1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2004 Russell King
7 */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20
21 #include <asm/system_misc.h>
22 #include <asm/system_info.h>
23 #include <asm/tlbflush.h>
24
25 #include "fault.h"
26
27 #ifdef CONFIG_MMU
28
29 /*
30 * This is useful to dump out the page tables associated with
31 * 'addr' in mm 'mm'.
32 */
show_pte(const char * lvl,struct mm_struct * mm,unsigned long addr)33 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
34 {
35 pgd_t *pgd;
36
37 if (!mm)
38 mm = &init_mm;
39
40 printk("%spgd = %p\n", lvl, mm->pgd);
41 pgd = pgd_offset(mm, addr);
42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
43
44 do {
45 p4d_t *p4d;
46 pud_t *pud;
47 pmd_t *pmd;
48 pte_t *pte;
49
50 p4d = p4d_offset(pgd, addr);
51 if (p4d_none(*p4d))
52 break;
53
54 if (p4d_bad(*p4d)) {
55 pr_cont("(bad)");
56 break;
57 }
58
59 pud = pud_offset(p4d, addr);
60 if (PTRS_PER_PUD != 1)
61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
62
63 if (pud_none(*pud))
64 break;
65
66 if (pud_bad(*pud)) {
67 pr_cont("(bad)");
68 break;
69 }
70
71 pmd = pmd_offset(pud, addr);
72 if (PTRS_PER_PMD != 1)
73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
74
75 if (pmd_none(*pmd))
76 break;
77
78 if (pmd_bad(*pmd)) {
79 pr_cont("(bad)");
80 break;
81 }
82
83 /* We must not map this if we have highmem enabled */
84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
85 break;
86
87 pte = pte_offset_map(pmd, addr);
88 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
89 #ifndef CONFIG_ARM_LPAE
90 pr_cont(", *ppte=%08llx",
91 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
92 #endif
93 pte_unmap(pte);
94 } while(0);
95
96 pr_cont("\n");
97 }
98 #else /* CONFIG_MMU */
show_pte(const char * lvl,struct mm_struct * mm,unsigned long addr)99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
100 { }
101 #endif /* CONFIG_MMU */
102
103 /*
104 * Oops. The kernel tried to access some page that wasn't present.
105 */
106 static void
__do_kernel_fault(struct mm_struct * mm,unsigned long addr,unsigned int fsr,struct pt_regs * regs)107 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
108 struct pt_regs *regs)
109 {
110 /*
111 * Are we prepared to handle this kernel fault?
112 */
113 if (fixup_exception(regs))
114 return;
115
116 /*
117 * No handler, we'll have to terminate things with extreme prejudice.
118 */
119 bust_spinlocks(1);
120 pr_alert("8<--- cut here ---\n");
121 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
122 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
123 "paging request", addr);
124
125 show_pte(KERN_ALERT, mm, addr);
126 die("Oops", regs, fsr);
127 bust_spinlocks(0);
128 do_exit(SIGKILL);
129 }
130
131 /*
132 * Something tried to access memory that isn't in our memory map..
133 * User mode accesses just cause a SIGSEGV
134 */
135 static void
__do_user_fault(unsigned long addr,unsigned int fsr,unsigned int sig,int code,struct pt_regs * regs)136 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
137 int code, struct pt_regs *regs)
138 {
139 struct task_struct *tsk = current;
140
141 if (addr > TASK_SIZE)
142 harden_branch_predictor();
143
144 #ifdef CONFIG_DEBUG_USER
145 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
146 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
147 pr_err("8<--- cut here ---\n");
148 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
149 tsk->comm, sig, addr, fsr);
150 show_pte(KERN_ERR, tsk->mm, addr);
151 show_regs(regs);
152 }
153 #endif
154 #ifndef CONFIG_KUSER_HELPERS
155 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
156 printk_ratelimited(KERN_DEBUG
157 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
158 tsk->comm, addr);
159 #endif
160
161 tsk->thread.address = addr;
162 tsk->thread.error_code = fsr;
163 tsk->thread.trap_no = 14;
164 force_sig_fault(sig, code, (void __user *)addr);
165 }
166
do_bad_area(unsigned long addr,unsigned int fsr,struct pt_regs * regs)167 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
168 {
169 struct task_struct *tsk = current;
170 struct mm_struct *mm = tsk->active_mm;
171
172 /*
173 * If we are in kernel mode at this point, we
174 * have no context to handle this fault with.
175 */
176 if (user_mode(regs))
177 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
178 else
179 __do_kernel_fault(mm, addr, fsr, regs);
180 }
181
182 #ifdef CONFIG_MMU
183 #define VM_FAULT_BADMAP 0x010000
184 #define VM_FAULT_BADACCESS 0x020000
185
186 /*
187 * Check that the permissions on the VMA allow for the fault which occurred.
188 * If we encountered a write fault, we must have write permission, otherwise
189 * we allow any permission.
190 */
access_error(unsigned int fsr,struct vm_area_struct * vma)191 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
192 {
193 unsigned int mask = VM_ACCESS_FLAGS;
194
195 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
196 mask = VM_WRITE;
197 if (fsr & FSR_LNX_PF)
198 mask = VM_EXEC;
199
200 return vma->vm_flags & mask ? false : true;
201 }
202
203 static vm_fault_t __kprobes
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int fsr,unsigned int flags,struct task_struct * tsk,struct pt_regs * regs)204 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
205 unsigned int flags, struct task_struct *tsk,
206 struct pt_regs *regs)
207 {
208 struct vm_area_struct *vma;
209 vm_fault_t fault;
210
211 vma = find_vma(mm, addr);
212 fault = VM_FAULT_BADMAP;
213 if (unlikely(!vma))
214 goto out;
215 if (unlikely(vma->vm_start > addr))
216 goto check_stack;
217
218 /*
219 * Ok, we have a good vm_area for this
220 * memory access, so we can handle it.
221 */
222 good_area:
223 if (access_error(fsr, vma)) {
224 fault = VM_FAULT_BADACCESS;
225 goto out;
226 }
227
228 return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
229
230 check_stack:
231 /* Don't allow expansion below FIRST_USER_ADDRESS */
232 if (vma->vm_flags & VM_GROWSDOWN &&
233 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
234 goto good_area;
235 out:
236 return fault;
237 }
238
239 static int __kprobes
do_page_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)240 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
241 {
242 struct task_struct *tsk;
243 struct mm_struct *mm;
244 int sig, code;
245 vm_fault_t fault;
246 unsigned int flags = FAULT_FLAG_DEFAULT;
247
248 if (kprobe_page_fault(regs, fsr))
249 return 0;
250
251 tsk = current;
252 mm = tsk->mm;
253
254 /* Enable interrupts if they were enabled in the parent context. */
255 if (interrupts_enabled(regs))
256 local_irq_enable();
257
258 /*
259 * If we're in an interrupt or have no user
260 * context, we must not take the fault..
261 */
262 if (faulthandler_disabled() || !mm)
263 goto no_context;
264
265 if (user_mode(regs))
266 flags |= FAULT_FLAG_USER;
267 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
268 flags |= FAULT_FLAG_WRITE;
269
270 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
271
272 /*
273 * As per x86, we may deadlock here. However, since the kernel only
274 * validly references user space from well defined areas of the code,
275 * we can bug out early if this is from code which shouldn't.
276 */
277 if (!mmap_read_trylock(mm)) {
278 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
279 goto no_context;
280 retry:
281 mmap_read_lock(mm);
282 } else {
283 /*
284 * The above down_read_trylock() might have succeeded in
285 * which case, we'll have missed the might_sleep() from
286 * down_read()
287 */
288 might_sleep();
289 #ifdef CONFIG_DEBUG_VM
290 if (!user_mode(regs) &&
291 !search_exception_tables(regs->ARM_pc))
292 goto no_context;
293 #endif
294 }
295
296 fault = __do_page_fault(mm, addr, fsr, flags, tsk, regs);
297
298 /* If we need to retry but a fatal signal is pending, handle the
299 * signal first. We do not need to release the mmap_lock because
300 * it would already be released in __lock_page_or_retry in
301 * mm/filemap.c. */
302 if (fault_signal_pending(fault, regs)) {
303 if (!user_mode(regs))
304 goto no_context;
305 return 0;
306 }
307
308 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
309 if (fault & VM_FAULT_RETRY) {
310 flags |= FAULT_FLAG_TRIED;
311 goto retry;
312 }
313 }
314
315 mmap_read_unlock(mm);
316
317 /*
318 * Handle the "normal" case first - VM_FAULT_MAJOR
319 */
320 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
321 return 0;
322
323 /*
324 * If we are in kernel mode at this point, we
325 * have no context to handle this fault with.
326 */
327 if (!user_mode(regs))
328 goto no_context;
329
330 if (fault & VM_FAULT_OOM) {
331 /*
332 * We ran out of memory, call the OOM killer, and return to
333 * userspace (which will retry the fault, or kill us if we
334 * got oom-killed)
335 */
336 pagefault_out_of_memory();
337 return 0;
338 }
339
340 if (fault & VM_FAULT_SIGBUS) {
341 /*
342 * We had some memory, but were unable to
343 * successfully fix up this page fault.
344 */
345 sig = SIGBUS;
346 code = BUS_ADRERR;
347 } else {
348 /*
349 * Something tried to access memory that
350 * isn't in our memory map..
351 */
352 sig = SIGSEGV;
353 code = fault == VM_FAULT_BADACCESS ?
354 SEGV_ACCERR : SEGV_MAPERR;
355 }
356
357 __do_user_fault(addr, fsr, sig, code, regs);
358 return 0;
359
360 no_context:
361 __do_kernel_fault(mm, addr, fsr, regs);
362 return 0;
363 }
364 #else /* CONFIG_MMU */
365 static int
do_page_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)366 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
367 {
368 return 0;
369 }
370 #endif /* CONFIG_MMU */
371
372 /*
373 * First Level Translation Fault Handler
374 *
375 * We enter here because the first level page table doesn't contain
376 * a valid entry for the address.
377 *
378 * If the address is in kernel space (>= TASK_SIZE), then we are
379 * probably faulting in the vmalloc() area.
380 *
381 * If the init_task's first level page tables contains the relevant
382 * entry, we copy the it to this task. If not, we send the process
383 * a signal, fixup the exception, or oops the kernel.
384 *
385 * NOTE! We MUST NOT take any locks for this case. We may be in an
386 * interrupt or a critical region, and should only copy the information
387 * from the master page table, nothing more.
388 */
389 #ifdef CONFIG_MMU
390 static int __kprobes
do_translation_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)391 do_translation_fault(unsigned long addr, unsigned int fsr,
392 struct pt_regs *regs)
393 {
394 unsigned int index;
395 pgd_t *pgd, *pgd_k;
396 p4d_t *p4d, *p4d_k;
397 pud_t *pud, *pud_k;
398 pmd_t *pmd, *pmd_k;
399
400 if (addr < TASK_SIZE)
401 return do_page_fault(addr, fsr, regs);
402
403 if (user_mode(regs))
404 goto bad_area;
405
406 index = pgd_index(addr);
407
408 pgd = cpu_get_pgd() + index;
409 pgd_k = init_mm.pgd + index;
410
411 p4d = p4d_offset(pgd, addr);
412 p4d_k = p4d_offset(pgd_k, addr);
413
414 if (p4d_none(*p4d_k))
415 goto bad_area;
416 if (!p4d_present(*p4d))
417 set_p4d(p4d, *p4d_k);
418
419 pud = pud_offset(p4d, addr);
420 pud_k = pud_offset(p4d_k, addr);
421
422 if (pud_none(*pud_k))
423 goto bad_area;
424 if (!pud_present(*pud))
425 set_pud(pud, *pud_k);
426
427 pmd = pmd_offset(pud, addr);
428 pmd_k = pmd_offset(pud_k, addr);
429
430 #ifdef CONFIG_ARM_LPAE
431 /*
432 * Only one hardware entry per PMD with LPAE.
433 */
434 index = 0;
435 #else
436 /*
437 * On ARM one Linux PGD entry contains two hardware entries (see page
438 * tables layout in pgtable.h). We normally guarantee that we always
439 * fill both L1 entries. But create_mapping() doesn't follow the rule.
440 * It can create inidividual L1 entries, so here we have to call
441 * pmd_none() check for the entry really corresponded to address, not
442 * for the first of pair.
443 */
444 index = (addr >> SECTION_SHIFT) & 1;
445 #endif
446 if (pmd_none(pmd_k[index]))
447 goto bad_area;
448
449 copy_pmd(pmd, pmd_k);
450 return 0;
451
452 bad_area:
453 do_bad_area(addr, fsr, regs);
454 return 0;
455 }
456 #else /* CONFIG_MMU */
457 static int
do_translation_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)458 do_translation_fault(unsigned long addr, unsigned int fsr,
459 struct pt_regs *regs)
460 {
461 return 0;
462 }
463 #endif /* CONFIG_MMU */
464
465 /*
466 * Some section permission faults need to be handled gracefully.
467 * They can happen due to a __{get,put}_user during an oops.
468 */
469 #ifndef CONFIG_ARM_LPAE
470 static int
do_sect_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)471 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
472 {
473 do_bad_area(addr, fsr, regs);
474 return 0;
475 }
476 #endif /* CONFIG_ARM_LPAE */
477
478 /*
479 * This abort handler always returns "fault".
480 */
481 static int
do_bad(unsigned long addr,unsigned int fsr,struct pt_regs * regs)482 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
483 {
484 return 1;
485 }
486
487 struct fsr_info {
488 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
489 int sig;
490 int code;
491 const char *name;
492 };
493
494 /* FSR definition */
495 #ifdef CONFIG_ARM_LPAE
496 #include "fsr-3level.c"
497 #else
498 #include "fsr-2level.c"
499 #endif
500
501 void __init
hook_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)502 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
503 int sig, int code, const char *name)
504 {
505 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
506 BUG();
507
508 fsr_info[nr].fn = fn;
509 fsr_info[nr].sig = sig;
510 fsr_info[nr].code = code;
511 fsr_info[nr].name = name;
512 }
513
514 /*
515 * Dispatch a data abort to the relevant handler.
516 */
517 asmlinkage void
do_DataAbort(unsigned long addr,unsigned int fsr,struct pt_regs * regs)518 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
519 {
520 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
521
522 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
523 return;
524
525 pr_alert("8<--- cut here ---\n");
526 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
527 inf->name, fsr, addr);
528 show_pte(KERN_ALERT, current->mm, addr);
529
530 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
531 fsr, 0);
532 }
533
534 void __init
hook_ifault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)535 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
536 int sig, int code, const char *name)
537 {
538 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
539 BUG();
540
541 ifsr_info[nr].fn = fn;
542 ifsr_info[nr].sig = sig;
543 ifsr_info[nr].code = code;
544 ifsr_info[nr].name = name;
545 }
546
547 asmlinkage void
do_PrefetchAbort(unsigned long addr,unsigned int ifsr,struct pt_regs * regs)548 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
549 {
550 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
551
552 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
553 return;
554
555 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
556 inf->name, ifsr, addr);
557
558 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
559 ifsr, 0);
560 }
561
562 /*
563 * Abort handler to be used only during first unmasking of asynchronous aborts
564 * on the boot CPU. This makes sure that the machine will not die if the
565 * firmware/bootloader left an imprecise abort pending for us to trip over.
566 */
early_abort_handler(unsigned long addr,unsigned int fsr,struct pt_regs * regs)567 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
568 struct pt_regs *regs)
569 {
570 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
571 "first unmask, this is most likely caused by a "
572 "firmware/bootloader bug.\n", fsr);
573
574 return 0;
575 }
576
early_abt_enable(void)577 void __init early_abt_enable(void)
578 {
579 fsr_info[FSR_FS_AEA].fn = early_abort_handler;
580 local_abt_enable();
581 fsr_info[FSR_FS_AEA].fn = do_bad;
582 }
583
584 #ifndef CONFIG_ARM_LPAE
exceptions_init(void)585 static int __init exceptions_init(void)
586 {
587 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
588 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
589 "I-cache maintenance fault");
590 }
591
592 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
593 /*
594 * TODO: Access flag faults introduced in ARMv6K.
595 * Runtime check for 'K' extension is needed
596 */
597 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
598 "section access flag fault");
599 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
600 "section access flag fault");
601 }
602
603 return 0;
604 }
605
606 arch_initcall(exceptions_init);
607 #endif
608