1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/node.h>
22 #include <linux/nodemask.h>
23 #include <linux/of.h>
24 #include <linux/sched.h>
25 #include <linux/sched/topology.h>
26 #include <linux/slab.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/topology.h>
33 
get_cpu_for_node(struct device_node * node)34 static int __init get_cpu_for_node(struct device_node *node)
35 {
36 	struct device_node *cpu_node;
37 	int cpu;
38 
39 	cpu_node = of_parse_phandle(node, "cpu", 0);
40 	if (!cpu_node)
41 		return -1;
42 
43 	cpu = of_cpu_node_to_id(cpu_node);
44 	if (cpu >= 0)
45 		topology_parse_cpu_capacity(cpu_node, cpu);
46 	else
47 		pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
48 
49 	of_node_put(cpu_node);
50 	return cpu;
51 }
52 
parse_core(struct device_node * core,int package_id,int core_id)53 static int __init parse_core(struct device_node *core, int package_id,
54 			     int core_id)
55 {
56 	char name[10];
57 	bool leaf = true;
58 	int i = 0;
59 	int cpu;
60 	struct device_node *t;
61 
62 	do {
63 		snprintf(name, sizeof(name), "thread%d", i);
64 		t = of_get_child_by_name(core, name);
65 		if (t) {
66 			leaf = false;
67 			cpu = get_cpu_for_node(t);
68 			if (cpu >= 0) {
69 				cpu_topology[cpu].package_id = package_id;
70 				cpu_topology[cpu].core_id = core_id;
71 				cpu_topology[cpu].thread_id = i;
72 			} else {
73 				pr_err("%pOF: Can't get CPU for thread\n",
74 				       t);
75 				of_node_put(t);
76 				return -EINVAL;
77 			}
78 			of_node_put(t);
79 		}
80 		i++;
81 	} while (t);
82 
83 	cpu = get_cpu_for_node(core);
84 	if (cpu >= 0) {
85 		if (!leaf) {
86 			pr_err("%pOF: Core has both threads and CPU\n",
87 			       core);
88 			return -EINVAL;
89 		}
90 
91 		cpu_topology[cpu].package_id = package_id;
92 		cpu_topology[cpu].core_id = core_id;
93 	} else if (leaf) {
94 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
95 		return -EINVAL;
96 	}
97 
98 	return 0;
99 }
100 
parse_cluster(struct device_node * cluster,int depth)101 static int __init parse_cluster(struct device_node *cluster, int depth)
102 {
103 	char name[10];
104 	bool leaf = true;
105 	bool has_cores = false;
106 	struct device_node *c;
107 	static int package_id __initdata;
108 	int core_id = 0;
109 	int i, ret;
110 
111 	/*
112 	 * First check for child clusters; we currently ignore any
113 	 * information about the nesting of clusters and present the
114 	 * scheduler with a flat list of them.
115 	 */
116 	i = 0;
117 	do {
118 		snprintf(name, sizeof(name), "cluster%d", i);
119 		c = of_get_child_by_name(cluster, name);
120 		if (c) {
121 			leaf = false;
122 			ret = parse_cluster(c, depth + 1);
123 			of_node_put(c);
124 			if (ret != 0)
125 				return ret;
126 		}
127 		i++;
128 	} while (c);
129 
130 	/* Now check for cores */
131 	i = 0;
132 	do {
133 		snprintf(name, sizeof(name), "core%d", i);
134 		c = of_get_child_by_name(cluster, name);
135 		if (c) {
136 			has_cores = true;
137 
138 			if (depth == 0) {
139 				pr_err("%pOF: cpu-map children should be clusters\n",
140 				       c);
141 				of_node_put(c);
142 				return -EINVAL;
143 			}
144 
145 			if (leaf) {
146 				ret = parse_core(c, package_id, core_id++);
147 			} else {
148 				pr_err("%pOF: Non-leaf cluster with core %s\n",
149 				       cluster, name);
150 				ret = -EINVAL;
151 			}
152 
153 			of_node_put(c);
154 			if (ret != 0)
155 				return ret;
156 		}
157 		i++;
158 	} while (c);
159 
160 	if (leaf && !has_cores)
161 		pr_warn("%pOF: empty cluster\n", cluster);
162 
163 	if (leaf)
164 		package_id++;
165 
166 	return 0;
167 }
168 
parse_dt_topology(void)169 static int __init parse_dt_topology(void)
170 {
171 	struct device_node *cn, *map;
172 	int ret = 0;
173 	int cpu;
174 
175 	cn = of_find_node_by_path("/cpus");
176 	if (!cn) {
177 		pr_err("No CPU information found in DT\n");
178 		return 0;
179 	}
180 
181 	/*
182 	 * When topology is provided cpu-map is essentially a root
183 	 * cluster with restricted subnodes.
184 	 */
185 	map = of_get_child_by_name(cn, "cpu-map");
186 	if (!map)
187 		goto out;
188 
189 	ret = parse_cluster(map, 0);
190 	if (ret != 0)
191 		goto out_map;
192 
193 	topology_normalize_cpu_scale();
194 
195 	/*
196 	 * Check that all cores are in the topology; the SMP code will
197 	 * only mark cores described in the DT as possible.
198 	 */
199 	for_each_possible_cpu(cpu)
200 		if (cpu_topology[cpu].package_id == -1)
201 			ret = -EINVAL;
202 
203 out_map:
204 	of_node_put(map);
205 out:
206 	of_node_put(cn);
207 	return ret;
208 }
209 
210 /*
211  * cpu topology table
212  */
213 struct cpu_topology cpu_topology[NR_CPUS];
214 EXPORT_SYMBOL_GPL(cpu_topology);
215 
cpu_coregroup_mask(int cpu)216 const struct cpumask *cpu_coregroup_mask(int cpu)
217 {
218 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
219 
220 	/* Find the smaller of NUMA, core or LLC siblings */
221 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
222 		/* not numa in package, lets use the package siblings */
223 		core_mask = &cpu_topology[cpu].core_sibling;
224 	}
225 	if (cpu_topology[cpu].llc_id != -1) {
226 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
227 			core_mask = &cpu_topology[cpu].llc_sibling;
228 	}
229 
230 	return core_mask;
231 }
232 
update_siblings_masks(unsigned int cpuid)233 static void update_siblings_masks(unsigned int cpuid)
234 {
235 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
236 	int cpu;
237 
238 	/* update core and thread sibling masks */
239 	for_each_online_cpu(cpu) {
240 		cpu_topo = &cpu_topology[cpu];
241 
242 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
243 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
244 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
245 		}
246 
247 		if (cpuid_topo->package_id != cpu_topo->package_id)
248 			continue;
249 
250 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
251 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
252 
253 		if (cpuid_topo->core_id != cpu_topo->core_id)
254 			continue;
255 
256 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
257 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
258 	}
259 }
260 
store_cpu_topology(unsigned int cpuid)261 void store_cpu_topology(unsigned int cpuid)
262 {
263 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
264 	u64 mpidr;
265 
266 	if (cpuid_topo->package_id != -1)
267 		goto topology_populated;
268 
269 	mpidr = read_cpuid_mpidr();
270 
271 	/* Uniprocessor systems can rely on default topology values */
272 	if (mpidr & MPIDR_UP_BITMASK)
273 		return;
274 
275 	/* Create cpu topology mapping based on MPIDR. */
276 	if (mpidr & MPIDR_MT_BITMASK) {
277 		/* Multiprocessor system : Multi-threads per core */
278 		cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
279 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
280 		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
281 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
282 	} else {
283 		/* Multiprocessor system : Single-thread per core */
284 		cpuid_topo->thread_id  = -1;
285 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
286 		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
287 					 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
288 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
289 	}
290 
291 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
292 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
293 		 cpuid_topo->thread_id, mpidr);
294 
295 topology_populated:
296 	update_siblings_masks(cpuid);
297 }
298 
clear_cpu_topology(int cpu)299 static void clear_cpu_topology(int cpu)
300 {
301 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
302 
303 	cpumask_clear(&cpu_topo->llc_sibling);
304 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
305 
306 	cpumask_clear(&cpu_topo->core_sibling);
307 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
308 	cpumask_clear(&cpu_topo->thread_sibling);
309 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
310 }
311 
reset_cpu_topology(void)312 static void __init reset_cpu_topology(void)
313 {
314 	unsigned int cpu;
315 
316 	for_each_possible_cpu(cpu) {
317 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
318 
319 		cpu_topo->thread_id = -1;
320 		cpu_topo->core_id = 0;
321 		cpu_topo->package_id = -1;
322 		cpu_topo->llc_id = -1;
323 
324 		clear_cpu_topology(cpu);
325 	}
326 }
327 
remove_cpu_topology(unsigned int cpu)328 void remove_cpu_topology(unsigned int cpu)
329 {
330 	int sibling;
331 
332 	for_each_cpu(sibling, topology_core_cpumask(cpu))
333 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
334 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
335 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
336 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
337 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
338 
339 	clear_cpu_topology(cpu);
340 }
341 
342 #ifdef CONFIG_ACPI
343 /*
344  * Propagate the topology information of the processor_topology_node tree to the
345  * cpu_topology array.
346  */
parse_acpi_topology(void)347 static int __init parse_acpi_topology(void)
348 {
349 	bool is_threaded;
350 	int cpu, topology_id;
351 
352 	is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
353 
354 	for_each_possible_cpu(cpu) {
355 		int i, cache_id;
356 
357 		topology_id = find_acpi_cpu_topology(cpu, 0);
358 		if (topology_id < 0)
359 			return topology_id;
360 
361 		if (is_threaded) {
362 			cpu_topology[cpu].thread_id = topology_id;
363 			topology_id = find_acpi_cpu_topology(cpu, 1);
364 			cpu_topology[cpu].core_id   = topology_id;
365 		} else {
366 			cpu_topology[cpu].thread_id  = -1;
367 			cpu_topology[cpu].core_id    = topology_id;
368 		}
369 		topology_id = find_acpi_cpu_topology_package(cpu);
370 		cpu_topology[cpu].package_id = topology_id;
371 
372 		i = acpi_find_last_cache_level(cpu);
373 
374 		if (i > 0) {
375 			/*
376 			 * this is the only part of cpu_topology that has
377 			 * a direct relationship with the cache topology
378 			 */
379 			cache_id = find_acpi_cpu_cache_topology(cpu, i);
380 			if (cache_id > 0)
381 				cpu_topology[cpu].llc_id = cache_id;
382 		}
383 	}
384 
385 	return 0;
386 }
387 
388 #else
parse_acpi_topology(void)389 static inline int __init parse_acpi_topology(void)
390 {
391 	return -EINVAL;
392 }
393 #endif
394 
init_cpu_topology(void)395 void __init init_cpu_topology(void)
396 {
397 	reset_cpu_topology();
398 
399 	/*
400 	 * Discard anything that was parsed if we hit an error so we
401 	 * don't use partial information.
402 	 */
403 	if (!acpi_disabled && parse_acpi_topology())
404 		reset_cpu_topology();
405 	else if (of_have_populated_dt() && parse_dt_topology())
406 		reset_cpu_topology();
407 }
408