1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12 
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/user.h>
23 #include <linux/interrupt.h>
24 #include <linux/init.h>
25 #include <linux/elfcore.h>
26 #include <linux/pm.h>
27 #include <linux/tick.h>
28 #include <linux/utsname.h>
29 #include <linux/uaccess.h>
30 #include <linux/random.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/leds.h>
33 
34 #include <asm/processor.h>
35 #include <asm/thread_notify.h>
36 #include <asm/stacktrace.h>
37 #include <asm/system_misc.h>
38 #include <asm/mach/time.h>
39 #include <asm/tls.h>
40 #include <asm/vdso.h>
41 
42 #ifdef CONFIG_STACKPROTECTOR
43 #include <linux/stackprotector.h>
44 unsigned long __stack_chk_guard __read_mostly;
45 EXPORT_SYMBOL(__stack_chk_guard);
46 #endif
47 
48 static const char *processor_modes[] __maybe_unused = {
49   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
50   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
51   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
52   "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
53 };
54 
55 static const char *isa_modes[] __maybe_unused = {
56   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
57 };
58 
59 /*
60  * This is our default idle handler.
61  */
62 
63 void (*arm_pm_idle)(void);
64 
65 /*
66  * Called from the core idle loop.
67  */
68 
arch_cpu_idle(void)69 void arch_cpu_idle(void)
70 {
71 	if (arm_pm_idle)
72 		arm_pm_idle();
73 	else
74 		cpu_do_idle();
75 	local_irq_enable();
76 }
77 
arch_cpu_idle_prepare(void)78 void arch_cpu_idle_prepare(void)
79 {
80 	local_fiq_enable();
81 }
82 
arch_cpu_idle_enter(void)83 void arch_cpu_idle_enter(void)
84 {
85 	ledtrig_cpu(CPU_LED_IDLE_START);
86 #ifdef CONFIG_PL310_ERRATA_769419
87 	wmb();
88 #endif
89 }
90 
arch_cpu_idle_exit(void)91 void arch_cpu_idle_exit(void)
92 {
93 	ledtrig_cpu(CPU_LED_IDLE_END);
94 }
95 
__show_regs(struct pt_regs * regs)96 void __show_regs(struct pt_regs *regs)
97 {
98 	unsigned long flags;
99 	char buf[64];
100 #ifndef CONFIG_CPU_V7M
101 	unsigned int domain, fs;
102 #ifdef CONFIG_CPU_SW_DOMAIN_PAN
103 	/*
104 	 * Get the domain register for the parent context. In user
105 	 * mode, we don't save the DACR, so lets use what it should
106 	 * be. For other modes, we place it after the pt_regs struct.
107 	 */
108 	if (user_mode(regs)) {
109 		domain = DACR_UACCESS_ENABLE;
110 		fs = get_fs();
111 	} else {
112 		domain = to_svc_pt_regs(regs)->dacr;
113 		fs = to_svc_pt_regs(regs)->addr_limit;
114 	}
115 #else
116 	domain = get_domain();
117 	fs = get_fs();
118 #endif
119 #endif
120 
121 	show_regs_print_info(KERN_DEFAULT);
122 
123 	printk("PC is at %pS\n", (void *)instruction_pointer(regs));
124 	printk("LR is at %pS\n", (void *)regs->ARM_lr);
125 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n",
126 	       regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr);
127 	printk("sp : %08lx  ip : %08lx  fp : %08lx\n",
128 	       regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
129 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
130 		regs->ARM_r10, regs->ARM_r9,
131 		regs->ARM_r8);
132 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
133 		regs->ARM_r7, regs->ARM_r6,
134 		regs->ARM_r5, regs->ARM_r4);
135 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
136 		regs->ARM_r3, regs->ARM_r2,
137 		regs->ARM_r1, regs->ARM_r0);
138 
139 	flags = regs->ARM_cpsr;
140 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
141 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
142 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
143 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
144 	buf[4] = '\0';
145 
146 #ifndef CONFIG_CPU_V7M
147 	{
148 		const char *segment;
149 
150 		if ((domain & domain_mask(DOMAIN_USER)) ==
151 		    domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
152 			segment = "none";
153 		else if (fs == get_ds())
154 			segment = "kernel";
155 		else
156 			segment = "user";
157 
158 		printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
159 			buf, interrupts_enabled(regs) ? "n" : "ff",
160 			fast_interrupts_enabled(regs) ? "n" : "ff",
161 			processor_modes[processor_mode(regs)],
162 			isa_modes[isa_mode(regs)], segment);
163 	}
164 #else
165 	printk("xPSR: %08lx\n", regs->ARM_cpsr);
166 #endif
167 
168 #ifdef CONFIG_CPU_CP15
169 	{
170 		unsigned int ctrl;
171 
172 		buf[0] = '\0';
173 #ifdef CONFIG_CPU_CP15_MMU
174 		{
175 			unsigned int transbase;
176 			asm("mrc p15, 0, %0, c2, c0\n\t"
177 			    : "=r" (transbase));
178 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
179 				transbase, domain);
180 		}
181 #endif
182 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
183 
184 		printk("Control: %08x%s\n", ctrl, buf);
185 	}
186 #endif
187 }
188 
show_regs(struct pt_regs * regs)189 void show_regs(struct pt_regs * regs)
190 {
191 	__show_regs(regs);
192 	dump_stack();
193 }
194 
195 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
196 
197 EXPORT_SYMBOL_GPL(thread_notify_head);
198 
199 /*
200  * Free current thread data structures etc..
201  */
exit_thread(struct task_struct * tsk)202 void exit_thread(struct task_struct *tsk)
203 {
204 	thread_notify(THREAD_NOTIFY_EXIT, task_thread_info(tsk));
205 }
206 
flush_thread(void)207 void flush_thread(void)
208 {
209 	struct thread_info *thread = current_thread_info();
210 	struct task_struct *tsk = current;
211 
212 	flush_ptrace_hw_breakpoint(tsk);
213 
214 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
215 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
216 	memset(&thread->fpstate, 0, sizeof(union fp_state));
217 
218 	flush_tls();
219 
220 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
221 }
222 
release_thread(struct task_struct * dead_task)223 void release_thread(struct task_struct *dead_task)
224 {
225 }
226 
227 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
228 
229 int
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p)230 copy_thread(unsigned long clone_flags, unsigned long stack_start,
231 	    unsigned long stk_sz, struct task_struct *p)
232 {
233 	struct thread_info *thread = task_thread_info(p);
234 	struct pt_regs *childregs = task_pt_regs(p);
235 
236 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
237 
238 #ifdef CONFIG_CPU_USE_DOMAINS
239 	/*
240 	 * Copy the initial value of the domain access control register
241 	 * from the current thread: thread->addr_limit will have been
242 	 * copied from the current thread via setup_thread_stack() in
243 	 * kernel/fork.c
244 	 */
245 	thread->cpu_domain = get_domain();
246 #endif
247 
248 	if (likely(!(p->flags & PF_KTHREAD))) {
249 		*childregs = *current_pt_regs();
250 		childregs->ARM_r0 = 0;
251 		if (stack_start)
252 			childregs->ARM_sp = stack_start;
253 	} else {
254 		memset(childregs, 0, sizeof(struct pt_regs));
255 		thread->cpu_context.r4 = stk_sz;
256 		thread->cpu_context.r5 = stack_start;
257 		childregs->ARM_cpsr = SVC_MODE;
258 	}
259 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
260 	thread->cpu_context.sp = (unsigned long)childregs;
261 
262 	clear_ptrace_hw_breakpoint(p);
263 
264 	if (clone_flags & CLONE_SETTLS)
265 		thread->tp_value[0] = childregs->ARM_r3;
266 	thread->tp_value[1] = get_tpuser();
267 
268 	thread_notify(THREAD_NOTIFY_COPY, thread);
269 
270 	return 0;
271 }
272 
273 /*
274  * Fill in the task's elfregs structure for a core dump.
275  */
dump_task_regs(struct task_struct * t,elf_gregset_t * elfregs)276 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
277 {
278 	elf_core_copy_regs(elfregs, task_pt_regs(t));
279 	return 1;
280 }
281 
282 /*
283  * fill in the fpe structure for a core dump...
284  */
dump_fpu(struct pt_regs * regs,struct user_fp * fp)285 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
286 {
287 	struct thread_info *thread = current_thread_info();
288 	int used_math = thread->used_cp[1] | thread->used_cp[2];
289 
290 	if (used_math)
291 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
292 
293 	return used_math != 0;
294 }
295 EXPORT_SYMBOL(dump_fpu);
296 
get_wchan(struct task_struct * p)297 unsigned long get_wchan(struct task_struct *p)
298 {
299 	struct stackframe frame;
300 	unsigned long stack_page;
301 	int count = 0;
302 	if (!p || p == current || p->state == TASK_RUNNING)
303 		return 0;
304 
305 	frame.fp = thread_saved_fp(p);
306 	frame.sp = thread_saved_sp(p);
307 	frame.lr = 0;			/* recovered from the stack */
308 	frame.pc = thread_saved_pc(p);
309 	stack_page = (unsigned long)task_stack_page(p);
310 	do {
311 		if (frame.sp < stack_page ||
312 		    frame.sp >= stack_page + THREAD_SIZE ||
313 		    unwind_frame(&frame) < 0)
314 			return 0;
315 		if (!in_sched_functions(frame.pc))
316 			return frame.pc;
317 	} while (count ++ < 16);
318 	return 0;
319 }
320 
arch_randomize_brk(struct mm_struct * mm)321 unsigned long arch_randomize_brk(struct mm_struct *mm)
322 {
323 	return randomize_page(mm->brk, 0x02000000);
324 }
325 
326 #ifdef CONFIG_MMU
327 #ifdef CONFIG_KUSER_HELPERS
328 /*
329  * The vectors page is always readable from user space for the
330  * atomic helpers. Insert it into the gate_vma so that it is visible
331  * through ptrace and /proc/<pid>/mem.
332  */
333 static struct vm_area_struct gate_vma;
334 
gate_vma_init(void)335 static int __init gate_vma_init(void)
336 {
337 	vma_init(&gate_vma, NULL);
338 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
339 	gate_vma.vm_start = 0xffff0000;
340 	gate_vma.vm_end	= 0xffff0000 + PAGE_SIZE;
341 	gate_vma.vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC;
342 	return 0;
343 }
344 arch_initcall(gate_vma_init);
345 
get_gate_vma(struct mm_struct * mm)346 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
347 {
348 	return &gate_vma;
349 }
350 
in_gate_area(struct mm_struct * mm,unsigned long addr)351 int in_gate_area(struct mm_struct *mm, unsigned long addr)
352 {
353 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
354 }
355 
in_gate_area_no_mm(unsigned long addr)356 int in_gate_area_no_mm(unsigned long addr)
357 {
358 	return in_gate_area(NULL, addr);
359 }
360 #define is_gate_vma(vma)	((vma) == &gate_vma)
361 #else
362 #define is_gate_vma(vma)	0
363 #endif
364 
arch_vma_name(struct vm_area_struct * vma)365 const char *arch_vma_name(struct vm_area_struct *vma)
366 {
367 	return is_gate_vma(vma) ? "[vectors]" : NULL;
368 }
369 
370 /* If possible, provide a placement hint at a random offset from the
371  * stack for the sigpage and vdso pages.
372  */
sigpage_addr(const struct mm_struct * mm,unsigned int npages)373 static unsigned long sigpage_addr(const struct mm_struct *mm,
374 				  unsigned int npages)
375 {
376 	unsigned long offset;
377 	unsigned long first;
378 	unsigned long last;
379 	unsigned long addr;
380 	unsigned int slots;
381 
382 	first = PAGE_ALIGN(mm->start_stack);
383 
384 	last = TASK_SIZE - (npages << PAGE_SHIFT);
385 
386 	/* No room after stack? */
387 	if (first > last)
388 		return 0;
389 
390 	/* Just enough room? */
391 	if (first == last)
392 		return first;
393 
394 	slots = ((last - first) >> PAGE_SHIFT) + 1;
395 
396 	offset = get_random_int() % slots;
397 
398 	addr = first + (offset << PAGE_SHIFT);
399 
400 	return addr;
401 }
402 
403 static struct page *signal_page;
404 extern struct page *get_signal_page(void);
405 
sigpage_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)406 static int sigpage_mremap(const struct vm_special_mapping *sm,
407 		struct vm_area_struct *new_vma)
408 {
409 	current->mm->context.sigpage = new_vma->vm_start;
410 	return 0;
411 }
412 
413 static const struct vm_special_mapping sigpage_mapping = {
414 	.name = "[sigpage]",
415 	.pages = &signal_page,
416 	.mremap = sigpage_mremap,
417 };
418 
arch_setup_additional_pages(struct linux_binprm * bprm,int uses_interp)419 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
420 {
421 	struct mm_struct *mm = current->mm;
422 	struct vm_area_struct *vma;
423 	unsigned long npages;
424 	unsigned long addr;
425 	unsigned long hint;
426 	int ret = 0;
427 
428 	if (!signal_page)
429 		signal_page = get_signal_page();
430 	if (!signal_page)
431 		return -ENOMEM;
432 
433 	npages = 1; /* for sigpage */
434 	npages += vdso_total_pages;
435 
436 	if (down_write_killable(&mm->mmap_sem))
437 		return -EINTR;
438 	hint = sigpage_addr(mm, npages);
439 	addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
440 	if (IS_ERR_VALUE(addr)) {
441 		ret = addr;
442 		goto up_fail;
443 	}
444 
445 	vma = _install_special_mapping(mm, addr, PAGE_SIZE,
446 		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
447 		&sigpage_mapping);
448 
449 	if (IS_ERR(vma)) {
450 		ret = PTR_ERR(vma);
451 		goto up_fail;
452 	}
453 
454 	mm->context.sigpage = addr;
455 
456 	/* Unlike the sigpage, failure to install the vdso is unlikely
457 	 * to be fatal to the process, so no error check needed
458 	 * here.
459 	 */
460 	arm_install_vdso(mm, addr + PAGE_SIZE);
461 
462  up_fail:
463 	up_write(&mm->mmap_sem);
464 	return ret;
465 }
466 #endif
467