1 /*
2 * linux/arch/arm/kernel/process.c
3 *
4 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
5 * Original Copyright (C) 1995 Linus Torvalds
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <stdarg.h>
12
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/user.h>
23 #include <linux/interrupt.h>
24 #include <linux/init.h>
25 #include <linux/elfcore.h>
26 #include <linux/pm.h>
27 #include <linux/tick.h>
28 #include <linux/utsname.h>
29 #include <linux/uaccess.h>
30 #include <linux/random.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/leds.h>
33
34 #include <asm/processor.h>
35 #include <asm/thread_notify.h>
36 #include <asm/stacktrace.h>
37 #include <asm/system_misc.h>
38 #include <asm/mach/time.h>
39 #include <asm/tls.h>
40 #include <asm/vdso.h>
41
42 #ifdef CONFIG_STACKPROTECTOR
43 #include <linux/stackprotector.h>
44 unsigned long __stack_chk_guard __read_mostly;
45 EXPORT_SYMBOL(__stack_chk_guard);
46 #endif
47
48 static const char *processor_modes[] __maybe_unused = {
49 "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
50 "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
51 "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
52 "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
53 };
54
55 static const char *isa_modes[] __maybe_unused = {
56 "ARM" , "Thumb" , "Jazelle", "ThumbEE"
57 };
58
59 /*
60 * This is our default idle handler.
61 */
62
63 void (*arm_pm_idle)(void);
64
65 /*
66 * Called from the core idle loop.
67 */
68
arch_cpu_idle(void)69 void arch_cpu_idle(void)
70 {
71 if (arm_pm_idle)
72 arm_pm_idle();
73 else
74 cpu_do_idle();
75 local_irq_enable();
76 }
77
arch_cpu_idle_prepare(void)78 void arch_cpu_idle_prepare(void)
79 {
80 local_fiq_enable();
81 }
82
arch_cpu_idle_enter(void)83 void arch_cpu_idle_enter(void)
84 {
85 ledtrig_cpu(CPU_LED_IDLE_START);
86 #ifdef CONFIG_PL310_ERRATA_769419
87 wmb();
88 #endif
89 }
90
arch_cpu_idle_exit(void)91 void arch_cpu_idle_exit(void)
92 {
93 ledtrig_cpu(CPU_LED_IDLE_END);
94 }
95
__show_regs(struct pt_regs * regs)96 void __show_regs(struct pt_regs *regs)
97 {
98 unsigned long flags;
99 char buf[64];
100 #ifndef CONFIG_CPU_V7M
101 unsigned int domain, fs;
102 #ifdef CONFIG_CPU_SW_DOMAIN_PAN
103 /*
104 * Get the domain register for the parent context. In user
105 * mode, we don't save the DACR, so lets use what it should
106 * be. For other modes, we place it after the pt_regs struct.
107 */
108 if (user_mode(regs)) {
109 domain = DACR_UACCESS_ENABLE;
110 fs = get_fs();
111 } else {
112 domain = to_svc_pt_regs(regs)->dacr;
113 fs = to_svc_pt_regs(regs)->addr_limit;
114 }
115 #else
116 domain = get_domain();
117 fs = get_fs();
118 #endif
119 #endif
120
121 show_regs_print_info(KERN_DEFAULT);
122
123 printk("PC is at %pS\n", (void *)instruction_pointer(regs));
124 printk("LR is at %pS\n", (void *)regs->ARM_lr);
125 printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n",
126 regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr);
127 printk("sp : %08lx ip : %08lx fp : %08lx\n",
128 regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
129 printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
130 regs->ARM_r10, regs->ARM_r9,
131 regs->ARM_r8);
132 printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
133 regs->ARM_r7, regs->ARM_r6,
134 regs->ARM_r5, regs->ARM_r4);
135 printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
136 regs->ARM_r3, regs->ARM_r2,
137 regs->ARM_r1, regs->ARM_r0);
138
139 flags = regs->ARM_cpsr;
140 buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
141 buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
142 buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
143 buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
144 buf[4] = '\0';
145
146 #ifndef CONFIG_CPU_V7M
147 {
148 const char *segment;
149
150 if ((domain & domain_mask(DOMAIN_USER)) ==
151 domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
152 segment = "none";
153 else if (fs == get_ds())
154 segment = "kernel";
155 else
156 segment = "user";
157
158 printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
159 buf, interrupts_enabled(regs) ? "n" : "ff",
160 fast_interrupts_enabled(regs) ? "n" : "ff",
161 processor_modes[processor_mode(regs)],
162 isa_modes[isa_mode(regs)], segment);
163 }
164 #else
165 printk("xPSR: %08lx\n", regs->ARM_cpsr);
166 #endif
167
168 #ifdef CONFIG_CPU_CP15
169 {
170 unsigned int ctrl;
171
172 buf[0] = '\0';
173 #ifdef CONFIG_CPU_CP15_MMU
174 {
175 unsigned int transbase;
176 asm("mrc p15, 0, %0, c2, c0\n\t"
177 : "=r" (transbase));
178 snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
179 transbase, domain);
180 }
181 #endif
182 asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
183
184 printk("Control: %08x%s\n", ctrl, buf);
185 }
186 #endif
187 }
188
show_regs(struct pt_regs * regs)189 void show_regs(struct pt_regs * regs)
190 {
191 __show_regs(regs);
192 dump_stack();
193 }
194
195 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
196
197 EXPORT_SYMBOL_GPL(thread_notify_head);
198
199 /*
200 * Free current thread data structures etc..
201 */
exit_thread(struct task_struct * tsk)202 void exit_thread(struct task_struct *tsk)
203 {
204 thread_notify(THREAD_NOTIFY_EXIT, task_thread_info(tsk));
205 }
206
flush_thread(void)207 void flush_thread(void)
208 {
209 struct thread_info *thread = current_thread_info();
210 struct task_struct *tsk = current;
211
212 flush_ptrace_hw_breakpoint(tsk);
213
214 memset(thread->used_cp, 0, sizeof(thread->used_cp));
215 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
216 memset(&thread->fpstate, 0, sizeof(union fp_state));
217
218 flush_tls();
219
220 thread_notify(THREAD_NOTIFY_FLUSH, thread);
221 }
222
release_thread(struct task_struct * dead_task)223 void release_thread(struct task_struct *dead_task)
224 {
225 }
226
227 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
228
229 int
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p)230 copy_thread(unsigned long clone_flags, unsigned long stack_start,
231 unsigned long stk_sz, struct task_struct *p)
232 {
233 struct thread_info *thread = task_thread_info(p);
234 struct pt_regs *childregs = task_pt_regs(p);
235
236 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
237
238 #ifdef CONFIG_CPU_USE_DOMAINS
239 /*
240 * Copy the initial value of the domain access control register
241 * from the current thread: thread->addr_limit will have been
242 * copied from the current thread via setup_thread_stack() in
243 * kernel/fork.c
244 */
245 thread->cpu_domain = get_domain();
246 #endif
247
248 if (likely(!(p->flags & PF_KTHREAD))) {
249 *childregs = *current_pt_regs();
250 childregs->ARM_r0 = 0;
251 if (stack_start)
252 childregs->ARM_sp = stack_start;
253 } else {
254 memset(childregs, 0, sizeof(struct pt_regs));
255 thread->cpu_context.r4 = stk_sz;
256 thread->cpu_context.r5 = stack_start;
257 childregs->ARM_cpsr = SVC_MODE;
258 }
259 thread->cpu_context.pc = (unsigned long)ret_from_fork;
260 thread->cpu_context.sp = (unsigned long)childregs;
261
262 clear_ptrace_hw_breakpoint(p);
263
264 if (clone_flags & CLONE_SETTLS)
265 thread->tp_value[0] = childregs->ARM_r3;
266 thread->tp_value[1] = get_tpuser();
267
268 thread_notify(THREAD_NOTIFY_COPY, thread);
269
270 return 0;
271 }
272
273 /*
274 * Fill in the task's elfregs structure for a core dump.
275 */
dump_task_regs(struct task_struct * t,elf_gregset_t * elfregs)276 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
277 {
278 elf_core_copy_regs(elfregs, task_pt_regs(t));
279 return 1;
280 }
281
282 /*
283 * fill in the fpe structure for a core dump...
284 */
dump_fpu(struct pt_regs * regs,struct user_fp * fp)285 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
286 {
287 struct thread_info *thread = current_thread_info();
288 int used_math = thread->used_cp[1] | thread->used_cp[2];
289
290 if (used_math)
291 memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
292
293 return used_math != 0;
294 }
295 EXPORT_SYMBOL(dump_fpu);
296
get_wchan(struct task_struct * p)297 unsigned long get_wchan(struct task_struct *p)
298 {
299 struct stackframe frame;
300 unsigned long stack_page;
301 int count = 0;
302 if (!p || p == current || p->state == TASK_RUNNING)
303 return 0;
304
305 frame.fp = thread_saved_fp(p);
306 frame.sp = thread_saved_sp(p);
307 frame.lr = 0; /* recovered from the stack */
308 frame.pc = thread_saved_pc(p);
309 stack_page = (unsigned long)task_stack_page(p);
310 do {
311 if (frame.sp < stack_page ||
312 frame.sp >= stack_page + THREAD_SIZE ||
313 unwind_frame(&frame) < 0)
314 return 0;
315 if (!in_sched_functions(frame.pc))
316 return frame.pc;
317 } while (count ++ < 16);
318 return 0;
319 }
320
arch_randomize_brk(struct mm_struct * mm)321 unsigned long arch_randomize_brk(struct mm_struct *mm)
322 {
323 return randomize_page(mm->brk, 0x02000000);
324 }
325
326 #ifdef CONFIG_MMU
327 #ifdef CONFIG_KUSER_HELPERS
328 /*
329 * The vectors page is always readable from user space for the
330 * atomic helpers. Insert it into the gate_vma so that it is visible
331 * through ptrace and /proc/<pid>/mem.
332 */
333 static struct vm_area_struct gate_vma;
334
gate_vma_init(void)335 static int __init gate_vma_init(void)
336 {
337 vma_init(&gate_vma, NULL);
338 gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
339 gate_vma.vm_start = 0xffff0000;
340 gate_vma.vm_end = 0xffff0000 + PAGE_SIZE;
341 gate_vma.vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC;
342 return 0;
343 }
344 arch_initcall(gate_vma_init);
345
get_gate_vma(struct mm_struct * mm)346 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
347 {
348 return &gate_vma;
349 }
350
in_gate_area(struct mm_struct * mm,unsigned long addr)351 int in_gate_area(struct mm_struct *mm, unsigned long addr)
352 {
353 return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
354 }
355
in_gate_area_no_mm(unsigned long addr)356 int in_gate_area_no_mm(unsigned long addr)
357 {
358 return in_gate_area(NULL, addr);
359 }
360 #define is_gate_vma(vma) ((vma) == &gate_vma)
361 #else
362 #define is_gate_vma(vma) 0
363 #endif
364
arch_vma_name(struct vm_area_struct * vma)365 const char *arch_vma_name(struct vm_area_struct *vma)
366 {
367 return is_gate_vma(vma) ? "[vectors]" : NULL;
368 }
369
370 /* If possible, provide a placement hint at a random offset from the
371 * stack for the sigpage and vdso pages.
372 */
sigpage_addr(const struct mm_struct * mm,unsigned int npages)373 static unsigned long sigpage_addr(const struct mm_struct *mm,
374 unsigned int npages)
375 {
376 unsigned long offset;
377 unsigned long first;
378 unsigned long last;
379 unsigned long addr;
380 unsigned int slots;
381
382 first = PAGE_ALIGN(mm->start_stack);
383
384 last = TASK_SIZE - (npages << PAGE_SHIFT);
385
386 /* No room after stack? */
387 if (first > last)
388 return 0;
389
390 /* Just enough room? */
391 if (first == last)
392 return first;
393
394 slots = ((last - first) >> PAGE_SHIFT) + 1;
395
396 offset = get_random_int() % slots;
397
398 addr = first + (offset << PAGE_SHIFT);
399
400 return addr;
401 }
402
403 static struct page *signal_page;
404 extern struct page *get_signal_page(void);
405
sigpage_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)406 static int sigpage_mremap(const struct vm_special_mapping *sm,
407 struct vm_area_struct *new_vma)
408 {
409 current->mm->context.sigpage = new_vma->vm_start;
410 return 0;
411 }
412
413 static const struct vm_special_mapping sigpage_mapping = {
414 .name = "[sigpage]",
415 .pages = &signal_page,
416 .mremap = sigpage_mremap,
417 };
418
arch_setup_additional_pages(struct linux_binprm * bprm,int uses_interp)419 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
420 {
421 struct mm_struct *mm = current->mm;
422 struct vm_area_struct *vma;
423 unsigned long npages;
424 unsigned long addr;
425 unsigned long hint;
426 int ret = 0;
427
428 if (!signal_page)
429 signal_page = get_signal_page();
430 if (!signal_page)
431 return -ENOMEM;
432
433 npages = 1; /* for sigpage */
434 npages += vdso_total_pages;
435
436 if (down_write_killable(&mm->mmap_sem))
437 return -EINTR;
438 hint = sigpage_addr(mm, npages);
439 addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
440 if (IS_ERR_VALUE(addr)) {
441 ret = addr;
442 goto up_fail;
443 }
444
445 vma = _install_special_mapping(mm, addr, PAGE_SIZE,
446 VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
447 &sigpage_mapping);
448
449 if (IS_ERR(vma)) {
450 ret = PTR_ERR(vma);
451 goto up_fail;
452 }
453
454 mm->context.sigpage = addr;
455
456 /* Unlike the sigpage, failure to install the vdso is unlikely
457 * to be fatal to the process, so no error check needed
458 * here.
459 */
460 arm_install_vdso(mm, addr + PAGE_SIZE);
461
462 up_fail:
463 up_write(&mm->mmap_sem);
464 return ret;
465 }
466 #endif
467