1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom Brahma-B15 CPU read-ahead cache management functions
4  *
5  * Copyright (C) 2015-2016 Broadcom
6  */
7 
8 #include <linux/err.h>
9 #include <linux/spinlock.h>
10 #include <linux/io.h>
11 #include <linux/bitops.h>
12 #include <linux/of_address.h>
13 #include <linux/notifier.h>
14 #include <linux/cpu.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/reboot.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/hardware/cache-b15-rac.h>
20 
21 extern void v7_flush_kern_cache_all(void);
22 
23 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
24 #define RAC_CONFIG0_REG			(0x78)
25 #define  RACENPREF_MASK			(0x3)
26 #define  RACPREFINST_SHIFT		(0)
27 #define  RACENINST_SHIFT		(2)
28 #define  RACPREFDATA_SHIFT		(4)
29 #define  RACENDATA_SHIFT		(6)
30 #define  RAC_CPU_SHIFT			(8)
31 #define  RACCFG_MASK			(0xff)
32 #define RAC_CONFIG1_REG			(0x7c)
33 /* Brahma-B15 is a quad-core only design */
34 #define B15_RAC_FLUSH_REG		(0x80)
35 /* Brahma-B53 is an octo-core design */
36 #define B53_RAC_FLUSH_REG		(0x84)
37 #define  FLUSH_RAC			(1 << 0)
38 
39 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
40 #define RAC_DATA_INST_EN_MASK		(1 << RACPREFINST_SHIFT | \
41 					 RACENPREF_MASK << RACENINST_SHIFT | \
42 					 1 << RACPREFDATA_SHIFT | \
43 					 RACENPREF_MASK << RACENDATA_SHIFT)
44 
45 #define RAC_ENABLED			0
46 /* Special state where we want to bypass the spinlock and call directly
47  * into the v7 cache maintenance operations during suspend/resume
48  */
49 #define RAC_SUSPENDED			1
50 
51 static void __iomem *b15_rac_base;
52 static DEFINE_SPINLOCK(rac_lock);
53 
54 static u32 rac_config0_reg;
55 static u32 rac_flush_offset;
56 
57 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
58  * multi-platform kernels from crashing here as well.
59  */
60 static unsigned long b15_rac_flags;
61 
__b15_rac_disable(void)62 static inline u32 __b15_rac_disable(void)
63 {
64 	u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
65 	__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
66 	dmb();
67 	return val;
68 }
69 
__b15_rac_flush(void)70 static inline void __b15_rac_flush(void)
71 {
72 	u32 reg;
73 
74 	__raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
75 	do {
76 		/* This dmb() is required to force the Bus Interface Unit
77 		 * to clean oustanding writes, and forces an idle cycle
78 		 * to be inserted.
79 		 */
80 		dmb();
81 		reg = __raw_readl(b15_rac_base + rac_flush_offset);
82 	} while (reg & FLUSH_RAC);
83 }
84 
b15_rac_disable_and_flush(void)85 static inline u32 b15_rac_disable_and_flush(void)
86 {
87 	u32 reg;
88 
89 	reg = __b15_rac_disable();
90 	__b15_rac_flush();
91 	return reg;
92 }
93 
__b15_rac_enable(u32 val)94 static inline void __b15_rac_enable(u32 val)
95 {
96 	__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
97 	/* dsb() is required here to be consistent with __flush_icache_all() */
98 	dsb();
99 }
100 
101 #define BUILD_RAC_CACHE_OP(name, bar)				\
102 void b15_flush_##name(void)					\
103 {								\
104 	unsigned int do_flush;					\
105 	u32 val = 0;						\
106 								\
107 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {		\
108 		v7_flush_##name();				\
109 		bar;						\
110 		return;						\
111 	}							\
112 								\
113 	spin_lock(&rac_lock);					\
114 	do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);	\
115 	if (do_flush)						\
116 		val = b15_rac_disable_and_flush();		\
117 	v7_flush_##name();					\
118 	if (!do_flush)						\
119 		bar;						\
120 	else							\
121 		__b15_rac_enable(val);				\
122 	spin_unlock(&rac_lock);					\
123 }
124 
125 #define nobarrier
126 
127 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
128  * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
129  * is to prefetch instruction and/or data with a line size of either 64 bytes
130  * or 256 bytes. The rationale is that the data-bus of the CPU interface is
131  * optimized for 256-bytes transactions, and enabling the readahead cache
132  * provides a significant performance boost we want it enabled (typically
133  * twice the performance for a memcpy benchmark application).
134  *
135  * The readahead cache is transparent for Modified Virtual Addresses
136  * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
137  * DCCIMVAC.
138  *
139  * It is however not transparent for the following cache maintenance
140  * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
141  * what we are patching here with our BUILD_RAC_CACHE_OP here.
142  */
143 BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
144 
b15_rac_enable(void)145 static void b15_rac_enable(void)
146 {
147 	unsigned int cpu;
148 	u32 enable = 0;
149 
150 	for_each_possible_cpu(cpu)
151 		enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
152 
153 	b15_rac_disable_and_flush();
154 	__b15_rac_enable(enable);
155 }
156 
b15_rac_reboot_notifier(struct notifier_block * nb,unsigned long action,void * data)157 static int b15_rac_reboot_notifier(struct notifier_block *nb,
158 				   unsigned long action,
159 				   void *data)
160 {
161 	/* During kexec, we are not yet migrated on the boot CPU, so we need to
162 	 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
163 	 * suspended such that the hotplug notifier returns early.
164 	 */
165 	if (action == SYS_RESTART) {
166 		spin_lock(&rac_lock);
167 		b15_rac_disable_and_flush();
168 		clear_bit(RAC_ENABLED, &b15_rac_flags);
169 		set_bit(RAC_SUSPENDED, &b15_rac_flags);
170 		spin_unlock(&rac_lock);
171 	}
172 
173 	return NOTIFY_DONE;
174 }
175 
176 static struct notifier_block b15_rac_reboot_nb = {
177 	.notifier_call	= b15_rac_reboot_notifier,
178 };
179 
180 /* The CPU hotplug case is the most interesting one, we basically need to make
181  * sure that the RAC is disabled for the entire system prior to having a CPU
182  * die, in particular prior to this dying CPU having exited the coherency
183  * domain.
184  *
185  * Once this CPU is marked dead, we can safely re-enable the RAC for the
186  * remaining CPUs in the system which are still online.
187  *
188  * Offlining a CPU is the problematic case, onlining a CPU is not much of an
189  * issue since the CPU and its cache-level hierarchy will start filling with
190  * the RAC disabled, so L1 and L2 only.
191  *
192  * In this function, we should NOT have to verify any unsafe setting/condition
193  * b15_rac_base:
194  *
195  *   It is protected by the RAC_ENABLED flag which is cleared by default, and
196  *   being cleared when initial procedure is done. b15_rac_base had been set at
197  *   that time.
198  *
199  * RAC_ENABLED:
200  *   There is a small timing windows, in b15_rac_init(), between
201  *      cpuhp_setup_state_*()
202  *      ...
203  *      set RAC_ENABLED
204  *   However, there is no hotplug activity based on the Linux booting procedure.
205  *
206  * Since we have to disable RAC for all cores, we keep RAC on as long as as
207  * possible (disable it as late as possible) to gain the cache benefit.
208  *
209  * Thus, dying/dead states are chosen here
210  *
211  * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
212  * we would want to consider disabling it as early as possible to benefit the
213  * other active CPUs.
214  */
215 
216 /* Running on the dying CPU */
b15_rac_dying_cpu(unsigned int cpu)217 static int b15_rac_dying_cpu(unsigned int cpu)
218 {
219 	/* During kexec/reboot, the RAC is disabled via the reboot notifier
220 	 * return early here.
221 	 */
222 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
223 		return 0;
224 
225 	spin_lock(&rac_lock);
226 
227 	/* Indicate that we are starting a hotplug procedure */
228 	__clear_bit(RAC_ENABLED, &b15_rac_flags);
229 
230 	/* Disable the readahead cache and save its value to a global */
231 	rac_config0_reg = b15_rac_disable_and_flush();
232 
233 	spin_unlock(&rac_lock);
234 
235 	return 0;
236 }
237 
238 /* Running on a non-dying CPU */
b15_rac_dead_cpu(unsigned int cpu)239 static int b15_rac_dead_cpu(unsigned int cpu)
240 {
241 	/* During kexec/reboot, the RAC is disabled via the reboot notifier
242 	 * return early here.
243 	 */
244 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
245 		return 0;
246 
247 	spin_lock(&rac_lock);
248 
249 	/* And enable it */
250 	__b15_rac_enable(rac_config0_reg);
251 	__set_bit(RAC_ENABLED, &b15_rac_flags);
252 
253 	spin_unlock(&rac_lock);
254 
255 	return 0;
256 }
257 
b15_rac_suspend(void)258 static int b15_rac_suspend(void)
259 {
260 	/* Suspend the read-ahead cache oeprations, forcing our cache
261 	 * implementation to fallback to the regular ARMv7 calls.
262 	 *
263 	 * We are guaranteed to be running on the boot CPU at this point and
264 	 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
265 	 * here.
266 	 */
267 	rac_config0_reg = b15_rac_disable_and_flush();
268 	set_bit(RAC_SUSPENDED, &b15_rac_flags);
269 
270 	return 0;
271 }
272 
b15_rac_resume(void)273 static void b15_rac_resume(void)
274 {
275 	/* Coming out of a S3 suspend/resume cycle, the read-ahead cache
276 	 * register RAC_CONFIG0_REG will be restored to its default value, make
277 	 * sure we re-enable it and set the enable flag, we are also guaranteed
278 	 * to run on the boot CPU, so not racy again.
279 	 */
280 	__b15_rac_enable(rac_config0_reg);
281 	clear_bit(RAC_SUSPENDED, &b15_rac_flags);
282 }
283 
284 static struct syscore_ops b15_rac_syscore_ops = {
285 	.suspend	= b15_rac_suspend,
286 	.resume		= b15_rac_resume,
287 };
288 
b15_rac_init(void)289 static int __init b15_rac_init(void)
290 {
291 	struct device_node *dn, *cpu_dn;
292 	int ret = 0, cpu;
293 	u32 reg, en_mask = 0;
294 
295 	dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
296 	if (!dn)
297 		return -ENODEV;
298 
299 	if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
300 		goto out;
301 
302 	b15_rac_base = of_iomap(dn, 0);
303 	if (!b15_rac_base) {
304 		pr_err("failed to remap BIU control base\n");
305 		ret = -ENOMEM;
306 		goto out;
307 	}
308 
309 	cpu_dn = of_get_cpu_node(0, NULL);
310 	if (!cpu_dn) {
311 		ret = -ENODEV;
312 		goto out;
313 	}
314 
315 	if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
316 		rac_flush_offset = B15_RAC_FLUSH_REG;
317 	else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
318 		rac_flush_offset = B53_RAC_FLUSH_REG;
319 	else {
320 		pr_err("Unsupported CPU\n");
321 		of_node_put(cpu_dn);
322 		ret = -EINVAL;
323 		goto out;
324 	}
325 	of_node_put(cpu_dn);
326 
327 	ret = register_reboot_notifier(&b15_rac_reboot_nb);
328 	if (ret) {
329 		pr_err("failed to register reboot notifier\n");
330 		iounmap(b15_rac_base);
331 		goto out;
332 	}
333 
334 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
335 		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
336 					"arm/cache-b15-rac:dead",
337 					NULL, b15_rac_dead_cpu);
338 		if (ret)
339 			goto out_unmap;
340 
341 		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
342 					"arm/cache-b15-rac:dying",
343 					NULL, b15_rac_dying_cpu);
344 		if (ret)
345 			goto out_cpu_dead;
346 	}
347 
348 	if (IS_ENABLED(CONFIG_PM_SLEEP))
349 		register_syscore_ops(&b15_rac_syscore_ops);
350 
351 	spin_lock(&rac_lock);
352 	reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
353 	for_each_possible_cpu(cpu)
354 		en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
355 	WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
356 
357 	b15_rac_enable();
358 	set_bit(RAC_ENABLED, &b15_rac_flags);
359 	spin_unlock(&rac_lock);
360 
361 	pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
362 		b15_rac_base + RAC_CONFIG0_REG);
363 
364 	goto out;
365 
366 out_cpu_dead:
367 	cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
368 out_unmap:
369 	unregister_reboot_notifier(&b15_rac_reboot_nb);
370 	iounmap(b15_rac_base);
371 out:
372 	of_node_put(dn);
373 	return ret;
374 }
375 arch_initcall(b15_rac_init);
376