1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/audit.h>
21 
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
24 
25 
26 /*
27  * NTP timekeeping variables:
28  *
29  * Note: All of the NTP state is protected by the timekeeping locks.
30  */
31 
32 
33 /* USER_HZ period (usecs): */
34 unsigned long			tick_usec = USER_TICK_USEC;
35 
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long			tick_nsec;
38 
39 static u64			tick_length;
40 static u64			tick_length_base;
41 
42 #define SECS_PER_DAY		86400
43 #define MAX_TICKADJ		500LL		/* usecs */
44 #define MAX_TICKADJ_SCALED \
45 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 #define MAX_TAI_OFFSET		100000
47 
48 /*
49  * phase-lock loop variables
50  */
51 
52 /*
53  * clock synchronization status
54  *
55  * (TIME_ERROR prevents overwriting the CMOS clock)
56  */
57 static int			time_state = TIME_OK;
58 
59 /* clock status bits:							*/
60 static int			time_status = STA_UNSYNC;
61 
62 /* time adjustment (nsecs):						*/
63 static s64			time_offset;
64 
65 /* pll time constant:							*/
66 static long			time_constant = 2;
67 
68 /* maximum error (usecs):						*/
69 static long			time_maxerror = NTP_PHASE_LIMIT;
70 
71 /* estimated error (usecs):						*/
72 static long			time_esterror = NTP_PHASE_LIMIT;
73 
74 /* frequency offset (scaled nsecs/secs):				*/
75 static s64			time_freq;
76 
77 /* time at last adjustment (secs):					*/
78 static time64_t		time_reftime;
79 
80 static long			time_adjust;
81 
82 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
83 static s64			ntp_tick_adj;
84 
85 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86 static time64_t			ntp_next_leap_sec = TIME64_MAX;
87 
88 #ifdef CONFIG_NTP_PPS
89 
90 /*
91  * The following variables are used when a pulse-per-second (PPS) signal
92  * is available. They establish the engineering parameters of the clock
93  * discipline loop when controlled by the PPS signal.
94  */
95 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
96 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
97 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
98 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
99 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
100 				   increase pps_shift or consecutive bad
101 				   intervals to decrease it */
102 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
103 
104 static int pps_valid;		/* signal watchdog counter */
105 static long pps_tf[3];		/* phase median filter */
106 static long pps_jitter;		/* current jitter (ns) */
107 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108 static int pps_shift;		/* current interval duration (s) (shift) */
109 static int pps_intcnt;		/* interval counter */
110 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
111 static long pps_stabil;		/* current stability (scaled ns/s) */
112 
113 /*
114  * PPS signal quality monitors
115  */
116 static long pps_calcnt;		/* calibration intervals */
117 static long pps_jitcnt;		/* jitter limit exceeded */
118 static long pps_stbcnt;		/* stability limit exceeded */
119 static long pps_errcnt;		/* calibration errors */
120 
121 
122 /* PPS kernel consumer compensates the whole phase error immediately.
123  * Otherwise, reduce the offset by a fixed factor times the time constant.
124  */
ntp_offset_chunk(s64 offset)125 static inline s64 ntp_offset_chunk(s64 offset)
126 {
127 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128 		return offset;
129 	else
130 		return shift_right(offset, SHIFT_PLL + time_constant);
131 }
132 
pps_reset_freq_interval(void)133 static inline void pps_reset_freq_interval(void)
134 {
135 	/* the PPS calibration interval may end
136 	   surprisingly early */
137 	pps_shift = PPS_INTMIN;
138 	pps_intcnt = 0;
139 }
140 
141 /**
142  * pps_clear - Clears the PPS state variables
143  */
pps_clear(void)144 static inline void pps_clear(void)
145 {
146 	pps_reset_freq_interval();
147 	pps_tf[0] = 0;
148 	pps_tf[1] = 0;
149 	pps_tf[2] = 0;
150 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151 	pps_freq = 0;
152 }
153 
154 /* Decrease pps_valid to indicate that another second has passed since
155  * the last PPS signal. When it reaches 0, indicate that PPS signal is
156  * missing.
157  */
pps_dec_valid(void)158 static inline void pps_dec_valid(void)
159 {
160 	if (pps_valid > 0)
161 		pps_valid--;
162 	else {
163 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164 				 STA_PPSWANDER | STA_PPSERROR);
165 		pps_clear();
166 	}
167 }
168 
pps_set_freq(s64 freq)169 static inline void pps_set_freq(s64 freq)
170 {
171 	pps_freq = freq;
172 }
173 
is_error_status(int status)174 static inline int is_error_status(int status)
175 {
176 	return (status & (STA_UNSYNC|STA_CLOCKERR))
177 		/* PPS signal lost when either PPS time or
178 		 * PPS frequency synchronization requested
179 		 */
180 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
181 			&& !(status & STA_PPSSIGNAL))
182 		/* PPS jitter exceeded when
183 		 * PPS time synchronization requested */
184 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
185 			== (STA_PPSTIME|STA_PPSJITTER))
186 		/* PPS wander exceeded or calibration error when
187 		 * PPS frequency synchronization requested
188 		 */
189 		|| ((status & STA_PPSFREQ)
190 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
191 }
192 
pps_fill_timex(struct __kernel_timex * txc)193 static inline void pps_fill_timex(struct __kernel_timex *txc)
194 {
195 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197 	txc->jitter	   = pps_jitter;
198 	if (!(time_status & STA_NANO))
199 		txc->jitter = pps_jitter / NSEC_PER_USEC;
200 	txc->shift	   = pps_shift;
201 	txc->stabil	   = pps_stabil;
202 	txc->jitcnt	   = pps_jitcnt;
203 	txc->calcnt	   = pps_calcnt;
204 	txc->errcnt	   = pps_errcnt;
205 	txc->stbcnt	   = pps_stbcnt;
206 }
207 
208 #else /* !CONFIG_NTP_PPS */
209 
ntp_offset_chunk(s64 offset)210 static inline s64 ntp_offset_chunk(s64 offset)
211 {
212 	return shift_right(offset, SHIFT_PLL + time_constant);
213 }
214 
pps_reset_freq_interval(void)215 static inline void pps_reset_freq_interval(void) {}
pps_clear(void)216 static inline void pps_clear(void) {}
pps_dec_valid(void)217 static inline void pps_dec_valid(void) {}
pps_set_freq(s64 freq)218 static inline void pps_set_freq(s64 freq) {}
219 
is_error_status(int status)220 static inline int is_error_status(int status)
221 {
222 	return status & (STA_UNSYNC|STA_CLOCKERR);
223 }
224 
pps_fill_timex(struct __kernel_timex * txc)225 static inline void pps_fill_timex(struct __kernel_timex *txc)
226 {
227 	/* PPS is not implemented, so these are zero */
228 	txc->ppsfreq	   = 0;
229 	txc->jitter	   = 0;
230 	txc->shift	   = 0;
231 	txc->stabil	   = 0;
232 	txc->jitcnt	   = 0;
233 	txc->calcnt	   = 0;
234 	txc->errcnt	   = 0;
235 	txc->stbcnt	   = 0;
236 }
237 
238 #endif /* CONFIG_NTP_PPS */
239 
240 
241 /**
242  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243  *
244  */
ntp_synced(void)245 static inline int ntp_synced(void)
246 {
247 	return !(time_status & STA_UNSYNC);
248 }
249 
250 
251 /*
252  * NTP methods:
253  */
254 
255 /*
256  * Update (tick_length, tick_length_base, tick_nsec), based
257  * on (tick_usec, ntp_tick_adj, time_freq):
258  */
ntp_update_frequency(void)259 static void ntp_update_frequency(void)
260 {
261 	u64 second_length;
262 	u64 new_base;
263 
264 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265 						<< NTP_SCALE_SHIFT;
266 
267 	second_length		+= ntp_tick_adj;
268 	second_length		+= time_freq;
269 
270 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
272 
273 	/*
274 	 * Don't wait for the next second_overflow, apply
275 	 * the change to the tick length immediately:
276 	 */
277 	tick_length		+= new_base - tick_length_base;
278 	tick_length_base	 = new_base;
279 }
280 
ntp_update_offset_fll(s64 offset64,long secs)281 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282 {
283 	time_status &= ~STA_MODE;
284 
285 	if (secs < MINSEC)
286 		return 0;
287 
288 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289 		return 0;
290 
291 	time_status |= STA_MODE;
292 
293 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294 }
295 
ntp_update_offset(long offset)296 static void ntp_update_offset(long offset)
297 {
298 	s64 freq_adj;
299 	s64 offset64;
300 	long secs;
301 
302 	if (!(time_status & STA_PLL))
303 		return;
304 
305 	if (!(time_status & STA_NANO)) {
306 		/* Make sure the multiplication below won't overflow */
307 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308 		offset *= NSEC_PER_USEC;
309 	}
310 
311 	/*
312 	 * Scale the phase adjustment and
313 	 * clamp to the operating range.
314 	 */
315 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
316 
317 	/*
318 	 * Select how the frequency is to be controlled
319 	 * and in which mode (PLL or FLL).
320 	 */
321 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
322 	if (unlikely(time_status & STA_FREQHOLD))
323 		secs = 0;
324 
325 	time_reftime = __ktime_get_real_seconds();
326 
327 	offset64    = offset;
328 	freq_adj    = ntp_update_offset_fll(offset64, secs);
329 
330 	/*
331 	 * Clamp update interval to reduce PLL gain with low
332 	 * sampling rate (e.g. intermittent network connection)
333 	 * to avoid instability.
334 	 */
335 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
337 
338 	freq_adj    += (offset64 * secs) <<
339 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340 
341 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
342 
343 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
344 
345 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346 }
347 
348 /**
349  * ntp_clear - Clears the NTP state variables
350  */
ntp_clear(void)351 void ntp_clear(void)
352 {
353 	time_adjust	= 0;		/* stop active adjtime() */
354 	time_status	|= STA_UNSYNC;
355 	time_maxerror	= NTP_PHASE_LIMIT;
356 	time_esterror	= NTP_PHASE_LIMIT;
357 
358 	ntp_update_frequency();
359 
360 	tick_length	= tick_length_base;
361 	time_offset	= 0;
362 
363 	ntp_next_leap_sec = TIME64_MAX;
364 	/* Clear PPS state variables */
365 	pps_clear();
366 }
367 
368 
ntp_tick_length(void)369 u64 ntp_tick_length(void)
370 {
371 	return tick_length;
372 }
373 
374 /**
375  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376  *
377  * Provides the time of the next leapsecond against CLOCK_REALTIME in
378  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379  */
ntp_get_next_leap(void)380 ktime_t ntp_get_next_leap(void)
381 {
382 	ktime_t ret;
383 
384 	if ((time_state == TIME_INS) && (time_status & STA_INS))
385 		return ktime_set(ntp_next_leap_sec, 0);
386 	ret = KTIME_MAX;
387 	return ret;
388 }
389 
390 /*
391  * this routine handles the overflow of the microsecond field
392  *
393  * The tricky bits of code to handle the accurate clock support
394  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395  * They were originally developed for SUN and DEC kernels.
396  * All the kudos should go to Dave for this stuff.
397  *
398  * Also handles leap second processing, and returns leap offset
399  */
second_overflow(time64_t secs)400 int second_overflow(time64_t secs)
401 {
402 	s64 delta;
403 	int leap = 0;
404 	s32 rem;
405 
406 	/*
407 	 * Leap second processing. If in leap-insert state at the end of the
408 	 * day, the system clock is set back one second; if in leap-delete
409 	 * state, the system clock is set ahead one second.
410 	 */
411 	switch (time_state) {
412 	case TIME_OK:
413 		if (time_status & STA_INS) {
414 			time_state = TIME_INS;
415 			div_s64_rem(secs, SECS_PER_DAY, &rem);
416 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417 		} else if (time_status & STA_DEL) {
418 			time_state = TIME_DEL;
419 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421 		}
422 		break;
423 	case TIME_INS:
424 		if (!(time_status & STA_INS)) {
425 			ntp_next_leap_sec = TIME64_MAX;
426 			time_state = TIME_OK;
427 		} else if (secs == ntp_next_leap_sec) {
428 			leap = -1;
429 			time_state = TIME_OOP;
430 			printk(KERN_NOTICE
431 				"Clock: inserting leap second 23:59:60 UTC\n");
432 		}
433 		break;
434 	case TIME_DEL:
435 		if (!(time_status & STA_DEL)) {
436 			ntp_next_leap_sec = TIME64_MAX;
437 			time_state = TIME_OK;
438 		} else if (secs == ntp_next_leap_sec) {
439 			leap = 1;
440 			ntp_next_leap_sec = TIME64_MAX;
441 			time_state = TIME_WAIT;
442 			printk(KERN_NOTICE
443 				"Clock: deleting leap second 23:59:59 UTC\n");
444 		}
445 		break;
446 	case TIME_OOP:
447 		ntp_next_leap_sec = TIME64_MAX;
448 		time_state = TIME_WAIT;
449 		break;
450 	case TIME_WAIT:
451 		if (!(time_status & (STA_INS | STA_DEL)))
452 			time_state = TIME_OK;
453 		break;
454 	}
455 
456 
457 	/* Bump the maxerror field */
458 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
459 	if (time_maxerror > NTP_PHASE_LIMIT) {
460 		time_maxerror = NTP_PHASE_LIMIT;
461 		time_status |= STA_UNSYNC;
462 	}
463 
464 	/* Compute the phase adjustment for the next second */
465 	tick_length	 = tick_length_base;
466 
467 	delta		 = ntp_offset_chunk(time_offset);
468 	time_offset	-= delta;
469 	tick_length	+= delta;
470 
471 	/* Check PPS signal */
472 	pps_dec_valid();
473 
474 	if (!time_adjust)
475 		goto out;
476 
477 	if (time_adjust > MAX_TICKADJ) {
478 		time_adjust -= MAX_TICKADJ;
479 		tick_length += MAX_TICKADJ_SCALED;
480 		goto out;
481 	}
482 
483 	if (time_adjust < -MAX_TICKADJ) {
484 		time_adjust += MAX_TICKADJ;
485 		tick_length -= MAX_TICKADJ_SCALED;
486 		goto out;
487 	}
488 
489 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490 							 << NTP_SCALE_SHIFT;
491 	time_adjust = 0;
492 
493 out:
494 	return leap;
495 }
496 
497 static void sync_hw_clock(struct work_struct *work);
498 static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
499 
sched_sync_hw_clock(struct timespec64 now,unsigned long target_nsec,bool fail)500 static void sched_sync_hw_clock(struct timespec64 now,
501 				unsigned long target_nsec, bool fail)
502 
503 {
504 	struct timespec64 next;
505 
506 	ktime_get_real_ts64(&next);
507 	if (!fail)
508 		next.tv_sec = 659;
509 	else {
510 		/*
511 		 * Try again as soon as possible. Delaying long periods
512 		 * decreases the accuracy of the work queue timer. Due to this
513 		 * the algorithm is very likely to require a short-sleep retry
514 		 * after the above long sleep to synchronize ts_nsec.
515 		 */
516 		next.tv_sec = 0;
517 	}
518 
519 	/* Compute the needed delay that will get to tv_nsec == target_nsec */
520 	next.tv_nsec = target_nsec - next.tv_nsec;
521 	if (next.tv_nsec <= 0)
522 		next.tv_nsec += NSEC_PER_SEC;
523 	if (next.tv_nsec >= NSEC_PER_SEC) {
524 		next.tv_sec++;
525 		next.tv_nsec -= NSEC_PER_SEC;
526 	}
527 
528 	queue_delayed_work(system_power_efficient_wq, &sync_work,
529 			   timespec64_to_jiffies(&next));
530 }
531 
sync_rtc_clock(void)532 static void sync_rtc_clock(void)
533 {
534 	unsigned long target_nsec;
535 	struct timespec64 adjust, now;
536 	int rc;
537 
538 	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
539 		return;
540 
541 	ktime_get_real_ts64(&now);
542 
543 	adjust = now;
544 	if (persistent_clock_is_local)
545 		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
546 
547 	/*
548 	 * The current RTC in use will provide the target_nsec it wants to be
549 	 * called at, and does rtc_tv_nsec_ok internally.
550 	 */
551 	rc = rtc_set_ntp_time(adjust, &target_nsec);
552 	if (rc == -ENODEV)
553 		return;
554 
555 	sched_sync_hw_clock(now, target_nsec, rc);
556 }
557 
558 #ifdef CONFIG_GENERIC_CMOS_UPDATE
update_persistent_clock64(struct timespec64 now64)559 int __weak update_persistent_clock64(struct timespec64 now64)
560 {
561 	return -ENODEV;
562 }
563 #endif
564 
sync_cmos_clock(void)565 static bool sync_cmos_clock(void)
566 {
567 	static bool no_cmos;
568 	struct timespec64 now;
569 	struct timespec64 adjust;
570 	int rc = -EPROTO;
571 	long target_nsec = NSEC_PER_SEC / 2;
572 
573 	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
574 		return false;
575 
576 	if (no_cmos)
577 		return false;
578 
579 	/*
580 	 * Historically update_persistent_clock64() has followed x86
581 	 * semantics, which match the MC146818A/etc RTC. This RTC will store
582 	 * 'adjust' and then in .5s it will advance once second.
583 	 *
584 	 * Architectures are strongly encouraged to use rtclib and not
585 	 * implement this legacy API.
586 	 */
587 	ktime_get_real_ts64(&now);
588 	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
589 		if (persistent_clock_is_local)
590 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
591 		rc = update_persistent_clock64(adjust);
592 		/*
593 		 * The machine does not support update_persistent_clock64 even
594 		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
595 		 */
596 		if (rc == -ENODEV) {
597 			no_cmos = true;
598 			return false;
599 		}
600 	}
601 
602 	sched_sync_hw_clock(now, target_nsec, rc);
603 	return true;
604 }
605 
606 /*
607  * If we have an externally synchronized Linux clock, then update RTC clock
608  * accordingly every ~11 minutes. Generally RTCs can only store second
609  * precision, but many RTCs will adjust the phase of their second tick to
610  * match the moment of update. This infrastructure arranges to call to the RTC
611  * set at the correct moment to phase synchronize the RTC second tick over
612  * with the kernel clock.
613  */
sync_hw_clock(struct work_struct * work)614 static void sync_hw_clock(struct work_struct *work)
615 {
616 	if (!ntp_synced())
617 		return;
618 
619 	if (sync_cmos_clock())
620 		return;
621 
622 	sync_rtc_clock();
623 }
624 
ntp_notify_cmos_timer(void)625 void ntp_notify_cmos_timer(void)
626 {
627 	if (!ntp_synced())
628 		return;
629 
630 	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
631 	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
632 		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
633 }
634 
635 /*
636  * Propagate a new txc->status value into the NTP state:
637  */
process_adj_status(const struct __kernel_timex * txc)638 static inline void process_adj_status(const struct __kernel_timex *txc)
639 {
640 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
641 		time_state = TIME_OK;
642 		time_status = STA_UNSYNC;
643 		ntp_next_leap_sec = TIME64_MAX;
644 		/* restart PPS frequency calibration */
645 		pps_reset_freq_interval();
646 	}
647 
648 	/*
649 	 * If we turn on PLL adjustments then reset the
650 	 * reference time to current time.
651 	 */
652 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
653 		time_reftime = __ktime_get_real_seconds();
654 
655 	/* only set allowed bits */
656 	time_status &= STA_RONLY;
657 	time_status |= txc->status & ~STA_RONLY;
658 }
659 
660 
process_adjtimex_modes(const struct __kernel_timex * txc,s32 * time_tai)661 static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
662 					  s32 *time_tai)
663 {
664 	if (txc->modes & ADJ_STATUS)
665 		process_adj_status(txc);
666 
667 	if (txc->modes & ADJ_NANO)
668 		time_status |= STA_NANO;
669 
670 	if (txc->modes & ADJ_MICRO)
671 		time_status &= ~STA_NANO;
672 
673 	if (txc->modes & ADJ_FREQUENCY) {
674 		time_freq = txc->freq * PPM_SCALE;
675 		time_freq = min(time_freq, MAXFREQ_SCALED);
676 		time_freq = max(time_freq, -MAXFREQ_SCALED);
677 		/* update pps_freq */
678 		pps_set_freq(time_freq);
679 	}
680 
681 	if (txc->modes & ADJ_MAXERROR)
682 		time_maxerror = txc->maxerror;
683 
684 	if (txc->modes & ADJ_ESTERROR)
685 		time_esterror = txc->esterror;
686 
687 	if (txc->modes & ADJ_TIMECONST) {
688 		time_constant = txc->constant;
689 		if (!(time_status & STA_NANO))
690 			time_constant += 4;
691 		time_constant = min(time_constant, (long)MAXTC);
692 		time_constant = max(time_constant, 0l);
693 	}
694 
695 	if (txc->modes & ADJ_TAI &&
696 			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
697 		*time_tai = txc->constant;
698 
699 	if (txc->modes & ADJ_OFFSET)
700 		ntp_update_offset(txc->offset);
701 
702 	if (txc->modes & ADJ_TICK)
703 		tick_usec = txc->tick;
704 
705 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
706 		ntp_update_frequency();
707 }
708 
709 
710 /*
711  * adjtimex mainly allows reading (and writing, if superuser) of
712  * kernel time-keeping variables. used by xntpd.
713  */
__do_adjtimex(struct __kernel_timex * txc,const struct timespec64 * ts,s32 * time_tai,struct audit_ntp_data * ad)714 int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
715 		  s32 *time_tai, struct audit_ntp_data *ad)
716 {
717 	int result;
718 
719 	if (txc->modes & ADJ_ADJTIME) {
720 		long save_adjust = time_adjust;
721 
722 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
723 			/* adjtime() is independent from ntp_adjtime() */
724 			time_adjust = txc->offset;
725 			ntp_update_frequency();
726 
727 			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
728 			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
729 		}
730 		txc->offset = save_adjust;
731 	} else {
732 		/* If there are input parameters, then process them: */
733 		if (txc->modes) {
734 			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
735 			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
736 			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
737 			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
738 			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
739 
740 			process_adjtimex_modes(txc, time_tai);
741 
742 			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
743 			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
744 			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
745 			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
746 			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
747 		}
748 
749 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
750 				  NTP_SCALE_SHIFT);
751 		if (!(time_status & STA_NANO))
752 			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
753 	}
754 
755 	result = time_state;	/* mostly `TIME_OK' */
756 	/* check for errors */
757 	if (is_error_status(time_status))
758 		result = TIME_ERROR;
759 
760 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
761 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
762 	txc->maxerror	   = time_maxerror;
763 	txc->esterror	   = time_esterror;
764 	txc->status	   = time_status;
765 	txc->constant	   = time_constant;
766 	txc->precision	   = 1;
767 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
768 	txc->tick	   = tick_usec;
769 	txc->tai	   = *time_tai;
770 
771 	/* fill PPS status fields */
772 	pps_fill_timex(txc);
773 
774 	txc->time.tv_sec = ts->tv_sec;
775 	txc->time.tv_usec = ts->tv_nsec;
776 	if (!(time_status & STA_NANO))
777 		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
778 
779 	/* Handle leapsec adjustments */
780 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
781 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
782 			result = TIME_OOP;
783 			txc->tai++;
784 			txc->time.tv_sec--;
785 		}
786 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
787 			result = TIME_WAIT;
788 			txc->tai--;
789 			txc->time.tv_sec++;
790 		}
791 		if ((time_state == TIME_OOP) &&
792 					(ts->tv_sec == ntp_next_leap_sec)) {
793 			result = TIME_WAIT;
794 		}
795 	}
796 
797 	return result;
798 }
799 
800 #ifdef	CONFIG_NTP_PPS
801 
802 /* actually struct pps_normtime is good old struct timespec, but it is
803  * semantically different (and it is the reason why it was invented):
804  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
805  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
806 struct pps_normtime {
807 	s64		sec;	/* seconds */
808 	long		nsec;	/* nanoseconds */
809 };
810 
811 /* normalize the timestamp so that nsec is in the
812    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
pps_normalize_ts(struct timespec64 ts)813 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
814 {
815 	struct pps_normtime norm = {
816 		.sec = ts.tv_sec,
817 		.nsec = ts.tv_nsec
818 	};
819 
820 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
821 		norm.nsec -= NSEC_PER_SEC;
822 		norm.sec++;
823 	}
824 
825 	return norm;
826 }
827 
828 /* get current phase correction and jitter */
pps_phase_filter_get(long * jitter)829 static inline long pps_phase_filter_get(long *jitter)
830 {
831 	*jitter = pps_tf[0] - pps_tf[1];
832 	if (*jitter < 0)
833 		*jitter = -*jitter;
834 
835 	/* TODO: test various filters */
836 	return pps_tf[0];
837 }
838 
839 /* add the sample to the phase filter */
pps_phase_filter_add(long err)840 static inline void pps_phase_filter_add(long err)
841 {
842 	pps_tf[2] = pps_tf[1];
843 	pps_tf[1] = pps_tf[0];
844 	pps_tf[0] = err;
845 }
846 
847 /* decrease frequency calibration interval length.
848  * It is halved after four consecutive unstable intervals.
849  */
pps_dec_freq_interval(void)850 static inline void pps_dec_freq_interval(void)
851 {
852 	if (--pps_intcnt <= -PPS_INTCOUNT) {
853 		pps_intcnt = -PPS_INTCOUNT;
854 		if (pps_shift > PPS_INTMIN) {
855 			pps_shift--;
856 			pps_intcnt = 0;
857 		}
858 	}
859 }
860 
861 /* increase frequency calibration interval length.
862  * It is doubled after four consecutive stable intervals.
863  */
pps_inc_freq_interval(void)864 static inline void pps_inc_freq_interval(void)
865 {
866 	if (++pps_intcnt >= PPS_INTCOUNT) {
867 		pps_intcnt = PPS_INTCOUNT;
868 		if (pps_shift < PPS_INTMAX) {
869 			pps_shift++;
870 			pps_intcnt = 0;
871 		}
872 	}
873 }
874 
875 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
876  * timestamps
877  *
878  * At the end of the calibration interval the difference between the
879  * first and last MONOTONIC_RAW clock timestamps divided by the length
880  * of the interval becomes the frequency update. If the interval was
881  * too long, the data are discarded.
882  * Returns the difference between old and new frequency values.
883  */
hardpps_update_freq(struct pps_normtime freq_norm)884 static long hardpps_update_freq(struct pps_normtime freq_norm)
885 {
886 	long delta, delta_mod;
887 	s64 ftemp;
888 
889 	/* check if the frequency interval was too long */
890 	if (freq_norm.sec > (2 << pps_shift)) {
891 		time_status |= STA_PPSERROR;
892 		pps_errcnt++;
893 		pps_dec_freq_interval();
894 		printk_deferred(KERN_ERR
895 			"hardpps: PPSERROR: interval too long - %lld s\n",
896 			freq_norm.sec);
897 		return 0;
898 	}
899 
900 	/* here the raw frequency offset and wander (stability) is
901 	 * calculated. If the wander is less than the wander threshold
902 	 * the interval is increased; otherwise it is decreased.
903 	 */
904 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
905 			freq_norm.sec);
906 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
907 	pps_freq = ftemp;
908 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
909 		printk_deferred(KERN_WARNING
910 				"hardpps: PPSWANDER: change=%ld\n", delta);
911 		time_status |= STA_PPSWANDER;
912 		pps_stbcnt++;
913 		pps_dec_freq_interval();
914 	} else {	/* good sample */
915 		pps_inc_freq_interval();
916 	}
917 
918 	/* the stability metric is calculated as the average of recent
919 	 * frequency changes, but is used only for performance
920 	 * monitoring
921 	 */
922 	delta_mod = delta;
923 	if (delta_mod < 0)
924 		delta_mod = -delta_mod;
925 	pps_stabil += (div_s64(((s64)delta_mod) <<
926 				(NTP_SCALE_SHIFT - SHIFT_USEC),
927 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
928 
929 	/* if enabled, the system clock frequency is updated */
930 	if ((time_status & STA_PPSFREQ) != 0 &&
931 	    (time_status & STA_FREQHOLD) == 0) {
932 		time_freq = pps_freq;
933 		ntp_update_frequency();
934 	}
935 
936 	return delta;
937 }
938 
939 /* correct REALTIME clock phase error against PPS signal */
hardpps_update_phase(long error)940 static void hardpps_update_phase(long error)
941 {
942 	long correction = -error;
943 	long jitter;
944 
945 	/* add the sample to the median filter */
946 	pps_phase_filter_add(correction);
947 	correction = pps_phase_filter_get(&jitter);
948 
949 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
950 	 * threshold, the sample is discarded; otherwise, if so enabled,
951 	 * the time offset is updated.
952 	 */
953 	if (jitter > (pps_jitter << PPS_POPCORN)) {
954 		printk_deferred(KERN_WARNING
955 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
956 				jitter, (pps_jitter << PPS_POPCORN));
957 		time_status |= STA_PPSJITTER;
958 		pps_jitcnt++;
959 	} else if (time_status & STA_PPSTIME) {
960 		/* correct the time using the phase offset */
961 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
962 				NTP_INTERVAL_FREQ);
963 		/* cancel running adjtime() */
964 		time_adjust = 0;
965 	}
966 	/* update jitter */
967 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
968 }
969 
970 /*
971  * __hardpps() - discipline CPU clock oscillator to external PPS signal
972  *
973  * This routine is called at each PPS signal arrival in order to
974  * discipline the CPU clock oscillator to the PPS signal. It takes two
975  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
976  * is used to correct clock phase error and the latter is used to
977  * correct the frequency.
978  *
979  * This code is based on David Mills's reference nanokernel
980  * implementation. It was mostly rewritten but keeps the same idea.
981  */
__hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)982 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
983 {
984 	struct pps_normtime pts_norm, freq_norm;
985 
986 	pts_norm = pps_normalize_ts(*phase_ts);
987 
988 	/* clear the error bits, they will be set again if needed */
989 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
990 
991 	/* indicate signal presence */
992 	time_status |= STA_PPSSIGNAL;
993 	pps_valid = PPS_VALID;
994 
995 	/* when called for the first time,
996 	 * just start the frequency interval */
997 	if (unlikely(pps_fbase.tv_sec == 0)) {
998 		pps_fbase = *raw_ts;
999 		return;
1000 	}
1001 
1002 	/* ok, now we have a base for frequency calculation */
1003 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1004 
1005 	/* check that the signal is in the range
1006 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1007 	if ((freq_norm.sec == 0) ||
1008 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1009 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1010 		time_status |= STA_PPSJITTER;
1011 		/* restart the frequency calibration interval */
1012 		pps_fbase = *raw_ts;
1013 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1014 		return;
1015 	}
1016 
1017 	/* signal is ok */
1018 
1019 	/* check if the current frequency interval is finished */
1020 	if (freq_norm.sec >= (1 << pps_shift)) {
1021 		pps_calcnt++;
1022 		/* restart the frequency calibration interval */
1023 		pps_fbase = *raw_ts;
1024 		hardpps_update_freq(freq_norm);
1025 	}
1026 
1027 	hardpps_update_phase(pts_norm.nsec);
1028 
1029 }
1030 #endif	/* CONFIG_NTP_PPS */
1031 
ntp_tick_adj_setup(char * str)1032 static int __init ntp_tick_adj_setup(char *str)
1033 {
1034 	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1035 	if (rc)
1036 		return rc;
1037 
1038 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1039 	return 1;
1040 }
1041 
1042 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1043 
ntp_init(void)1044 void __init ntp_init(void)
1045 {
1046 	ntp_clear();
1047 }
1048