1 /*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
40 #include <net/sock.h>
41
42 #include "rds.h"
43
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock);
46 static unsigned long rds_sock_count;
47 static LIST_HEAD(rds_sock_list);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49
50 /*
51 * This is called as the final descriptor referencing this socket is closed.
52 * We have to unbind the socket so that another socket can be bound to the
53 * address it was using.
54 *
55 * We have to be careful about racing with the incoming path. sock_orphan()
56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57 * messages shouldn't be queued.
58 */
rds_release(struct socket * sock)59 static int rds_release(struct socket *sock)
60 {
61 struct sock *sk = sock->sk;
62 struct rds_sock *rs;
63
64 if (!sk)
65 goto out;
66
67 rs = rds_sk_to_rs(sk);
68
69 sock_orphan(sk);
70 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 * that ensures the recv path has completed messing
72 * with the socket. */
73 rds_clear_recv_queue(rs);
74 rds_cong_remove_socket(rs);
75
76 rds_remove_bound(rs);
77
78 rds_send_drop_to(rs, NULL);
79 rds_rdma_drop_keys(rs);
80 rds_notify_queue_get(rs, NULL);
81 rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82
83 spin_lock_bh(&rds_sock_lock);
84 list_del_init(&rs->rs_item);
85 rds_sock_count--;
86 spin_unlock_bh(&rds_sock_lock);
87
88 rds_trans_put(rs->rs_transport);
89
90 sock->sk = NULL;
91 sock_put(sk);
92 out:
93 return 0;
94 }
95
96 /*
97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
rds_wake_sk_sleep(struct rds_sock * rs)105 void rds_wake_sk_sleep(struct rds_sock *rs)
106 {
107 unsigned long flags;
108
109 read_lock_irqsave(&rs->rs_recv_lock, flags);
110 __rds_wake_sk_sleep(rds_rs_to_sk(rs));
111 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112 }
113
rds_getname(struct socket * sock,struct sockaddr * uaddr,int peer)114 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115 int peer)
116 {
117 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 struct sockaddr_in6 *sin6;
119 struct sockaddr_in *sin;
120 int uaddr_len;
121
122 /* racey, don't care */
123 if (peer) {
124 if (ipv6_addr_any(&rs->rs_conn_addr))
125 return -ENOTCONN;
126
127 if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128 sin = (struct sockaddr_in *)uaddr;
129 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130 sin->sin_family = AF_INET;
131 sin->sin_port = rs->rs_conn_port;
132 sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133 uaddr_len = sizeof(*sin);
134 } else {
135 sin6 = (struct sockaddr_in6 *)uaddr;
136 sin6->sin6_family = AF_INET6;
137 sin6->sin6_port = rs->rs_conn_port;
138 sin6->sin6_addr = rs->rs_conn_addr;
139 sin6->sin6_flowinfo = 0;
140 /* scope_id is the same as in the bound address. */
141 sin6->sin6_scope_id = rs->rs_bound_scope_id;
142 uaddr_len = sizeof(*sin6);
143 }
144 } else {
145 /* If socket is not yet bound and the socket is connected,
146 * set the return address family to be the same as the
147 * connected address, but with 0 address value. If it is not
148 * connected, set the family to be AF_UNSPEC (value 0) and
149 * the address size to be that of an IPv4 address.
150 */
151 if (ipv6_addr_any(&rs->rs_bound_addr)) {
152 if (ipv6_addr_any(&rs->rs_conn_addr)) {
153 sin = (struct sockaddr_in *)uaddr;
154 memset(sin, 0, sizeof(*sin));
155 sin->sin_family = AF_UNSPEC;
156 return sizeof(*sin);
157 }
158
159 #if IS_ENABLED(CONFIG_IPV6)
160 if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161 IPV6_ADDR_MAPPED)) {
162 sin6 = (struct sockaddr_in6 *)uaddr;
163 memset(sin6, 0, sizeof(*sin6));
164 sin6->sin6_family = AF_INET6;
165 return sizeof(*sin6);
166 }
167 #endif
168
169 sin = (struct sockaddr_in *)uaddr;
170 memset(sin, 0, sizeof(*sin));
171 sin->sin_family = AF_INET;
172 return sizeof(*sin);
173 }
174 if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175 sin = (struct sockaddr_in *)uaddr;
176 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177 sin->sin_family = AF_INET;
178 sin->sin_port = rs->rs_bound_port;
179 sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180 uaddr_len = sizeof(*sin);
181 } else {
182 sin6 = (struct sockaddr_in6 *)uaddr;
183 sin6->sin6_family = AF_INET6;
184 sin6->sin6_port = rs->rs_bound_port;
185 sin6->sin6_addr = rs->rs_bound_addr;
186 sin6->sin6_flowinfo = 0;
187 sin6->sin6_scope_id = rs->rs_bound_scope_id;
188 uaddr_len = sizeof(*sin6);
189 }
190 }
191
192 return uaddr_len;
193 }
194
195 /*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 * - there is data on the receive queue.
202 * - to signal that a previously congested destination may have become
203 * uncongested
204 * - A notification has been queued to the socket (this can be a congestion
205 * update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
rds_poll(struct file * file,struct socket * sock,poll_table * wait)212 static __poll_t rds_poll(struct file *file, struct socket *sock,
213 poll_table *wait)
214 {
215 struct sock *sk = sock->sk;
216 struct rds_sock *rs = rds_sk_to_rs(sk);
217 __poll_t mask = 0;
218 unsigned long flags;
219
220 poll_wait(file, sk_sleep(sk), wait);
221
222 if (rs->rs_seen_congestion)
223 poll_wait(file, &rds_poll_waitq, wait);
224
225 read_lock_irqsave(&rs->rs_recv_lock, flags);
226 if (!rs->rs_cong_monitor) {
227 /* When a congestion map was updated, we signal EPOLLIN for
228 * "historical" reasons. Applications can also poll for
229 * WRBAND instead. */
230 if (rds_cong_updated_since(&rs->rs_cong_track))
231 mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232 } else {
233 spin_lock(&rs->rs_lock);
234 if (rs->rs_cong_notify)
235 mask |= (EPOLLIN | EPOLLRDNORM);
236 spin_unlock(&rs->rs_lock);
237 }
238 if (!list_empty(&rs->rs_recv_queue) ||
239 !list_empty(&rs->rs_notify_queue) ||
240 !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241 mask |= (EPOLLIN | EPOLLRDNORM);
242 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243 mask |= (EPOLLOUT | EPOLLWRNORM);
244 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245 mask |= POLLERR;
246 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248 /* clear state any time we wake a seen-congested socket */
249 if (mask)
250 rs->rs_seen_congestion = 0;
251
252 return mask;
253 }
254
rds_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)255 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256 {
257 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258 rds_tos_t utos, tos = 0;
259
260 switch (cmd) {
261 case SIOCRDSSETTOS:
262 if (get_user(utos, (rds_tos_t __user *)arg))
263 return -EFAULT;
264
265 if (rs->rs_transport &&
266 rs->rs_transport->get_tos_map)
267 tos = rs->rs_transport->get_tos_map(utos);
268 else
269 return -ENOIOCTLCMD;
270
271 spin_lock_bh(&rds_sock_lock);
272 if (rs->rs_tos || rs->rs_conn) {
273 spin_unlock_bh(&rds_sock_lock);
274 return -EINVAL;
275 }
276 rs->rs_tos = tos;
277 spin_unlock_bh(&rds_sock_lock);
278 break;
279 case SIOCRDSGETTOS:
280 spin_lock_bh(&rds_sock_lock);
281 tos = rs->rs_tos;
282 spin_unlock_bh(&rds_sock_lock);
283 if (put_user(tos, (rds_tos_t __user *)arg))
284 return -EFAULT;
285 break;
286 default:
287 return -ENOIOCTLCMD;
288 }
289
290 return 0;
291 }
292
rds_cancel_sent_to(struct rds_sock * rs,sockptr_t optval,int len)293 static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
294 {
295 struct sockaddr_in6 sin6;
296 struct sockaddr_in sin;
297 int ret = 0;
298
299 /* racing with another thread binding seems ok here */
300 if (ipv6_addr_any(&rs->rs_bound_addr)) {
301 ret = -ENOTCONN; /* XXX not a great errno */
302 goto out;
303 }
304
305 if (len < sizeof(struct sockaddr_in)) {
306 ret = -EINVAL;
307 goto out;
308 } else if (len < sizeof(struct sockaddr_in6)) {
309 /* Assume IPv4 */
310 if (copy_from_sockptr(&sin, optval,
311 sizeof(struct sockaddr_in))) {
312 ret = -EFAULT;
313 goto out;
314 }
315 ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316 sin6.sin6_port = sin.sin_port;
317 } else {
318 if (copy_from_sockptr(&sin6, optval,
319 sizeof(struct sockaddr_in6))) {
320 ret = -EFAULT;
321 goto out;
322 }
323 }
324
325 rds_send_drop_to(rs, &sin6);
326 out:
327 return ret;
328 }
329
rds_set_bool_option(unsigned char * optvar,sockptr_t optval,int optlen)330 static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
331 int optlen)
332 {
333 int value;
334
335 if (optlen < sizeof(int))
336 return -EINVAL;
337 if (copy_from_sockptr(&value, optval, sizeof(int)))
338 return -EFAULT;
339 *optvar = !!value;
340 return 0;
341 }
342
rds_cong_monitor(struct rds_sock * rs,sockptr_t optval,int optlen)343 static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
344 {
345 int ret;
346
347 ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
348 if (ret == 0) {
349 if (rs->rs_cong_monitor) {
350 rds_cong_add_socket(rs);
351 } else {
352 rds_cong_remove_socket(rs);
353 rs->rs_cong_mask = 0;
354 rs->rs_cong_notify = 0;
355 }
356 }
357 return ret;
358 }
359
rds_set_transport(struct rds_sock * rs,sockptr_t optval,int optlen)360 static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
361 {
362 int t_type;
363
364 if (rs->rs_transport)
365 return -EOPNOTSUPP; /* previously attached to transport */
366
367 if (optlen != sizeof(int))
368 return -EINVAL;
369
370 if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
371 return -EFAULT;
372
373 if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
374 return -EINVAL;
375
376 rs->rs_transport = rds_trans_get(t_type);
377
378 return rs->rs_transport ? 0 : -ENOPROTOOPT;
379 }
380
rds_enable_recvtstamp(struct sock * sk,sockptr_t optval,int optlen,int optname)381 static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
382 int optlen, int optname)
383 {
384 int val, valbool;
385
386 if (optlen != sizeof(int))
387 return -EFAULT;
388
389 if (copy_from_sockptr(&val, optval, sizeof(int)))
390 return -EFAULT;
391
392 valbool = val ? 1 : 0;
393
394 if (optname == SO_TIMESTAMP_NEW)
395 sock_set_flag(sk, SOCK_TSTAMP_NEW);
396
397 if (valbool)
398 sock_set_flag(sk, SOCK_RCVTSTAMP);
399 else
400 sock_reset_flag(sk, SOCK_RCVTSTAMP);
401
402 return 0;
403 }
404
rds_recv_track_latency(struct rds_sock * rs,sockptr_t optval,int optlen)405 static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
406 int optlen)
407 {
408 struct rds_rx_trace_so trace;
409 int i;
410
411 if (optlen != sizeof(struct rds_rx_trace_so))
412 return -EFAULT;
413
414 if (copy_from_sockptr(&trace, optval, sizeof(trace)))
415 return -EFAULT;
416
417 if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
418 return -EFAULT;
419
420 rs->rs_rx_traces = trace.rx_traces;
421 for (i = 0; i < rs->rs_rx_traces; i++) {
422 if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
423 rs->rs_rx_traces = 0;
424 return -EFAULT;
425 }
426 rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
427 }
428
429 return 0;
430 }
431
rds_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)432 static int rds_setsockopt(struct socket *sock, int level, int optname,
433 sockptr_t optval, unsigned int optlen)
434 {
435 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
436 int ret;
437
438 if (level != SOL_RDS) {
439 ret = -ENOPROTOOPT;
440 goto out;
441 }
442
443 switch (optname) {
444 case RDS_CANCEL_SENT_TO:
445 ret = rds_cancel_sent_to(rs, optval, optlen);
446 break;
447 case RDS_GET_MR:
448 ret = rds_get_mr(rs, optval, optlen);
449 break;
450 case RDS_GET_MR_FOR_DEST:
451 ret = rds_get_mr_for_dest(rs, optval, optlen);
452 break;
453 case RDS_FREE_MR:
454 ret = rds_free_mr(rs, optval, optlen);
455 break;
456 case RDS_RECVERR:
457 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
458 break;
459 case RDS_CONG_MONITOR:
460 ret = rds_cong_monitor(rs, optval, optlen);
461 break;
462 case SO_RDS_TRANSPORT:
463 lock_sock(sock->sk);
464 ret = rds_set_transport(rs, optval, optlen);
465 release_sock(sock->sk);
466 break;
467 case SO_TIMESTAMP_OLD:
468 case SO_TIMESTAMP_NEW:
469 lock_sock(sock->sk);
470 ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
471 release_sock(sock->sk);
472 break;
473 case SO_RDS_MSG_RXPATH_LATENCY:
474 ret = rds_recv_track_latency(rs, optval, optlen);
475 break;
476 default:
477 ret = -ENOPROTOOPT;
478 }
479 out:
480 return ret;
481 }
482
rds_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)483 static int rds_getsockopt(struct socket *sock, int level, int optname,
484 char __user *optval, int __user *optlen)
485 {
486 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
487 int ret = -ENOPROTOOPT, len;
488 int trans;
489
490 if (level != SOL_RDS)
491 goto out;
492
493 if (get_user(len, optlen)) {
494 ret = -EFAULT;
495 goto out;
496 }
497
498 switch (optname) {
499 case RDS_INFO_FIRST ... RDS_INFO_LAST:
500 ret = rds_info_getsockopt(sock, optname, optval,
501 optlen);
502 break;
503
504 case RDS_RECVERR:
505 if (len < sizeof(int))
506 ret = -EINVAL;
507 else
508 if (put_user(rs->rs_recverr, (int __user *) optval) ||
509 put_user(sizeof(int), optlen))
510 ret = -EFAULT;
511 else
512 ret = 0;
513 break;
514 case SO_RDS_TRANSPORT:
515 if (len < sizeof(int)) {
516 ret = -EINVAL;
517 break;
518 }
519 trans = (rs->rs_transport ? rs->rs_transport->t_type :
520 RDS_TRANS_NONE); /* unbound */
521 if (put_user(trans, (int __user *)optval) ||
522 put_user(sizeof(int), optlen))
523 ret = -EFAULT;
524 else
525 ret = 0;
526 break;
527 default:
528 break;
529 }
530
531 out:
532 return ret;
533
534 }
535
rds_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)536 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
537 int addr_len, int flags)
538 {
539 struct sock *sk = sock->sk;
540 struct sockaddr_in *sin;
541 struct rds_sock *rs = rds_sk_to_rs(sk);
542 int ret = 0;
543
544 if (addr_len < offsetofend(struct sockaddr, sa_family))
545 return -EINVAL;
546
547 lock_sock(sk);
548
549 switch (uaddr->sa_family) {
550 case AF_INET:
551 sin = (struct sockaddr_in *)uaddr;
552 if (addr_len < sizeof(struct sockaddr_in)) {
553 ret = -EINVAL;
554 break;
555 }
556 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
557 ret = -EDESTADDRREQ;
558 break;
559 }
560 if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
561 sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
562 ret = -EINVAL;
563 break;
564 }
565 ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
566 rs->rs_conn_port = sin->sin_port;
567 break;
568
569 #if IS_ENABLED(CONFIG_IPV6)
570 case AF_INET6: {
571 struct sockaddr_in6 *sin6;
572 int addr_type;
573
574 sin6 = (struct sockaddr_in6 *)uaddr;
575 if (addr_len < sizeof(struct sockaddr_in6)) {
576 ret = -EINVAL;
577 break;
578 }
579 addr_type = ipv6_addr_type(&sin6->sin6_addr);
580 if (!(addr_type & IPV6_ADDR_UNICAST)) {
581 __be32 addr4;
582
583 if (!(addr_type & IPV6_ADDR_MAPPED)) {
584 ret = -EPROTOTYPE;
585 break;
586 }
587
588 /* It is a mapped address. Need to do some sanity
589 * checks.
590 */
591 addr4 = sin6->sin6_addr.s6_addr32[3];
592 if (addr4 == htonl(INADDR_ANY) ||
593 addr4 == htonl(INADDR_BROADCAST) ||
594 ipv4_is_multicast(addr4)) {
595 ret = -EPROTOTYPE;
596 break;
597 }
598 }
599
600 if (addr_type & IPV6_ADDR_LINKLOCAL) {
601 /* If socket is arleady bound to a link local address,
602 * the peer address must be on the same link.
603 */
604 if (sin6->sin6_scope_id == 0 ||
605 (!ipv6_addr_any(&rs->rs_bound_addr) &&
606 rs->rs_bound_scope_id &&
607 sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
608 ret = -EINVAL;
609 break;
610 }
611 /* Remember the connected address scope ID. It will
612 * be checked against the binding local address when
613 * the socket is bound.
614 */
615 rs->rs_bound_scope_id = sin6->sin6_scope_id;
616 }
617 rs->rs_conn_addr = sin6->sin6_addr;
618 rs->rs_conn_port = sin6->sin6_port;
619 break;
620 }
621 #endif
622
623 default:
624 ret = -EAFNOSUPPORT;
625 break;
626 }
627
628 release_sock(sk);
629 return ret;
630 }
631
632 static struct proto rds_proto = {
633 .name = "RDS",
634 .owner = THIS_MODULE,
635 .obj_size = sizeof(struct rds_sock),
636 };
637
638 static const struct proto_ops rds_proto_ops = {
639 .family = AF_RDS,
640 .owner = THIS_MODULE,
641 .release = rds_release,
642 .bind = rds_bind,
643 .connect = rds_connect,
644 .socketpair = sock_no_socketpair,
645 .accept = sock_no_accept,
646 .getname = rds_getname,
647 .poll = rds_poll,
648 .ioctl = rds_ioctl,
649 .listen = sock_no_listen,
650 .shutdown = sock_no_shutdown,
651 .setsockopt = rds_setsockopt,
652 .getsockopt = rds_getsockopt,
653 .sendmsg = rds_sendmsg,
654 .recvmsg = rds_recvmsg,
655 .mmap = sock_no_mmap,
656 };
657
rds_sock_destruct(struct sock * sk)658 static void rds_sock_destruct(struct sock *sk)
659 {
660 struct rds_sock *rs = rds_sk_to_rs(sk);
661
662 WARN_ON((&rs->rs_item != rs->rs_item.next ||
663 &rs->rs_item != rs->rs_item.prev));
664 }
665
__rds_create(struct socket * sock,struct sock * sk,int protocol)666 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
667 {
668 struct rds_sock *rs;
669
670 sock_init_data(sock, sk);
671 sock->ops = &rds_proto_ops;
672 sk->sk_protocol = protocol;
673 sk->sk_destruct = rds_sock_destruct;
674
675 rs = rds_sk_to_rs(sk);
676 spin_lock_init(&rs->rs_lock);
677 rwlock_init(&rs->rs_recv_lock);
678 INIT_LIST_HEAD(&rs->rs_send_queue);
679 INIT_LIST_HEAD(&rs->rs_recv_queue);
680 INIT_LIST_HEAD(&rs->rs_notify_queue);
681 INIT_LIST_HEAD(&rs->rs_cong_list);
682 rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
683 spin_lock_init(&rs->rs_rdma_lock);
684 rs->rs_rdma_keys = RB_ROOT;
685 rs->rs_rx_traces = 0;
686 rs->rs_tos = 0;
687 rs->rs_conn = NULL;
688
689 spin_lock_bh(&rds_sock_lock);
690 list_add_tail(&rs->rs_item, &rds_sock_list);
691 rds_sock_count++;
692 spin_unlock_bh(&rds_sock_lock);
693
694 return 0;
695 }
696
rds_create(struct net * net,struct socket * sock,int protocol,int kern)697 static int rds_create(struct net *net, struct socket *sock, int protocol,
698 int kern)
699 {
700 struct sock *sk;
701
702 if (sock->type != SOCK_SEQPACKET || protocol)
703 return -ESOCKTNOSUPPORT;
704
705 sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
706 if (!sk)
707 return -ENOMEM;
708
709 return __rds_create(sock, sk, protocol);
710 }
711
rds_sock_addref(struct rds_sock * rs)712 void rds_sock_addref(struct rds_sock *rs)
713 {
714 sock_hold(rds_rs_to_sk(rs));
715 }
716
rds_sock_put(struct rds_sock * rs)717 void rds_sock_put(struct rds_sock *rs)
718 {
719 sock_put(rds_rs_to_sk(rs));
720 }
721
722 static const struct net_proto_family rds_family_ops = {
723 .family = AF_RDS,
724 .create = rds_create,
725 .owner = THIS_MODULE,
726 };
727
rds_sock_inc_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)728 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
729 struct rds_info_iterator *iter,
730 struct rds_info_lengths *lens)
731 {
732 struct rds_sock *rs;
733 struct rds_incoming *inc;
734 unsigned int total = 0;
735
736 len /= sizeof(struct rds_info_message);
737
738 spin_lock_bh(&rds_sock_lock);
739
740 list_for_each_entry(rs, &rds_sock_list, rs_item) {
741 /* This option only supports IPv4 sockets. */
742 if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
743 continue;
744
745 read_lock(&rs->rs_recv_lock);
746
747 /* XXX too lazy to maintain counts.. */
748 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
749 total++;
750 if (total <= len)
751 rds_inc_info_copy(inc, iter,
752 inc->i_saddr.s6_addr32[3],
753 rs->rs_bound_addr_v4,
754 1);
755 }
756
757 read_unlock(&rs->rs_recv_lock);
758 }
759
760 spin_unlock_bh(&rds_sock_lock);
761
762 lens->nr = total;
763 lens->each = sizeof(struct rds_info_message);
764 }
765
766 #if IS_ENABLED(CONFIG_IPV6)
rds6_sock_inc_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)767 static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
768 struct rds_info_iterator *iter,
769 struct rds_info_lengths *lens)
770 {
771 struct rds_incoming *inc;
772 unsigned int total = 0;
773 struct rds_sock *rs;
774
775 len /= sizeof(struct rds6_info_message);
776
777 spin_lock_bh(&rds_sock_lock);
778
779 list_for_each_entry(rs, &rds_sock_list, rs_item) {
780 read_lock(&rs->rs_recv_lock);
781
782 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
783 total++;
784 if (total <= len)
785 rds6_inc_info_copy(inc, iter, &inc->i_saddr,
786 &rs->rs_bound_addr, 1);
787 }
788
789 read_unlock(&rs->rs_recv_lock);
790 }
791
792 spin_unlock_bh(&rds_sock_lock);
793
794 lens->nr = total;
795 lens->each = sizeof(struct rds6_info_message);
796 }
797 #endif
798
rds_sock_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)799 static void rds_sock_info(struct socket *sock, unsigned int len,
800 struct rds_info_iterator *iter,
801 struct rds_info_lengths *lens)
802 {
803 struct rds_info_socket sinfo;
804 unsigned int cnt = 0;
805 struct rds_sock *rs;
806
807 len /= sizeof(struct rds_info_socket);
808
809 spin_lock_bh(&rds_sock_lock);
810
811 if (len < rds_sock_count) {
812 cnt = rds_sock_count;
813 goto out;
814 }
815
816 list_for_each_entry(rs, &rds_sock_list, rs_item) {
817 /* This option only supports IPv4 sockets. */
818 if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
819 continue;
820 sinfo.sndbuf = rds_sk_sndbuf(rs);
821 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
822 sinfo.bound_addr = rs->rs_bound_addr_v4;
823 sinfo.connected_addr = rs->rs_conn_addr_v4;
824 sinfo.bound_port = rs->rs_bound_port;
825 sinfo.connected_port = rs->rs_conn_port;
826 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
827
828 rds_info_copy(iter, &sinfo, sizeof(sinfo));
829 cnt++;
830 }
831
832 out:
833 lens->nr = cnt;
834 lens->each = sizeof(struct rds_info_socket);
835
836 spin_unlock_bh(&rds_sock_lock);
837 }
838
839 #if IS_ENABLED(CONFIG_IPV6)
rds6_sock_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)840 static void rds6_sock_info(struct socket *sock, unsigned int len,
841 struct rds_info_iterator *iter,
842 struct rds_info_lengths *lens)
843 {
844 struct rds6_info_socket sinfo6;
845 struct rds_sock *rs;
846
847 len /= sizeof(struct rds6_info_socket);
848
849 spin_lock_bh(&rds_sock_lock);
850
851 if (len < rds_sock_count)
852 goto out;
853
854 list_for_each_entry(rs, &rds_sock_list, rs_item) {
855 sinfo6.sndbuf = rds_sk_sndbuf(rs);
856 sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
857 sinfo6.bound_addr = rs->rs_bound_addr;
858 sinfo6.connected_addr = rs->rs_conn_addr;
859 sinfo6.bound_port = rs->rs_bound_port;
860 sinfo6.connected_port = rs->rs_conn_port;
861 sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
862
863 rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
864 }
865
866 out:
867 lens->nr = rds_sock_count;
868 lens->each = sizeof(struct rds6_info_socket);
869
870 spin_unlock_bh(&rds_sock_lock);
871 }
872 #endif
873
rds_exit(void)874 static void rds_exit(void)
875 {
876 sock_unregister(rds_family_ops.family);
877 proto_unregister(&rds_proto);
878 rds_conn_exit();
879 rds_cong_exit();
880 rds_sysctl_exit();
881 rds_threads_exit();
882 rds_stats_exit();
883 rds_page_exit();
884 rds_bind_lock_destroy();
885 rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
886 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
887 #if IS_ENABLED(CONFIG_IPV6)
888 rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
889 rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
890 #endif
891 }
892 module_exit(rds_exit);
893
894 u32 rds_gen_num;
895
rds_init(void)896 static int __init rds_init(void)
897 {
898 int ret;
899
900 net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
901
902 ret = rds_bind_lock_init();
903 if (ret)
904 goto out;
905
906 ret = rds_conn_init();
907 if (ret)
908 goto out_bind;
909
910 ret = rds_threads_init();
911 if (ret)
912 goto out_conn;
913 ret = rds_sysctl_init();
914 if (ret)
915 goto out_threads;
916 ret = rds_stats_init();
917 if (ret)
918 goto out_sysctl;
919 ret = proto_register(&rds_proto, 1);
920 if (ret)
921 goto out_stats;
922 ret = sock_register(&rds_family_ops);
923 if (ret)
924 goto out_proto;
925
926 rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
927 rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
928 #if IS_ENABLED(CONFIG_IPV6)
929 rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
930 rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
931 #endif
932
933 goto out;
934
935 out_proto:
936 proto_unregister(&rds_proto);
937 out_stats:
938 rds_stats_exit();
939 out_sysctl:
940 rds_sysctl_exit();
941 out_threads:
942 rds_threads_exit();
943 out_conn:
944 rds_conn_exit();
945 rds_cong_exit();
946 rds_page_exit();
947 out_bind:
948 rds_bind_lock_destroy();
949 out:
950 return ret;
951 }
952 module_init(rds_init);
953
954 #define DRV_VERSION "4.0"
955 #define DRV_RELDATE "Feb 12, 2009"
956
957 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
958 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
959 " v" DRV_VERSION " (" DRV_RELDATE ")");
960 MODULE_VERSION(DRV_VERSION);
961 MODULE_LICENSE("Dual BSD/GPL");
962 MODULE_ALIAS_NETPROTO(PF_RDS);
963