1 /*
2  *  linux/drivers/thermal/cpu_cooling.c
3  *
4  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
5  *  Copyright (C) 2012  Amit Daniel <amit.kachhap@linaro.org>
6  *
7  *  Copyright (C) 2014  Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; version 2 of the License.
13  *
14  *  This program is distributed in the hope that it will be useful, but
15  *  WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  *  General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22  *
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  */
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/idr.h>
30 #include <linux/pm_opp.h>
31 #include <linux/slab.h>
32 #include <linux/cpu.h>
33 #include <linux/cpu_cooling.h>
34 
35 #include <trace/events/thermal.h>
36 
37 /*
38  * Cooling state <-> CPUFreq frequency
39  *
40  * Cooling states are translated to frequencies throughout this driver and this
41  * is the relation between them.
42  *
43  * Highest cooling state corresponds to lowest possible frequency.
44  *
45  * i.e.
46  *	level 0 --> 1st Max Freq
47  *	level 1 --> 2nd Max Freq
48  *	...
49  */
50 
51 /**
52  * struct freq_table - frequency table along with power entries
53  * @frequency:	frequency in KHz
54  * @power:	power in mW
55  *
56  * This structure is built when the cooling device registers and helps
57  * in translating frequency to power and vice versa.
58  */
59 struct freq_table {
60 	u32 frequency;
61 	u32 power;
62 };
63 
64 /**
65  * struct time_in_idle - Idle time stats
66  * @time: previous reading of the absolute time that this cpu was idle
67  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
68  */
69 struct time_in_idle {
70 	u64 time;
71 	u64 timestamp;
72 };
73 
74 /**
75  * struct cpufreq_cooling_device - data for cooling device with cpufreq
76  * @id: unique integer value corresponding to each cpufreq_cooling_device
77  *	registered.
78  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
79  * @cpufreq_state: integer value representing the current state of cpufreq
80  *	cooling	devices.
81  * @clipped_freq: integer value representing the absolute value of the clipped
82  *	frequency.
83  * @max_level: maximum cooling level. One less than total number of valid
84  *	cpufreq frequencies.
85  * @freq_table: Freq table in descending order of frequencies
86  * @cdev: thermal_cooling_device pointer to keep track of the
87  *	registered cooling device.
88  * @policy: cpufreq policy.
89  * @node: list_head to link all cpufreq_cooling_device together.
90  * @idle_time: idle time stats
91  *
92  * This structure is required for keeping information of each registered
93  * cpufreq_cooling_device.
94  */
95 struct cpufreq_cooling_device {
96 	int id;
97 	u32 last_load;
98 	unsigned int cpufreq_state;
99 	unsigned int clipped_freq;
100 	unsigned int max_level;
101 	struct freq_table *freq_table;	/* In descending order */
102 	struct thermal_cooling_device *cdev;
103 	struct cpufreq_policy *policy;
104 	struct list_head node;
105 	struct time_in_idle *idle_time;
106 };
107 
108 static DEFINE_IDA(cpufreq_ida);
109 static DEFINE_MUTEX(cooling_list_lock);
110 static LIST_HEAD(cpufreq_cdev_list);
111 
112 /* Below code defines functions to be used for cpufreq as cooling device */
113 
114 /**
115  * get_level: Find the level for a particular frequency
116  * @cpufreq_cdev: cpufreq_cdev for which the property is required
117  * @freq: Frequency
118  *
119  * Return: level corresponding to the frequency.
120  */
get_level(struct cpufreq_cooling_device * cpufreq_cdev,unsigned int freq)121 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
122 			       unsigned int freq)
123 {
124 	struct freq_table *freq_table = cpufreq_cdev->freq_table;
125 	unsigned long level;
126 
127 	for (level = 1; level <= cpufreq_cdev->max_level; level++)
128 		if (freq > freq_table[level].frequency)
129 			break;
130 
131 	return level - 1;
132 }
133 
134 /**
135  * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
136  * @nb:	struct notifier_block * with callback info.
137  * @event: value showing cpufreq event for which this function invoked.
138  * @data: callback-specific data
139  *
140  * Callback to hijack the notification on cpufreq policy transition.
141  * Every time there is a change in policy, we will intercept and
142  * update the cpufreq policy with thermal constraints.
143  *
144  * Return: 0 (success)
145  */
cpufreq_thermal_notifier(struct notifier_block * nb,unsigned long event,void * data)146 static int cpufreq_thermal_notifier(struct notifier_block *nb,
147 				    unsigned long event, void *data)
148 {
149 	struct cpufreq_policy *policy = data;
150 	unsigned long clipped_freq;
151 	struct cpufreq_cooling_device *cpufreq_cdev;
152 
153 	if (event != CPUFREQ_ADJUST)
154 		return NOTIFY_DONE;
155 
156 	mutex_lock(&cooling_list_lock);
157 	list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) {
158 		/*
159 		 * A new copy of the policy is sent to the notifier and can't
160 		 * compare that directly.
161 		 */
162 		if (policy->cpu != cpufreq_cdev->policy->cpu)
163 			continue;
164 
165 		/*
166 		 * policy->max is the maximum allowed frequency defined by user
167 		 * and clipped_freq is the maximum that thermal constraints
168 		 * allow.
169 		 *
170 		 * If clipped_freq is lower than policy->max, then we need to
171 		 * readjust policy->max.
172 		 *
173 		 * But, if clipped_freq is greater than policy->max, we don't
174 		 * need to do anything.
175 		 */
176 		clipped_freq = cpufreq_cdev->clipped_freq;
177 
178 		if (policy->max > clipped_freq)
179 			cpufreq_verify_within_limits(policy, 0, clipped_freq);
180 		break;
181 	}
182 	mutex_unlock(&cooling_list_lock);
183 
184 	return NOTIFY_OK;
185 }
186 
187 /**
188  * update_freq_table() - Update the freq table with power numbers
189  * @cpufreq_cdev:	the cpufreq cooling device in which to update the table
190  * @capacitance: dynamic power coefficient for these cpus
191  *
192  * Update the freq table with power numbers.  This table will be used in
193  * cpu_power_to_freq() and cpu_freq_to_power() to convert between power and
194  * frequency efficiently.  Power is stored in mW, frequency in KHz.  The
195  * resulting table is in descending order.
196  *
197  * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
198  * or -ENOMEM if we run out of memory.
199  */
update_freq_table(struct cpufreq_cooling_device * cpufreq_cdev,u32 capacitance)200 static int update_freq_table(struct cpufreq_cooling_device *cpufreq_cdev,
201 			     u32 capacitance)
202 {
203 	struct freq_table *freq_table = cpufreq_cdev->freq_table;
204 	struct dev_pm_opp *opp;
205 	struct device *dev = NULL;
206 	int num_opps = 0, cpu = cpufreq_cdev->policy->cpu, i;
207 
208 	dev = get_cpu_device(cpu);
209 	if (unlikely(!dev)) {
210 		dev_warn(&cpufreq_cdev->cdev->device,
211 			 "No cpu device for cpu %d\n", cpu);
212 		return -ENODEV;
213 	}
214 
215 	num_opps = dev_pm_opp_get_opp_count(dev);
216 	if (num_opps < 0)
217 		return num_opps;
218 
219 	/*
220 	 * The cpufreq table is also built from the OPP table and so the count
221 	 * should match.
222 	 */
223 	if (num_opps != cpufreq_cdev->max_level + 1) {
224 		dev_warn(dev, "Number of OPPs not matching with max_levels\n");
225 		return -EINVAL;
226 	}
227 
228 	for (i = 0; i <= cpufreq_cdev->max_level; i++) {
229 		unsigned long freq = freq_table[i].frequency * 1000;
230 		u32 freq_mhz = freq_table[i].frequency / 1000;
231 		u64 power;
232 		u32 voltage_mv;
233 
234 		/*
235 		 * Find ceil frequency as 'freq' may be slightly lower than OPP
236 		 * freq due to truncation while converting to kHz.
237 		 */
238 		opp = dev_pm_opp_find_freq_ceil(dev, &freq);
239 		if (IS_ERR(opp)) {
240 			dev_err(dev, "failed to get opp for %lu frequency\n",
241 				freq);
242 			return -EINVAL;
243 		}
244 
245 		voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
246 		dev_pm_opp_put(opp);
247 
248 		/*
249 		 * Do the multiplication with MHz and millivolt so as
250 		 * to not overflow.
251 		 */
252 		power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
253 		do_div(power, 1000000000);
254 
255 		/* power is stored in mW */
256 		freq_table[i].power = power;
257 	}
258 
259 	return 0;
260 }
261 
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_cdev,u32 freq)262 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
263 			     u32 freq)
264 {
265 	int i;
266 	struct freq_table *freq_table = cpufreq_cdev->freq_table;
267 
268 	for (i = 1; i <= cpufreq_cdev->max_level; i++)
269 		if (freq > freq_table[i].frequency)
270 			break;
271 
272 	return freq_table[i - 1].power;
273 }
274 
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_cdev,u32 power)275 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
276 			     u32 power)
277 {
278 	int i;
279 	struct freq_table *freq_table = cpufreq_cdev->freq_table;
280 
281 	for (i = 1; i <= cpufreq_cdev->max_level; i++)
282 		if (power > freq_table[i].power)
283 			break;
284 
285 	return freq_table[i - 1].frequency;
286 }
287 
288 /**
289  * get_load() - get load for a cpu since last updated
290  * @cpufreq_cdev:	&struct cpufreq_cooling_device for this cpu
291  * @cpu:	cpu number
292  * @cpu_idx:	index of the cpu in time_in_idle*
293  *
294  * Return: The average load of cpu @cpu in percentage since this
295  * function was last called.
296  */
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)297 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
298 		    int cpu_idx)
299 {
300 	u32 load;
301 	u64 now, now_idle, delta_time, delta_idle;
302 	struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
303 
304 	now_idle = get_cpu_idle_time(cpu, &now, 0);
305 	delta_idle = now_idle - idle_time->time;
306 	delta_time = now - idle_time->timestamp;
307 
308 	if (delta_time <= delta_idle)
309 		load = 0;
310 	else
311 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
312 
313 	idle_time->time = now_idle;
314 	idle_time->timestamp = now;
315 
316 	return load;
317 }
318 
319 /**
320  * get_dynamic_power() - calculate the dynamic power
321  * @cpufreq_cdev:	&cpufreq_cooling_device for this cdev
322  * @freq:	current frequency
323  *
324  * Return: the dynamic power consumed by the cpus described by
325  * @cpufreq_cdev.
326  */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long freq)327 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
328 			     unsigned long freq)
329 {
330 	u32 raw_cpu_power;
331 
332 	raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
333 	return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
334 }
335 
336 /* cpufreq cooling device callback functions are defined below */
337 
338 /**
339  * cpufreq_get_max_state - callback function to get the max cooling state.
340  * @cdev: thermal cooling device pointer.
341  * @state: fill this variable with the max cooling state.
342  *
343  * Callback for the thermal cooling device to return the cpufreq
344  * max cooling state.
345  *
346  * Return: 0 on success, an error code otherwise.
347  */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)348 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
349 				 unsigned long *state)
350 {
351 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
352 
353 	*state = cpufreq_cdev->max_level;
354 	return 0;
355 }
356 
357 /**
358  * cpufreq_get_cur_state - callback function to get the current cooling state.
359  * @cdev: thermal cooling device pointer.
360  * @state: fill this variable with the current cooling state.
361  *
362  * Callback for the thermal cooling device to return the cpufreq
363  * current cooling state.
364  *
365  * Return: 0 on success, an error code otherwise.
366  */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)367 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
368 				 unsigned long *state)
369 {
370 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
371 
372 	*state = cpufreq_cdev->cpufreq_state;
373 
374 	return 0;
375 }
376 
377 /**
378  * cpufreq_set_cur_state - callback function to set the current cooling state.
379  * @cdev: thermal cooling device pointer.
380  * @state: set this variable to the current cooling state.
381  *
382  * Callback for the thermal cooling device to change the cpufreq
383  * current cooling state.
384  *
385  * Return: 0 on success, an error code otherwise.
386  */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)387 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
388 				 unsigned long state)
389 {
390 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
391 	unsigned int clip_freq;
392 
393 	/* Request state should be less than max_level */
394 	if (WARN_ON(state > cpufreq_cdev->max_level))
395 		return -EINVAL;
396 
397 	/* Check if the old cooling action is same as new cooling action */
398 	if (cpufreq_cdev->cpufreq_state == state)
399 		return 0;
400 
401 	clip_freq = cpufreq_cdev->freq_table[state].frequency;
402 	cpufreq_cdev->cpufreq_state = state;
403 	cpufreq_cdev->clipped_freq = clip_freq;
404 
405 	cpufreq_update_policy(cpufreq_cdev->policy->cpu);
406 
407 	return 0;
408 }
409 
410 /**
411  * cpufreq_get_requested_power() - get the current power
412  * @cdev:	&thermal_cooling_device pointer
413  * @tz:		a valid thermal zone device pointer
414  * @power:	pointer in which to store the resulting power
415  *
416  * Calculate the current power consumption of the cpus in milliwatts
417  * and store it in @power.  This function should actually calculate
418  * the requested power, but it's hard to get the frequency that
419  * cpufreq would have assigned if there were no thermal limits.
420  * Instead, we calculate the current power on the assumption that the
421  * immediate future will look like the immediate past.
422  *
423  * We use the current frequency and the average load since this
424  * function was last called.  In reality, there could have been
425  * multiple opps since this function was last called and that affects
426  * the load calculation.  While it's not perfectly accurate, this
427  * simplification is good enough and works.  REVISIT this, as more
428  * complex code may be needed if experiments show that it's not
429  * accurate enough.
430  *
431  * Return: 0 on success, -E* if getting the static power failed.
432  */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,u32 * power)433 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
434 				       struct thermal_zone_device *tz,
435 				       u32 *power)
436 {
437 	unsigned long freq;
438 	int i = 0, cpu;
439 	u32 total_load = 0;
440 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
441 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
442 	u32 *load_cpu = NULL;
443 
444 	freq = cpufreq_quick_get(policy->cpu);
445 
446 	if (trace_thermal_power_cpu_get_power_enabled()) {
447 		u32 ncpus = cpumask_weight(policy->related_cpus);
448 
449 		load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
450 	}
451 
452 	for_each_cpu(cpu, policy->related_cpus) {
453 		u32 load;
454 
455 		if (cpu_online(cpu))
456 			load = get_load(cpufreq_cdev, cpu, i);
457 		else
458 			load = 0;
459 
460 		total_load += load;
461 		if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
462 			load_cpu[i] = load;
463 
464 		i++;
465 	}
466 
467 	cpufreq_cdev->last_load = total_load;
468 
469 	*power = get_dynamic_power(cpufreq_cdev, freq);
470 
471 	if (load_cpu) {
472 		trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
473 						  load_cpu, i, *power);
474 
475 		kfree(load_cpu);
476 	}
477 
478 	return 0;
479 }
480 
481 /**
482  * cpufreq_state2power() - convert a cpu cdev state to power consumed
483  * @cdev:	&thermal_cooling_device pointer
484  * @tz:		a valid thermal zone device pointer
485  * @state:	cooling device state to be converted
486  * @power:	pointer in which to store the resulting power
487  *
488  * Convert cooling device state @state into power consumption in
489  * milliwatts assuming 100% load.  Store the calculated power in
490  * @power.
491  *
492  * Return: 0 on success, -EINVAL if the cooling device state could not
493  * be converted into a frequency or other -E* if there was an error
494  * when calculating the static power.
495  */
cpufreq_state2power(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,unsigned long state,u32 * power)496 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
497 			       struct thermal_zone_device *tz,
498 			       unsigned long state, u32 *power)
499 {
500 	unsigned int freq, num_cpus;
501 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
502 
503 	/* Request state should be less than max_level */
504 	if (WARN_ON(state > cpufreq_cdev->max_level))
505 		return -EINVAL;
506 
507 	num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
508 
509 	freq = cpufreq_cdev->freq_table[state].frequency;
510 	*power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
511 
512 	return 0;
513 }
514 
515 /**
516  * cpufreq_power2state() - convert power to a cooling device state
517  * @cdev:	&thermal_cooling_device pointer
518  * @tz:		a valid thermal zone device pointer
519  * @power:	power in milliwatts to be converted
520  * @state:	pointer in which to store the resulting state
521  *
522  * Calculate a cooling device state for the cpus described by @cdev
523  * that would allow them to consume at most @power mW and store it in
524  * @state.  Note that this calculation depends on external factors
525  * such as the cpu load or the current static power.  Calling this
526  * function with the same power as input can yield different cooling
527  * device states depending on those external factors.
528  *
529  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
530  * the calculated frequency could not be converted to a valid state.
531  * The latter should not happen unless the frequencies available to
532  * cpufreq have changed since the initialization of the cpu cooling
533  * device.
534  */
cpufreq_power2state(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,u32 power,unsigned long * state)535 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
536 			       struct thermal_zone_device *tz, u32 power,
537 			       unsigned long *state)
538 {
539 	unsigned int cur_freq, target_freq;
540 	u32 last_load, normalised_power;
541 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
542 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
543 
544 	cur_freq = cpufreq_quick_get(policy->cpu);
545 	power = power > 0 ? power : 0;
546 	last_load = cpufreq_cdev->last_load ?: 1;
547 	normalised_power = (power * 100) / last_load;
548 	target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
549 
550 	*state = get_level(cpufreq_cdev, target_freq);
551 	trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
552 				      power);
553 	return 0;
554 }
555 
556 /* Bind cpufreq callbacks to thermal cooling device ops */
557 
558 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
559 	.get_max_state = cpufreq_get_max_state,
560 	.get_cur_state = cpufreq_get_cur_state,
561 	.set_cur_state = cpufreq_set_cur_state,
562 };
563 
564 static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
565 	.get_max_state		= cpufreq_get_max_state,
566 	.get_cur_state		= cpufreq_get_cur_state,
567 	.set_cur_state		= cpufreq_set_cur_state,
568 	.get_requested_power	= cpufreq_get_requested_power,
569 	.state2power		= cpufreq_state2power,
570 	.power2state		= cpufreq_power2state,
571 };
572 
573 /* Notifier for cpufreq policy change */
574 static struct notifier_block thermal_cpufreq_notifier_block = {
575 	.notifier_call = cpufreq_thermal_notifier,
576 };
577 
find_next_max(struct cpufreq_frequency_table * table,unsigned int prev_max)578 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
579 				  unsigned int prev_max)
580 {
581 	struct cpufreq_frequency_table *pos;
582 	unsigned int max = 0;
583 
584 	cpufreq_for_each_valid_entry(pos, table) {
585 		if (pos->frequency > max && pos->frequency < prev_max)
586 			max = pos->frequency;
587 	}
588 
589 	return max;
590 }
591 
592 /**
593  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
594  * @np: a valid struct device_node to the cooling device device tree node
595  * @policy: cpufreq policy
596  * Normally this should be same as cpufreq policy->related_cpus.
597  * @capacitance: dynamic power coefficient for these cpus
598  *
599  * This interface function registers the cpufreq cooling device with the name
600  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
601  * cooling devices. It also gives the opportunity to link the cooling device
602  * with a device tree node, in order to bind it via the thermal DT code.
603  *
604  * Return: a valid struct thermal_cooling_device pointer on success,
605  * on failure, it returns a corresponding ERR_PTR().
606  */
607 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,struct cpufreq_policy * policy,u32 capacitance)608 __cpufreq_cooling_register(struct device_node *np,
609 			struct cpufreq_policy *policy, u32 capacitance)
610 {
611 	struct thermal_cooling_device *cdev;
612 	struct cpufreq_cooling_device *cpufreq_cdev;
613 	char dev_name[THERMAL_NAME_LENGTH];
614 	unsigned int freq, i, num_cpus;
615 	int ret;
616 	struct thermal_cooling_device_ops *cooling_ops;
617 	bool first;
618 
619 	if (IS_ERR_OR_NULL(policy)) {
620 		pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
621 		return ERR_PTR(-EINVAL);
622 	}
623 
624 	i = cpufreq_table_count_valid_entries(policy);
625 	if (!i) {
626 		pr_debug("%s: CPUFreq table not found or has no valid entries\n",
627 			 __func__);
628 		return ERR_PTR(-ENODEV);
629 	}
630 
631 	cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
632 	if (!cpufreq_cdev)
633 		return ERR_PTR(-ENOMEM);
634 
635 	cpufreq_cdev->policy = policy;
636 	num_cpus = cpumask_weight(policy->related_cpus);
637 	cpufreq_cdev->idle_time = kcalloc(num_cpus,
638 					 sizeof(*cpufreq_cdev->idle_time),
639 					 GFP_KERNEL);
640 	if (!cpufreq_cdev->idle_time) {
641 		cdev = ERR_PTR(-ENOMEM);
642 		goto free_cdev;
643 	}
644 
645 	/* max_level is an index, not a counter */
646 	cpufreq_cdev->max_level = i - 1;
647 
648 	cpufreq_cdev->freq_table = kmalloc_array(i,
649 					sizeof(*cpufreq_cdev->freq_table),
650 					GFP_KERNEL);
651 	if (!cpufreq_cdev->freq_table) {
652 		cdev = ERR_PTR(-ENOMEM);
653 		goto free_idle_time;
654 	}
655 
656 	ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
657 	if (ret < 0) {
658 		cdev = ERR_PTR(ret);
659 		goto free_table;
660 	}
661 	cpufreq_cdev->id = ret;
662 
663 	snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
664 		 cpufreq_cdev->id);
665 
666 	/* Fill freq-table in descending order of frequencies */
667 	for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
668 		freq = find_next_max(policy->freq_table, freq);
669 		cpufreq_cdev->freq_table[i].frequency = freq;
670 
671 		/* Warn for duplicate entries */
672 		if (!freq)
673 			pr_warn("%s: table has duplicate entries\n", __func__);
674 		else
675 			pr_debug("%s: freq:%u KHz\n", __func__, freq);
676 	}
677 
678 	if (capacitance) {
679 		ret = update_freq_table(cpufreq_cdev, capacitance);
680 		if (ret) {
681 			cdev = ERR_PTR(ret);
682 			goto remove_ida;
683 		}
684 
685 		cooling_ops = &cpufreq_power_cooling_ops;
686 	} else {
687 		cooling_ops = &cpufreq_cooling_ops;
688 	}
689 
690 	cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
691 						  cooling_ops);
692 	if (IS_ERR(cdev))
693 		goto remove_ida;
694 
695 	cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0].frequency;
696 	cpufreq_cdev->cdev = cdev;
697 
698 	mutex_lock(&cooling_list_lock);
699 	/* Register the notifier for first cpufreq cooling device */
700 	first = list_empty(&cpufreq_cdev_list);
701 	list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
702 	mutex_unlock(&cooling_list_lock);
703 
704 	if (first)
705 		cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
706 					  CPUFREQ_POLICY_NOTIFIER);
707 
708 	return cdev;
709 
710 remove_ida:
711 	ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
712 free_table:
713 	kfree(cpufreq_cdev->freq_table);
714 free_idle_time:
715 	kfree(cpufreq_cdev->idle_time);
716 free_cdev:
717 	kfree(cpufreq_cdev);
718 	return cdev;
719 }
720 
721 /**
722  * cpufreq_cooling_register - function to create cpufreq cooling device.
723  * @policy: cpufreq policy
724  *
725  * This interface function registers the cpufreq cooling device with the name
726  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
727  * cooling devices.
728  *
729  * Return: a valid struct thermal_cooling_device pointer on success,
730  * on failure, it returns a corresponding ERR_PTR().
731  */
732 struct thermal_cooling_device *
cpufreq_cooling_register(struct cpufreq_policy * policy)733 cpufreq_cooling_register(struct cpufreq_policy *policy)
734 {
735 	return __cpufreq_cooling_register(NULL, policy, 0);
736 }
737 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
738 
739 /**
740  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
741  * @policy: cpufreq policy
742  *
743  * This interface function registers the cpufreq cooling device with the name
744  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
745  * cooling devices. Using this API, the cpufreq cooling device will be
746  * linked to the device tree node provided.
747  *
748  * Using this function, the cooling device will implement the power
749  * extensions by using a simple cpu power model.  The cpus must have
750  * registered their OPPs using the OPP library.
751  *
752  * It also takes into account, if property present in policy CPU node, the
753  * static power consumed by the cpu.
754  *
755  * Return: a valid struct thermal_cooling_device pointer on success,
756  * and NULL on failure.
757  */
758 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct cpufreq_policy * policy)759 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
760 {
761 	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
762 	struct thermal_cooling_device *cdev = NULL;
763 	u32 capacitance = 0;
764 
765 	if (!np) {
766 		pr_err("cpu_cooling: OF node not available for cpu%d\n",
767 		       policy->cpu);
768 		return NULL;
769 	}
770 
771 	if (of_find_property(np, "#cooling-cells", NULL)) {
772 		of_property_read_u32(np, "dynamic-power-coefficient",
773 				     &capacitance);
774 
775 		cdev = __cpufreq_cooling_register(np, policy, capacitance);
776 		if (IS_ERR(cdev)) {
777 			pr_err("cpu_cooling: cpu%d is not running as cooling device: %ld\n",
778 			       policy->cpu, PTR_ERR(cdev));
779 			cdev = NULL;
780 		}
781 	}
782 
783 	of_node_put(np);
784 	return cdev;
785 }
786 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
787 
788 /**
789  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
790  * @cdev: thermal cooling device pointer.
791  *
792  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
793  */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)794 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
795 {
796 	struct cpufreq_cooling_device *cpufreq_cdev;
797 	bool last;
798 
799 	if (!cdev)
800 		return;
801 
802 	cpufreq_cdev = cdev->devdata;
803 
804 	mutex_lock(&cooling_list_lock);
805 	list_del(&cpufreq_cdev->node);
806 	/* Unregister the notifier for the last cpufreq cooling device */
807 	last = list_empty(&cpufreq_cdev_list);
808 	mutex_unlock(&cooling_list_lock);
809 
810 	if (last)
811 		cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
812 					    CPUFREQ_POLICY_NOTIFIER);
813 
814 	thermal_cooling_device_unregister(cpufreq_cdev->cdev);
815 	ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
816 	kfree(cpufreq_cdev->idle_time);
817 	kfree(cpufreq_cdev->freq_table);
818 	kfree(cpufreq_cdev);
819 }
820 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
821