1 /*
2 * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
3 *
4 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <asm/neon.h>
12 #include <asm/hwcap.h>
13 #include <asm/simd.h>
14 #include <crypto/aes.h>
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/simd.h>
17 #include <crypto/internal/skcipher.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21
22 #include "aes-ce-setkey.h"
23 #include "aes-ctr-fallback.h"
24
25 #ifdef USE_V8_CRYPTO_EXTENSIONS
26 #define MODE "ce"
27 #define PRIO 300
28 #define aes_setkey ce_aes_setkey
29 #define aes_expandkey ce_aes_expandkey
30 #define aes_ecb_encrypt ce_aes_ecb_encrypt
31 #define aes_ecb_decrypt ce_aes_ecb_decrypt
32 #define aes_cbc_encrypt ce_aes_cbc_encrypt
33 #define aes_cbc_decrypt ce_aes_cbc_decrypt
34 #define aes_ctr_encrypt ce_aes_ctr_encrypt
35 #define aes_xts_encrypt ce_aes_xts_encrypt
36 #define aes_xts_decrypt ce_aes_xts_decrypt
37 #define aes_mac_update ce_aes_mac_update
38 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
39 #else
40 #define MODE "neon"
41 #define PRIO 200
42 #define aes_setkey crypto_aes_set_key
43 #define aes_expandkey crypto_aes_expand_key
44 #define aes_ecb_encrypt neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt neon_aes_cbc_decrypt
48 #define aes_ctr_encrypt neon_aes_ctr_encrypt
49 #define aes_xts_encrypt neon_aes_xts_encrypt
50 #define aes_xts_decrypt neon_aes_xts_decrypt
51 #define aes_mac_update neon_aes_mac_update
52 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
53 MODULE_ALIAS_CRYPTO("ecb(aes)");
54 MODULE_ALIAS_CRYPTO("cbc(aes)");
55 MODULE_ALIAS_CRYPTO("ctr(aes)");
56 MODULE_ALIAS_CRYPTO("xts(aes)");
57 MODULE_ALIAS_CRYPTO("cmac(aes)");
58 MODULE_ALIAS_CRYPTO("xcbc(aes)");
59 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
60 #endif
61
62 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
63 MODULE_LICENSE("GPL v2");
64
65 /* defined in aes-modes.S */
66 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
67 int rounds, int blocks);
68 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
69 int rounds, int blocks);
70
71 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
72 int rounds, int blocks, u8 iv[]);
73 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
74 int rounds, int blocks, u8 iv[]);
75
76 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
77 int rounds, int blocks, u8 ctr[]);
78
79 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
80 int rounds, int blocks, u8 const rk2[], u8 iv[],
81 int first);
82 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
83 int rounds, int blocks, u8 const rk2[], u8 iv[],
84 int first);
85
86 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
87 int blocks, u8 dg[], int enc_before,
88 int enc_after);
89
90 struct crypto_aes_xts_ctx {
91 struct crypto_aes_ctx key1;
92 struct crypto_aes_ctx __aligned(8) key2;
93 };
94
95 struct mac_tfm_ctx {
96 struct crypto_aes_ctx key;
97 u8 __aligned(8) consts[];
98 };
99
100 struct mac_desc_ctx {
101 unsigned int len;
102 u8 dg[AES_BLOCK_SIZE];
103 };
104
skcipher_aes_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)105 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
106 unsigned int key_len)
107 {
108 return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
109 }
110
xts_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)111 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
112 unsigned int key_len)
113 {
114 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
115 int ret;
116
117 ret = xts_verify_key(tfm, in_key, key_len);
118 if (ret)
119 return ret;
120
121 ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
122 if (!ret)
123 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
124 key_len / 2);
125 if (!ret)
126 return 0;
127
128 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
129 return -EINVAL;
130 }
131
ecb_encrypt(struct skcipher_request * req)132 static int ecb_encrypt(struct skcipher_request *req)
133 {
134 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
135 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
136 int err, rounds = 6 + ctx->key_length / 4;
137 struct skcipher_walk walk;
138 unsigned int blocks;
139
140 err = skcipher_walk_virt(&walk, req, false);
141
142 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
143 kernel_neon_begin();
144 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
145 (u8 *)ctx->key_enc, rounds, blocks);
146 kernel_neon_end();
147 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
148 }
149 return err;
150 }
151
ecb_decrypt(struct skcipher_request * req)152 static int ecb_decrypt(struct skcipher_request *req)
153 {
154 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
155 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
156 int err, rounds = 6 + ctx->key_length / 4;
157 struct skcipher_walk walk;
158 unsigned int blocks;
159
160 err = skcipher_walk_virt(&walk, req, false);
161
162 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
163 kernel_neon_begin();
164 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
165 (u8 *)ctx->key_dec, rounds, blocks);
166 kernel_neon_end();
167 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
168 }
169 return err;
170 }
171
cbc_encrypt(struct skcipher_request * req)172 static int cbc_encrypt(struct skcipher_request *req)
173 {
174 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
175 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
176 int err, rounds = 6 + ctx->key_length / 4;
177 struct skcipher_walk walk;
178 unsigned int blocks;
179
180 err = skcipher_walk_virt(&walk, req, false);
181
182 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
183 kernel_neon_begin();
184 aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
185 (u8 *)ctx->key_enc, rounds, blocks, walk.iv);
186 kernel_neon_end();
187 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
188 }
189 return err;
190 }
191
cbc_decrypt(struct skcipher_request * req)192 static int cbc_decrypt(struct skcipher_request *req)
193 {
194 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
195 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
196 int err, rounds = 6 + ctx->key_length / 4;
197 struct skcipher_walk walk;
198 unsigned int blocks;
199
200 err = skcipher_walk_virt(&walk, req, false);
201
202 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
203 kernel_neon_begin();
204 aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
205 (u8 *)ctx->key_dec, rounds, blocks, walk.iv);
206 kernel_neon_end();
207 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
208 }
209 return err;
210 }
211
ctr_encrypt(struct skcipher_request * req)212 static int ctr_encrypt(struct skcipher_request *req)
213 {
214 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
215 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
216 int err, rounds = 6 + ctx->key_length / 4;
217 struct skcipher_walk walk;
218 int blocks;
219
220 err = skcipher_walk_virt(&walk, req, false);
221
222 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
223 kernel_neon_begin();
224 aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
225 (u8 *)ctx->key_enc, rounds, blocks, walk.iv);
226 kernel_neon_end();
227 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
228 }
229 if (walk.nbytes) {
230 u8 __aligned(8) tail[AES_BLOCK_SIZE];
231 unsigned int nbytes = walk.nbytes;
232 u8 *tdst = walk.dst.virt.addr;
233 u8 *tsrc = walk.src.virt.addr;
234
235 /*
236 * Tell aes_ctr_encrypt() to process a tail block.
237 */
238 blocks = -1;
239
240 kernel_neon_begin();
241 aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc, rounds,
242 blocks, walk.iv);
243 kernel_neon_end();
244 crypto_xor_cpy(tdst, tsrc, tail, nbytes);
245 err = skcipher_walk_done(&walk, 0);
246 }
247
248 return err;
249 }
250
ctr_encrypt_sync(struct skcipher_request * req)251 static int ctr_encrypt_sync(struct skcipher_request *req)
252 {
253 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
254 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
255
256 if (!may_use_simd())
257 return aes_ctr_encrypt_fallback(ctx, req);
258
259 return ctr_encrypt(req);
260 }
261
xts_encrypt(struct skcipher_request * req)262 static int xts_encrypt(struct skcipher_request *req)
263 {
264 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
265 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
266 int err, first, rounds = 6 + ctx->key1.key_length / 4;
267 struct skcipher_walk walk;
268 unsigned int blocks;
269
270 err = skcipher_walk_virt(&walk, req, false);
271
272 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
273 kernel_neon_begin();
274 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
275 (u8 *)ctx->key1.key_enc, rounds, blocks,
276 (u8 *)ctx->key2.key_enc, walk.iv, first);
277 kernel_neon_end();
278 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
279 }
280
281 return err;
282 }
283
xts_decrypt(struct skcipher_request * req)284 static int xts_decrypt(struct skcipher_request *req)
285 {
286 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
287 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
288 int err, first, rounds = 6 + ctx->key1.key_length / 4;
289 struct skcipher_walk walk;
290 unsigned int blocks;
291
292 err = skcipher_walk_virt(&walk, req, false);
293
294 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
295 kernel_neon_begin();
296 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
297 (u8 *)ctx->key1.key_dec, rounds, blocks,
298 (u8 *)ctx->key2.key_enc, walk.iv, first);
299 kernel_neon_end();
300 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
301 }
302
303 return err;
304 }
305
306 static struct skcipher_alg aes_algs[] = { {
307 .base = {
308 .cra_name = "__ecb(aes)",
309 .cra_driver_name = "__ecb-aes-" MODE,
310 .cra_priority = PRIO,
311 .cra_flags = CRYPTO_ALG_INTERNAL,
312 .cra_blocksize = AES_BLOCK_SIZE,
313 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
314 .cra_module = THIS_MODULE,
315 },
316 .min_keysize = AES_MIN_KEY_SIZE,
317 .max_keysize = AES_MAX_KEY_SIZE,
318 .setkey = skcipher_aes_setkey,
319 .encrypt = ecb_encrypt,
320 .decrypt = ecb_decrypt,
321 }, {
322 .base = {
323 .cra_name = "__cbc(aes)",
324 .cra_driver_name = "__cbc-aes-" MODE,
325 .cra_priority = PRIO,
326 .cra_flags = CRYPTO_ALG_INTERNAL,
327 .cra_blocksize = AES_BLOCK_SIZE,
328 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
329 .cra_module = THIS_MODULE,
330 },
331 .min_keysize = AES_MIN_KEY_SIZE,
332 .max_keysize = AES_MAX_KEY_SIZE,
333 .ivsize = AES_BLOCK_SIZE,
334 .setkey = skcipher_aes_setkey,
335 .encrypt = cbc_encrypt,
336 .decrypt = cbc_decrypt,
337 }, {
338 .base = {
339 .cra_name = "__ctr(aes)",
340 .cra_driver_name = "__ctr-aes-" MODE,
341 .cra_priority = PRIO,
342 .cra_flags = CRYPTO_ALG_INTERNAL,
343 .cra_blocksize = 1,
344 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
345 .cra_module = THIS_MODULE,
346 },
347 .min_keysize = AES_MIN_KEY_SIZE,
348 .max_keysize = AES_MAX_KEY_SIZE,
349 .ivsize = AES_BLOCK_SIZE,
350 .chunksize = AES_BLOCK_SIZE,
351 .setkey = skcipher_aes_setkey,
352 .encrypt = ctr_encrypt,
353 .decrypt = ctr_encrypt,
354 }, {
355 .base = {
356 .cra_name = "ctr(aes)",
357 .cra_driver_name = "ctr-aes-" MODE,
358 .cra_priority = PRIO - 1,
359 .cra_blocksize = 1,
360 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
361 .cra_module = THIS_MODULE,
362 },
363 .min_keysize = AES_MIN_KEY_SIZE,
364 .max_keysize = AES_MAX_KEY_SIZE,
365 .ivsize = AES_BLOCK_SIZE,
366 .chunksize = AES_BLOCK_SIZE,
367 .setkey = skcipher_aes_setkey,
368 .encrypt = ctr_encrypt_sync,
369 .decrypt = ctr_encrypt_sync,
370 }, {
371 .base = {
372 .cra_name = "__xts(aes)",
373 .cra_driver_name = "__xts-aes-" MODE,
374 .cra_priority = PRIO,
375 .cra_flags = CRYPTO_ALG_INTERNAL,
376 .cra_blocksize = AES_BLOCK_SIZE,
377 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
378 .cra_module = THIS_MODULE,
379 },
380 .min_keysize = 2 * AES_MIN_KEY_SIZE,
381 .max_keysize = 2 * AES_MAX_KEY_SIZE,
382 .ivsize = AES_BLOCK_SIZE,
383 .setkey = xts_set_key,
384 .encrypt = xts_encrypt,
385 .decrypt = xts_decrypt,
386 } };
387
cbcmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)388 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
389 unsigned int key_len)
390 {
391 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
392 int err;
393
394 err = aes_expandkey(&ctx->key, in_key, key_len);
395 if (err)
396 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
397
398 return err;
399 }
400
cmac_gf128_mul_by_x(be128 * y,const be128 * x)401 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
402 {
403 u64 a = be64_to_cpu(x->a);
404 u64 b = be64_to_cpu(x->b);
405
406 y->a = cpu_to_be64((a << 1) | (b >> 63));
407 y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
408 }
409
cmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)410 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
411 unsigned int key_len)
412 {
413 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
414 be128 *consts = (be128 *)ctx->consts;
415 u8 *rk = (u8 *)ctx->key.key_enc;
416 int rounds = 6 + key_len / 4;
417 int err;
418
419 err = cbcmac_setkey(tfm, in_key, key_len);
420 if (err)
421 return err;
422
423 /* encrypt the zero vector */
424 kernel_neon_begin();
425 aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, rk, rounds, 1);
426 kernel_neon_end();
427
428 cmac_gf128_mul_by_x(consts, consts);
429 cmac_gf128_mul_by_x(consts + 1, consts);
430
431 return 0;
432 }
433
xcbc_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)434 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
435 unsigned int key_len)
436 {
437 static u8 const ks[3][AES_BLOCK_SIZE] = {
438 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
439 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
440 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
441 };
442
443 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
444 u8 *rk = (u8 *)ctx->key.key_enc;
445 int rounds = 6 + key_len / 4;
446 u8 key[AES_BLOCK_SIZE];
447 int err;
448
449 err = cbcmac_setkey(tfm, in_key, key_len);
450 if (err)
451 return err;
452
453 kernel_neon_begin();
454 aes_ecb_encrypt(key, ks[0], rk, rounds, 1);
455 aes_ecb_encrypt(ctx->consts, ks[1], rk, rounds, 2);
456 kernel_neon_end();
457
458 return cbcmac_setkey(tfm, key, sizeof(key));
459 }
460
mac_init(struct shash_desc * desc)461 static int mac_init(struct shash_desc *desc)
462 {
463 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
464
465 memset(ctx->dg, 0, AES_BLOCK_SIZE);
466 ctx->len = 0;
467
468 return 0;
469 }
470
mac_do_update(struct crypto_aes_ctx * ctx,u8 const in[],int blocks,u8 dg[],int enc_before,int enc_after)471 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
472 u8 dg[], int enc_before, int enc_after)
473 {
474 int rounds = 6 + ctx->key_length / 4;
475
476 if (may_use_simd()) {
477 kernel_neon_begin();
478 aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
479 enc_after);
480 kernel_neon_end();
481 } else {
482 if (enc_before)
483 __aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
484
485 while (blocks--) {
486 crypto_xor(dg, in, AES_BLOCK_SIZE);
487 in += AES_BLOCK_SIZE;
488
489 if (blocks || enc_after)
490 __aes_arm64_encrypt(ctx->key_enc, dg, dg,
491 rounds);
492 }
493 }
494 }
495
mac_update(struct shash_desc * desc,const u8 * p,unsigned int len)496 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
497 {
498 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
499 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
500
501 while (len > 0) {
502 unsigned int l;
503
504 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
505 (ctx->len + len) > AES_BLOCK_SIZE) {
506
507 int blocks = len / AES_BLOCK_SIZE;
508
509 len %= AES_BLOCK_SIZE;
510
511 mac_do_update(&tctx->key, p, blocks, ctx->dg,
512 (ctx->len != 0), (len != 0));
513
514 p += blocks * AES_BLOCK_SIZE;
515
516 if (!len) {
517 ctx->len = AES_BLOCK_SIZE;
518 break;
519 }
520 ctx->len = 0;
521 }
522
523 l = min(len, AES_BLOCK_SIZE - ctx->len);
524
525 if (l <= AES_BLOCK_SIZE) {
526 crypto_xor(ctx->dg + ctx->len, p, l);
527 ctx->len += l;
528 len -= l;
529 p += l;
530 }
531 }
532
533 return 0;
534 }
535
cbcmac_final(struct shash_desc * desc,u8 * out)536 static int cbcmac_final(struct shash_desc *desc, u8 *out)
537 {
538 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
539 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
540
541 mac_do_update(&tctx->key, NULL, 0, ctx->dg, 1, 0);
542
543 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
544
545 return 0;
546 }
547
cmac_final(struct shash_desc * desc,u8 * out)548 static int cmac_final(struct shash_desc *desc, u8 *out)
549 {
550 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
551 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
552 u8 *consts = tctx->consts;
553
554 if (ctx->len != AES_BLOCK_SIZE) {
555 ctx->dg[ctx->len] ^= 0x80;
556 consts += AES_BLOCK_SIZE;
557 }
558
559 mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
560
561 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
562
563 return 0;
564 }
565
566 static struct shash_alg mac_algs[] = { {
567 .base.cra_name = "cmac(aes)",
568 .base.cra_driver_name = "cmac-aes-" MODE,
569 .base.cra_priority = PRIO,
570 .base.cra_blocksize = AES_BLOCK_SIZE,
571 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
572 2 * AES_BLOCK_SIZE,
573 .base.cra_module = THIS_MODULE,
574
575 .digestsize = AES_BLOCK_SIZE,
576 .init = mac_init,
577 .update = mac_update,
578 .final = cmac_final,
579 .setkey = cmac_setkey,
580 .descsize = sizeof(struct mac_desc_ctx),
581 }, {
582 .base.cra_name = "xcbc(aes)",
583 .base.cra_driver_name = "xcbc-aes-" MODE,
584 .base.cra_priority = PRIO,
585 .base.cra_blocksize = AES_BLOCK_SIZE,
586 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
587 2 * AES_BLOCK_SIZE,
588 .base.cra_module = THIS_MODULE,
589
590 .digestsize = AES_BLOCK_SIZE,
591 .init = mac_init,
592 .update = mac_update,
593 .final = cmac_final,
594 .setkey = xcbc_setkey,
595 .descsize = sizeof(struct mac_desc_ctx),
596 }, {
597 .base.cra_name = "cbcmac(aes)",
598 .base.cra_driver_name = "cbcmac-aes-" MODE,
599 .base.cra_priority = PRIO,
600 .base.cra_blocksize = 1,
601 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
602 .base.cra_module = THIS_MODULE,
603
604 .digestsize = AES_BLOCK_SIZE,
605 .init = mac_init,
606 .update = mac_update,
607 .final = cbcmac_final,
608 .setkey = cbcmac_setkey,
609 .descsize = sizeof(struct mac_desc_ctx),
610 } };
611
612 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
613
aes_exit(void)614 static void aes_exit(void)
615 {
616 int i;
617
618 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
619 if (aes_simd_algs[i])
620 simd_skcipher_free(aes_simd_algs[i]);
621
622 crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
623 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
624 }
625
aes_init(void)626 static int __init aes_init(void)
627 {
628 struct simd_skcipher_alg *simd;
629 const char *basename;
630 const char *algname;
631 const char *drvname;
632 int err;
633 int i;
634
635 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
636 if (err)
637 return err;
638
639 err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
640 if (err)
641 goto unregister_ciphers;
642
643 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
644 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
645 continue;
646
647 algname = aes_algs[i].base.cra_name + 2;
648 drvname = aes_algs[i].base.cra_driver_name + 2;
649 basename = aes_algs[i].base.cra_driver_name;
650 simd = simd_skcipher_create_compat(algname, drvname, basename);
651 err = PTR_ERR(simd);
652 if (IS_ERR(simd))
653 goto unregister_simds;
654
655 aes_simd_algs[i] = simd;
656 }
657
658 return 0;
659
660 unregister_simds:
661 aes_exit();
662 return err;
663 unregister_ciphers:
664 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
665 return err;
666 }
667
668 #ifdef USE_V8_CRYPTO_EXTENSIONS
669 module_cpu_feature_match(AES, aes_init);
670 #else
671 module_init(aes_init);
672 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
673 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
674 #endif
675 module_exit(aes_exit);
676