSX,
1858 #endif
1859 #ifdef CONFIG_SPE
1860 REGSET_SPE,
1861 #endif
1862 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1863 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1864 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1865 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1866 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1867 REGSET_TM_SPR, /* TM specific SPR registers */
1868 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1869 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1870 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1871 #endif
1872 #ifdef CONFIG_PPC64
1873 REGSET_PPR, /* PPR register */
1874 REGSET_DSCR, /* DSCR register */
1875 #endif
1876 #ifdef CONFIG_PPC_BOOK3S_64
1877 REGSET_TAR, /* TAR register */
1878 REGSET_EBB, /* EBB registers */
1879 REGSET_PMR, /* Performance Monitor Registers */
1880 #endif
1881 #ifdef CONFIG_PPC_MEM_KEYS
1882 REGSET_PKEY, /* AMR register */
1883 #endif
1884 };
1885
1886 static const struct user_regset native_regsets[] = {
1887 [REGSET_GPR] = {
1888 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1889 .size = sizeof(long), .align = sizeof(long),
1890 .get = gpr_get, .set = gpr_set
1891 },
1892 [REGSET_FPR] = {
1893 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1894 .size = sizeof(double), .align = sizeof(double),
1895 .get = fpr_get, .set = fpr_set
1896 },
1897 #ifdef CONFIG_ALTIVEC
1898 [REGSET_VMX] = {
1899 .core_note_type = NT_PPC_VMX, .n = 34,
1900 .size = sizeof(vector128), .align = sizeof(vector128),
1901 .active = vr_active, .get = vr_get, .set = vr_set
1902 },
1903 #endif
1904 #ifdef CONFIG_VSX
1905 [REGSET_VSX] = {
1906 .core_note_type = NT_PPC_VSX, .n = 32,
1907 .size = sizeof(double), .align = sizeof(double),
1908 .active = vsr_active, .get = vsr_get, .set = vsr_set
1909 },
1910 #endif
1911 #ifdef CONFIG_SPE
1912 [REGSET_SPE] = {
1913 .core_note_type = NT_PPC_SPE, .n = 35,
1914 .size = sizeof(u32), .align = sizeof(u32),
1915 .active = evr_active, .get = evr_get, .set = evr_set
1916 },
1917 #endif
1918 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1919 [REGSET_TM_CGPR] = {
1920 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1921 .size = sizeof(long), .align = sizeof(long),
1922 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1923 },
1924 [REGSET_TM_CFPR] = {
1925 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1926 .size = sizeof(double), .align = sizeof(double),
1927 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1928 },
1929 [REGSET_TM_CVMX] = {
1930 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1931 .size = sizeof(vector128), .align = sizeof(vector128),
1932 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1933 },
1934 [REGSET_TM_CVSX] = {
1935 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1936 .size = sizeof(double), .align = sizeof(double),
1937 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1938 },
1939 [REGSET_TM_SPR] = {
1940 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1941 .size = sizeof(u64), .align = sizeof(u64),
1942 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1943 },
1944 [REGSET_TM_CTAR] = {
1945 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1946 .size = sizeof(u64), .align = sizeof(u64),
1947 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1948 },
1949 [REGSET_TM_CPPR] = {
1950 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1951 .size = sizeof(u64), .align = sizeof(u64),
1952 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1953 },
1954 [REGSET_TM_CDSCR] = {
1955 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1956 .size = sizeof(u64), .align = sizeof(u64),
1957 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1958 },
1959 #endif
1960 #ifdef CONFIG_PPC64
1961 [REGSET_PPR] = {
1962 .core_note_type = NT_PPC_PPR, .n = 1,
1963 .size = sizeof(u64), .align = sizeof(u64),
1964 .get = ppr_get, .set = ppr_set
1965 },
1966 [REGSET_DSCR] = {
1967 .core_note_type = NT_PPC_DSCR, .n = 1,
1968 .size = sizeof(u64), .align = sizeof(u64),
1969 .get = dscr_get, .set = dscr_set
1970 },
1971 #endif
1972 #ifdef CONFIG_PPC_BOOK3S_64
1973 [REGSET_TAR] = {
1974 .core_note_type = NT_PPC_TAR, .n = 1,
1975 .size = sizeof(u64), .align = sizeof(u64),
1976 .get = tar_get, .set = tar_set
1977 },
1978 [REGSET_EBB] = {
1979 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1980 .size = sizeof(u64), .align = sizeof(u64),
1981 .active = ebb_active, .get = ebb_get, .set = ebb_set
1982 },
1983 [REGSET_PMR] = {
1984 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1985 .size = sizeof(u64), .align = sizeof(u64),
1986 .active = pmu_active, .get = pmu_get, .set = pmu_set
1987 },
1988 #endif
1989 #ifdef CONFIG_PPC_MEM_KEYS
1990 [REGSET_PKEY] = {
1991 .core_note_type = NT_PPC_PKEY, .n = ELF_NPKEY,
1992 .size = sizeof(u64), .align = sizeof(u64),
1993 .active = pkey_active, .get = pkey_get, .set = pkey_set
1994 },
1995 #endif
1996 };
1997
1998 static const struct user_regset_view user_ppc_native_view = {
1999 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
2000 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2001 };
2002
2003 #ifdef CONFIG_PPC64
2004 #include <linux/compat.h>
2005
gpr32_get_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf,unsigned long * regs)2006 static int gpr32_get_common(struct task_struct *target,
2007 const struct user_regset *regset,
2008 unsigned int pos, unsigned int count,
2009 void *kbuf, void __user *ubuf,
2010 unsigned long *regs)
2011 {
2012 compat_ulong_t *k = kbuf;
2013 compat_ulong_t __user *u = ubuf;
2014 compat_ulong_t reg;
2015
2016 pos /= sizeof(reg);
2017 count /= sizeof(reg);
2018
2019 if (kbuf)
2020 for (; count > 0 && pos < PT_MSR; --count)
2021 *k++ = regs[pos++];
2022 else
2023 for (; count > 0 && pos < PT_MSR; --count)
2024 if (__put_user((compat_ulong_t) regs[pos++], u++))
2025 return -EFAULT;
2026
2027 if (count > 0 && pos == PT_MSR) {
2028 reg = get_user_msr(target);
2029 if (kbuf)
2030 *k++ = reg;
2031 else if (__put_user(reg, u++))
2032 return -EFAULT;
2033 ++pos;
2034 --count;
2035 }
2036
2037 if (kbuf)
2038 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2039 *k++ = regs[pos++];
2040 else
2041 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2042 if (__put_user((compat_ulong_t) regs[pos++], u++))
2043 return -EFAULT;
2044
2045 kbuf = k;
2046 ubuf = u;
2047 pos *= sizeof(reg);
2048 count *= sizeof(reg);
2049 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2050 PT_REGS_COUNT * sizeof(reg), -1);
2051 }
2052
gpr32_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned long * regs)2053 static int gpr32_set_common(struct task_struct *target,
2054 const struct user_regset *regset,
2055 unsigned int pos, unsigned int count,
2056 const void *kbuf, const void __user *ubuf,
2057 unsigned long *regs)
2058 {
2059 const compat_ulong_t *k = kbuf;
2060 const compat_ulong_t __user *u = ubuf;
2061 compat_ulong_t reg;
2062
2063 pos /= sizeof(reg);
2064 count /= sizeof(reg);
2065
2066 if (kbuf)
2067 for (; count > 0 && pos < PT_MSR; --count)
2068 regs[pos++] = *k++;
2069 else
2070 for (; count > 0 && pos < PT_MSR; --count) {
2071 if (__get_user(reg, u++))
2072 return -EFAULT;
2073 regs[pos++] = reg;
2074 }
2075
2076
2077 if (count > 0 && pos == PT_MSR) {
2078 if (kbuf)
2079 reg = *k++;
2080 else if (__get_user(reg, u++))
2081 return -EFAULT;
2082 set_user_msr(target, reg);
2083 ++pos;
2084 --count;
2085 }
2086
2087 if (kbuf) {
2088 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2089 regs[pos++] = *k++;
2090 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2091 ++k;
2092 } else {
2093 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2094 if (__get_user(reg, u++))
2095 return -EFAULT;
2096 regs[pos++] = reg;
2097 }
2098 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2099 if (__get_user(reg, u++))
2100 return -EFAULT;
2101 }
2102
2103 if (count > 0 && pos == PT_TRAP) {
2104 if (kbuf)
2105 reg = *k++;
2106 else if (__get_user(reg, u++))
2107 return -EFAULT;
2108 set_user_trap(target, reg);
2109 ++pos;
2110 --count;
2111 }
2112
2113 kbuf = k;
2114 ubuf = u;
2115 pos *= sizeof(reg);
2116 count *= sizeof(reg);
2117 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2118 (PT_TRAP + 1) * sizeof(reg), -1);
2119 }
2120
2121 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_cgpr32_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)2122 static int tm_cgpr32_get(struct task_struct *target,
2123 const struct user_regset *regset,
2124 unsigned int pos, unsigned int count,
2125 void *kbuf, void __user *ubuf)
2126 {
2127 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2128 &target->thread.ckpt_regs.gpr[0]);
2129 }
2130
tm_cgpr32_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)2131 static int tm_cgpr32_set(struct task_struct *target,
2132 const struct user_regset *regset,
2133 unsigned int pos, unsigned int count,
2134 const void *kbuf, const void __user *ubuf)
2135 {
2136 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2137 &target->thread.ckpt_regs.gpr[0]);
2138 }
2139 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2140
gpr32_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)2141 static int gpr32_get(struct task_struct *target,
2142 const struct user_regset *regset,
2143 unsigned int pos, unsigned int count,
2144 void *kbuf, void __user *ubuf)
2145 {
2146 int i;
2147
2148 if (target->thread.regs == NULL)
2149 return -EIO;
2150
2151 if (!FULL_REGS(target->thread.regs)) {
2152 /*
2153 * We have a partial register set.
2154 * Fill 14-31 with bogus values.
2155 */
2156 for (i = 14; i < 32; i++)
2157 target->thread.regs->gpr[i] = NV_REG_POISON;
2158 }
2159 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2160 &target->thread.regs->gpr[0]);
2161 }
2162
gpr32_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)2163 static int gpr32_set(struct task_struct *target,
2164 const struct user_regset *regset,
2165 unsigned int pos, unsigned int count,
2166 const void *kbuf, const void __user *ubuf)
2167 {
2168 if (target->thread.regs == NULL)
2169 return -EIO;
2170
2171 CHECK_FULL_REGS(target->thread.regs);
2172 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2173 &target->thread.regs->gpr[0]);
2174 }
2175
2176 /*
2177 * These are the regset flavors matching the CONFIG_PPC32 native set.
2178 */
2179 static const struct user_regset compat_regsets[] = {
2180 [REGSET_GPR] = {
2181 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2182 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2183 .get = gpr32_get, .set = gpr32_set
2184 },
2185 [REGSET_FPR] = {
2186 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2187 .size = sizeof(double), .align = sizeof(double),
2188 .get = fpr_get, .set = fpr_set
2189 },
2190 #ifdef CONFIG_ALTIVEC
2191 [REGSET_VMX] = {
2192 .core_note_type = NT_PPC_VMX, .n = 34,
2193 .size = sizeof(vector128), .align = sizeof(vector128),
2194 .active = vr_active, .get = vr_get, .set = vr_set
2195 },
2196 #endif
2197 #ifdef CONFIG_SPE
2198 [REGSET_SPE] = {
2199 .core_note_type = NT_PPC_SPE, .n = 35,
2200 .size = sizeof(u32), .align = sizeof(u32),
2201 .active = evr_active, .get = evr_get, .set = evr_set
2202 },
2203 #endif
2204 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2205 [REGSET_TM_CGPR] = {
2206 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2207 .size = sizeof(long), .align = sizeof(long),
2208 .active = tm_cgpr_active,
2209 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2210 },
2211 [REGSET_TM_CFPR] = {
2212 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2213 .size = sizeof(double), .align = sizeof(double),
2214 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2215 },
2216 [REGSET_TM_CVMX] = {
2217 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2218 .size = sizeof(vector128), .align = sizeof(vector128),
2219 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2220 },
2221 [REGSET_TM_CVSX] = {
2222 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2223 .size = sizeof(double), .align = sizeof(double),
2224 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2225 },
2226 [REGSET_TM_SPR] = {
2227 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2228 .size = sizeof(u64), .align = sizeof(u64),
2229 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2230 },
2231 [REGSET_TM_CTAR] = {
2232 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2233 .size = sizeof(u64), .align = sizeof(u64),
2234 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2235 },
2236 [REGSET_TM_CPPR] = {
2237 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2238 .size = sizeof(u64), .align = sizeof(u64),
2239 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2240 },
2241 [REGSET_TM_CDSCR] = {
2242 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2243 .size = sizeof(u64), .align = sizeof(u64),
2244 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2245 },
2246 #endif
2247 #ifdef CONFIG_PPC64
2248 [REGSET_PPR] = {
2249 .core_note_type = NT_PPC_PPR, .n = 1,
2250 .size = sizeof(u64), .align = sizeof(u64),
2251 .get = ppr_get, .set = ppr_set
2252 },
2253 [REGSET_DSCR] = {
2254 .core_note_type = NT_PPC_DSCR, .n = 1,
2255 .size = sizeof(u64), .align = sizeof(u64),
2256 .get = dscr_get, .set = dscr_set
2257 },
2258 #endif
2259 #ifdef CONFIG_PPC_BOOK3S_64
2260 [REGSET_TAR] = {
2261 .core_note_type = NT_PPC_TAR, .n = 1,
2262 .size = sizeof(u64), .align = sizeof(u64),
2263 .get = tar_get, .set = tar_set
2264 },
2265 [REGSET_EBB] = {
2266 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2267 .size = sizeof(u64), .align = sizeof(u64),
2268 .active = ebb_active, .get = ebb_get, .set = ebb_set
2269 },
2270 #endif
2271 };
2272
2273 static const struct user_regset_view user_ppc_compat_view = {
2274 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2275 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2276 };
2277 #endif /* CONFIG_PPC64 */
2278
task_user_regset_view(struct task_struct * task)2279 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2280 {
2281 #ifdef CONFIG_PPC64
2282 if (test_tsk_thread_flag(task, TIF_32BIT))
2283 return &user_ppc_compat_view;
2284 #endif
2285 return &user_ppc_native_view;
2286 }
2287
2288
user_enable_single_step(struct task_struct * task)2289 void user_enable_single_step(struct task_struct *task)
2290 {
2291 struct pt_regs *regs = task->thread.regs;
2292
2293 if (regs != NULL) {
2294 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2295 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2296 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2297 regs->msr |= MSR_DE;
2298 #else
2299 regs->msr &= ~MSR_BE;
2300 regs->msr |= MSR_SE;
2301 #endif
2302 }
2303 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2304 }
2305
user_enable_block_step(struct task_struct * task)2306 void user_enable_block_step(struct task_struct *task)
2307 {
2308 struct pt_regs *regs = task->thread.regs;
2309
2310 if (regs != NULL) {
2311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2312 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2313 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2314 regs->msr |= MSR_DE;
2315 #else
2316 regs->msr &= ~MSR_SE;
2317 regs->msr |= MSR_BE;
2318 #endif
2319 }
2320 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2321 }
2322
user_disable_single_step(struct task_struct * task)2323 void user_disable_single_step(struct task_struct *task)
2324 {
2325 struct pt_regs *regs = task->thread.regs;
2326
2327 if (regs != NULL) {
2328 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2329 /*
2330 * The logic to disable single stepping should be as
2331 * simple as turning off the Instruction Complete flag.
2332 * And, after doing so, if all debug flags are off, turn
2333 * off DBCR0(IDM) and MSR(DE) .... Torez
2334 */
2335 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2336 /*
2337 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2338 */
2339 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2340 task->thread.debug.dbcr1)) {
2341 /*
2342 * All debug events were off.....
2343 */
2344 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2345 regs->msr &= ~MSR_DE;
2346 }
2347 #else
2348 regs->msr &= ~(MSR_SE | MSR_BE);
2349 #endif
2350 }
2351 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2352 }
2353
2354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
ptrace_triggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)2355 void ptrace_triggered(struct perf_event *bp,
2356 struct perf_sample_data *data, struct pt_regs *regs)
2357 {
2358 struct perf_event_attr attr;
2359
2360 /*
2361 * Disable the breakpoint request here since ptrace has defined a
2362 * one-shot behaviour for breakpoint exceptions in PPC64.
2363 * The SIGTRAP signal is generated automatically for us in do_dabr().
2364 * We don't have to do anything about that here
2365 */
2366 attr = bp->attr;
2367 attr.disabled = true;
2368 modify_user_hw_breakpoint(bp, &attr);
2369 }
2370 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2371
ptrace_set_debugreg(struct task_struct * task,unsigned long addr,unsigned long data)2372 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2373 unsigned long data)
2374 {
2375 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2376 int ret;
2377 struct thread_struct *thread = &(task->thread);
2378 struct perf_event *bp;
2379 struct perf_event_attr attr;
2380 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2381 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2382 bool set_bp = true;
2383 struct arch_hw_breakpoint hw_brk;
2384 #endif
2385
2386 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2387 * For embedded processors we support one DAC and no IAC's at the
2388 * moment.
2389 */
2390 if (addr > 0)
2391 return -EINVAL;
2392
2393 /* The bottom 3 bits in dabr are flags */
2394 if ((data & ~0x7UL) >= TASK_SIZE)
2395 return -EIO;
2396
2397 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2398 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2399 * It was assumed, on previous implementations, that 3 bits were
2400 * passed together with the data address, fitting the design of the
2401 * DABR register, as follows:
2402 *
2403 * bit 0: Read flag
2404 * bit 1: Write flag
2405 * bit 2: Breakpoint translation
2406 *
2407 * Thus, we use them here as so.
2408 */
2409
2410 /* Ensure breakpoint translation bit is set */
2411 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2412 return -EIO;
2413 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2414 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2415 hw_brk.len = 8;
2416 set_bp = (data) && (hw_brk.type & HW_BRK_TYPE_RDWR);
2417 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2418 bp = thread->ptrace_bps[0];
2419 if (!set_bp) {
2420 if (bp) {
2421 unregister_hw_breakpoint(bp);
2422 thread->ptrace_bps[0] = NULL;
2423 }
2424 return 0;
2425 }
2426 if (bp) {
2427 attr = bp->attr;
2428 attr.bp_addr = hw_brk.address;
2429 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2430
2431 /* Enable breakpoint */
2432 attr.disabled = false;
2433
2434 ret = modify_user_hw_breakpoint(bp, &attr);
2435 if (ret) {
2436 return ret;
2437 }
2438 thread->ptrace_bps[0] = bp;
2439 thread->hw_brk = hw_brk;
2440 return 0;
2441 }
2442
2443 /* Create a new breakpoint request if one doesn't exist already */
2444 hw_breakpoint_init(&attr);
2445 attr.bp_addr = hw_brk.address;
2446 attr.bp_len = 8;
2447 arch_bp_generic_fields(hw_brk.type,
2448 &attr.bp_type);
2449
2450 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2451 ptrace_triggered, NULL, task);
2452 if (IS_ERR(bp)) {
2453 thread->ptrace_bps[0] = NULL;
2454 return PTR_ERR(bp);
2455 }
2456
2457 #else /* !CONFIG_HAVE_HW_BREAKPOINT */
2458 if (set_bp && (!ppc_breakpoint_available()))
2459 return -ENODEV;
2460 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2461 task->thread.hw_brk = hw_brk;
2462 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2463 /* As described above, it was assumed 3 bits were passed with the data
2464 * address, but we will assume only the mode bits will be passed
2465 * as to not cause alignment restrictions for DAC-based processors.
2466 */
2467
2468 /* DAC's hold the whole address without any mode flags */
2469 task->thread.debug.dac1 = data & ~0x3UL;
2470
2471 if (task->thread.debug.dac1 == 0) {
2472 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2473 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2474 task->thread.debug.dbcr1)) {
2475 task->thread.regs->msr &= ~MSR_DE;
2476 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2477 }
2478 return 0;
2479 }
2480
2481 /* Read or Write bits must be set */
2482
2483 if (!(data & 0x3UL))
2484 return -EINVAL;
2485
2486 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2487 register */
2488 task->thread.debug.dbcr0 |= DBCR0_IDM;
2489
2490 /* Check for write and read flags and set DBCR0
2491 accordingly */
2492 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2493 if (data & 0x1UL)
2494 dbcr_dac(task) |= DBCR_DAC1R;
2495 if (data & 0x2UL)
2496 dbcr_dac(task) |= DBCR_DAC1W;
2497 task->thread.regs->msr |= MSR_DE;
2498 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2499 return 0;
2500 }
2501
2502 /*
2503 * Called by kernel/ptrace.c when detaching..
2504 *
2505 * Make sure single step bits etc are not set.
2506 */
ptrace_disable(struct task_struct * child)2507 void ptrace_disable(struct task_struct *child)
2508 {
2509 /* make sure the single step bit is not set. */
2510 user_disable_single_step(child);
2511 }
2512
2513 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
set_instruction_bp(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2514 static long set_instruction_bp(struct task_struct *child,
2515 struct ppc_hw_breakpoint *bp_info)
2516 {
2517 int slot;
2518 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2519 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2520 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2521 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2522
2523 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2524 slot2_in_use = 1;
2525 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2526 slot4_in_use = 1;
2527
2528 if (bp_info->addr >= TASK_SIZE)
2529 return -EIO;
2530
2531 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2532
2533 /* Make sure range is valid. */
2534 if (bp_info->addr2 >= TASK_SIZE)
2535 return -EIO;
2536
2537 /* We need a pair of IAC regsisters */
2538 if ((!slot1_in_use) && (!slot2_in_use)) {
2539 slot = 1;
2540 child->thread.debug.iac1 = bp_info->addr;
2541 child->thread.debug.iac2 = bp_info->addr2;
2542 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2543 if (bp_info->addr_mode ==
2544 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2545 dbcr_iac_range(child) |= DBCR_IAC12X;
2546 else
2547 dbcr_iac_range(child) |= DBCR_IAC12I;
2548 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2549 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2550 slot = 3;
2551 child->thread.debug.iac3 = bp_info->addr;
2552 child->thread.debug.iac4 = bp_info->addr2;
2553 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2554 if (bp_info->addr_mode ==
2555 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2556 dbcr_iac_range(child) |= DBCR_IAC34X;
2557 else
2558 dbcr_iac_range(child) |= DBCR_IAC34I;
2559 #endif
2560 } else
2561 return -ENOSPC;
2562 } else {
2563 /* We only need one. If possible leave a pair free in
2564 * case a range is needed later
2565 */
2566 if (!slot1_in_use) {
2567 /*
2568 * Don't use iac1 if iac1-iac2 are free and either
2569 * iac3 or iac4 (but not both) are free
2570 */
2571 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2572 slot = 1;
2573 child->thread.debug.iac1 = bp_info->addr;
2574 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2575 goto out;
2576 }
2577 }
2578 if (!slot2_in_use) {
2579 slot = 2;
2580 child->thread.debug.iac2 = bp_info->addr;
2581 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2582 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2583 } else if (!slot3_in_use) {
2584 slot = 3;
2585 child->thread.debug.iac3 = bp_info->addr;
2586 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2587 } else if (!slot4_in_use) {
2588 slot = 4;
2589 child->thread.debug.iac4 = bp_info->addr;
2590 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2591 #endif
2592 } else
2593 return -ENOSPC;
2594 }
2595 out:
2596 child->thread.debug.dbcr0 |= DBCR0_IDM;
2597 child->thread.regs->msr |= MSR_DE;
2598
2599 return slot;
2600 }
2601
del_instruction_bp(struct task_struct * child,int slot)2602 static int del_instruction_bp(struct task_struct *child, int slot)
2603 {
2604 switch (slot) {
2605 case 1:
2606 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2607 return -ENOENT;
2608
2609 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2610 /* address range - clear slots 1 & 2 */
2611 child->thread.debug.iac2 = 0;
2612 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2613 }
2614 child->thread.debug.iac1 = 0;
2615 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2616 break;
2617 case 2:
2618 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2619 return -ENOENT;
2620
2621 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2622 /* used in a range */
2623 return -EINVAL;
2624 child->thread.debug.iac2 = 0;
2625 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2626 break;
2627 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2628 case 3:
2629 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2630 return -ENOENT;
2631
2632 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2633 /* address range - clear slots 3 & 4 */
2634 child->thread.debug.iac4 = 0;
2635 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2636 }
2637 child->thread.debug.iac3 = 0;
2638 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2639 break;
2640 case 4:
2641 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2642 return -ENOENT;
2643
2644 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2645 /* Used in a range */
2646 return -EINVAL;
2647 child->thread.debug.iac4 = 0;
2648 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2649 break;
2650 #endif
2651 default:
2652 return -EINVAL;
2653 }
2654 return 0;
2655 }
2656
set_dac(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2657 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2658 {
2659 int byte_enable =
2660 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2661 & 0xf;
2662 int condition_mode =
2663 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2664 int slot;
2665
2666 if (byte_enable && (condition_mode == 0))
2667 return -EINVAL;
2668
2669 if (bp_info->addr >= TASK_SIZE)
2670 return -EIO;
2671
2672 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2673 slot = 1;
2674 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2675 dbcr_dac(child) |= DBCR_DAC1R;
2676 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2677 dbcr_dac(child) |= DBCR_DAC1W;
2678 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2679 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2680 if (byte_enable) {
2681 child->thread.debug.dvc1 =
2682 (unsigned long)bp_info->condition_value;
2683 child->thread.debug.dbcr2 |=
2684 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2685 (condition_mode << DBCR2_DVC1M_SHIFT));
2686 }
2687 #endif
2688 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2689 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2690 /* Both dac1 and dac2 are part of a range */
2691 return -ENOSPC;
2692 #endif
2693 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2694 slot = 2;
2695 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2696 dbcr_dac(child) |= DBCR_DAC2R;
2697 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2698 dbcr_dac(child) |= DBCR_DAC2W;
2699 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2701 if (byte_enable) {
2702 child->thread.debug.dvc2 =
2703 (unsigned long)bp_info->condition_value;
2704 child->thread.debug.dbcr2 |=
2705 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2706 (condition_mode << DBCR2_DVC2M_SHIFT));
2707 }
2708 #endif
2709 } else
2710 return -ENOSPC;
2711 child->thread.debug.dbcr0 |= DBCR0_IDM;
2712 child->thread.regs->msr |= MSR_DE;
2713
2714 return slot + 4;
2715 }
2716
del_dac(struct task_struct * child,int slot)2717 static int del_dac(struct task_struct *child, int slot)
2718 {
2719 if (slot == 1) {
2720 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2721 return -ENOENT;
2722
2723 child->thread.debug.dac1 = 0;
2724 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2725 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2726 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2727 child->thread.debug.dac2 = 0;
2728 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2729 }
2730 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2731 #endif
2732 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2733 child->thread.debug.dvc1 = 0;
2734 #endif
2735 } else if (slot == 2) {
2736 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2737 return -ENOENT;
2738
2739 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2740 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2741 /* Part of a range */
2742 return -EINVAL;
2743 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2744 #endif
2745 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2746 child->thread.debug.dvc2 = 0;
2747 #endif
2748 child->thread.debug.dac2 = 0;
2749 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2750 } else
2751 return -EINVAL;
2752
2753 return 0;
2754 }
2755 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2756
2757 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
set_dac_range(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2758 static int set_dac_range(struct task_struct *child,
2759 struct ppc_hw_breakpoint *bp_info)
2760 {
2761 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2762
2763 /* We don't allow range watchpoints to be used with DVC */
2764 if (bp_info->condition_mode)
2765 return -EINVAL;
2766
2767 /*
2768 * Best effort to verify the address range. The user/supervisor bits
2769 * prevent trapping in kernel space, but let's fail on an obvious bad
2770 * range. The simple test on the mask is not fool-proof, and any
2771 * exclusive range will spill over into kernel space.
2772 */
2773 if (bp_info->addr >= TASK_SIZE)
2774 return -EIO;
2775 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2776 /*
2777 * dac2 is a bitmask. Don't allow a mask that makes a
2778 * kernel space address from a valid dac1 value
2779 */
2780 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2781 return -EIO;
2782 } else {
2783 /*
2784 * For range breakpoints, addr2 must also be a valid address
2785 */
2786 if (bp_info->addr2 >= TASK_SIZE)
2787 return -EIO;
2788 }
2789
2790 if (child->thread.debug.dbcr0 &
2791 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2792 return -ENOSPC;
2793
2794 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2795 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2796 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2797 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2798 child->thread.debug.dac1 = bp_info->addr;
2799 child->thread.debug.dac2 = bp_info->addr2;
2800 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2801 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2802 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2803 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2804 else /* PPC_BREAKPOINT_MODE_MASK */
2805 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2806 child->thread.regs->msr |= MSR_DE;
2807
2808 return 5;
2809 }
2810 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2811
ppc_set_hwdebug(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2812 static long ppc_set_hwdebug(struct task_struct *child,
2813 struct ppc_hw_breakpoint *bp_info)
2814 {
2815 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2816 int len = 0;
2817 struct thread_struct *thread = &(child->thread);
2818 struct perf_event *bp;
2819 struct perf_event_attr attr;
2820 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2821 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2822 struct arch_hw_breakpoint brk;
2823 #endif
2824
2825 if (bp_info->version != 1)
2826 return -ENOTSUPP;
2827 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2828 /*
2829 * Check for invalid flags and combinations
2830 */
2831 if ((bp_info->trigger_type == 0) ||
2832 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2833 PPC_BREAKPOINT_TRIGGER_RW)) ||
2834 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2835 (bp_info->condition_mode &
2836 ~(PPC_BREAKPOINT_CONDITION_MODE |
2837 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2838 return -EINVAL;
2839 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2840 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2841 return -EINVAL;
2842 #endif
2843
2844 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2845 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2846 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2847 return -EINVAL;
2848 return set_instruction_bp(child, bp_info);
2849 }
2850 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2851 return set_dac(child, bp_info);
2852
2853 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2854 return set_dac_range(child, bp_info);
2855 #else
2856 return -EINVAL;
2857 #endif
2858 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2859 /*
2860 * We only support one data breakpoint
2861 */
2862 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2863 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2864 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2865 return -EINVAL;
2866
2867 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2868 return -EIO;
2869
2870 brk.address = bp_info->addr & ~7UL;
2871 brk.type = HW_BRK_TYPE_TRANSLATE;
2872 brk.len = 8;
2873 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2874 brk.type |= HW_BRK_TYPE_READ;
2875 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2876 brk.type |= HW_BRK_TYPE_WRITE;
2877 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2878 /*
2879 * Check if the request is for 'range' breakpoints. We can
2880 * support it if range < 8 bytes.
2881 */
2882 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2883 len = bp_info->addr2 - bp_info->addr;
2884 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2885 len = 1;
2886 else
2887 return -EINVAL;
2888 bp = thread->ptrace_bps[0];
2889 if (bp)
2890 return -ENOSPC;
2891
2892 /* Create a new breakpoint request if one doesn't exist already */
2893 hw_breakpoint_init(&attr);
2894 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2895 attr.bp_len = len;
2896 arch_bp_generic_fields(brk.type, &attr.bp_type);
2897
2898 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2899 ptrace_triggered, NULL, child);
2900 if (IS_ERR(bp)) {
2901 thread->ptrace_bps[0] = NULL;
2902 return PTR_ERR(bp);
2903 }
2904
2905 return 1;
2906 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2907
2908 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2909 return -EINVAL;
2910
2911 if (child->thread.hw_brk.address)
2912 return -ENOSPC;
2913
2914 if (!ppc_breakpoint_available())
2915 return -ENODEV;
2916
2917 child->thread.hw_brk = brk;
2918
2919 return 1;
2920 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2921 }
2922
ppc_del_hwdebug(struct task_struct * child,long data)2923 static long ppc_del_hwdebug(struct task_struct *child, long data)
2924 {
2925 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2926 int ret = 0;
2927 struct thread_struct *thread = &(child->thread);
2928 struct perf_event *bp;
2929 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2930 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2931 int rc;
2932
2933 if (data <= 4)
2934 rc = del_instruction_bp(child, (int)data);
2935 else
2936 rc = del_dac(child, (int)data - 4);
2937
2938 if (!rc) {
2939 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2940 child->thread.debug.dbcr1)) {
2941 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2942 child->thread.regs->msr &= ~MSR_DE;
2943 }
2944 }
2945 return rc;
2946 #else
2947 if (data != 1)
2948 return -EINVAL;
2949
2950 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2951 bp = thread->ptrace_bps[0];
2952 if (bp) {
2953 unregister_hw_breakpoint(bp);
2954 thread->ptrace_bps[0] = NULL;
2955 } else
2956 ret = -ENOENT;
2957 return ret;
2958 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2959 if (child->thread.hw_brk.address == 0)
2960 return -ENOENT;
2961
2962 child->thread.hw_brk.address = 0;
2963 child->thread.hw_brk.type = 0;
2964 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2965
2966 return 0;
2967 #endif
2968 }
2969
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2970 long arch_ptrace(struct task_struct *child, long request,
2971 unsigned long addr, unsigned long data)
2972 {
2973 int ret = -EPERM;
2974 void __user *datavp = (void __user *) data;
2975 unsigned long __user *datalp = datavp;
2976
2977 switch (request) {
2978 /* read the word at location addr in the USER area. */
2979 case PTRACE_PEEKUSR: {
2980 unsigned long index, tmp;
2981
2982 ret = -EIO;
2983 /* convert to index and check */
2984 #ifdef CONFIG_PPC32
2985 index = addr >> 2;
2986 if ((addr & 3) || (index > PT_FPSCR)
2987 || (child->thread.regs == NULL))
2988 #else
2989 index = addr >> 3;
2990 if ((addr & 7) || (index > PT_FPSCR))
2991 #endif
2992 break;
2993
2994 CHECK_FULL_REGS(child->thread.regs);
2995 if (index < PT_FPR0) {
2996 ret = ptrace_get_reg(child, (int) index, &tmp);
2997 if (ret)
2998 break;
2999 } else {
3000 unsigned int fpidx = index - PT_FPR0;
3001
3002 flush_fp_to_thread(child);
3003 if (fpidx < (PT_FPSCR - PT_FPR0))
3004 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
3005 sizeof(long));
3006 else
3007 tmp = child->thread.fp_state.fpscr;
3008 }
3009 ret = put_user(tmp, datalp);
3010 break;
3011 }
3012
3013 /* write the word at location addr in the USER area */
3014 case PTRACE_POKEUSR: {
3015 unsigned long index;
3016
3017 ret = -EIO;
3018 /* convert to index and check */
3019 #ifdef CONFIG_PPC32
3020 index = addr >> 2;
3021 if ((addr & 3) || (index > PT_FPSCR)
3022 || (child->thread.regs == NULL))
3023 #else
3024 index = addr >> 3;
3025 if ((addr & 7) || (index > PT_FPSCR))
3026 #endif
3027 break;
3028
3029 CHECK_FULL_REGS(child->thread.regs);
3030 if (index < PT_FPR0) {
3031 ret = ptrace_put_reg(child, index, data);
3032 } else {
3033 unsigned int fpidx = index - PT_FPR0;
3034
3035 flush_fp_to_thread(child);
3036 if (fpidx < (PT_FPSCR - PT_FPR0))
3037 memcpy(&child->thread.TS_FPR(fpidx), &data,
3038 sizeof(long));
3039 else
3040 child->thread.fp_state.fpscr = data;
3041 ret = 0;
3042 }
3043 break;
3044 }
3045
3046 case PPC_PTRACE_GETHWDBGINFO: {
3047 struct ppc_debug_info dbginfo;
3048
3049 dbginfo.version = 1;
3050 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3051 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3052 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3053 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3054 dbginfo.data_bp_alignment = 4;
3055 dbginfo.sizeof_condition = 4;
3056 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3057 PPC_DEBUG_FEATURE_INSN_BP_MASK;
3058 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3059 dbginfo.features |=
3060 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3061 PPC_DEBUG_FEATURE_DATA_BP_MASK;
3062 #endif
3063 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3064 dbginfo.num_instruction_bps = 0;
3065 if (ppc_breakpoint_available())
3066 dbginfo.num_data_bps = 1;
3067 else
3068 dbginfo.num_data_bps = 0;
3069 dbginfo.num_condition_regs = 0;
3070 #ifdef CONFIG_PPC64
3071 dbginfo.data_bp_alignment = 8;
3072 #else
3073 dbginfo.data_bp_alignment = 4;
3074 #endif
3075 dbginfo.sizeof_condition = 0;
3076 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3077 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3078 if (cpu_has_feature(CPU_FTR_DAWR))
3079 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3080 #else
3081 dbginfo.features = 0;
3082 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3083 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3084
3085 if (copy_to_user(datavp, &dbginfo,
3086 sizeof(struct ppc_debug_info)))
3087 return -EFAULT;
3088 return 0;
3089 }
3090
3091 case PPC_PTRACE_SETHWDEBUG: {
3092 struct ppc_hw_breakpoint bp_info;
3093
3094 if (copy_from_user(&bp_info, datavp,
3095 sizeof(struct ppc_hw_breakpoint)))
3096 return -EFAULT;
3097 return ppc_set_hwdebug(child, &bp_info);
3098 }
3099
3100 case PPC_PTRACE_DELHWDEBUG: {
3101 ret = ppc_del_hwdebug(child, data);
3102 break;
3103 }
3104
3105 case PTRACE_GET_DEBUGREG: {
3106 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3107 unsigned long dabr_fake;
3108 #endif
3109 ret = -EINVAL;
3110 /* We only support one DABR and no IABRS at the moment */
3111 if (addr > 0)
3112 break;
3113 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3114 ret = put_user(child->thread.debug.dac1, datalp);
3115 #else
3116 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3117 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3118 ret = put_user(dabr_fake, datalp);
3119 #endif
3120 break;
3121 }
3122
3123 case PTRACE_SET_DEBUGREG:
3124 ret = ptrace_set_debugreg(child, addr, data);
3125 break;
3126
3127 #ifdef CONFIG_PPC64
3128 case PTRACE_GETREGS64:
3129 #endif
3130 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3131 return copy_regset_to_user(child, &user_ppc_native_view,
3132 REGSET_GPR,
3133 0, sizeof(struct pt_regs),
3134 datavp);
3135
3136 #ifdef CONFIG_PPC64
3137 case PTRACE_SETREGS64:
3138 #endif
3139 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3140 return copy_regset_from_user(child, &user_ppc_native_view,
3141 REGSET_GPR,
3142 0, sizeof(struct pt_regs),
3143 datavp);
3144
3145 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3146 return copy_regset_to_user(child, &user_ppc_native_view,
3147 REGSET_FPR,
3148 0, sizeof(elf_fpregset_t),
3149 datavp);
3150
3151 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3152 return copy_regset_from_user(child, &user_ppc_native_view,
3153 REGSET_FPR,
3154 0, sizeof(elf_fpregset_t),
3155 datavp);
3156
3157 #ifdef CONFIG_ALTIVEC
3158 case PTRACE_GETVRREGS:
3159 return copy_regset_to_user(child, &user_ppc_native_view,
3160 REGSET_VMX,
3161 0, (33 * sizeof(vector128) +
3162 sizeof(u32)),
3163 datavp);
3164
3165 case PTRACE_SETVRREGS:
3166 return copy_regset_from_user(child, &user_ppc_native_view,
3167 REGSET_VMX,
3168 0, (33 * sizeof(vector128) +
3169 sizeof(u32)),
3170 datavp);
3171 #endif
3172 #ifdef CONFIG_VSX
3173 case PTRACE_GETVSRREGS:
3174 return copy_regset_to_user(child, &user_ppc_native_view,
3175 REGSET_VSX,
3176 0, 32 * sizeof(double),
3177 datavp);
3178
3179 case PTRACE_SETVSRREGS:
3180 return copy_regset_from_user(child, &user_ppc_native_view,
3181 REGSET_VSX,
3182 0, 32 * sizeof(double),
3183 datavp);
3184 #endif
3185 #ifdef CONFIG_SPE
3186 case PTRACE_GETEVRREGS:
3187 /* Get the child spe register state. */
3188 return copy_regset_to_user(child, &user_ppc_native_view,
3189 REGSET_SPE, 0, 35 * sizeof(u32),
3190 datavp);
3191
3192 case PTRACE_SETEVRREGS:
3193 /* Set the child spe register state. */
3194 return copy_regset_from_user(child, &user_ppc_native_view,
3195 REGSET_SPE, 0, 35 * sizeof(u32),
3196 datavp);
3197 #endif
3198
3199 default:
3200 ret = ptrace_request(child, request, addr, data);
3201 break;
3202 }
3203 return ret;
3204 }
3205
3206 #ifdef CONFIG_SECCOMP
do_seccomp(struct pt_regs * regs)3207 static int do_seccomp(struct pt_regs *regs)
3208 {
3209 if (!test_thread_flag(TIF_SECCOMP))
3210 return 0;
3211
3212 /*
3213 * The ABI we present to seccomp tracers is that r3 contains
3214 * the syscall return value and orig_gpr3 contains the first
3215 * syscall parameter. This is different to the ptrace ABI where
3216 * both r3 and orig_gpr3 contain the first syscall parameter.
3217 */
3218 regs->gpr[3] = -ENOSYS;
3219
3220 /*
3221 * We use the __ version here because we have already checked
3222 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3223 * have already loaded -ENOSYS into r3, or seccomp has put
3224 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3225 */
3226 if (__secure_computing(NULL))
3227 return -1;
3228
3229 /*
3230 * The syscall was allowed by seccomp, restore the register
3231 * state to what audit expects.
3232 * Note that we use orig_gpr3, which means a seccomp tracer can
3233 * modify the first syscall parameter (in orig_gpr3) and also
3234 * allow the syscall to proceed.
3235 */
3236 regs->gpr[3] = regs->orig_gpr3;
3237
3238 return 0;
3239 }
3240 #else
do_seccomp(struct pt_regs * regs)3241 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3242 #endif /* CONFIG_SECCOMP */
3243
3244 /**
3245 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3246 * @regs: the pt_regs of the task to trace (current)
3247 *
3248 * Performs various types of tracing on syscall entry. This includes seccomp,
3249 * ptrace, syscall tracepoints and audit.
3250 *
3251 * The pt_regs are potentially visible to userspace via ptrace, so their
3252 * contents is ABI.
3253 *
3254 * One or more of the tracers may modify the contents of pt_regs, in particular
3255 * to modify arguments or even the syscall number itself.
3256 *
3257 * It's also possible that a tracer can choose to reject the system call. In
3258 * that case this function will return an illegal syscall number, and will put
3259 * an appropriate return value in regs->r3.
3260 *
3261 * Return: the (possibly changed) syscall number.
3262 */
do_syscall_trace_enter(struct pt_regs * regs)3263 long do_syscall_trace_enter(struct pt_regs *regs)
3264 {
3265 user_exit();
3266
3267 /*
3268 * The tracer may decide to abort the syscall, if so tracehook
3269 * will return !0. Note that the tracer may also just change
3270 * regs->gpr[0] to an invalid syscall number, that is handled
3271 * below on the exit path.
3272 */
3273 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3274 tracehook_report_syscall_entry(regs))
3275 goto skip;
3276
3277 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3278 if (do_seccomp(regs))
3279 return -1;
3280
3281 /* Avoid trace and audit when syscall is invalid. */
3282 if (regs->gpr[0] >= NR_syscalls)
3283 goto skip;
3284
3285 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3286 trace_sys_enter(regs, regs->gpr[0]);
3287
3288 #ifdef CONFIG_PPC64
3289 if (!is_32bit_task())
3290 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3291 regs->gpr[5], regs->gpr[6]);
3292 else
3293 #endif
3294 audit_syscall_entry(regs->gpr[0],
3295 regs->gpr[3] & 0xffffffff,
3296 regs->gpr[4] & 0xffffffff,
3297 regs->gpr[5] & 0xffffffff,
3298 regs->gpr[6] & 0xffffffff);
3299
3300 /* Return the possibly modified but valid syscall number */
3301 return regs->gpr[0];
3302
3303 skip:
3304 /*
3305 * If we are aborting explicitly, or if the syscall number is
3306 * now invalid, set the return value to -ENOSYS.
3307 */
3308 regs->gpr[3] = -ENOSYS;
3309 return -1;
3310 }
3311
do_syscall_trace_leave(struct pt_regs * regs)3312 void do_syscall_trace_leave(struct pt_regs *regs)
3313 {
3314 int step;
3315
3316 audit_syscall_exit(regs);
3317
3318 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3319 trace_sys_exit(regs, regs->result);
3320
3321 step = test_thread_flag(TIF_SINGLESTEP);
3322 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3323 tracehook_report_syscall_exit(regs, step);
3324
3325 user_enter();
3326 }
3327