1 /*
2 * Copyright(c) 2015-2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 #include <linux/etherdevice.h>
58
59 #include "hfi.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "sdma.h"
63 #include "debugfs.h"
64 #include "vnic.h"
65 #include "fault.h"
66
67 #include "ipoib.h"
68 #include "netdev.h"
69
70 #undef pr_fmt
71 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
72
73 /*
74 * The size has to be longer than this string, so we can append
75 * board/chip information to it in the initialization code.
76 */
77 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
78
79 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
80
81 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
82 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
84 HFI1_DEFAULT_MAX_MTU));
85
86 unsigned int hfi1_cu = 1;
87 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
88 MODULE_PARM_DESC(cu, "Credit return units");
89
90 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
91 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
92 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
93 static const struct kernel_param_ops cap_ops = {
94 .set = hfi1_caps_set,
95 .get = hfi1_caps_get
96 };
97 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
98 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
99
100 MODULE_LICENSE("Dual BSD/GPL");
101 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
102
103 /*
104 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
105 */
106 #define MAX_PKT_RECV 64
107 /*
108 * MAX_PKT_THREAD_RCV is the max # of packets processed before
109 * the qp_wait_list queue is flushed.
110 */
111 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
112 #define EGR_HEAD_UPDATE_THRESHOLD 16
113
114 struct hfi1_ib_stats hfi1_stats;
115
hfi1_caps_set(const char * val,const struct kernel_param * kp)116 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
117 {
118 int ret = 0;
119 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
120 cap_mask = *cap_mask_ptr, value, diff,
121 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
122 HFI1_CAP_WRITABLE_MASK);
123
124 ret = kstrtoul(val, 0, &value);
125 if (ret) {
126 pr_warn("Invalid module parameter value for 'cap_mask'\n");
127 goto done;
128 }
129 /* Get the changed bits (except the locked bit) */
130 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
131
132 /* Remove any bits that are not allowed to change after driver load */
133 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
134 pr_warn("Ignoring non-writable capability bits %#lx\n",
135 diff & ~write_mask);
136 diff &= write_mask;
137 }
138
139 /* Mask off any reserved bits */
140 diff &= ~HFI1_CAP_RESERVED_MASK;
141 /* Clear any previously set and changing bits */
142 cap_mask &= ~diff;
143 /* Update the bits with the new capability */
144 cap_mask |= (value & diff);
145 /* Check for any kernel/user restrictions */
146 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
147 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
148 cap_mask &= ~diff;
149 /* Set the bitmask to the final set */
150 *cap_mask_ptr = cap_mask;
151 done:
152 return ret;
153 }
154
hfi1_caps_get(char * buffer,const struct kernel_param * kp)155 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
156 {
157 unsigned long cap_mask = *(unsigned long *)kp->arg;
158
159 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
160 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
161
162 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
163 }
164
get_pci_dev(struct rvt_dev_info * rdi)165 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
166 {
167 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
168 struct hfi1_devdata *dd = container_of(ibdev,
169 struct hfi1_devdata, verbs_dev);
170 return dd->pcidev;
171 }
172
173 /*
174 * Return count of units with at least one port ACTIVE.
175 */
hfi1_count_active_units(void)176 int hfi1_count_active_units(void)
177 {
178 struct hfi1_devdata *dd;
179 struct hfi1_pportdata *ppd;
180 unsigned long index, flags;
181 int pidx, nunits_active = 0;
182
183 xa_lock_irqsave(&hfi1_dev_table, flags);
184 xa_for_each(&hfi1_dev_table, index, dd) {
185 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
186 continue;
187 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
188 ppd = dd->pport + pidx;
189 if (ppd->lid && ppd->linkup) {
190 nunits_active++;
191 break;
192 }
193 }
194 }
195 xa_unlock_irqrestore(&hfi1_dev_table, flags);
196 return nunits_active;
197 }
198
199 /*
200 * Get address of eager buffer from it's index (allocated in chunks, not
201 * contiguous).
202 */
get_egrbuf(const struct hfi1_ctxtdata * rcd,u64 rhf,u8 * update)203 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
204 u8 *update)
205 {
206 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
207
208 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
209 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
210 (offset * RCV_BUF_BLOCK_SIZE));
211 }
212
hfi1_get_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)213 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
214 __le32 *rhf_addr)
215 {
216 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
217
218 return (void *)(rhf_addr - rcd->rhf_offset + offset);
219 }
220
hfi1_get_msgheader(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)221 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
222 __le32 *rhf_addr)
223 {
224 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
225 }
226
227 static inline struct hfi1_16b_header
hfi1_get_16B_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)228 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
229 __le32 *rhf_addr)
230 {
231 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
232 }
233
234 /*
235 * Validate and encode the a given RcvArray Buffer size.
236 * The function will check whether the given size falls within
237 * allowed size ranges for the respective type and, optionally,
238 * return the proper encoding.
239 */
hfi1_rcvbuf_validate(u32 size,u8 type,u16 * encoded)240 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
241 {
242 if (unlikely(!PAGE_ALIGNED(size)))
243 return 0;
244 if (unlikely(size < MIN_EAGER_BUFFER))
245 return 0;
246 if (size >
247 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
248 return 0;
249 if (encoded)
250 *encoded = ilog2(size / PAGE_SIZE) + 1;
251 return 1;
252 }
253
rcv_hdrerr(struct hfi1_ctxtdata * rcd,struct hfi1_pportdata * ppd,struct hfi1_packet * packet)254 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
255 struct hfi1_packet *packet)
256 {
257 struct ib_header *rhdr = packet->hdr;
258 u32 rte = rhf_rcv_type_err(packet->rhf);
259 u32 mlid_base;
260 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
261 struct hfi1_devdata *dd = ppd->dd;
262 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
263 struct rvt_dev_info *rdi = &verbs_dev->rdi;
264
265 if ((packet->rhf & RHF_DC_ERR) &&
266 hfi1_dbg_fault_suppress_err(verbs_dev))
267 return;
268
269 if (packet->rhf & RHF_ICRC_ERR)
270 return;
271
272 if (packet->etype == RHF_RCV_TYPE_BYPASS) {
273 goto drop;
274 } else {
275 u8 lnh = ib_get_lnh(rhdr);
276
277 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
278 if (lnh == HFI1_LRH_BTH) {
279 packet->ohdr = &rhdr->u.oth;
280 } else if (lnh == HFI1_LRH_GRH) {
281 packet->ohdr = &rhdr->u.l.oth;
282 packet->grh = &rhdr->u.l.grh;
283 } else {
284 goto drop;
285 }
286 }
287
288 if (packet->rhf & RHF_TID_ERR) {
289 /* For TIDERR and RC QPs preemptively schedule a NAK */
290 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
291 u32 dlid = ib_get_dlid(rhdr);
292 u32 qp_num;
293
294 /* Sanity check packet */
295 if (tlen < 24)
296 goto drop;
297
298 /* Check for GRH */
299 if (packet->grh) {
300 u32 vtf;
301 struct ib_grh *grh = packet->grh;
302
303 if (grh->next_hdr != IB_GRH_NEXT_HDR)
304 goto drop;
305 vtf = be32_to_cpu(grh->version_tclass_flow);
306 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
307 goto drop;
308 }
309
310 /* Get the destination QP number. */
311 qp_num = ib_bth_get_qpn(packet->ohdr);
312 if (dlid < mlid_base) {
313 struct rvt_qp *qp;
314 unsigned long flags;
315
316 rcu_read_lock();
317 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
318 if (!qp) {
319 rcu_read_unlock();
320 goto drop;
321 }
322
323 /*
324 * Handle only RC QPs - for other QP types drop error
325 * packet.
326 */
327 spin_lock_irqsave(&qp->r_lock, flags);
328
329 /* Check for valid receive state. */
330 if (!(ib_rvt_state_ops[qp->state] &
331 RVT_PROCESS_RECV_OK)) {
332 ibp->rvp.n_pkt_drops++;
333 }
334
335 switch (qp->ibqp.qp_type) {
336 case IB_QPT_RC:
337 hfi1_rc_hdrerr(rcd, packet, qp);
338 break;
339 default:
340 /* For now don't handle any other QP types */
341 break;
342 }
343
344 spin_unlock_irqrestore(&qp->r_lock, flags);
345 rcu_read_unlock();
346 } /* Unicast QP */
347 } /* Valid packet with TIDErr */
348
349 /* handle "RcvTypeErr" flags */
350 switch (rte) {
351 case RHF_RTE_ERROR_OP_CODE_ERR:
352 {
353 void *ebuf = NULL;
354 u8 opcode;
355
356 if (rhf_use_egr_bfr(packet->rhf))
357 ebuf = packet->ebuf;
358
359 if (!ebuf)
360 goto drop; /* this should never happen */
361
362 opcode = ib_bth_get_opcode(packet->ohdr);
363 if (opcode == IB_OPCODE_CNP) {
364 /*
365 * Only in pre-B0 h/w is the CNP_OPCODE handled
366 * via this code path.
367 */
368 struct rvt_qp *qp = NULL;
369 u32 lqpn, rqpn;
370 u16 rlid;
371 u8 svc_type, sl, sc5;
372
373 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
374 sl = ibp->sc_to_sl[sc5];
375
376 lqpn = ib_bth_get_qpn(packet->ohdr);
377 rcu_read_lock();
378 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
379 if (!qp) {
380 rcu_read_unlock();
381 goto drop;
382 }
383
384 switch (qp->ibqp.qp_type) {
385 case IB_QPT_UD:
386 rlid = 0;
387 rqpn = 0;
388 svc_type = IB_CC_SVCTYPE_UD;
389 break;
390 case IB_QPT_UC:
391 rlid = ib_get_slid(rhdr);
392 rqpn = qp->remote_qpn;
393 svc_type = IB_CC_SVCTYPE_UC;
394 break;
395 default:
396 rcu_read_unlock();
397 goto drop;
398 }
399
400 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
401 rcu_read_unlock();
402 }
403
404 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
405 break;
406 }
407 default:
408 break;
409 }
410
411 drop:
412 return;
413 }
414
init_packet(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet)415 static inline void init_packet(struct hfi1_ctxtdata *rcd,
416 struct hfi1_packet *packet)
417 {
418 packet->rsize = get_hdrqentsize(rcd); /* words */
419 packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
420 packet->rcd = rcd;
421 packet->updegr = 0;
422 packet->etail = -1;
423 packet->rhf_addr = get_rhf_addr(rcd);
424 packet->rhf = rhf_to_cpu(packet->rhf_addr);
425 packet->rhqoff = hfi1_rcd_head(rcd);
426 packet->numpkt = 0;
427 }
428
429 /* We support only two types - 9B and 16B for now */
430 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
431 [HFI1_PKT_TYPE_9B] = &return_cnp,
432 [HFI1_PKT_TYPE_16B] = &return_cnp_16B
433 };
434
435 /**
436 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
437 * @qp: The packet's destination QP
438 * @pkt: The packet itself.
439 * @prescan: Is the caller the RXQ prescan
440 *
441 * Process the packet's FECN or BECN bits. By now, the packet
442 * has already been evaluated whether processing of those bit should
443 * be done.
444 * The significance of the @prescan argument is that if the caller
445 * is the RXQ prescan, a CNP will be send out instead of waiting for the
446 * normal packet processing to send an ACK with BECN set (or a CNP).
447 */
hfi1_process_ecn_slowpath(struct rvt_qp * qp,struct hfi1_packet * pkt,bool prescan)448 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
449 bool prescan)
450 {
451 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
452 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
453 struct ib_other_headers *ohdr = pkt->ohdr;
454 struct ib_grh *grh = pkt->grh;
455 u32 rqpn = 0;
456 u16 pkey;
457 u32 rlid, slid, dlid = 0;
458 u8 hdr_type, sc, svc_type, opcode;
459 bool is_mcast = false, ignore_fecn = false, do_cnp = false,
460 fecn, becn;
461
462 /* can be called from prescan */
463 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
464 pkey = hfi1_16B_get_pkey(pkt->hdr);
465 sc = hfi1_16B_get_sc(pkt->hdr);
466 dlid = hfi1_16B_get_dlid(pkt->hdr);
467 slid = hfi1_16B_get_slid(pkt->hdr);
468 is_mcast = hfi1_is_16B_mcast(dlid);
469 opcode = ib_bth_get_opcode(ohdr);
470 hdr_type = HFI1_PKT_TYPE_16B;
471 fecn = hfi1_16B_get_fecn(pkt->hdr);
472 becn = hfi1_16B_get_becn(pkt->hdr);
473 } else {
474 pkey = ib_bth_get_pkey(ohdr);
475 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
476 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
477 ppd->lid;
478 slid = ib_get_slid(pkt->hdr);
479 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
480 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
481 opcode = ib_bth_get_opcode(ohdr);
482 hdr_type = HFI1_PKT_TYPE_9B;
483 fecn = ib_bth_get_fecn(ohdr);
484 becn = ib_bth_get_becn(ohdr);
485 }
486
487 switch (qp->ibqp.qp_type) {
488 case IB_QPT_UD:
489 rlid = slid;
490 rqpn = ib_get_sqpn(pkt->ohdr);
491 svc_type = IB_CC_SVCTYPE_UD;
492 break;
493 case IB_QPT_SMI:
494 case IB_QPT_GSI:
495 rlid = slid;
496 rqpn = ib_get_sqpn(pkt->ohdr);
497 svc_type = IB_CC_SVCTYPE_UD;
498 break;
499 case IB_QPT_UC:
500 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
501 rqpn = qp->remote_qpn;
502 svc_type = IB_CC_SVCTYPE_UC;
503 break;
504 case IB_QPT_RC:
505 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
506 rqpn = qp->remote_qpn;
507 svc_type = IB_CC_SVCTYPE_RC;
508 break;
509 default:
510 return false;
511 }
512
513 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
514 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
515 /*
516 * ACKNOWLEDGE packets do not get a CNP but this will be
517 * guarded by ignore_fecn above.
518 */
519 do_cnp = prescan ||
520 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
521 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
522 opcode == TID_OP(READ_RESP) ||
523 opcode == TID_OP(ACK);
524
525 /* Call appropriate CNP handler */
526 if (!ignore_fecn && do_cnp && fecn)
527 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
528 dlid, rlid, sc, grh);
529
530 if (becn) {
531 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
532 u8 sl = ibp->sc_to_sl[sc];
533
534 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
535 }
536 return !ignore_fecn && fecn;
537 }
538
539 struct ps_mdata {
540 struct hfi1_ctxtdata *rcd;
541 u32 rsize;
542 u32 maxcnt;
543 u32 ps_head;
544 u32 ps_tail;
545 u32 ps_seq;
546 };
547
init_ps_mdata(struct ps_mdata * mdata,struct hfi1_packet * packet)548 static inline void init_ps_mdata(struct ps_mdata *mdata,
549 struct hfi1_packet *packet)
550 {
551 struct hfi1_ctxtdata *rcd = packet->rcd;
552
553 mdata->rcd = rcd;
554 mdata->rsize = packet->rsize;
555 mdata->maxcnt = packet->maxcnt;
556 mdata->ps_head = packet->rhqoff;
557
558 if (get_dma_rtail_setting(rcd)) {
559 mdata->ps_tail = get_rcvhdrtail(rcd);
560 if (rcd->ctxt == HFI1_CTRL_CTXT)
561 mdata->ps_seq = hfi1_seq_cnt(rcd);
562 else
563 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
564 } else {
565 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
566 mdata->ps_seq = hfi1_seq_cnt(rcd);
567 }
568 }
569
ps_done(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)570 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
571 struct hfi1_ctxtdata *rcd)
572 {
573 if (get_dma_rtail_setting(rcd))
574 return mdata->ps_head == mdata->ps_tail;
575 return mdata->ps_seq != rhf_rcv_seq(rhf);
576 }
577
ps_skip(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)578 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
579 struct hfi1_ctxtdata *rcd)
580 {
581 /*
582 * Control context can potentially receive an invalid rhf.
583 * Drop such packets.
584 */
585 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
586 return mdata->ps_seq != rhf_rcv_seq(rhf);
587
588 return 0;
589 }
590
update_ps_mdata(struct ps_mdata * mdata,struct hfi1_ctxtdata * rcd)591 static inline void update_ps_mdata(struct ps_mdata *mdata,
592 struct hfi1_ctxtdata *rcd)
593 {
594 mdata->ps_head += mdata->rsize;
595 if (mdata->ps_head >= mdata->maxcnt)
596 mdata->ps_head = 0;
597
598 /* Control context must do seq counting */
599 if (!get_dma_rtail_setting(rcd) ||
600 rcd->ctxt == HFI1_CTRL_CTXT)
601 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
602 }
603
604 /*
605 * prescan_rxq - search through the receive queue looking for packets
606 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
607 * When an ECN is found, process the Congestion Notification, and toggle
608 * it off.
609 * This is declared as a macro to allow quick checking of the port to avoid
610 * the overhead of a function call if not enabled.
611 */
612 #define prescan_rxq(rcd, packet) \
613 do { \
614 if (rcd->ppd->cc_prescan) \
615 __prescan_rxq(packet); \
616 } while (0)
__prescan_rxq(struct hfi1_packet * packet)617 static void __prescan_rxq(struct hfi1_packet *packet)
618 {
619 struct hfi1_ctxtdata *rcd = packet->rcd;
620 struct ps_mdata mdata;
621
622 init_ps_mdata(&mdata, packet);
623
624 while (1) {
625 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
626 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
627 packet->rcd->rhf_offset;
628 struct rvt_qp *qp;
629 struct ib_header *hdr;
630 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
631 u64 rhf = rhf_to_cpu(rhf_addr);
632 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
633 u8 lnh;
634
635 if (ps_done(&mdata, rhf, rcd))
636 break;
637
638 if (ps_skip(&mdata, rhf, rcd))
639 goto next;
640
641 if (etype != RHF_RCV_TYPE_IB)
642 goto next;
643
644 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
645 hdr = packet->hdr;
646 lnh = ib_get_lnh(hdr);
647
648 if (lnh == HFI1_LRH_BTH) {
649 packet->ohdr = &hdr->u.oth;
650 packet->grh = NULL;
651 } else if (lnh == HFI1_LRH_GRH) {
652 packet->ohdr = &hdr->u.l.oth;
653 packet->grh = &hdr->u.l.grh;
654 } else {
655 goto next; /* just in case */
656 }
657
658 if (!hfi1_may_ecn(packet))
659 goto next;
660
661 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
662 qpn = bth1 & RVT_QPN_MASK;
663 rcu_read_lock();
664 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
665
666 if (!qp) {
667 rcu_read_unlock();
668 goto next;
669 }
670
671 hfi1_process_ecn_slowpath(qp, packet, true);
672 rcu_read_unlock();
673
674 /* turn off BECN, FECN */
675 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
676 packet->ohdr->bth[1] = cpu_to_be32(bth1);
677 next:
678 update_ps_mdata(&mdata, rcd);
679 }
680 }
681
process_rcv_qp_work(struct hfi1_packet * packet)682 static void process_rcv_qp_work(struct hfi1_packet *packet)
683 {
684 struct rvt_qp *qp, *nqp;
685 struct hfi1_ctxtdata *rcd = packet->rcd;
686
687 /*
688 * Iterate over all QPs waiting to respond.
689 * The list won't change since the IRQ is only run on one CPU.
690 */
691 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
692 list_del_init(&qp->rspwait);
693 if (qp->r_flags & RVT_R_RSP_NAK) {
694 qp->r_flags &= ~RVT_R_RSP_NAK;
695 packet->qp = qp;
696 hfi1_send_rc_ack(packet, 0);
697 }
698 if (qp->r_flags & RVT_R_RSP_SEND) {
699 unsigned long flags;
700
701 qp->r_flags &= ~RVT_R_RSP_SEND;
702 spin_lock_irqsave(&qp->s_lock, flags);
703 if (ib_rvt_state_ops[qp->state] &
704 RVT_PROCESS_OR_FLUSH_SEND)
705 hfi1_schedule_send(qp);
706 spin_unlock_irqrestore(&qp->s_lock, flags);
707 }
708 rvt_put_qp(qp);
709 }
710 }
711
max_packet_exceeded(struct hfi1_packet * packet,int thread)712 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
713 {
714 if (thread) {
715 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
716 /* allow defered processing */
717 process_rcv_qp_work(packet);
718 cond_resched();
719 return RCV_PKT_OK;
720 } else {
721 this_cpu_inc(*packet->rcd->dd->rcv_limit);
722 return RCV_PKT_LIMIT;
723 }
724 }
725
check_max_packet(struct hfi1_packet * packet,int thread)726 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
727 {
728 int ret = RCV_PKT_OK;
729
730 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
731 ret = max_packet_exceeded(packet, thread);
732 return ret;
733 }
734
skip_rcv_packet(struct hfi1_packet * packet,int thread)735 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
736 {
737 int ret;
738
739 packet->rcd->dd->ctx0_seq_drop++;
740 /* Set up for the next packet */
741 packet->rhqoff += packet->rsize;
742 if (packet->rhqoff >= packet->maxcnt)
743 packet->rhqoff = 0;
744
745 packet->numpkt++;
746 ret = check_max_packet(packet, thread);
747
748 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
749 packet->rcd->rhf_offset;
750 packet->rhf = rhf_to_cpu(packet->rhf_addr);
751
752 return ret;
753 }
754
process_rcv_packet_napi(struct hfi1_packet * packet)755 static void process_rcv_packet_napi(struct hfi1_packet *packet)
756 {
757 packet->etype = rhf_rcv_type(packet->rhf);
758
759 /* total length */
760 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
761 /* retrieve eager buffer details */
762 packet->etail = rhf_egr_index(packet->rhf);
763 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
764 &packet->updegr);
765 /*
766 * Prefetch the contents of the eager buffer. It is
767 * OK to send a negative length to prefetch_range().
768 * The +2 is the size of the RHF.
769 */
770 prefetch_range(packet->ebuf,
771 packet->tlen - ((packet->rcd->rcvhdrqentsize -
772 (rhf_hdrq_offset(packet->rhf)
773 + 2)) * 4));
774
775 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
776 packet->numpkt++;
777
778 /* Set up for the next packet */
779 packet->rhqoff += packet->rsize;
780 if (packet->rhqoff >= packet->maxcnt)
781 packet->rhqoff = 0;
782
783 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
784 packet->rcd->rhf_offset;
785 packet->rhf = rhf_to_cpu(packet->rhf_addr);
786 }
787
process_rcv_packet(struct hfi1_packet * packet,int thread)788 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
789 {
790 int ret;
791
792 packet->etype = rhf_rcv_type(packet->rhf);
793
794 /* total length */
795 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
796 /* retrieve eager buffer details */
797 packet->ebuf = NULL;
798 if (rhf_use_egr_bfr(packet->rhf)) {
799 packet->etail = rhf_egr_index(packet->rhf);
800 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
801 &packet->updegr);
802 /*
803 * Prefetch the contents of the eager buffer. It is
804 * OK to send a negative length to prefetch_range().
805 * The +2 is the size of the RHF.
806 */
807 prefetch_range(packet->ebuf,
808 packet->tlen - ((get_hdrqentsize(packet->rcd) -
809 (rhf_hdrq_offset(packet->rhf)
810 + 2)) * 4));
811 }
812
813 /*
814 * Call a type specific handler for the packet. We
815 * should be able to trust that etype won't be beyond
816 * the range of valid indexes. If so something is really
817 * wrong and we can probably just let things come
818 * crashing down. There is no need to eat another
819 * comparison in this performance critical code.
820 */
821 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
822 packet->numpkt++;
823
824 /* Set up for the next packet */
825 packet->rhqoff += packet->rsize;
826 if (packet->rhqoff >= packet->maxcnt)
827 packet->rhqoff = 0;
828
829 ret = check_max_packet(packet, thread);
830
831 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
832 packet->rcd->rhf_offset;
833 packet->rhf = rhf_to_cpu(packet->rhf_addr);
834
835 return ret;
836 }
837
process_rcv_update(int last,struct hfi1_packet * packet)838 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
839 {
840 /*
841 * Update head regs etc., every 16 packets, if not last pkt,
842 * to help prevent rcvhdrq overflows, when many packets
843 * are processed and queue is nearly full.
844 * Don't request an interrupt for intermediate updates.
845 */
846 if (!last && !(packet->numpkt & 0xf)) {
847 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
848 packet->etail, 0, 0);
849 packet->updegr = 0;
850 }
851 packet->grh = NULL;
852 }
853
finish_packet(struct hfi1_packet * packet)854 static inline void finish_packet(struct hfi1_packet *packet)
855 {
856 /*
857 * Nothing we need to free for the packet.
858 *
859 * The only thing we need to do is a final update and call for an
860 * interrupt
861 */
862 update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
863 packet->etail, rcv_intr_dynamic, packet->numpkt);
864 }
865
866 /*
867 * handle_receive_interrupt_napi_fp - receive a packet
868 * @rcd: the context
869 * @budget: polling budget
870 *
871 * Called from interrupt handler for receive interrupt.
872 * This is the fast path interrupt handler
873 * when executing napi soft irq environment.
874 */
handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata * rcd,int budget)875 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
876 {
877 struct hfi1_packet packet;
878
879 init_packet(rcd, &packet);
880 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
881 goto bail;
882
883 while (packet.numpkt < budget) {
884 process_rcv_packet_napi(&packet);
885 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
886 break;
887
888 process_rcv_update(0, &packet);
889 }
890 hfi1_set_rcd_head(rcd, packet.rhqoff);
891 bail:
892 finish_packet(&packet);
893 return packet.numpkt;
894 }
895
896 /*
897 * Handle receive interrupts when using the no dma rtail option.
898 */
handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata * rcd,int thread)899 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
900 {
901 int last = RCV_PKT_OK;
902 struct hfi1_packet packet;
903
904 init_packet(rcd, &packet);
905 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
906 last = RCV_PKT_DONE;
907 goto bail;
908 }
909
910 prescan_rxq(rcd, &packet);
911
912 while (last == RCV_PKT_OK) {
913 last = process_rcv_packet(&packet, thread);
914 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
915 last = RCV_PKT_DONE;
916 process_rcv_update(last, &packet);
917 }
918 process_rcv_qp_work(&packet);
919 hfi1_set_rcd_head(rcd, packet.rhqoff);
920 bail:
921 finish_packet(&packet);
922 return last;
923 }
924
handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata * rcd,int thread)925 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
926 {
927 u32 hdrqtail;
928 int last = RCV_PKT_OK;
929 struct hfi1_packet packet;
930
931 init_packet(rcd, &packet);
932 hdrqtail = get_rcvhdrtail(rcd);
933 if (packet.rhqoff == hdrqtail) {
934 last = RCV_PKT_DONE;
935 goto bail;
936 }
937 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
938
939 prescan_rxq(rcd, &packet);
940
941 while (last == RCV_PKT_OK) {
942 last = process_rcv_packet(&packet, thread);
943 if (packet.rhqoff == hdrqtail)
944 last = RCV_PKT_DONE;
945 process_rcv_update(last, &packet);
946 }
947 process_rcv_qp_work(&packet);
948 hfi1_set_rcd_head(rcd, packet.rhqoff);
949 bail:
950 finish_packet(&packet);
951 return last;
952 }
953
set_all_fastpath(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)954 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
955 {
956 u16 i;
957
958 /*
959 * For dynamically allocated kernel contexts (like vnic) switch
960 * interrupt handler only for that context. Otherwise, switch
961 * interrupt handler for all statically allocated kernel contexts.
962 */
963 if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
964 hfi1_rcd_get(rcd);
965 hfi1_set_fast(rcd);
966 hfi1_rcd_put(rcd);
967 return;
968 }
969
970 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
971 rcd = hfi1_rcd_get_by_index(dd, i);
972 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
973 hfi1_set_fast(rcd);
974 hfi1_rcd_put(rcd);
975 }
976 }
977
set_all_slowpath(struct hfi1_devdata * dd)978 void set_all_slowpath(struct hfi1_devdata *dd)
979 {
980 struct hfi1_ctxtdata *rcd;
981 u16 i;
982
983 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
984 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
985 rcd = hfi1_rcd_get_by_index(dd, i);
986 if (!rcd)
987 continue;
988 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
989 rcd->do_interrupt = rcd->slow_handler;
990
991 hfi1_rcd_put(rcd);
992 }
993 }
994
__set_armed_to_active(struct hfi1_packet * packet)995 static bool __set_armed_to_active(struct hfi1_packet *packet)
996 {
997 u8 etype = rhf_rcv_type(packet->rhf);
998 u8 sc = SC15_PACKET;
999
1000 if (etype == RHF_RCV_TYPE_IB) {
1001 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
1002 packet->rhf_addr);
1003 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1004 } else if (etype == RHF_RCV_TYPE_BYPASS) {
1005 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
1006 packet->rcd,
1007 packet->rhf_addr);
1008 sc = hfi1_16B_get_sc(hdr);
1009 }
1010 if (sc != SC15_PACKET) {
1011 int hwstate = driver_lstate(packet->rcd->ppd);
1012 struct work_struct *lsaw =
1013 &packet->rcd->ppd->linkstate_active_work;
1014
1015 if (hwstate != IB_PORT_ACTIVE) {
1016 dd_dev_info(packet->rcd->dd,
1017 "Unexpected link state %s\n",
1018 opa_lstate_name(hwstate));
1019 return false;
1020 }
1021
1022 queue_work(packet->rcd->ppd->link_wq, lsaw);
1023 return true;
1024 }
1025 return false;
1026 }
1027
1028 /**
1029 * armed to active - the fast path for armed to active
1030 * @packet: the packet structure
1031 *
1032 * Return true if packet processing needs to bail.
1033 */
set_armed_to_active(struct hfi1_packet * packet)1034 static bool set_armed_to_active(struct hfi1_packet *packet)
1035 {
1036 if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
1037 return false;
1038 return __set_armed_to_active(packet);
1039 }
1040
1041 /*
1042 * handle_receive_interrupt - receive a packet
1043 * @rcd: the context
1044 *
1045 * Called from interrupt handler for errors or receive interrupt.
1046 * This is the slow path interrupt handler.
1047 */
handle_receive_interrupt(struct hfi1_ctxtdata * rcd,int thread)1048 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1049 {
1050 struct hfi1_devdata *dd = rcd->dd;
1051 u32 hdrqtail;
1052 int needset, last = RCV_PKT_OK;
1053 struct hfi1_packet packet;
1054 int skip_pkt = 0;
1055
1056 /* Control context will always use the slow path interrupt handler */
1057 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1058
1059 init_packet(rcd, &packet);
1060
1061 if (!get_dma_rtail_setting(rcd)) {
1062 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1063 last = RCV_PKT_DONE;
1064 goto bail;
1065 }
1066 hdrqtail = 0;
1067 } else {
1068 hdrqtail = get_rcvhdrtail(rcd);
1069 if (packet.rhqoff == hdrqtail) {
1070 last = RCV_PKT_DONE;
1071 goto bail;
1072 }
1073 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1074
1075 /*
1076 * Control context can potentially receive an invalid
1077 * rhf. Drop such packets.
1078 */
1079 if (rcd->ctxt == HFI1_CTRL_CTXT)
1080 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1081 skip_pkt = 1;
1082 }
1083
1084 prescan_rxq(rcd, &packet);
1085
1086 while (last == RCV_PKT_OK) {
1087 if (hfi1_need_drop(dd)) {
1088 /* On to the next packet */
1089 packet.rhqoff += packet.rsize;
1090 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1091 packet.rhqoff +
1092 rcd->rhf_offset;
1093 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1094
1095 } else if (skip_pkt) {
1096 last = skip_rcv_packet(&packet, thread);
1097 skip_pkt = 0;
1098 } else {
1099 if (set_armed_to_active(&packet))
1100 goto bail;
1101 last = process_rcv_packet(&packet, thread);
1102 }
1103
1104 if (!get_dma_rtail_setting(rcd)) {
1105 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1106 last = RCV_PKT_DONE;
1107 } else {
1108 if (packet.rhqoff == hdrqtail)
1109 last = RCV_PKT_DONE;
1110 /*
1111 * Control context can potentially receive an invalid
1112 * rhf. Drop such packets.
1113 */
1114 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1115 bool lseq;
1116
1117 lseq = hfi1_seq_incr(rcd,
1118 rhf_rcv_seq(packet.rhf));
1119 if (!last && lseq)
1120 skip_pkt = 1;
1121 }
1122 }
1123
1124 if (needset) {
1125 needset = false;
1126 set_all_fastpath(dd, rcd);
1127 }
1128 process_rcv_update(last, &packet);
1129 }
1130
1131 process_rcv_qp_work(&packet);
1132 hfi1_set_rcd_head(rcd, packet.rhqoff);
1133
1134 bail:
1135 /*
1136 * Always write head at end, and setup rcv interrupt, even
1137 * if no packets were processed.
1138 */
1139 finish_packet(&packet);
1140 return last;
1141 }
1142
1143 /*
1144 * handle_receive_interrupt_napi_sp - receive a packet
1145 * @rcd: the context
1146 * @budget: polling budget
1147 *
1148 * Called from interrupt handler for errors or receive interrupt.
1149 * This is the slow path interrupt handler
1150 * when executing napi soft irq environment.
1151 */
handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata * rcd,int budget)1152 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1153 {
1154 struct hfi1_devdata *dd = rcd->dd;
1155 int last = RCV_PKT_OK;
1156 bool needset = true;
1157 struct hfi1_packet packet;
1158
1159 init_packet(rcd, &packet);
1160 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1161 goto bail;
1162
1163 while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1164 if (hfi1_need_drop(dd)) {
1165 /* On to the next packet */
1166 packet.rhqoff += packet.rsize;
1167 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1168 packet.rhqoff +
1169 rcd->rhf_offset;
1170 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1171
1172 } else {
1173 if (set_armed_to_active(&packet))
1174 goto bail;
1175 process_rcv_packet_napi(&packet);
1176 }
1177
1178 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1179 last = RCV_PKT_DONE;
1180
1181 if (needset) {
1182 needset = false;
1183 set_all_fastpath(dd, rcd);
1184 }
1185
1186 process_rcv_update(last, &packet);
1187 }
1188
1189 hfi1_set_rcd_head(rcd, packet.rhqoff);
1190
1191 bail:
1192 /*
1193 * Always write head at end, and setup rcv interrupt, even
1194 * if no packets were processed.
1195 */
1196 finish_packet(&packet);
1197 return packet.numpkt;
1198 }
1199
1200 /*
1201 * We may discover in the interrupt that the hardware link state has
1202 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1203 * and we need to update the driver's notion of the link state. We cannot
1204 * run set_link_state from interrupt context, so we queue this function on
1205 * a workqueue.
1206 *
1207 * We delay the regular interrupt processing until after the state changes
1208 * so that the link will be in the correct state by the time any application
1209 * we wake up attempts to send a reply to any message it received.
1210 * (Subsequent receive interrupts may possibly force the wakeup before we
1211 * update the link state.)
1212 *
1213 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1214 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1215 * so we're safe from use-after-free of the rcd.
1216 */
receive_interrupt_work(struct work_struct * work)1217 void receive_interrupt_work(struct work_struct *work)
1218 {
1219 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1220 linkstate_active_work);
1221 struct hfi1_devdata *dd = ppd->dd;
1222 struct hfi1_ctxtdata *rcd;
1223 u16 i;
1224
1225 /* Received non-SC15 packet implies neighbor_normal */
1226 ppd->neighbor_normal = 1;
1227 set_link_state(ppd, HLS_UP_ACTIVE);
1228
1229 /*
1230 * Interrupt all statically allocated kernel contexts that could
1231 * have had an interrupt during auto activation.
1232 */
1233 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1234 rcd = hfi1_rcd_get_by_index(dd, i);
1235 if (rcd)
1236 force_recv_intr(rcd);
1237 hfi1_rcd_put(rcd);
1238 }
1239 }
1240
1241 /*
1242 * Convert a given MTU size to the on-wire MAD packet enumeration.
1243 * Return -1 if the size is invalid.
1244 */
mtu_to_enum(u32 mtu,int default_if_bad)1245 int mtu_to_enum(u32 mtu, int default_if_bad)
1246 {
1247 switch (mtu) {
1248 case 0: return OPA_MTU_0;
1249 case 256: return OPA_MTU_256;
1250 case 512: return OPA_MTU_512;
1251 case 1024: return OPA_MTU_1024;
1252 case 2048: return OPA_MTU_2048;
1253 case 4096: return OPA_MTU_4096;
1254 case 8192: return OPA_MTU_8192;
1255 case 10240: return OPA_MTU_10240;
1256 }
1257 return default_if_bad;
1258 }
1259
enum_to_mtu(int mtu)1260 u16 enum_to_mtu(int mtu)
1261 {
1262 switch (mtu) {
1263 case OPA_MTU_0: return 0;
1264 case OPA_MTU_256: return 256;
1265 case OPA_MTU_512: return 512;
1266 case OPA_MTU_1024: return 1024;
1267 case OPA_MTU_2048: return 2048;
1268 case OPA_MTU_4096: return 4096;
1269 case OPA_MTU_8192: return 8192;
1270 case OPA_MTU_10240: return 10240;
1271 default: return 0xffff;
1272 }
1273 }
1274
1275 /*
1276 * set_mtu - set the MTU
1277 * @ppd: the per port data
1278 *
1279 * We can handle "any" incoming size, the issue here is whether we
1280 * need to restrict our outgoing size. We do not deal with what happens
1281 * to programs that are already running when the size changes.
1282 */
set_mtu(struct hfi1_pportdata * ppd)1283 int set_mtu(struct hfi1_pportdata *ppd)
1284 {
1285 struct hfi1_devdata *dd = ppd->dd;
1286 int i, drain, ret = 0, is_up = 0;
1287
1288 ppd->ibmtu = 0;
1289 for (i = 0; i < ppd->vls_supported; i++)
1290 if (ppd->ibmtu < dd->vld[i].mtu)
1291 ppd->ibmtu = dd->vld[i].mtu;
1292 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1293
1294 mutex_lock(&ppd->hls_lock);
1295 if (ppd->host_link_state == HLS_UP_INIT ||
1296 ppd->host_link_state == HLS_UP_ARMED ||
1297 ppd->host_link_state == HLS_UP_ACTIVE)
1298 is_up = 1;
1299
1300 drain = !is_ax(dd) && is_up;
1301
1302 if (drain)
1303 /*
1304 * MTU is specified per-VL. To ensure that no packet gets
1305 * stuck (due, e.g., to the MTU for the packet's VL being
1306 * reduced), empty the per-VL FIFOs before adjusting MTU.
1307 */
1308 ret = stop_drain_data_vls(dd);
1309
1310 if (ret) {
1311 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1312 __func__);
1313 goto err;
1314 }
1315
1316 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1317
1318 if (drain)
1319 open_fill_data_vls(dd); /* reopen all VLs */
1320
1321 err:
1322 mutex_unlock(&ppd->hls_lock);
1323
1324 return ret;
1325 }
1326
hfi1_set_lid(struct hfi1_pportdata * ppd,u32 lid,u8 lmc)1327 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1328 {
1329 struct hfi1_devdata *dd = ppd->dd;
1330
1331 ppd->lid = lid;
1332 ppd->lmc = lmc;
1333 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1334
1335 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1336
1337 return 0;
1338 }
1339
shutdown_led_override(struct hfi1_pportdata * ppd)1340 void shutdown_led_override(struct hfi1_pportdata *ppd)
1341 {
1342 struct hfi1_devdata *dd = ppd->dd;
1343
1344 /*
1345 * This pairs with the memory barrier in hfi1_start_led_override to
1346 * ensure that we read the correct state of LED beaconing represented
1347 * by led_override_timer_active
1348 */
1349 smp_rmb();
1350 if (atomic_read(&ppd->led_override_timer_active)) {
1351 del_timer_sync(&ppd->led_override_timer);
1352 atomic_set(&ppd->led_override_timer_active, 0);
1353 /* Ensure the atomic_set is visible to all CPUs */
1354 smp_wmb();
1355 }
1356
1357 /* Hand control of the LED to the DC for normal operation */
1358 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1359 }
1360
run_led_override(struct timer_list * t)1361 static void run_led_override(struct timer_list *t)
1362 {
1363 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1364 struct hfi1_devdata *dd = ppd->dd;
1365 unsigned long timeout;
1366 int phase_idx;
1367
1368 if (!(dd->flags & HFI1_INITTED))
1369 return;
1370
1371 phase_idx = ppd->led_override_phase & 1;
1372
1373 setextled(dd, phase_idx);
1374
1375 timeout = ppd->led_override_vals[phase_idx];
1376
1377 /* Set up for next phase */
1378 ppd->led_override_phase = !ppd->led_override_phase;
1379
1380 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1381 }
1382
1383 /*
1384 * To have the LED blink in a particular pattern, provide timeon and timeoff
1385 * in milliseconds.
1386 * To turn off custom blinking and return to normal operation, use
1387 * shutdown_led_override()
1388 */
hfi1_start_led_override(struct hfi1_pportdata * ppd,unsigned int timeon,unsigned int timeoff)1389 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1390 unsigned int timeoff)
1391 {
1392 if (!(ppd->dd->flags & HFI1_INITTED))
1393 return;
1394
1395 /* Convert to jiffies for direct use in timer */
1396 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1397 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1398
1399 /* Arbitrarily start from LED on phase */
1400 ppd->led_override_phase = 1;
1401
1402 /*
1403 * If the timer has not already been started, do so. Use a "quick"
1404 * timeout so the handler will be called soon to look at our request.
1405 */
1406 if (!timer_pending(&ppd->led_override_timer)) {
1407 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1408 ppd->led_override_timer.expires = jiffies + 1;
1409 add_timer(&ppd->led_override_timer);
1410 atomic_set(&ppd->led_override_timer_active, 1);
1411 /* Ensure the atomic_set is visible to all CPUs */
1412 smp_wmb();
1413 }
1414 }
1415
1416 /**
1417 * hfi1_reset_device - reset the chip if possible
1418 * @unit: the device to reset
1419 *
1420 * Whether or not reset is successful, we attempt to re-initialize the chip
1421 * (that is, much like a driver unload/reload). We clear the INITTED flag
1422 * so that the various entry points will fail until we reinitialize. For
1423 * now, we only allow this if no user contexts are open that use chip resources
1424 */
hfi1_reset_device(int unit)1425 int hfi1_reset_device(int unit)
1426 {
1427 int ret;
1428 struct hfi1_devdata *dd = hfi1_lookup(unit);
1429 struct hfi1_pportdata *ppd;
1430 int pidx;
1431
1432 if (!dd) {
1433 ret = -ENODEV;
1434 goto bail;
1435 }
1436
1437 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1438
1439 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1440 dd_dev_info(dd,
1441 "Invalid unit number %u or not initialized or not present\n",
1442 unit);
1443 ret = -ENXIO;
1444 goto bail;
1445 }
1446
1447 /* If there are any user/vnic contexts, we cannot reset */
1448 mutex_lock(&hfi1_mutex);
1449 if (dd->rcd)
1450 if (hfi1_stats.sps_ctxts) {
1451 mutex_unlock(&hfi1_mutex);
1452 ret = -EBUSY;
1453 goto bail;
1454 }
1455 mutex_unlock(&hfi1_mutex);
1456
1457 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1458 ppd = dd->pport + pidx;
1459
1460 shutdown_led_override(ppd);
1461 }
1462 if (dd->flags & HFI1_HAS_SEND_DMA)
1463 sdma_exit(dd);
1464
1465 hfi1_reset_cpu_counters(dd);
1466
1467 ret = hfi1_init(dd, 1);
1468
1469 if (ret)
1470 dd_dev_err(dd,
1471 "Reinitialize unit %u after reset failed with %d\n",
1472 unit, ret);
1473 else
1474 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1475 unit);
1476
1477 bail:
1478 return ret;
1479 }
1480
hfi1_setup_ib_header(struct hfi1_packet * packet)1481 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1482 {
1483 packet->hdr = (struct hfi1_ib_message_header *)
1484 hfi1_get_msgheader(packet->rcd,
1485 packet->rhf_addr);
1486 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1487 }
1488
hfi1_bypass_ingress_pkt_check(struct hfi1_packet * packet)1489 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1490 {
1491 struct hfi1_pportdata *ppd = packet->rcd->ppd;
1492
1493 /* slid and dlid cannot be 0 */
1494 if ((!packet->slid) || (!packet->dlid))
1495 return -EINVAL;
1496
1497 /* Compare port lid with incoming packet dlid */
1498 if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1499 (packet->dlid !=
1500 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1501 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1502 return -EINVAL;
1503 }
1504
1505 /* No multicast packets with SC15 */
1506 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1507 return -EINVAL;
1508
1509 /* Packets with permissive DLID always on SC15 */
1510 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1511 16B)) &&
1512 (packet->sc != 0xF))
1513 return -EINVAL;
1514
1515 return 0;
1516 }
1517
hfi1_setup_9B_packet(struct hfi1_packet * packet)1518 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1519 {
1520 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1521 struct ib_header *hdr;
1522 u8 lnh;
1523
1524 hfi1_setup_ib_header(packet);
1525 hdr = packet->hdr;
1526
1527 lnh = ib_get_lnh(hdr);
1528 if (lnh == HFI1_LRH_BTH) {
1529 packet->ohdr = &hdr->u.oth;
1530 packet->grh = NULL;
1531 } else if (lnh == HFI1_LRH_GRH) {
1532 u32 vtf;
1533
1534 packet->ohdr = &hdr->u.l.oth;
1535 packet->grh = &hdr->u.l.grh;
1536 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1537 goto drop;
1538 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1539 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1540 goto drop;
1541 } else {
1542 goto drop;
1543 }
1544
1545 /* Query commonly used fields from packet header */
1546 packet->payload = packet->ebuf;
1547 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1548 packet->slid = ib_get_slid(hdr);
1549 packet->dlid = ib_get_dlid(hdr);
1550 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1551 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1552 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1553 be16_to_cpu(IB_MULTICAST_LID_BASE);
1554 packet->sl = ib_get_sl(hdr);
1555 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1556 packet->pad = ib_bth_get_pad(packet->ohdr);
1557 packet->extra_byte = 0;
1558 packet->pkey = ib_bth_get_pkey(packet->ohdr);
1559 packet->migrated = ib_bth_is_migration(packet->ohdr);
1560
1561 return 0;
1562 drop:
1563 ibp->rvp.n_pkt_drops++;
1564 return -EINVAL;
1565 }
1566
hfi1_setup_bypass_packet(struct hfi1_packet * packet)1567 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1568 {
1569 /*
1570 * Bypass packets have a different header/payload split
1571 * compared to an IB packet.
1572 * Current split is set such that 16 bytes of the actual
1573 * header is in the header buffer and the remining is in
1574 * the eager buffer. We chose 16 since hfi1 driver only
1575 * supports 16B bypass packets and we will be able to
1576 * receive the entire LRH with such a split.
1577 */
1578
1579 struct hfi1_ctxtdata *rcd = packet->rcd;
1580 struct hfi1_pportdata *ppd = rcd->ppd;
1581 struct hfi1_ibport *ibp = &ppd->ibport_data;
1582 u8 l4;
1583
1584 packet->hdr = (struct hfi1_16b_header *)
1585 hfi1_get_16B_header(packet->rcd,
1586 packet->rhf_addr);
1587 l4 = hfi1_16B_get_l4(packet->hdr);
1588 if (l4 == OPA_16B_L4_IB_LOCAL) {
1589 packet->ohdr = packet->ebuf;
1590 packet->grh = NULL;
1591 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1592 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1593 /* hdr_len_by_opcode already has an IB LRH factored in */
1594 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1595 (LRH_16B_BYTES - LRH_9B_BYTES);
1596 packet->migrated = opa_bth_is_migration(packet->ohdr);
1597 } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1598 u32 vtf;
1599 u8 grh_len = sizeof(struct ib_grh);
1600
1601 packet->ohdr = packet->ebuf + grh_len;
1602 packet->grh = packet->ebuf;
1603 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1604 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1605 /* hdr_len_by_opcode already has an IB LRH factored in */
1606 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1607 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1608 packet->migrated = opa_bth_is_migration(packet->ohdr);
1609
1610 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1611 goto drop;
1612 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1613 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1614 goto drop;
1615 } else if (l4 == OPA_16B_L4_FM) {
1616 packet->mgmt = packet->ebuf;
1617 packet->ohdr = NULL;
1618 packet->grh = NULL;
1619 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1620 packet->pad = OPA_16B_L4_FM_PAD;
1621 packet->hlen = OPA_16B_L4_FM_HLEN;
1622 packet->migrated = false;
1623 } else {
1624 goto drop;
1625 }
1626
1627 /* Query commonly used fields from packet header */
1628 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1629 packet->slid = hfi1_16B_get_slid(packet->hdr);
1630 packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1631 if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1632 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1633 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1634 16B);
1635 packet->sc = hfi1_16B_get_sc(packet->hdr);
1636 packet->sl = ibp->sc_to_sl[packet->sc];
1637 packet->extra_byte = SIZE_OF_LT;
1638 packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1639
1640 if (hfi1_bypass_ingress_pkt_check(packet))
1641 goto drop;
1642
1643 return 0;
1644 drop:
1645 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1646 ibp->rvp.n_pkt_drops++;
1647 return -EINVAL;
1648 }
1649
show_eflags_errs(struct hfi1_packet * packet)1650 static void show_eflags_errs(struct hfi1_packet *packet)
1651 {
1652 struct hfi1_ctxtdata *rcd = packet->rcd;
1653 u32 rte = rhf_rcv_type_err(packet->rhf);
1654
1655 dd_dev_err(rcd->dd,
1656 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1657 rcd->ctxt, packet->rhf,
1658 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1659 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1660 packet->rhf & RHF_DC_ERR ? "dc " : "",
1661 packet->rhf & RHF_TID_ERR ? "tid " : "",
1662 packet->rhf & RHF_LEN_ERR ? "len " : "",
1663 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1664 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1665 rte);
1666 }
1667
handle_eflags(struct hfi1_packet * packet)1668 void handle_eflags(struct hfi1_packet *packet)
1669 {
1670 struct hfi1_ctxtdata *rcd = packet->rcd;
1671
1672 rcv_hdrerr(rcd, rcd->ppd, packet);
1673 if (rhf_err_flags(packet->rhf))
1674 show_eflags_errs(packet);
1675 }
1676
hfi1_ipoib_ib_rcv(struct hfi1_packet * packet)1677 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1678 {
1679 struct hfi1_ibport *ibp;
1680 struct net_device *netdev;
1681 struct hfi1_ctxtdata *rcd = packet->rcd;
1682 struct napi_struct *napi = rcd->napi;
1683 struct sk_buff *skb;
1684 struct hfi1_netdev_rxq *rxq = container_of(napi,
1685 struct hfi1_netdev_rxq, napi);
1686 u32 extra_bytes;
1687 u32 tlen, qpnum;
1688 bool do_work, do_cnp;
1689 struct hfi1_ipoib_dev_priv *priv;
1690
1691 trace_hfi1_rcvhdr(packet);
1692
1693 hfi1_setup_ib_header(packet);
1694
1695 packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1696 packet->grh = NULL;
1697
1698 if (unlikely(rhf_err_flags(packet->rhf))) {
1699 handle_eflags(packet);
1700 return;
1701 }
1702
1703 qpnum = ib_bth_get_qpn(packet->ohdr);
1704 netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1705 if (!netdev)
1706 goto drop_no_nd;
1707
1708 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1709 trace_ctxt_rsm_hist(rcd->ctxt);
1710
1711 /* handle congestion notifications */
1712 do_work = hfi1_may_ecn(packet);
1713 if (unlikely(do_work)) {
1714 do_cnp = (packet->opcode != IB_OPCODE_CNP);
1715 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1716 packet, do_cnp);
1717 }
1718
1719 /*
1720 * We have split point after last byte of DETH
1721 * lets strip padding and CRC and ICRC.
1722 * tlen is whole packet len so we need to
1723 * subtract header size as well.
1724 */
1725 tlen = packet->tlen;
1726 extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1727 packet->hlen;
1728 if (unlikely(tlen < extra_bytes))
1729 goto drop;
1730
1731 tlen -= extra_bytes;
1732
1733 skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1734 if (unlikely(!skb))
1735 goto drop;
1736
1737 priv = hfi1_ipoib_priv(netdev);
1738 hfi1_ipoib_update_rx_netstats(priv, 1, skb->len);
1739
1740 skb->dev = netdev;
1741 skb->pkt_type = PACKET_HOST;
1742 netif_receive_skb(skb);
1743
1744 return;
1745
1746 drop:
1747 ++netdev->stats.rx_dropped;
1748 drop_no_nd:
1749 ibp = rcd_to_iport(packet->rcd);
1750 ++ibp->rvp.n_pkt_drops;
1751 }
1752
1753 /*
1754 * The following functions are called by the interrupt handler. They are type
1755 * specific handlers for each packet type.
1756 */
process_receive_ib(struct hfi1_packet * packet)1757 static void process_receive_ib(struct hfi1_packet *packet)
1758 {
1759 if (hfi1_setup_9B_packet(packet))
1760 return;
1761
1762 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1763 return;
1764
1765 trace_hfi1_rcvhdr(packet);
1766
1767 if (unlikely(rhf_err_flags(packet->rhf))) {
1768 handle_eflags(packet);
1769 return;
1770 }
1771
1772 hfi1_ib_rcv(packet);
1773 }
1774
process_receive_bypass(struct hfi1_packet * packet)1775 static void process_receive_bypass(struct hfi1_packet *packet)
1776 {
1777 struct hfi1_devdata *dd = packet->rcd->dd;
1778
1779 if (hfi1_setup_bypass_packet(packet))
1780 return;
1781
1782 trace_hfi1_rcvhdr(packet);
1783
1784 if (unlikely(rhf_err_flags(packet->rhf))) {
1785 handle_eflags(packet);
1786 return;
1787 }
1788
1789 if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1790 hfi1_16B_rcv(packet);
1791 } else {
1792 dd_dev_err(dd,
1793 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1794 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1795 if (!(dd->err_info_rcvport.status_and_code &
1796 OPA_EI_STATUS_SMASK)) {
1797 u64 *flits = packet->ebuf;
1798
1799 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1800 dd->err_info_rcvport.packet_flit1 = flits[0];
1801 dd->err_info_rcvport.packet_flit2 =
1802 packet->tlen > sizeof(flits[0]) ?
1803 flits[1] : 0;
1804 }
1805 dd->err_info_rcvport.status_and_code |=
1806 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1807 }
1808 }
1809 }
1810
process_receive_error(struct hfi1_packet * packet)1811 static void process_receive_error(struct hfi1_packet *packet)
1812 {
1813 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1814 if (unlikely(
1815 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1816 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1817 packet->rhf & RHF_DC_ERR)))
1818 return;
1819
1820 hfi1_setup_ib_header(packet);
1821 handle_eflags(packet);
1822
1823 if (unlikely(rhf_err_flags(packet->rhf)))
1824 dd_dev_err(packet->rcd->dd,
1825 "Unhandled error packet received. Dropping.\n");
1826 }
1827
kdeth_process_expected(struct hfi1_packet * packet)1828 static void kdeth_process_expected(struct hfi1_packet *packet)
1829 {
1830 hfi1_setup_9B_packet(packet);
1831 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1832 return;
1833
1834 if (unlikely(rhf_err_flags(packet->rhf))) {
1835 struct hfi1_ctxtdata *rcd = packet->rcd;
1836
1837 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1838 return;
1839 }
1840
1841 hfi1_kdeth_expected_rcv(packet);
1842 }
1843
kdeth_process_eager(struct hfi1_packet * packet)1844 static void kdeth_process_eager(struct hfi1_packet *packet)
1845 {
1846 hfi1_setup_9B_packet(packet);
1847 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1848 return;
1849
1850 trace_hfi1_rcvhdr(packet);
1851 if (unlikely(rhf_err_flags(packet->rhf))) {
1852 struct hfi1_ctxtdata *rcd = packet->rcd;
1853
1854 show_eflags_errs(packet);
1855 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1856 return;
1857 }
1858
1859 hfi1_kdeth_eager_rcv(packet);
1860 }
1861
process_receive_invalid(struct hfi1_packet * packet)1862 static void process_receive_invalid(struct hfi1_packet *packet)
1863 {
1864 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1865 rhf_rcv_type(packet->rhf));
1866 }
1867
1868 #define HFI1_RCVHDR_DUMP_MAX 5
1869
seqfile_dump_rcd(struct seq_file * s,struct hfi1_ctxtdata * rcd)1870 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1871 {
1872 struct hfi1_packet packet;
1873 struct ps_mdata mdata;
1874 int i;
1875
1876 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n",
1877 rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1878 get_dma_rtail_setting(rcd) ?
1879 "dma_rtail" : "nodma_rtail",
1880 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1881 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1882 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1883 RCV_HDR_HEAD_HEAD_MASK,
1884 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1885 rcd->head);
1886
1887 init_packet(rcd, &packet);
1888 init_ps_mdata(&mdata, &packet);
1889
1890 for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1891 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1892 rcd->rhf_offset;
1893 struct ib_header *hdr;
1894 u64 rhf = rhf_to_cpu(rhf_addr);
1895 u32 etype = rhf_rcv_type(rhf), qpn;
1896 u8 opcode;
1897 u32 psn;
1898 u8 lnh;
1899
1900 if (ps_done(&mdata, rhf, rcd))
1901 break;
1902
1903 if (ps_skip(&mdata, rhf, rcd))
1904 goto next;
1905
1906 if (etype > RHF_RCV_TYPE_IB)
1907 goto next;
1908
1909 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1910 hdr = packet.hdr;
1911
1912 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1913
1914 if (lnh == HFI1_LRH_BTH)
1915 packet.ohdr = &hdr->u.oth;
1916 else if (lnh == HFI1_LRH_GRH)
1917 packet.ohdr = &hdr->u.l.oth;
1918 else
1919 goto next; /* just in case */
1920
1921 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1922 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1923 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1924
1925 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1926 mdata.ps_head, opcode, qpn, psn);
1927 next:
1928 update_ps_mdata(&mdata, rcd);
1929 }
1930 }
1931
1932 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1933 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1934 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1935 [RHF_RCV_TYPE_IB] = process_receive_ib,
1936 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1937 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1938 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1939 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1940 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1941 };
1942
1943 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1944 [RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1945 [RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1946 [RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1947 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1948 [RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1949 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1950 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1951 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1952 };
1953