1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7 #include <linux/mtd/spi-nor.h>
8
9 #include "core.h"
10
11 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
12 #define USE_CLSR BIT(0)
13
14 #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */
15 #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
16 #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
17 #define SPINOR_REG_CYPRESS_CFR1V 0x00800002
18 #define SPINOR_REG_CYPRESS_CFR1V_QUAD_EN BIT(1) /* Quad Enable */
19 #define SPINOR_REG_CYPRESS_CFR2V 0x00800003
20 #define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24 0xb
21 #define SPINOR_REG_CYPRESS_CFR3V 0x00800004
22 #define SPINOR_REG_CYPRESS_CFR3V_PGSZ BIT(4) /* Page size. */
23 #define SPINOR_REG_CYPRESS_CFR5V 0x00800006
24 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN 0x3
25 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS 0
26 #define SPINOR_OP_CYPRESS_RD_FAST 0xee
27
28 /* Cypress SPI NOR flash operations. */
29 #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
30 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \
31 SPI_MEM_OP_ADDR(naddr, addr, 0), \
32 SPI_MEM_OP_NO_DUMMY, \
33 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
34
35 #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, buf) \
36 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \
37 SPI_MEM_OP_ADDR(naddr, addr, 0), \
38 SPI_MEM_OP_NO_DUMMY, \
39 SPI_MEM_OP_DATA_IN(1, buf, 0))
40
41 #define SPANSION_CLSR_OP \
42 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0), \
43 SPI_MEM_OP_NO_ADDR, \
44 SPI_MEM_OP_NO_DUMMY, \
45 SPI_MEM_OP_NO_DATA)
46
cypress_nor_octal_dtr_en(struct spi_nor * nor)47 static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
48 {
49 struct spi_mem_op op;
50 u8 *buf = nor->bouncebuf;
51 int ret;
52
53 /* Use 24 dummy cycles for memory array reads. */
54 *buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
55 op = (struct spi_mem_op)
56 CYPRESS_NOR_WR_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR2V, 1, buf);
57
58 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
59 if (ret)
60 return ret;
61
62 nor->read_dummy = 24;
63
64 /* Set the octal and DTR enable bits. */
65 buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
66 op = (struct spi_mem_op)
67 CYPRESS_NOR_WR_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR5V, 1, buf);
68
69 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
70 if (ret)
71 return ret;
72
73 /* Read flash ID to make sure the switch was successful. */
74 ret = spi_nor_read_id(nor, 4, 3, buf, SNOR_PROTO_8_8_8_DTR);
75 if (ret) {
76 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
77 return ret;
78 }
79
80 if (memcmp(buf, nor->info->id, nor->info->id_len))
81 return -EINVAL;
82
83 return 0;
84 }
85
cypress_nor_octal_dtr_dis(struct spi_nor * nor)86 static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
87 {
88 struct spi_mem_op op;
89 u8 *buf = nor->bouncebuf;
90 int ret;
91
92 /*
93 * The register is 1-byte wide, but 1-byte transactions are not allowed
94 * in 8D-8D-8D mode. Since there is no register at the next location,
95 * just initialize the value to 0 and let the transaction go on.
96 */
97 buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS;
98 buf[1] = 0;
99 op = (struct spi_mem_op)
100 CYPRESS_NOR_WR_ANY_REG_OP(4, SPINOR_REG_CYPRESS_CFR5V, 2, buf);
101 ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
102 if (ret)
103 return ret;
104
105 /* Read flash ID to make sure the switch was successful. */
106 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
107 if (ret) {
108 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
109 return ret;
110 }
111
112 if (memcmp(buf, nor->info->id, nor->info->id_len))
113 return -EINVAL;
114
115 return 0;
116 }
117
118 /**
119 * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
120 * register.
121 * @nor: pointer to a 'struct spi_nor'
122 *
123 * It is recommended to update volatile registers in the field application due
124 * to a risk of the non-volatile registers corruption by power interrupt. This
125 * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
126 * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
127 * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
128 * also set during Flash power-up.
129 *
130 * Return: 0 on success, -errno otherwise.
131 */
cypress_nor_quad_enable_volatile(struct spi_nor * nor)132 static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
133 {
134 struct spi_mem_op op;
135 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
136 u8 cfr1v_written;
137 int ret;
138
139 op = (struct spi_mem_op)
140 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes,
141 SPINOR_REG_CYPRESS_CFR1V,
142 nor->bouncebuf);
143
144 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
145 if (ret)
146 return ret;
147
148 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1V_QUAD_EN)
149 return 0;
150
151 /* Update the Quad Enable bit. */
152 nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1V_QUAD_EN;
153 op = (struct spi_mem_op)
154 CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
155 SPINOR_REG_CYPRESS_CFR1V, 1,
156 nor->bouncebuf);
157 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
158 if (ret)
159 return ret;
160
161 cfr1v_written = nor->bouncebuf[0];
162
163 /* Read back and check it. */
164 op = (struct spi_mem_op)
165 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes,
166 SPINOR_REG_CYPRESS_CFR1V,
167 nor->bouncebuf);
168 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
169 if (ret)
170 return ret;
171
172 if (nor->bouncebuf[0] != cfr1v_written) {
173 dev_err(nor->dev, "CFR1: Read back test failed\n");
174 return -EIO;
175 }
176
177 return 0;
178 }
179
180 /**
181 * cypress_nor_set_page_size() - Set page size which corresponds to the flash
182 * configuration.
183 * @nor: pointer to a 'struct spi_nor'
184 *
185 * The BFPT table advertises a 512B or 256B page size depending on part but the
186 * page size is actually configurable (with the default being 256B). Read from
187 * CFR3V[4] and set the correct size.
188 *
189 * Return: 0 on success, -errno otherwise.
190 */
cypress_nor_set_page_size(struct spi_nor * nor)191 static int cypress_nor_set_page_size(struct spi_nor *nor)
192 {
193 struct spi_mem_op op =
194 CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR3V,
195 nor->bouncebuf);
196 int ret;
197
198 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
199 if (ret)
200 return ret;
201
202 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
203 nor->params->page_size = 512;
204 else
205 nor->params->page_size = 256;
206
207 return 0;
208 }
209
210 static int
s25hx_t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)211 s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
212 const struct sfdp_parameter_header *bfpt_header,
213 const struct sfdp_bfpt *bfpt)
214 {
215 /* Replace Quad Enable with volatile version */
216 nor->params->quad_enable = cypress_nor_quad_enable_volatile;
217
218 return cypress_nor_set_page_size(nor);
219 }
220
s25hx_t_post_sfdp_fixup(struct spi_nor * nor)221 static void s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
222 {
223 struct spi_nor_erase_type *erase_type =
224 nor->params->erase_map.erase_type;
225 unsigned int i;
226
227 /*
228 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
229 * Convert them to 4byte erase opcodes.
230 */
231 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
232 switch (erase_type[i].opcode) {
233 case SPINOR_OP_SE:
234 erase_type[i].opcode = SPINOR_OP_SE_4B;
235 break;
236 case SPINOR_OP_BE_4K:
237 erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
238 break;
239 default:
240 break;
241 }
242 }
243 }
244
s25hx_t_late_init(struct spi_nor * nor)245 static void s25hx_t_late_init(struct spi_nor *nor)
246 {
247 struct spi_nor_flash_parameter *params = nor->params;
248
249 /* Fast Read 4B requires mode cycles */
250 params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
251
252 /* The writesize should be ECC data unit size */
253 params->writesize = 16;
254 }
255
256 static struct spi_nor_fixups s25hx_t_fixups = {
257 .post_bfpt = s25hx_t_post_bfpt_fixup,
258 .post_sfdp = s25hx_t_post_sfdp_fixup,
259 .late_init = s25hx_t_late_init,
260 };
261
262 /**
263 * cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
264 * @nor: pointer to a 'struct spi_nor'
265 * @enable: whether to enable or disable Octal DTR
266 *
267 * This also sets the memory access latency cycles to 24 to allow the flash to
268 * run at up to 200MHz.
269 *
270 * Return: 0 on success, -errno otherwise.
271 */
cypress_nor_octal_dtr_enable(struct spi_nor * nor,bool enable)272 static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
273 {
274 return enable ? cypress_nor_octal_dtr_en(nor) :
275 cypress_nor_octal_dtr_dis(nor);
276 }
277
s28hs512t_default_init(struct spi_nor * nor)278 static void s28hs512t_default_init(struct spi_nor *nor)
279 {
280 nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable;
281 nor->params->writesize = 16;
282 }
283
s28hs512t_post_sfdp_fixup(struct spi_nor * nor)284 static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor)
285 {
286 /*
287 * On older versions of the flash the xSPI Profile 1.0 table has the
288 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
289 */
290 if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
291 nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
292 SPINOR_OP_CYPRESS_RD_FAST;
293
294 /* This flash is also missing the 4-byte Page Program opcode bit. */
295 spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
296 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
297 /*
298 * Since xSPI Page Program opcode is backward compatible with
299 * Legacy SPI, use Legacy SPI opcode there as well.
300 */
301 spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
302 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
303
304 /*
305 * The xSPI Profile 1.0 table advertises the number of additional
306 * address bytes needed for Read Status Register command as 0 but the
307 * actual value for that is 4.
308 */
309 nor->params->rdsr_addr_nbytes = 4;
310 }
311
s28hs512t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)312 static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
313 const struct sfdp_parameter_header *bfpt_header,
314 const struct sfdp_bfpt *bfpt)
315 {
316 return cypress_nor_set_page_size(nor);
317 }
318
319 static const struct spi_nor_fixups s28hs512t_fixups = {
320 .default_init = s28hs512t_default_init,
321 .post_sfdp = s28hs512t_post_sfdp_fixup,
322 .post_bfpt = s28hs512t_post_bfpt_fixup,
323 };
324
325 static int
s25fs_s_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)326 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
327 const struct sfdp_parameter_header *bfpt_header,
328 const struct sfdp_bfpt *bfpt)
329 {
330 /*
331 * The S25FS-S chip family reports 512-byte pages in BFPT but
332 * in reality the write buffer still wraps at the safe default
333 * of 256 bytes. Overwrite the page size advertised by BFPT
334 * to get the writes working.
335 */
336 nor->params->page_size = 256;
337
338 return 0;
339 }
340
341 static const struct spi_nor_fixups s25fs_s_nor_fixups = {
342 .post_bfpt = s25fs_s_nor_post_bfpt_fixups,
343 };
344
345 static const struct flash_info spansion_nor_parts[] = {
346 /* Spansion/Cypress -- single (large) sector size only, at least
347 * for the chips listed here (without boot sectors).
348 */
349 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64)
350 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
351 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128)
352 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
353 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
354 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
355 MFR_FLAGS(USE_CLSR)
356 },
357 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
358 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
359 MFR_FLAGS(USE_CLSR)
360 },
361 { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
362 NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
363 SPI_NOR_QUAD_READ)
364 MFR_FLAGS(USE_CLSR)
365 },
366 { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
367 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
368 MFR_FLAGS(USE_CLSR)
369 },
370 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
371 FLAGS(SPI_NOR_HAS_LOCK)
372 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
373 MFR_FLAGS(USE_CLSR)
374 },
375 { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
376 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
377 MFR_FLAGS(USE_CLSR)
378 .fixups = &s25fs_s_nor_fixups, },
379 { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
380 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
381 MFR_FLAGS(USE_CLSR)
382 },
383 { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
384 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
385 MFR_FLAGS(USE_CLSR)
386 },
387 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
388 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
389 MFR_FLAGS(USE_CLSR)
390 .fixups = &s25fs_s_nor_fixups, },
391 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) },
392 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) },
393 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64)
394 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
395 MFR_FLAGS(USE_CLSR)
396 },
397 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256)
398 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
399 MFR_FLAGS(USE_CLSR)
400 },
401 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) },
402 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) },
403 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) },
404 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) },
405 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) },
406 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8)
407 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
408 SPI_NOR_QUAD_READ) },
409 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16)
410 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
411 SPI_NOR_QUAD_READ) },
412 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32)
413 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
414 SPI_NOR_QUAD_READ) },
415 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128)
416 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
417 SPI_NOR_QUAD_READ) },
418 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32)
419 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
420 SPI_NOR_QUAD_READ) },
421 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64)
422 NO_SFDP_FLAGS(SECT_4K) },
423 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128)
424 NO_SFDP_FLAGS(SECT_4K) },
425 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8)
426 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
427 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16)
428 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
429 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128)
430 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
431 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
432 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256)
433 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
434 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
435 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512)
436 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
437 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
438 { "s25hl512t", INFO6(0x342a1a, 0x0f0390, 256 * 1024, 256)
439 PARSE_SFDP
440 MFR_FLAGS(USE_CLSR)
441 .fixups = &s25hx_t_fixups },
442 { "s25hl01gt", INFO6(0x342a1b, 0x0f0390, 256 * 1024, 512)
443 PARSE_SFDP
444 MFR_FLAGS(USE_CLSR)
445 .fixups = &s25hx_t_fixups },
446 { "s25hs512t", INFO6(0x342b1a, 0x0f0390, 256 * 1024, 256)
447 PARSE_SFDP
448 MFR_FLAGS(USE_CLSR)
449 .fixups = &s25hx_t_fixups },
450 { "s25hs01gt", INFO6(0x342b1b, 0x0f0390, 256 * 1024, 512)
451 PARSE_SFDP
452 MFR_FLAGS(USE_CLSR)
453 .fixups = &s25hx_t_fixups },
454 { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
455 FLAGS(SPI_NOR_NO_ERASE) },
456 { "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256)
457 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_DTR_READ |
458 SPI_NOR_OCTAL_DTR_PP)
459 .fixups = &s28hs512t_fixups,
460 },
461 };
462
463 /**
464 * spansion_nor_clear_sr() - Clear the Status Register.
465 * @nor: pointer to 'struct spi_nor'.
466 */
spansion_nor_clear_sr(struct spi_nor * nor)467 static void spansion_nor_clear_sr(struct spi_nor *nor)
468 {
469 int ret;
470
471 if (nor->spimem) {
472 struct spi_mem_op op = SPANSION_CLSR_OP;
473
474 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
475
476 ret = spi_mem_exec_op(nor->spimem, &op);
477 } else {
478 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
479 NULL, 0);
480 }
481
482 if (ret)
483 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
484 }
485
486 /**
487 * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
488 * flash is ready for new commands and clear it if there are any errors.
489 * @nor: pointer to 'struct spi_nor'.
490 *
491 * Return: 1 if ready, 0 if not ready, -errno on errors.
492 */
spansion_nor_sr_ready_and_clear(struct spi_nor * nor)493 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
494 {
495 int ret;
496
497 ret = spi_nor_read_sr(nor, nor->bouncebuf);
498 if (ret)
499 return ret;
500
501 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
502 if (nor->bouncebuf[0] & SR_E_ERR)
503 dev_err(nor->dev, "Erase Error occurred\n");
504 else
505 dev_err(nor->dev, "Programming Error occurred\n");
506
507 spansion_nor_clear_sr(nor);
508
509 /*
510 * WEL bit remains set to one when an erase or page program
511 * error occurs. Issue a Write Disable command to protect
512 * against inadvertent writes that can possibly corrupt the
513 * contents of the memory.
514 */
515 ret = spi_nor_write_disable(nor);
516 if (ret)
517 return ret;
518
519 return -EIO;
520 }
521
522 return !(nor->bouncebuf[0] & SR_WIP);
523 }
524
spansion_nor_late_init(struct spi_nor * nor)525 static void spansion_nor_late_init(struct spi_nor *nor)
526 {
527 if (nor->params->size > SZ_16M) {
528 nor->flags |= SNOR_F_4B_OPCODES;
529 /* No small sector erase for 4-byte command set */
530 nor->erase_opcode = SPINOR_OP_SE;
531 nor->mtd.erasesize = nor->info->sector_size;
532 }
533
534 if (nor->info->mfr_flags & USE_CLSR)
535 nor->params->ready = spansion_nor_sr_ready_and_clear;
536 }
537
538 static const struct spi_nor_fixups spansion_nor_fixups = {
539 .late_init = spansion_nor_late_init,
540 };
541
542 const struct spi_nor_manufacturer spi_nor_spansion = {
543 .name = "spansion",
544 .parts = spansion_nor_parts,
545 .nparts = ARRAY_SIZE(spansion_nor_parts),
546 .fixups = &spansion_nor_fixups,
547 };
548