1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/iommu.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rbtree.h>
32 #include <linux/reboot.h>
33 #include <linux/seq_file.h>
34 #include <linux/spinlock.h>
35 #include <linux/export.h>
36 #include <linux/of.h>
37
38 #include <linux/atomic.h>
39 #include <asm/debugfs.h>
40 #include <asm/eeh.h>
41 #include <asm/eeh_event.h>
42 #include <asm/io.h>
43 #include <asm/iommu.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47 #include <asm/pte-walk.h>
48
49
50 /** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89 #define EEH_MAX_FAILS 2100000
90
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94 /*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106
107 /*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112 int eeh_max_freezes = 5;
113
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 EXPORT_SYMBOL_GPL(confirm_error_lock);
120
121 /* Lock to protect passed flags */
122 static DEFINE_MUTEX(eeh_dev_mutex);
123
124 /* Buffer for reporting pci register dumps. Its here in BSS, and
125 * not dynamically alloced, so that it ends up in RMO where RTAS
126 * can access it.
127 */
128 #define EEH_PCI_REGS_LOG_LEN 8192
129 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
130
131 /*
132 * The struct is used to maintain the EEH global statistic
133 * information. Besides, the EEH global statistics will be
134 * exported to user space through procfs
135 */
136 struct eeh_stats {
137 u64 no_device; /* PCI device not found */
138 u64 no_dn; /* OF node not found */
139 u64 no_cfg_addr; /* Config address not found */
140 u64 ignored_check; /* EEH check skipped */
141 u64 total_mmio_ffs; /* Total EEH checks */
142 u64 false_positives; /* Unnecessary EEH checks */
143 u64 slot_resets; /* PE reset */
144 };
145
146 static struct eeh_stats eeh_stats;
147
eeh_setup(char * str)148 static int __init eeh_setup(char *str)
149 {
150 if (!strcmp(str, "off"))
151 eeh_add_flag(EEH_FORCE_DISABLED);
152 else if (!strcmp(str, "early_log"))
153 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154
155 return 1;
156 }
157 __setup("eeh=", eeh_setup);
158
159 /*
160 * This routine captures assorted PCI configuration space data
161 * for the indicated PCI device, and puts them into a buffer
162 * for RTAS error logging.
163 */
eeh_dump_dev_log(struct eeh_dev * edev,char * buf,size_t len)164 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165 {
166 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167 u32 cfg;
168 int cap, i;
169 int n = 0, l = 0;
170 char buffer[128];
171
172 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
173 pdn->phb->global_number, pdn->busno,
174 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
175 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
176 pdn->phb->global_number, pdn->busno,
177 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
178
179 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
180 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
181 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
182
183 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
185 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
186
187 /* Gather bridge-specific registers */
188 if (edev->mode & EEH_DEV_BRIDGE) {
189 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
190 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
191 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
192
193 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
194 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
195 pr_warn("EEH: Bridge control: %04x\n", cfg);
196 }
197
198 /* Dump out the PCI-X command and status regs */
199 cap = edev->pcix_cap;
200 if (cap) {
201 eeh_ops->read_config(pdn, cap, 4, &cfg);
202 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
203 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
204
205 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
206 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
207 pr_warn("EEH: PCI-X status: %08x\n", cfg);
208 }
209
210 /* If PCI-E capable, dump PCI-E cap 10 */
211 cap = edev->pcie_cap;
212 if (cap) {
213 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
214 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215
216 for (i=0; i<=8; i++) {
217 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
218 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
219
220 if ((i % 4) == 0) {
221 if (i != 0)
222 pr_warn("%s\n", buffer);
223
224 l = scnprintf(buffer, sizeof(buffer),
225 "EEH: PCI-E %02x: %08x ",
226 4*i, cfg);
227 } else {
228 l += scnprintf(buffer+l, sizeof(buffer)-l,
229 "%08x ", cfg);
230 }
231
232 }
233
234 pr_warn("%s\n", buffer);
235 }
236
237 /* If AER capable, dump it */
238 cap = edev->aer_cap;
239 if (cap) {
240 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
241 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242
243 for (i=0; i<=13; i++) {
244 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
245 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
246
247 if ((i % 4) == 0) {
248 if (i != 0)
249 pr_warn("%s\n", buffer);
250
251 l = scnprintf(buffer, sizeof(buffer),
252 "EEH: PCI-E AER %02x: %08x ",
253 4*i, cfg);
254 } else {
255 l += scnprintf(buffer+l, sizeof(buffer)-l,
256 "%08x ", cfg);
257 }
258 }
259
260 pr_warn("%s\n", buffer);
261 }
262
263 return n;
264 }
265
eeh_dump_pe_log(struct eeh_pe * pe,void * flag)266 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
267 {
268 struct eeh_dev *edev, *tmp;
269 size_t *plen = flag;
270
271 eeh_pe_for_each_dev(pe, edev, tmp)
272 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
273 EEH_PCI_REGS_LOG_LEN - *plen);
274
275 return NULL;
276 }
277
278 /**
279 * eeh_slot_error_detail - Generate combined log including driver log and error log
280 * @pe: EEH PE
281 * @severity: temporary or permanent error log
282 *
283 * This routine should be called to generate the combined log, which
284 * is comprised of driver log and error log. The driver log is figured
285 * out from the config space of the corresponding PCI device, while
286 * the error log is fetched through platform dependent function call.
287 */
eeh_slot_error_detail(struct eeh_pe * pe,int severity)288 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
289 {
290 size_t loglen = 0;
291
292 /*
293 * When the PHB is fenced or dead, it's pointless to collect
294 * the data from PCI config space because it should return
295 * 0xFF's. For ER, we still retrieve the data from the PCI
296 * config space.
297 *
298 * For pHyp, we have to enable IO for log retrieval. Otherwise,
299 * 0xFF's is always returned from PCI config space.
300 *
301 * When the @severity is EEH_LOG_PERM, the PE is going to be
302 * removed. Prior to that, the drivers for devices included in
303 * the PE will be closed. The drivers rely on working IO path
304 * to bring the devices to quiet state. Otherwise, PCI traffic
305 * from those devices after they are removed is like to cause
306 * another unexpected EEH error.
307 */
308 if (!(pe->type & EEH_PE_PHB)) {
309 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
310 severity == EEH_LOG_PERM)
311 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
312
313 /*
314 * The config space of some PCI devices can't be accessed
315 * when their PEs are in frozen state. Otherwise, fenced
316 * PHB might be seen. Those PEs are identified with flag
317 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
318 * is set automatically when the PE is put to EEH_PE_ISOLATED.
319 *
320 * Restoring BARs possibly triggers PCI config access in
321 * (OPAL) firmware and then causes fenced PHB. If the
322 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
323 * pointless to restore BARs and dump config space.
324 */
325 eeh_ops->configure_bridge(pe);
326 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
327 eeh_pe_restore_bars(pe);
328
329 pci_regs_buf[0] = 0;
330 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
331 }
332 }
333
334 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
335 }
336
337 /**
338 * eeh_token_to_phys - Convert EEH address token to phys address
339 * @token: I/O token, should be address in the form 0xA....
340 *
341 * This routine should be called to convert virtual I/O address
342 * to physical one.
343 */
eeh_token_to_phys(unsigned long token)344 static inline unsigned long eeh_token_to_phys(unsigned long token)
345 {
346 pte_t *ptep;
347 unsigned long pa;
348 int hugepage_shift;
349
350 /*
351 * We won't find hugepages here(this is iomem). Hence we are not
352 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
353 * page table free, because of init_mm.
354 */
355 ptep = find_init_mm_pte(token, &hugepage_shift);
356 if (!ptep)
357 return token;
358 WARN_ON(hugepage_shift);
359 pa = pte_pfn(*ptep) << PAGE_SHIFT;
360
361 return pa | (token & (PAGE_SIZE-1));
362 }
363
364 /*
365 * On PowerNV platform, we might already have fenced PHB there.
366 * For that case, it's meaningless to recover frozen PE. Intead,
367 * We have to handle fenced PHB firstly.
368 */
eeh_phb_check_failure(struct eeh_pe * pe)369 static int eeh_phb_check_failure(struct eeh_pe *pe)
370 {
371 struct eeh_pe *phb_pe;
372 unsigned long flags;
373 int ret;
374
375 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
376 return -EPERM;
377
378 /* Find the PHB PE */
379 phb_pe = eeh_phb_pe_get(pe->phb);
380 if (!phb_pe) {
381 pr_warn("%s Can't find PE for PHB#%x\n",
382 __func__, pe->phb->global_number);
383 return -EEXIST;
384 }
385
386 /* If the PHB has been in problematic state */
387 eeh_serialize_lock(&flags);
388 if (phb_pe->state & EEH_PE_ISOLATED) {
389 ret = 0;
390 goto out;
391 }
392
393 /* Check PHB state */
394 ret = eeh_ops->get_state(phb_pe, NULL);
395 if ((ret < 0) ||
396 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
397 ret = 0;
398 goto out;
399 }
400
401 /* Isolate the PHB and send event */
402 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
403 eeh_serialize_unlock(flags);
404
405 pr_err("EEH: PHB#%x failure detected, location: %s\n",
406 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
407 dump_stack();
408 eeh_send_failure_event(phb_pe);
409
410 return 1;
411 out:
412 eeh_serialize_unlock(flags);
413 return ret;
414 }
415
416 /**
417 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
418 * @edev: eeh device
419 *
420 * Check for an EEH failure for the given device node. Call this
421 * routine if the result of a read was all 0xff's and you want to
422 * find out if this is due to an EEH slot freeze. This routine
423 * will query firmware for the EEH status.
424 *
425 * Returns 0 if there has not been an EEH error; otherwise returns
426 * a non-zero value and queues up a slot isolation event notification.
427 *
428 * It is safe to call this routine in an interrupt context.
429 */
eeh_dev_check_failure(struct eeh_dev * edev)430 int eeh_dev_check_failure(struct eeh_dev *edev)
431 {
432 int ret;
433 unsigned long flags;
434 struct device_node *dn;
435 struct pci_dev *dev;
436 struct eeh_pe *pe, *parent_pe, *phb_pe;
437 int rc = 0;
438 const char *location = NULL;
439
440 eeh_stats.total_mmio_ffs++;
441
442 if (!eeh_enabled())
443 return 0;
444
445 if (!edev) {
446 eeh_stats.no_dn++;
447 return 0;
448 }
449 dev = eeh_dev_to_pci_dev(edev);
450 pe = eeh_dev_to_pe(edev);
451
452 /* Access to IO BARs might get this far and still not want checking. */
453 if (!pe) {
454 eeh_stats.ignored_check++;
455 pr_debug("EEH: Ignored check for %s\n",
456 eeh_pci_name(dev));
457 return 0;
458 }
459
460 if (!pe->addr && !pe->config_addr) {
461 eeh_stats.no_cfg_addr++;
462 return 0;
463 }
464
465 /*
466 * On PowerNV platform, we might already have fenced PHB
467 * there and we need take care of that firstly.
468 */
469 ret = eeh_phb_check_failure(pe);
470 if (ret > 0)
471 return ret;
472
473 /*
474 * If the PE isn't owned by us, we shouldn't check the
475 * state. Instead, let the owner handle it if the PE has
476 * been frozen.
477 */
478 if (eeh_pe_passed(pe))
479 return 0;
480
481 /* If we already have a pending isolation event for this
482 * slot, we know it's bad already, we don't need to check.
483 * Do this checking under a lock; as multiple PCI devices
484 * in one slot might report errors simultaneously, and we
485 * only want one error recovery routine running.
486 */
487 eeh_serialize_lock(&flags);
488 rc = 1;
489 if (pe->state & EEH_PE_ISOLATED) {
490 pe->check_count++;
491 if (pe->check_count % EEH_MAX_FAILS == 0) {
492 dn = pci_device_to_OF_node(dev);
493 if (dn)
494 location = of_get_property(dn, "ibm,loc-code",
495 NULL);
496 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
497 "location=%s driver=%s pci addr=%s\n",
498 pe->check_count,
499 location ? location : "unknown",
500 eeh_driver_name(dev), eeh_pci_name(dev));
501 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
502 eeh_driver_name(dev));
503 dump_stack();
504 }
505 goto dn_unlock;
506 }
507
508 /*
509 * Now test for an EEH failure. This is VERY expensive.
510 * Note that the eeh_config_addr may be a parent device
511 * in the case of a device behind a bridge, or it may be
512 * function zero of a multi-function device.
513 * In any case they must share a common PHB.
514 */
515 ret = eeh_ops->get_state(pe, NULL);
516
517 /* Note that config-io to empty slots may fail;
518 * they are empty when they don't have children.
519 * We will punt with the following conditions: Failure to get
520 * PE's state, EEH not support and Permanently unavailable
521 * state, PE is in good state.
522 */
523 if ((ret < 0) ||
524 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
525 eeh_stats.false_positives++;
526 pe->false_positives++;
527 rc = 0;
528 goto dn_unlock;
529 }
530
531 /*
532 * It should be corner case that the parent PE has been
533 * put into frozen state as well. We should take care
534 * that at first.
535 */
536 parent_pe = pe->parent;
537 while (parent_pe) {
538 /* Hit the ceiling ? */
539 if (parent_pe->type & EEH_PE_PHB)
540 break;
541
542 /* Frozen parent PE ? */
543 ret = eeh_ops->get_state(parent_pe, NULL);
544 if (ret > 0 && !eeh_state_active(ret)) {
545 pe = parent_pe;
546 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
547 pe->phb->global_number, pe->addr,
548 pe->phb->global_number, parent_pe->addr);
549 }
550
551 /* Next parent level */
552 parent_pe = parent_pe->parent;
553 }
554
555 eeh_stats.slot_resets++;
556
557 /* Avoid repeated reports of this failure, including problems
558 * with other functions on this device, and functions under
559 * bridges.
560 */
561 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
562 eeh_serialize_unlock(flags);
563
564 /* Most EEH events are due to device driver bugs. Having
565 * a stack trace will help the device-driver authors figure
566 * out what happened. So print that out.
567 */
568 phb_pe = eeh_phb_pe_get(pe->phb);
569 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
570 pe->phb->global_number, pe->addr);
571 pr_err("EEH: PE location: %s, PHB location: %s\n",
572 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
573 dump_stack();
574
575 eeh_send_failure_event(pe);
576
577 return 1;
578
579 dn_unlock:
580 eeh_serialize_unlock(flags);
581 return rc;
582 }
583
584 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
585
586 /**
587 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
588 * @token: I/O address
589 *
590 * Check for an EEH failure at the given I/O address. Call this
591 * routine if the result of a read was all 0xff's and you want to
592 * find out if this is due to an EEH slot freeze event. This routine
593 * will query firmware for the EEH status.
594 *
595 * Note this routine is safe to call in an interrupt context.
596 */
eeh_check_failure(const volatile void __iomem * token)597 int eeh_check_failure(const volatile void __iomem *token)
598 {
599 unsigned long addr;
600 struct eeh_dev *edev;
601
602 /* Finding the phys addr + pci device; this is pretty quick. */
603 addr = eeh_token_to_phys((unsigned long __force) token);
604 edev = eeh_addr_cache_get_dev(addr);
605 if (!edev) {
606 eeh_stats.no_device++;
607 return 0;
608 }
609
610 return eeh_dev_check_failure(edev);
611 }
612 EXPORT_SYMBOL(eeh_check_failure);
613
614
615 /**
616 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
617 * @pe: EEH PE
618 *
619 * This routine should be called to reenable frozen MMIO or DMA
620 * so that it would work correctly again. It's useful while doing
621 * recovery or log collection on the indicated device.
622 */
eeh_pci_enable(struct eeh_pe * pe,int function)623 int eeh_pci_enable(struct eeh_pe *pe, int function)
624 {
625 int active_flag, rc;
626
627 /*
628 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
629 * Also, it's pointless to enable them on unfrozen PE. So
630 * we have to check before enabling IO or DMA.
631 */
632 switch (function) {
633 case EEH_OPT_THAW_MMIO:
634 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
635 break;
636 case EEH_OPT_THAW_DMA:
637 active_flag = EEH_STATE_DMA_ACTIVE;
638 break;
639 case EEH_OPT_DISABLE:
640 case EEH_OPT_ENABLE:
641 case EEH_OPT_FREEZE_PE:
642 active_flag = 0;
643 break;
644 default:
645 pr_warn("%s: Invalid function %d\n",
646 __func__, function);
647 return -EINVAL;
648 }
649
650 /*
651 * Check if IO or DMA has been enabled before
652 * enabling them.
653 */
654 if (active_flag) {
655 rc = eeh_ops->get_state(pe, NULL);
656 if (rc < 0)
657 return rc;
658
659 /* Needn't enable it at all */
660 if (rc == EEH_STATE_NOT_SUPPORT)
661 return 0;
662
663 /* It's already enabled */
664 if (rc & active_flag)
665 return 0;
666 }
667
668
669 /* Issue the request */
670 rc = eeh_ops->set_option(pe, function);
671 if (rc)
672 pr_warn("%s: Unexpected state change %d on "
673 "PHB#%x-PE#%x, err=%d\n",
674 __func__, function, pe->phb->global_number,
675 pe->addr, rc);
676
677 /* Check if the request is finished successfully */
678 if (active_flag) {
679 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
680 if (rc < 0)
681 return rc;
682
683 if (rc & active_flag)
684 return 0;
685
686 return -EIO;
687 }
688
689 return rc;
690 }
691
eeh_disable_and_save_dev_state(struct eeh_dev * edev,void * userdata)692 static void *eeh_disable_and_save_dev_state(struct eeh_dev *edev,
693 void *userdata)
694 {
695 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
696 struct pci_dev *dev = userdata;
697
698 /*
699 * The caller should have disabled and saved the
700 * state for the specified device
701 */
702 if (!pdev || pdev == dev)
703 return NULL;
704
705 /* Ensure we have D0 power state */
706 pci_set_power_state(pdev, PCI_D0);
707
708 /* Save device state */
709 pci_save_state(pdev);
710
711 /*
712 * Disable device to avoid any DMA traffic and
713 * interrupt from the device
714 */
715 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
716
717 return NULL;
718 }
719
eeh_restore_dev_state(struct eeh_dev * edev,void * userdata)720 static void *eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
721 {
722 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
723 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
724 struct pci_dev *dev = userdata;
725
726 if (!pdev)
727 return NULL;
728
729 /* Apply customization from firmware */
730 if (pdn && eeh_ops->restore_config)
731 eeh_ops->restore_config(pdn);
732
733 /* The caller should restore state for the specified device */
734 if (pdev != dev)
735 pci_restore_state(pdev);
736
737 return NULL;
738 }
739
eeh_restore_vf_config(struct pci_dn * pdn)740 int eeh_restore_vf_config(struct pci_dn *pdn)
741 {
742 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
743 u32 devctl, cmd, cap2, aer_capctl;
744 int old_mps;
745
746 if (edev->pcie_cap) {
747 /* Restore MPS */
748 old_mps = (ffs(pdn->mps) - 8) << 5;
749 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
750 2, &devctl);
751 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
752 devctl |= old_mps;
753 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
754 2, devctl);
755
756 /* Disable Completion Timeout if possible */
757 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
758 4, &cap2);
759 if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
760 eeh_ops->read_config(pdn,
761 edev->pcie_cap + PCI_EXP_DEVCTL2,
762 4, &cap2);
763 cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
764 eeh_ops->write_config(pdn,
765 edev->pcie_cap + PCI_EXP_DEVCTL2,
766 4, cap2);
767 }
768 }
769
770 /* Enable SERR and parity checking */
771 eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
772 cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
773 eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
774
775 /* Enable report various errors */
776 if (edev->pcie_cap) {
777 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
778 2, &devctl);
779 devctl &= ~PCI_EXP_DEVCTL_CERE;
780 devctl |= (PCI_EXP_DEVCTL_NFERE |
781 PCI_EXP_DEVCTL_FERE |
782 PCI_EXP_DEVCTL_URRE);
783 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
784 2, devctl);
785 }
786
787 /* Enable ECRC generation and check */
788 if (edev->pcie_cap && edev->aer_cap) {
789 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
790 4, &aer_capctl);
791 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
792 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
793 4, aer_capctl);
794 }
795
796 return 0;
797 }
798
799 /**
800 * pcibios_set_pcie_reset_state - Set PCI-E reset state
801 * @dev: pci device struct
802 * @state: reset state to enter
803 *
804 * Return value:
805 * 0 if success
806 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)807 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
808 {
809 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
810 struct eeh_pe *pe = eeh_dev_to_pe(edev);
811
812 if (!pe) {
813 pr_err("%s: No PE found on PCI device %s\n",
814 __func__, pci_name(dev));
815 return -EINVAL;
816 }
817
818 switch (state) {
819 case pcie_deassert_reset:
820 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
821 eeh_unfreeze_pe(pe, false);
822 if (!(pe->type & EEH_PE_VF))
823 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
824 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
825 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
826 break;
827 case pcie_hot_reset:
828 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
829 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
830 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
831 if (!(pe->type & EEH_PE_VF))
832 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
833 eeh_ops->reset(pe, EEH_RESET_HOT);
834 break;
835 case pcie_warm_reset:
836 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
837 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
838 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
839 if (!(pe->type & EEH_PE_VF))
840 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
841 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
842 break;
843 default:
844 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
845 return -EINVAL;
846 };
847
848 return 0;
849 }
850
851 /**
852 * eeh_set_pe_freset - Check the required reset for the indicated device
853 * @data: EEH device
854 * @flag: return value
855 *
856 * Each device might have its preferred reset type: fundamental or
857 * hot reset. The routine is used to collected the information for
858 * the indicated device and its children so that the bunch of the
859 * devices could be reset properly.
860 */
eeh_set_dev_freset(struct eeh_dev * edev,void * flag)861 static void *eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
862 {
863 struct pci_dev *dev;
864 unsigned int *freset = (unsigned int *)flag;
865
866 dev = eeh_dev_to_pci_dev(edev);
867 if (dev)
868 *freset |= dev->needs_freset;
869
870 return NULL;
871 }
872
873 /**
874 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
875 * @pe: EEH PE
876 *
877 * This function executes a full reset procedure on a PE, including setting
878 * the appropriate flags, performing a fundamental or hot reset, and then
879 * deactivating the reset status. It is designed to be used within the EEH
880 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
881 * only performs a single operation at a time.
882 *
883 * This function will attempt to reset a PE three times before failing.
884 */
eeh_pe_reset_full(struct eeh_pe * pe)885 int eeh_pe_reset_full(struct eeh_pe *pe)
886 {
887 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
888 int type = EEH_RESET_HOT;
889 unsigned int freset = 0;
890 int i, state, ret;
891
892 /*
893 * Determine the type of reset to perform - hot or fundamental.
894 * Hot reset is the default operation, unless any device under the
895 * PE requires a fundamental reset.
896 */
897 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
898
899 if (freset)
900 type = EEH_RESET_FUNDAMENTAL;
901
902 /* Mark the PE as in reset state and block config space accesses */
903 eeh_pe_state_mark(pe, reset_state);
904
905 /* Make three attempts at resetting the bus */
906 for (i = 0; i < 3; i++) {
907 ret = eeh_pe_reset(pe, type);
908 if (ret)
909 break;
910
911 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
912 if (ret)
913 break;
914
915 /* Wait until the PE is in a functioning state */
916 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
917 if (eeh_state_active(state))
918 break;
919
920 if (state < 0) {
921 pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
922 __func__, pe->phb->global_number, pe->addr);
923 ret = -ENOTRECOVERABLE;
924 break;
925 }
926
927 /* Set error in case this is our last attempt */
928 ret = -EIO;
929 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
930 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
931 }
932
933 eeh_pe_state_clear(pe, reset_state);
934 return ret;
935 }
936
937 /**
938 * eeh_save_bars - Save device bars
939 * @edev: PCI device associated EEH device
940 *
941 * Save the values of the device bars. Unlike the restore
942 * routine, this routine is *not* recursive. This is because
943 * PCI devices are added individually; but, for the restore,
944 * an entire slot is reset at a time.
945 */
eeh_save_bars(struct eeh_dev * edev)946 void eeh_save_bars(struct eeh_dev *edev)
947 {
948 struct pci_dn *pdn;
949 int i;
950
951 pdn = eeh_dev_to_pdn(edev);
952 if (!pdn)
953 return;
954
955 for (i = 0; i < 16; i++)
956 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
957
958 /*
959 * For PCI bridges including root port, we need enable bus
960 * master explicitly. Otherwise, it can't fetch IODA table
961 * entries correctly. So we cache the bit in advance so that
962 * we can restore it after reset, either PHB range or PE range.
963 */
964 if (edev->mode & EEH_DEV_BRIDGE)
965 edev->config_space[1] |= PCI_COMMAND_MASTER;
966 }
967
968 /**
969 * eeh_ops_register - Register platform dependent EEH operations
970 * @ops: platform dependent EEH operations
971 *
972 * Register the platform dependent EEH operation callback
973 * functions. The platform should call this function before
974 * any other EEH operations.
975 */
eeh_ops_register(struct eeh_ops * ops)976 int __init eeh_ops_register(struct eeh_ops *ops)
977 {
978 if (!ops->name) {
979 pr_warn("%s: Invalid EEH ops name for %p\n",
980 __func__, ops);
981 return -EINVAL;
982 }
983
984 if (eeh_ops && eeh_ops != ops) {
985 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
986 __func__, eeh_ops->name, ops->name);
987 return -EEXIST;
988 }
989
990 eeh_ops = ops;
991
992 return 0;
993 }
994
995 /**
996 * eeh_ops_unregister - Unreigster platform dependent EEH operations
997 * @name: name of EEH platform operations
998 *
999 * Unregister the platform dependent EEH operation callback
1000 * functions.
1001 */
eeh_ops_unregister(const char * name)1002 int __exit eeh_ops_unregister(const char *name)
1003 {
1004 if (!name || !strlen(name)) {
1005 pr_warn("%s: Invalid EEH ops name\n",
1006 __func__);
1007 return -EINVAL;
1008 }
1009
1010 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1011 eeh_ops = NULL;
1012 return 0;
1013 }
1014
1015 return -EEXIST;
1016 }
1017
eeh_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)1018 static int eeh_reboot_notifier(struct notifier_block *nb,
1019 unsigned long action, void *unused)
1020 {
1021 eeh_clear_flag(EEH_ENABLED);
1022 return NOTIFY_DONE;
1023 }
1024
1025 static struct notifier_block eeh_reboot_nb = {
1026 .notifier_call = eeh_reboot_notifier,
1027 };
1028
eeh_probe_devices(void)1029 void eeh_probe_devices(void)
1030 {
1031 struct pci_controller *hose, *tmp;
1032 struct pci_dn *pdn;
1033
1034 /* Enable EEH for all adapters */
1035 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1036 pdn = hose->pci_data;
1037 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1038 }
1039 }
1040
1041 /**
1042 * eeh_init - EEH initialization
1043 *
1044 * Initialize EEH by trying to enable it for all of the adapters in the system.
1045 * As a side effect we can determine here if eeh is supported at all.
1046 * Note that we leave EEH on so failed config cycles won't cause a machine
1047 * check. If a user turns off EEH for a particular adapter they are really
1048 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1049 * grant access to a slot if EEH isn't enabled, and so we always enable
1050 * EEH for all slots/all devices.
1051 *
1052 * The eeh-force-off option disables EEH checking globally, for all slots.
1053 * Even if force-off is set, the EEH hardware is still enabled, so that
1054 * newer systems can boot.
1055 */
eeh_init(void)1056 static int eeh_init(void)
1057 {
1058 struct pci_controller *hose, *tmp;
1059 int ret = 0;
1060
1061 /* Register reboot notifier */
1062 ret = register_reboot_notifier(&eeh_reboot_nb);
1063 if (ret) {
1064 pr_warn("%s: Failed to register notifier (%d)\n",
1065 __func__, ret);
1066 return ret;
1067 }
1068
1069 /* call platform initialization function */
1070 if (!eeh_ops) {
1071 pr_warn("%s: Platform EEH operation not found\n",
1072 __func__);
1073 return -EEXIST;
1074 } else if ((ret = eeh_ops->init()))
1075 return ret;
1076
1077 /* Initialize PHB PEs */
1078 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1079 eeh_dev_phb_init_dynamic(hose);
1080
1081 /* Initialize EEH event */
1082 ret = eeh_event_init();
1083 if (ret)
1084 return ret;
1085
1086 eeh_probe_devices();
1087
1088 if (eeh_enabled())
1089 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1090 else if (!eeh_has_flag(EEH_POSTPONED_PROBE))
1091 pr_info("EEH: No capable adapters found\n");
1092
1093 return ret;
1094 }
1095
1096 core_initcall_sync(eeh_init);
1097
1098 /**
1099 * eeh_add_device_early - Enable EEH for the indicated device node
1100 * @pdn: PCI device node for which to set up EEH
1101 *
1102 * This routine must be used to perform EEH initialization for PCI
1103 * devices that were added after system boot (e.g. hotplug, dlpar).
1104 * This routine must be called before any i/o is performed to the
1105 * adapter (inluding any config-space i/o).
1106 * Whether this actually enables EEH or not for this device depends
1107 * on the CEC architecture, type of the device, on earlier boot
1108 * command-line arguments & etc.
1109 */
eeh_add_device_early(struct pci_dn * pdn)1110 void eeh_add_device_early(struct pci_dn *pdn)
1111 {
1112 struct pci_controller *phb = pdn ? pdn->phb : NULL;
1113 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1114
1115 if (!edev)
1116 return;
1117
1118 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1119 return;
1120
1121 /* USB Bus children of PCI devices will not have BUID's */
1122 if (NULL == phb ||
1123 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1124 return;
1125
1126 eeh_ops->probe(pdn, NULL);
1127 }
1128
1129 /**
1130 * eeh_add_device_tree_early - Enable EEH for the indicated device
1131 * @pdn: PCI device node
1132 *
1133 * This routine must be used to perform EEH initialization for the
1134 * indicated PCI device that was added after system boot (e.g.
1135 * hotplug, dlpar).
1136 */
eeh_add_device_tree_early(struct pci_dn * pdn)1137 void eeh_add_device_tree_early(struct pci_dn *pdn)
1138 {
1139 struct pci_dn *n;
1140
1141 if (!pdn)
1142 return;
1143
1144 list_for_each_entry(n, &pdn->child_list, list)
1145 eeh_add_device_tree_early(n);
1146 eeh_add_device_early(pdn);
1147 }
1148 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1149
1150 /**
1151 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1152 * @dev: pci device for which to set up EEH
1153 *
1154 * This routine must be used to complete EEH initialization for PCI
1155 * devices that were added after system boot (e.g. hotplug, dlpar).
1156 */
eeh_add_device_late(struct pci_dev * dev)1157 void eeh_add_device_late(struct pci_dev *dev)
1158 {
1159 struct pci_dn *pdn;
1160 struct eeh_dev *edev;
1161
1162 if (!dev || !eeh_enabled())
1163 return;
1164
1165 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1166
1167 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1168 edev = pdn_to_eeh_dev(pdn);
1169 if (edev->pdev == dev) {
1170 pr_debug("EEH: Already referenced !\n");
1171 return;
1172 }
1173
1174 /*
1175 * The EEH cache might not be removed correctly because of
1176 * unbalanced kref to the device during unplug time, which
1177 * relies on pcibios_release_device(). So we have to remove
1178 * that here explicitly.
1179 */
1180 if (edev->pdev) {
1181 eeh_rmv_from_parent_pe(edev);
1182 eeh_addr_cache_rmv_dev(edev->pdev);
1183 eeh_sysfs_remove_device(edev->pdev);
1184 edev->mode &= ~EEH_DEV_SYSFS;
1185
1186 /*
1187 * We definitely should have the PCI device removed
1188 * though it wasn't correctly. So we needn't call
1189 * into error handler afterwards.
1190 */
1191 edev->mode |= EEH_DEV_NO_HANDLER;
1192
1193 edev->pdev = NULL;
1194 dev->dev.archdata.edev = NULL;
1195 }
1196
1197 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1198 eeh_ops->probe(pdn, NULL);
1199
1200 edev->pdev = dev;
1201 dev->dev.archdata.edev = edev;
1202
1203 eeh_addr_cache_insert_dev(dev);
1204 }
1205
1206 /**
1207 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1208 * @bus: PCI bus
1209 *
1210 * This routine must be used to perform EEH initialization for PCI
1211 * devices which are attached to the indicated PCI bus. The PCI bus
1212 * is added after system boot through hotplug or dlpar.
1213 */
eeh_add_device_tree_late(struct pci_bus * bus)1214 void eeh_add_device_tree_late(struct pci_bus *bus)
1215 {
1216 struct pci_dev *dev;
1217
1218 list_for_each_entry(dev, &bus->devices, bus_list) {
1219 eeh_add_device_late(dev);
1220 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1221 struct pci_bus *subbus = dev->subordinate;
1222 if (subbus)
1223 eeh_add_device_tree_late(subbus);
1224 }
1225 }
1226 }
1227 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1228
1229 /**
1230 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1231 * @bus: PCI bus
1232 *
1233 * This routine must be used to add EEH sysfs files for PCI
1234 * devices which are attached to the indicated PCI bus. The PCI bus
1235 * is added after system boot through hotplug or dlpar.
1236 */
eeh_add_sysfs_files(struct pci_bus * bus)1237 void eeh_add_sysfs_files(struct pci_bus *bus)
1238 {
1239 struct pci_dev *dev;
1240
1241 list_for_each_entry(dev, &bus->devices, bus_list) {
1242 eeh_sysfs_add_device(dev);
1243 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1244 struct pci_bus *subbus = dev->subordinate;
1245 if (subbus)
1246 eeh_add_sysfs_files(subbus);
1247 }
1248 }
1249 }
1250 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1251
1252 /**
1253 * eeh_remove_device - Undo EEH setup for the indicated pci device
1254 * @dev: pci device to be removed
1255 *
1256 * This routine should be called when a device is removed from
1257 * a running system (e.g. by hotplug or dlpar). It unregisters
1258 * the PCI device from the EEH subsystem. I/O errors affecting
1259 * this device will no longer be detected after this call; thus,
1260 * i/o errors affecting this slot may leave this device unusable.
1261 */
eeh_remove_device(struct pci_dev * dev)1262 void eeh_remove_device(struct pci_dev *dev)
1263 {
1264 struct eeh_dev *edev;
1265
1266 if (!dev || !eeh_enabled())
1267 return;
1268 edev = pci_dev_to_eeh_dev(dev);
1269
1270 /* Unregister the device with the EEH/PCI address search system */
1271 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1272
1273 if (!edev || !edev->pdev || !edev->pe) {
1274 pr_debug("EEH: Not referenced !\n");
1275 return;
1276 }
1277
1278 /*
1279 * During the hotplug for EEH error recovery, we need the EEH
1280 * device attached to the parent PE in order for BAR restore
1281 * a bit later. So we keep it for BAR restore and remove it
1282 * from the parent PE during the BAR resotre.
1283 */
1284 edev->pdev = NULL;
1285
1286 /*
1287 * The flag "in_error" is used to trace EEH devices for VFs
1288 * in error state or not. It's set in eeh_report_error(). If
1289 * it's not set, eeh_report_{reset,resume}() won't be called
1290 * for the VF EEH device.
1291 */
1292 edev->in_error = false;
1293 dev->dev.archdata.edev = NULL;
1294 if (!(edev->pe->state & EEH_PE_KEEP))
1295 eeh_rmv_from_parent_pe(edev);
1296 else
1297 edev->mode |= EEH_DEV_DISCONNECTED;
1298
1299 /*
1300 * We're removing from the PCI subsystem, that means
1301 * the PCI device driver can't support EEH or not
1302 * well. So we rely on hotplug completely to do recovery
1303 * for the specific PCI device.
1304 */
1305 edev->mode |= EEH_DEV_NO_HANDLER;
1306
1307 eeh_addr_cache_rmv_dev(dev);
1308 eeh_sysfs_remove_device(dev);
1309 edev->mode &= ~EEH_DEV_SYSFS;
1310 }
1311
eeh_unfreeze_pe(struct eeh_pe * pe,bool sw_state)1312 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1313 {
1314 int ret;
1315
1316 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1317 if (ret) {
1318 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1319 __func__, ret, pe->phb->global_number, pe->addr);
1320 return ret;
1321 }
1322
1323 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1324 if (ret) {
1325 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1326 __func__, ret, pe->phb->global_number, pe->addr);
1327 return ret;
1328 }
1329
1330 /* Clear software isolated state */
1331 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1332 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1333
1334 return ret;
1335 }
1336
1337
1338 static struct pci_device_id eeh_reset_ids[] = {
1339 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1340 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1341 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1342 { 0 }
1343 };
1344
eeh_pe_change_owner(struct eeh_pe * pe)1345 static int eeh_pe_change_owner(struct eeh_pe *pe)
1346 {
1347 struct eeh_dev *edev, *tmp;
1348 struct pci_dev *pdev;
1349 struct pci_device_id *id;
1350 int ret;
1351
1352 /* Check PE state */
1353 ret = eeh_ops->get_state(pe, NULL);
1354 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1355 return 0;
1356
1357 /* Unfrozen PE, nothing to do */
1358 if (eeh_state_active(ret))
1359 return 0;
1360
1361 /* Frozen PE, check if it needs PE level reset */
1362 eeh_pe_for_each_dev(pe, edev, tmp) {
1363 pdev = eeh_dev_to_pci_dev(edev);
1364 if (!pdev)
1365 continue;
1366
1367 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1368 if (id->vendor != PCI_ANY_ID &&
1369 id->vendor != pdev->vendor)
1370 continue;
1371 if (id->device != PCI_ANY_ID &&
1372 id->device != pdev->device)
1373 continue;
1374 if (id->subvendor != PCI_ANY_ID &&
1375 id->subvendor != pdev->subsystem_vendor)
1376 continue;
1377 if (id->subdevice != PCI_ANY_ID &&
1378 id->subdevice != pdev->subsystem_device)
1379 continue;
1380
1381 return eeh_pe_reset_and_recover(pe);
1382 }
1383 }
1384
1385 return eeh_unfreeze_pe(pe, true);
1386 }
1387
1388 /**
1389 * eeh_dev_open - Increase count of pass through devices for PE
1390 * @pdev: PCI device
1391 *
1392 * Increase count of passed through devices for the indicated
1393 * PE. In the result, the EEH errors detected on the PE won't be
1394 * reported. The PE owner will be responsible for detection
1395 * and recovery.
1396 */
eeh_dev_open(struct pci_dev * pdev)1397 int eeh_dev_open(struct pci_dev *pdev)
1398 {
1399 struct eeh_dev *edev;
1400 int ret = -ENODEV;
1401
1402 mutex_lock(&eeh_dev_mutex);
1403
1404 /* No PCI device ? */
1405 if (!pdev)
1406 goto out;
1407
1408 /* No EEH device or PE ? */
1409 edev = pci_dev_to_eeh_dev(pdev);
1410 if (!edev || !edev->pe)
1411 goto out;
1412
1413 /*
1414 * The PE might have been put into frozen state, but we
1415 * didn't detect that yet. The passed through PCI devices
1416 * in frozen PE won't work properly. Clear the frozen state
1417 * in advance.
1418 */
1419 ret = eeh_pe_change_owner(edev->pe);
1420 if (ret)
1421 goto out;
1422
1423 /* Increase PE's pass through count */
1424 atomic_inc(&edev->pe->pass_dev_cnt);
1425 mutex_unlock(&eeh_dev_mutex);
1426
1427 return 0;
1428 out:
1429 mutex_unlock(&eeh_dev_mutex);
1430 return ret;
1431 }
1432 EXPORT_SYMBOL_GPL(eeh_dev_open);
1433
1434 /**
1435 * eeh_dev_release - Decrease count of pass through devices for PE
1436 * @pdev: PCI device
1437 *
1438 * Decrease count of pass through devices for the indicated PE. If
1439 * there is no passed through device in PE, the EEH errors detected
1440 * on the PE will be reported and handled as usual.
1441 */
eeh_dev_release(struct pci_dev * pdev)1442 void eeh_dev_release(struct pci_dev *pdev)
1443 {
1444 struct eeh_dev *edev;
1445
1446 mutex_lock(&eeh_dev_mutex);
1447
1448 /* No PCI device ? */
1449 if (!pdev)
1450 goto out;
1451
1452 /* No EEH device ? */
1453 edev = pci_dev_to_eeh_dev(pdev);
1454 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1455 goto out;
1456
1457 /* Decrease PE's pass through count */
1458 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1459 eeh_pe_change_owner(edev->pe);
1460 out:
1461 mutex_unlock(&eeh_dev_mutex);
1462 }
1463 EXPORT_SYMBOL(eeh_dev_release);
1464
1465 #ifdef CONFIG_IOMMU_API
1466
dev_has_iommu_table(struct device * dev,void * data)1467 static int dev_has_iommu_table(struct device *dev, void *data)
1468 {
1469 struct pci_dev *pdev = to_pci_dev(dev);
1470 struct pci_dev **ppdev = data;
1471
1472 if (!dev)
1473 return 0;
1474
1475 if (dev->iommu_group) {
1476 *ppdev = pdev;
1477 return 1;
1478 }
1479
1480 return 0;
1481 }
1482
1483 /**
1484 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1485 * @group: IOMMU group
1486 *
1487 * The routine is called to convert IOMMU group to EEH PE.
1488 */
eeh_iommu_group_to_pe(struct iommu_group * group)1489 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1490 {
1491 struct pci_dev *pdev = NULL;
1492 struct eeh_dev *edev;
1493 int ret;
1494
1495 /* No IOMMU group ? */
1496 if (!group)
1497 return NULL;
1498
1499 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1500 if (!ret || !pdev)
1501 return NULL;
1502
1503 /* No EEH device or PE ? */
1504 edev = pci_dev_to_eeh_dev(pdev);
1505 if (!edev || !edev->pe)
1506 return NULL;
1507
1508 return edev->pe;
1509 }
1510 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1511
1512 #endif /* CONFIG_IOMMU_API */
1513
1514 /**
1515 * eeh_pe_set_option - Set options for the indicated PE
1516 * @pe: EEH PE
1517 * @option: requested option
1518 *
1519 * The routine is called to enable or disable EEH functionality
1520 * on the indicated PE, to enable IO or DMA for the frozen PE.
1521 */
eeh_pe_set_option(struct eeh_pe * pe,int option)1522 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1523 {
1524 int ret = 0;
1525
1526 /* Invalid PE ? */
1527 if (!pe)
1528 return -ENODEV;
1529
1530 /*
1531 * EEH functionality could possibly be disabled, just
1532 * return error for the case. And the EEH functinality
1533 * isn't expected to be disabled on one specific PE.
1534 */
1535 switch (option) {
1536 case EEH_OPT_ENABLE:
1537 if (eeh_enabled()) {
1538 ret = eeh_pe_change_owner(pe);
1539 break;
1540 }
1541 ret = -EIO;
1542 break;
1543 case EEH_OPT_DISABLE:
1544 break;
1545 case EEH_OPT_THAW_MMIO:
1546 case EEH_OPT_THAW_DMA:
1547 case EEH_OPT_FREEZE_PE:
1548 if (!eeh_ops || !eeh_ops->set_option) {
1549 ret = -ENOENT;
1550 break;
1551 }
1552
1553 ret = eeh_pci_enable(pe, option);
1554 break;
1555 default:
1556 pr_debug("%s: Option %d out of range (%d, %d)\n",
1557 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1558 ret = -EINVAL;
1559 }
1560
1561 return ret;
1562 }
1563 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1564
1565 /**
1566 * eeh_pe_get_state - Retrieve PE's state
1567 * @pe: EEH PE
1568 *
1569 * Retrieve the PE's state, which includes 3 aspects: enabled
1570 * DMA, enabled IO and asserted reset.
1571 */
eeh_pe_get_state(struct eeh_pe * pe)1572 int eeh_pe_get_state(struct eeh_pe *pe)
1573 {
1574 int result, ret = 0;
1575 bool rst_active, dma_en, mmio_en;
1576
1577 /* Existing PE ? */
1578 if (!pe)
1579 return -ENODEV;
1580
1581 if (!eeh_ops || !eeh_ops->get_state)
1582 return -ENOENT;
1583
1584 /*
1585 * If the parent PE is owned by the host kernel and is undergoing
1586 * error recovery, we should return the PE state as temporarily
1587 * unavailable so that the error recovery on the guest is suspended
1588 * until the recovery completes on the host.
1589 */
1590 if (pe->parent &&
1591 !(pe->state & EEH_PE_REMOVED) &&
1592 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1593 return EEH_PE_STATE_UNAVAIL;
1594
1595 result = eeh_ops->get_state(pe, NULL);
1596 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1597 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1598 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1599
1600 if (rst_active)
1601 ret = EEH_PE_STATE_RESET;
1602 else if (dma_en && mmio_en)
1603 ret = EEH_PE_STATE_NORMAL;
1604 else if (!dma_en && !mmio_en)
1605 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1606 else if (!dma_en && mmio_en)
1607 ret = EEH_PE_STATE_STOPPED_DMA;
1608 else
1609 ret = EEH_PE_STATE_UNAVAIL;
1610
1611 return ret;
1612 }
1613 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1614
eeh_pe_reenable_devices(struct eeh_pe * pe)1615 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1616 {
1617 struct eeh_dev *edev, *tmp;
1618 struct pci_dev *pdev;
1619 int ret = 0;
1620
1621 /* Restore config space */
1622 eeh_pe_restore_bars(pe);
1623
1624 /*
1625 * Reenable PCI devices as the devices passed
1626 * through are always enabled before the reset.
1627 */
1628 eeh_pe_for_each_dev(pe, edev, tmp) {
1629 pdev = eeh_dev_to_pci_dev(edev);
1630 if (!pdev)
1631 continue;
1632
1633 ret = pci_reenable_device(pdev);
1634 if (ret) {
1635 pr_warn("%s: Failure %d reenabling %s\n",
1636 __func__, ret, pci_name(pdev));
1637 return ret;
1638 }
1639 }
1640
1641 /* The PE is still in frozen state */
1642 return eeh_unfreeze_pe(pe, true);
1643 }
1644
1645
1646 /**
1647 * eeh_pe_reset - Issue PE reset according to specified type
1648 * @pe: EEH PE
1649 * @option: reset type
1650 *
1651 * The routine is called to reset the specified PE with the
1652 * indicated type, either fundamental reset or hot reset.
1653 * PE reset is the most important part for error recovery.
1654 */
eeh_pe_reset(struct eeh_pe * pe,int option)1655 int eeh_pe_reset(struct eeh_pe *pe, int option)
1656 {
1657 int ret = 0;
1658
1659 /* Invalid PE ? */
1660 if (!pe)
1661 return -ENODEV;
1662
1663 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1664 return -ENOENT;
1665
1666 switch (option) {
1667 case EEH_RESET_DEACTIVATE:
1668 ret = eeh_ops->reset(pe, option);
1669 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1670 if (ret)
1671 break;
1672
1673 ret = eeh_pe_reenable_devices(pe);
1674 break;
1675 case EEH_RESET_HOT:
1676 case EEH_RESET_FUNDAMENTAL:
1677 /*
1678 * Proactively freeze the PE to drop all MMIO access
1679 * during reset, which should be banned as it's always
1680 * cause recursive EEH error.
1681 */
1682 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1683
1684 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1685 ret = eeh_ops->reset(pe, option);
1686 break;
1687 default:
1688 pr_debug("%s: Unsupported option %d\n",
1689 __func__, option);
1690 ret = -EINVAL;
1691 }
1692
1693 return ret;
1694 }
1695 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1696
1697 /**
1698 * eeh_pe_configure - Configure PCI bridges after PE reset
1699 * @pe: EEH PE
1700 *
1701 * The routine is called to restore the PCI config space for
1702 * those PCI devices, especially PCI bridges affected by PE
1703 * reset issued previously.
1704 */
eeh_pe_configure(struct eeh_pe * pe)1705 int eeh_pe_configure(struct eeh_pe *pe)
1706 {
1707 int ret = 0;
1708
1709 /* Invalid PE ? */
1710 if (!pe)
1711 return -ENODEV;
1712
1713 return ret;
1714 }
1715 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1716
1717 /**
1718 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1719 * @pe: the indicated PE
1720 * @type: error type
1721 * @function: error function
1722 * @addr: address
1723 * @mask: address mask
1724 *
1725 * The routine is called to inject the specified PCI error, which
1726 * is determined by @type and @function, to the indicated PE for
1727 * testing purpose.
1728 */
eeh_pe_inject_err(struct eeh_pe * pe,int type,int func,unsigned long addr,unsigned long mask)1729 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1730 unsigned long addr, unsigned long mask)
1731 {
1732 /* Invalid PE ? */
1733 if (!pe)
1734 return -ENODEV;
1735
1736 /* Unsupported operation ? */
1737 if (!eeh_ops || !eeh_ops->err_inject)
1738 return -ENOENT;
1739
1740 /* Check on PCI error type */
1741 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1742 return -EINVAL;
1743
1744 /* Check on PCI error function */
1745 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1746 return -EINVAL;
1747
1748 return eeh_ops->err_inject(pe, type, func, addr, mask);
1749 }
1750 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1751
proc_eeh_show(struct seq_file * m,void * v)1752 static int proc_eeh_show(struct seq_file *m, void *v)
1753 {
1754 if (!eeh_enabled()) {
1755 seq_printf(m, "EEH Subsystem is globally disabled\n");
1756 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1757 } else {
1758 seq_printf(m, "EEH Subsystem is enabled\n");
1759 seq_printf(m,
1760 "no device=%llu\n"
1761 "no device node=%llu\n"
1762 "no config address=%llu\n"
1763 "check not wanted=%llu\n"
1764 "eeh_total_mmio_ffs=%llu\n"
1765 "eeh_false_positives=%llu\n"
1766 "eeh_slot_resets=%llu\n",
1767 eeh_stats.no_device,
1768 eeh_stats.no_dn,
1769 eeh_stats.no_cfg_addr,
1770 eeh_stats.ignored_check,
1771 eeh_stats.total_mmio_ffs,
1772 eeh_stats.false_positives,
1773 eeh_stats.slot_resets);
1774 }
1775
1776 return 0;
1777 }
1778
1779 #ifdef CONFIG_DEBUG_FS
eeh_enable_dbgfs_set(void * data,u64 val)1780 static int eeh_enable_dbgfs_set(void *data, u64 val)
1781 {
1782 if (val)
1783 eeh_clear_flag(EEH_FORCE_DISABLED);
1784 else
1785 eeh_add_flag(EEH_FORCE_DISABLED);
1786
1787 return 0;
1788 }
1789
eeh_enable_dbgfs_get(void * data,u64 * val)1790 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1791 {
1792 if (eeh_enabled())
1793 *val = 0x1ul;
1794 else
1795 *val = 0x0ul;
1796 return 0;
1797 }
1798
eeh_freeze_dbgfs_set(void * data,u64 val)1799 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1800 {
1801 eeh_max_freezes = val;
1802 return 0;
1803 }
1804
eeh_freeze_dbgfs_get(void * data,u64 * val)1805 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1806 {
1807 *val = eeh_max_freezes;
1808 return 0;
1809 }
1810
1811 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1812 eeh_enable_dbgfs_set, "0x%llx\n");
1813 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1814 eeh_freeze_dbgfs_set, "0x%llx\n");
1815 #endif
1816
eeh_init_proc(void)1817 static int __init eeh_init_proc(void)
1818 {
1819 if (machine_is(pseries) || machine_is(powernv)) {
1820 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1821 #ifdef CONFIG_DEBUG_FS
1822 debugfs_create_file("eeh_enable", 0600,
1823 powerpc_debugfs_root, NULL,
1824 &eeh_enable_dbgfs_ops);
1825 debugfs_create_file("eeh_max_freezes", 0600,
1826 powerpc_debugfs_root, NULL,
1827 &eeh_freeze_dbgfs_ops);
1828 #endif
1829 }
1830
1831 return 0;
1832 }
1833 __initcall(eeh_init_proc);
1834