1 /*
2  * Copyright(c) 2015-2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 #include <linux/etherdevice.h>
58 
59 #include "hfi.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "sdma.h"
63 #include "debugfs.h"
64 #include "vnic.h"
65 #include "fault.h"
66 
67 #include "ipoib.h"
68 #include "netdev.h"
69 
70 #undef pr_fmt
71 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
72 
73 /*
74  * The size has to be longer than this string, so we can append
75  * board/chip information to it in the initialization code.
76  */
77 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
78 
79 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
80 
81 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
82 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
84 		 HFI1_DEFAULT_MAX_MTU));
85 
86 unsigned int hfi1_cu = 1;
87 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
88 MODULE_PARM_DESC(cu, "Credit return units");
89 
90 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
91 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
92 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
93 static const struct kernel_param_ops cap_ops = {
94 	.set = hfi1_caps_set,
95 	.get = hfi1_caps_get
96 };
97 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
98 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
99 
100 MODULE_LICENSE("Dual BSD/GPL");
101 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
102 
103 /*
104  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
105  */
106 #define MAX_PKT_RECV 64
107 /*
108  * MAX_PKT_THREAD_RCV is the max # of packets processed before
109  * the qp_wait_list queue is flushed.
110  */
111 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
112 #define EGR_HEAD_UPDATE_THRESHOLD 16
113 
114 struct hfi1_ib_stats hfi1_stats;
115 
hfi1_caps_set(const char * val,const struct kernel_param * kp)116 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
117 {
118 	int ret = 0;
119 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
120 		cap_mask = *cap_mask_ptr, value, diff,
121 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
122 			      HFI1_CAP_WRITABLE_MASK);
123 
124 	ret = kstrtoul(val, 0, &value);
125 	if (ret) {
126 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
127 		goto done;
128 	}
129 	/* Get the changed bits (except the locked bit) */
130 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
131 
132 	/* Remove any bits that are not allowed to change after driver load */
133 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
134 		pr_warn("Ignoring non-writable capability bits %#lx\n",
135 			diff & ~write_mask);
136 		diff &= write_mask;
137 	}
138 
139 	/* Mask off any reserved bits */
140 	diff &= ~HFI1_CAP_RESERVED_MASK;
141 	/* Clear any previously set and changing bits */
142 	cap_mask &= ~diff;
143 	/* Update the bits with the new capability */
144 	cap_mask |= (value & diff);
145 	/* Check for any kernel/user restrictions */
146 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
147 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
148 	cap_mask &= ~diff;
149 	/* Set the bitmask to the final set */
150 	*cap_mask_ptr = cap_mask;
151 done:
152 	return ret;
153 }
154 
hfi1_caps_get(char * buffer,const struct kernel_param * kp)155 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
156 {
157 	unsigned long cap_mask = *(unsigned long *)kp->arg;
158 
159 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
160 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
161 
162 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
163 }
164 
get_pci_dev(struct rvt_dev_info * rdi)165 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
166 {
167 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
168 	struct hfi1_devdata *dd = container_of(ibdev,
169 					       struct hfi1_devdata, verbs_dev);
170 	return dd->pcidev;
171 }
172 
173 /*
174  * Return count of units with at least one port ACTIVE.
175  */
hfi1_count_active_units(void)176 int hfi1_count_active_units(void)
177 {
178 	struct hfi1_devdata *dd;
179 	struct hfi1_pportdata *ppd;
180 	unsigned long index, flags;
181 	int pidx, nunits_active = 0;
182 
183 	xa_lock_irqsave(&hfi1_dev_table, flags);
184 	xa_for_each(&hfi1_dev_table, index, dd) {
185 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
186 			continue;
187 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
188 			ppd = dd->pport + pidx;
189 			if (ppd->lid && ppd->linkup) {
190 				nunits_active++;
191 				break;
192 			}
193 		}
194 	}
195 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
196 	return nunits_active;
197 }
198 
199 /*
200  * Get address of eager buffer from it's index (allocated in chunks, not
201  * contiguous).
202  */
get_egrbuf(const struct hfi1_ctxtdata * rcd,u64 rhf,u8 * update)203 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
204 			       u8 *update)
205 {
206 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
207 
208 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
209 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
210 			(offset * RCV_BUF_BLOCK_SIZE));
211 }
212 
hfi1_get_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)213 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
214 				    __le32 *rhf_addr)
215 {
216 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
217 
218 	return (void *)(rhf_addr - rcd->rhf_offset + offset);
219 }
220 
hfi1_get_msgheader(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)221 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
222 						   __le32 *rhf_addr)
223 {
224 	return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
225 }
226 
227 static inline struct hfi1_16b_header
hfi1_get_16B_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)228 		*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
229 				     __le32 *rhf_addr)
230 {
231 	return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
232 }
233 
234 /*
235  * Validate and encode the a given RcvArray Buffer size.
236  * The function will check whether the given size falls within
237  * allowed size ranges for the respective type and, optionally,
238  * return the proper encoding.
239  */
hfi1_rcvbuf_validate(u32 size,u8 type,u16 * encoded)240 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
241 {
242 	if (unlikely(!PAGE_ALIGNED(size)))
243 		return 0;
244 	if (unlikely(size < MIN_EAGER_BUFFER))
245 		return 0;
246 	if (size >
247 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
248 		return 0;
249 	if (encoded)
250 		*encoded = ilog2(size / PAGE_SIZE) + 1;
251 	return 1;
252 }
253 
rcv_hdrerr(struct hfi1_ctxtdata * rcd,struct hfi1_pportdata * ppd,struct hfi1_packet * packet)254 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
255 		       struct hfi1_packet *packet)
256 {
257 	struct ib_header *rhdr = packet->hdr;
258 	u32 rte = rhf_rcv_type_err(packet->rhf);
259 	u32 mlid_base;
260 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
261 	struct hfi1_devdata *dd = ppd->dd;
262 	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
263 	struct rvt_dev_info *rdi = &verbs_dev->rdi;
264 
265 	if ((packet->rhf & RHF_DC_ERR) &&
266 	    hfi1_dbg_fault_suppress_err(verbs_dev))
267 		return;
268 
269 	if (packet->rhf & RHF_ICRC_ERR)
270 		return;
271 
272 	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
273 		goto drop;
274 	} else {
275 		u8 lnh = ib_get_lnh(rhdr);
276 
277 		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
278 		if (lnh == HFI1_LRH_BTH) {
279 			packet->ohdr = &rhdr->u.oth;
280 		} else if (lnh == HFI1_LRH_GRH) {
281 			packet->ohdr = &rhdr->u.l.oth;
282 			packet->grh = &rhdr->u.l.grh;
283 		} else {
284 			goto drop;
285 		}
286 	}
287 
288 	if (packet->rhf & RHF_TID_ERR) {
289 		/* For TIDERR and RC QPs preemptively schedule a NAK */
290 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
291 		u32 dlid = ib_get_dlid(rhdr);
292 		u32 qp_num;
293 
294 		/* Sanity check packet */
295 		if (tlen < 24)
296 			goto drop;
297 
298 		/* Check for GRH */
299 		if (packet->grh) {
300 			u32 vtf;
301 			struct ib_grh *grh = packet->grh;
302 
303 			if (grh->next_hdr != IB_GRH_NEXT_HDR)
304 				goto drop;
305 			vtf = be32_to_cpu(grh->version_tclass_flow);
306 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
307 				goto drop;
308 		}
309 
310 		/* Get the destination QP number. */
311 		qp_num = ib_bth_get_qpn(packet->ohdr);
312 		if (dlid < mlid_base) {
313 			struct rvt_qp *qp;
314 			unsigned long flags;
315 
316 			rcu_read_lock();
317 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
318 			if (!qp) {
319 				rcu_read_unlock();
320 				goto drop;
321 			}
322 
323 			/*
324 			 * Handle only RC QPs - for other QP types drop error
325 			 * packet.
326 			 */
327 			spin_lock_irqsave(&qp->r_lock, flags);
328 
329 			/* Check for valid receive state. */
330 			if (!(ib_rvt_state_ops[qp->state] &
331 			      RVT_PROCESS_RECV_OK)) {
332 				ibp->rvp.n_pkt_drops++;
333 			}
334 
335 			switch (qp->ibqp.qp_type) {
336 			case IB_QPT_RC:
337 				hfi1_rc_hdrerr(rcd, packet, qp);
338 				break;
339 			default:
340 				/* For now don't handle any other QP types */
341 				break;
342 			}
343 
344 			spin_unlock_irqrestore(&qp->r_lock, flags);
345 			rcu_read_unlock();
346 		} /* Unicast QP */
347 	} /* Valid packet with TIDErr */
348 
349 	/* handle "RcvTypeErr" flags */
350 	switch (rte) {
351 	case RHF_RTE_ERROR_OP_CODE_ERR:
352 	{
353 		void *ebuf = NULL;
354 		u8 opcode;
355 
356 		if (rhf_use_egr_bfr(packet->rhf))
357 			ebuf = packet->ebuf;
358 
359 		if (!ebuf)
360 			goto drop; /* this should never happen */
361 
362 		opcode = ib_bth_get_opcode(packet->ohdr);
363 		if (opcode == IB_OPCODE_CNP) {
364 			/*
365 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
366 			 * via this code path.
367 			 */
368 			struct rvt_qp *qp = NULL;
369 			u32 lqpn, rqpn;
370 			u16 rlid;
371 			u8 svc_type, sl, sc5;
372 
373 			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
374 			sl = ibp->sc_to_sl[sc5];
375 
376 			lqpn = ib_bth_get_qpn(packet->ohdr);
377 			rcu_read_lock();
378 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
379 			if (!qp) {
380 				rcu_read_unlock();
381 				goto drop;
382 			}
383 
384 			switch (qp->ibqp.qp_type) {
385 			case IB_QPT_UD:
386 				rlid = 0;
387 				rqpn = 0;
388 				svc_type = IB_CC_SVCTYPE_UD;
389 				break;
390 			case IB_QPT_UC:
391 				rlid = ib_get_slid(rhdr);
392 				rqpn = qp->remote_qpn;
393 				svc_type = IB_CC_SVCTYPE_UC;
394 				break;
395 			default:
396 				rcu_read_unlock();
397 				goto drop;
398 			}
399 
400 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
401 			rcu_read_unlock();
402 		}
403 
404 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
405 		break;
406 	}
407 	default:
408 		break;
409 	}
410 
411 drop:
412 	return;
413 }
414 
init_packet(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet)415 static inline void init_packet(struct hfi1_ctxtdata *rcd,
416 			       struct hfi1_packet *packet)
417 {
418 	packet->rsize = get_hdrqentsize(rcd); /* words */
419 	packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
420 	packet->rcd = rcd;
421 	packet->updegr = 0;
422 	packet->etail = -1;
423 	packet->rhf_addr = get_rhf_addr(rcd);
424 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
425 	packet->rhqoff = hfi1_rcd_head(rcd);
426 	packet->numpkt = 0;
427 }
428 
429 /* We support only two types - 9B and 16B for now */
430 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
431 	[HFI1_PKT_TYPE_9B] = &return_cnp,
432 	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
433 };
434 
435 /**
436  * hfi1_process_ecn_slowpath - Process FECN or BECN bits
437  * @qp: The packet's destination QP
438  * @pkt: The packet itself.
439  * @prescan: Is the caller the RXQ prescan
440  *
441  * Process the packet's FECN or BECN bits. By now, the packet
442  * has already been evaluated whether processing of those bit should
443  * be done.
444  * The significance of the @prescan argument is that if the caller
445  * is the RXQ prescan, a CNP will be send out instead of waiting for the
446  * normal packet processing to send an ACK with BECN set (or a CNP).
447  */
hfi1_process_ecn_slowpath(struct rvt_qp * qp,struct hfi1_packet * pkt,bool prescan)448 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
449 			       bool prescan)
450 {
451 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
452 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
453 	struct ib_other_headers *ohdr = pkt->ohdr;
454 	struct ib_grh *grh = pkt->grh;
455 	u32 rqpn = 0;
456 	u16 pkey;
457 	u32 rlid, slid, dlid = 0;
458 	u8 hdr_type, sc, svc_type, opcode;
459 	bool is_mcast = false, ignore_fecn = false, do_cnp = false,
460 		fecn, becn;
461 
462 	/* can be called from prescan */
463 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
464 		pkey = hfi1_16B_get_pkey(pkt->hdr);
465 		sc = hfi1_16B_get_sc(pkt->hdr);
466 		dlid = hfi1_16B_get_dlid(pkt->hdr);
467 		slid = hfi1_16B_get_slid(pkt->hdr);
468 		is_mcast = hfi1_is_16B_mcast(dlid);
469 		opcode = ib_bth_get_opcode(ohdr);
470 		hdr_type = HFI1_PKT_TYPE_16B;
471 		fecn = hfi1_16B_get_fecn(pkt->hdr);
472 		becn = hfi1_16B_get_becn(pkt->hdr);
473 	} else {
474 		pkey = ib_bth_get_pkey(ohdr);
475 		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
476 		dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
477 			ppd->lid;
478 		slid = ib_get_slid(pkt->hdr);
479 		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
480 			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
481 		opcode = ib_bth_get_opcode(ohdr);
482 		hdr_type = HFI1_PKT_TYPE_9B;
483 		fecn = ib_bth_get_fecn(ohdr);
484 		becn = ib_bth_get_becn(ohdr);
485 	}
486 
487 	switch (qp->ibqp.qp_type) {
488 	case IB_QPT_UD:
489 		rlid = slid;
490 		rqpn = ib_get_sqpn(pkt->ohdr);
491 		svc_type = IB_CC_SVCTYPE_UD;
492 		break;
493 	case IB_QPT_SMI:
494 	case IB_QPT_GSI:
495 		rlid = slid;
496 		rqpn = ib_get_sqpn(pkt->ohdr);
497 		svc_type = IB_CC_SVCTYPE_UD;
498 		break;
499 	case IB_QPT_UC:
500 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
501 		rqpn = qp->remote_qpn;
502 		svc_type = IB_CC_SVCTYPE_UC;
503 		break;
504 	case IB_QPT_RC:
505 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
506 		rqpn = qp->remote_qpn;
507 		svc_type = IB_CC_SVCTYPE_RC;
508 		break;
509 	default:
510 		return false;
511 	}
512 
513 	ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
514 		(opcode == IB_OPCODE_RC_ACKNOWLEDGE);
515 	/*
516 	 * ACKNOWLEDGE packets do not get a CNP but this will be
517 	 * guarded by ignore_fecn above.
518 	 */
519 	do_cnp = prescan ||
520 		(opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
521 		 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
522 		opcode == TID_OP(READ_RESP) ||
523 		opcode == TID_OP(ACK);
524 
525 	/* Call appropriate CNP handler */
526 	if (!ignore_fecn && do_cnp && fecn)
527 		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
528 					      dlid, rlid, sc, grh);
529 
530 	if (becn) {
531 		u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
532 		u8 sl = ibp->sc_to_sl[sc];
533 
534 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
535 	}
536 	return !ignore_fecn && fecn;
537 }
538 
539 struct ps_mdata {
540 	struct hfi1_ctxtdata *rcd;
541 	u32 rsize;
542 	u32 maxcnt;
543 	u32 ps_head;
544 	u32 ps_tail;
545 	u32 ps_seq;
546 };
547 
init_ps_mdata(struct ps_mdata * mdata,struct hfi1_packet * packet)548 static inline void init_ps_mdata(struct ps_mdata *mdata,
549 				 struct hfi1_packet *packet)
550 {
551 	struct hfi1_ctxtdata *rcd = packet->rcd;
552 
553 	mdata->rcd = rcd;
554 	mdata->rsize = packet->rsize;
555 	mdata->maxcnt = packet->maxcnt;
556 	mdata->ps_head = packet->rhqoff;
557 
558 	if (get_dma_rtail_setting(rcd)) {
559 		mdata->ps_tail = get_rcvhdrtail(rcd);
560 		if (rcd->ctxt == HFI1_CTRL_CTXT)
561 			mdata->ps_seq = hfi1_seq_cnt(rcd);
562 		else
563 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
564 	} else {
565 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
566 		mdata->ps_seq = hfi1_seq_cnt(rcd);
567 	}
568 }
569 
ps_done(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)570 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
571 			  struct hfi1_ctxtdata *rcd)
572 {
573 	if (get_dma_rtail_setting(rcd))
574 		return mdata->ps_head == mdata->ps_tail;
575 	return mdata->ps_seq != rhf_rcv_seq(rhf);
576 }
577 
ps_skip(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)578 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
579 			  struct hfi1_ctxtdata *rcd)
580 {
581 	/*
582 	 * Control context can potentially receive an invalid rhf.
583 	 * Drop such packets.
584 	 */
585 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
586 		return mdata->ps_seq != rhf_rcv_seq(rhf);
587 
588 	return 0;
589 }
590 
update_ps_mdata(struct ps_mdata * mdata,struct hfi1_ctxtdata * rcd)591 static inline void update_ps_mdata(struct ps_mdata *mdata,
592 				   struct hfi1_ctxtdata *rcd)
593 {
594 	mdata->ps_head += mdata->rsize;
595 	if (mdata->ps_head >= mdata->maxcnt)
596 		mdata->ps_head = 0;
597 
598 	/* Control context must do seq counting */
599 	if (!get_dma_rtail_setting(rcd) ||
600 	    rcd->ctxt == HFI1_CTRL_CTXT)
601 		mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
602 }
603 
604 /*
605  * prescan_rxq - search through the receive queue looking for packets
606  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
607  * When an ECN is found, process the Congestion Notification, and toggle
608  * it off.
609  * This is declared as a macro to allow quick checking of the port to avoid
610  * the overhead of a function call if not enabled.
611  */
612 #define prescan_rxq(rcd, packet) \
613 	do { \
614 		if (rcd->ppd->cc_prescan) \
615 			__prescan_rxq(packet); \
616 	} while (0)
__prescan_rxq(struct hfi1_packet * packet)617 static void __prescan_rxq(struct hfi1_packet *packet)
618 {
619 	struct hfi1_ctxtdata *rcd = packet->rcd;
620 	struct ps_mdata mdata;
621 
622 	init_ps_mdata(&mdata, packet);
623 
624 	while (1) {
625 		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
626 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
627 					 packet->rcd->rhf_offset;
628 		struct rvt_qp *qp;
629 		struct ib_header *hdr;
630 		struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
631 		u64 rhf = rhf_to_cpu(rhf_addr);
632 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
633 		u8 lnh;
634 
635 		if (ps_done(&mdata, rhf, rcd))
636 			break;
637 
638 		if (ps_skip(&mdata, rhf, rcd))
639 			goto next;
640 
641 		if (etype != RHF_RCV_TYPE_IB)
642 			goto next;
643 
644 		packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
645 		hdr = packet->hdr;
646 		lnh = ib_get_lnh(hdr);
647 
648 		if (lnh == HFI1_LRH_BTH) {
649 			packet->ohdr = &hdr->u.oth;
650 			packet->grh = NULL;
651 		} else if (lnh == HFI1_LRH_GRH) {
652 			packet->ohdr = &hdr->u.l.oth;
653 			packet->grh = &hdr->u.l.grh;
654 		} else {
655 			goto next; /* just in case */
656 		}
657 
658 		if (!hfi1_may_ecn(packet))
659 			goto next;
660 
661 		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
662 		qpn = bth1 & RVT_QPN_MASK;
663 		rcu_read_lock();
664 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
665 
666 		if (!qp) {
667 			rcu_read_unlock();
668 			goto next;
669 		}
670 
671 		hfi1_process_ecn_slowpath(qp, packet, true);
672 		rcu_read_unlock();
673 
674 		/* turn off BECN, FECN */
675 		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
676 		packet->ohdr->bth[1] = cpu_to_be32(bth1);
677 next:
678 		update_ps_mdata(&mdata, rcd);
679 	}
680 }
681 
process_rcv_qp_work(struct hfi1_packet * packet)682 static void process_rcv_qp_work(struct hfi1_packet *packet)
683 {
684 	struct rvt_qp *qp, *nqp;
685 	struct hfi1_ctxtdata *rcd = packet->rcd;
686 
687 	/*
688 	 * Iterate over all QPs waiting to respond.
689 	 * The list won't change since the IRQ is only run on one CPU.
690 	 */
691 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
692 		list_del_init(&qp->rspwait);
693 		if (qp->r_flags & RVT_R_RSP_NAK) {
694 			qp->r_flags &= ~RVT_R_RSP_NAK;
695 			packet->qp = qp;
696 			hfi1_send_rc_ack(packet, 0);
697 		}
698 		if (qp->r_flags & RVT_R_RSP_SEND) {
699 			unsigned long flags;
700 
701 			qp->r_flags &= ~RVT_R_RSP_SEND;
702 			spin_lock_irqsave(&qp->s_lock, flags);
703 			if (ib_rvt_state_ops[qp->state] &
704 					RVT_PROCESS_OR_FLUSH_SEND)
705 				hfi1_schedule_send(qp);
706 			spin_unlock_irqrestore(&qp->s_lock, flags);
707 		}
708 		rvt_put_qp(qp);
709 	}
710 }
711 
max_packet_exceeded(struct hfi1_packet * packet,int thread)712 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
713 {
714 	if (thread) {
715 		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
716 			/* allow defered processing */
717 			process_rcv_qp_work(packet);
718 		cond_resched();
719 		return RCV_PKT_OK;
720 	} else {
721 		this_cpu_inc(*packet->rcd->dd->rcv_limit);
722 		return RCV_PKT_LIMIT;
723 	}
724 }
725 
check_max_packet(struct hfi1_packet * packet,int thread)726 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
727 {
728 	int ret = RCV_PKT_OK;
729 
730 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
731 		ret = max_packet_exceeded(packet, thread);
732 	return ret;
733 }
734 
skip_rcv_packet(struct hfi1_packet * packet,int thread)735 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
736 {
737 	int ret;
738 
739 	packet->rcd->dd->ctx0_seq_drop++;
740 	/* Set up for the next packet */
741 	packet->rhqoff += packet->rsize;
742 	if (packet->rhqoff >= packet->maxcnt)
743 		packet->rhqoff = 0;
744 
745 	packet->numpkt++;
746 	ret = check_max_packet(packet, thread);
747 
748 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
749 				     packet->rcd->rhf_offset;
750 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
751 
752 	return ret;
753 }
754 
process_rcv_packet_napi(struct hfi1_packet * packet)755 static void process_rcv_packet_napi(struct hfi1_packet *packet)
756 {
757 	packet->etype = rhf_rcv_type(packet->rhf);
758 
759 	/* total length */
760 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
761 	/* retrieve eager buffer details */
762 	packet->etail = rhf_egr_index(packet->rhf);
763 	packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
764 				  &packet->updegr);
765 	/*
766 	 * Prefetch the contents of the eager buffer.  It is
767 	 * OK to send a negative length to prefetch_range().
768 	 * The +2 is the size of the RHF.
769 	 */
770 	prefetch_range(packet->ebuf,
771 		       packet->tlen - ((packet->rcd->rcvhdrqentsize -
772 				       (rhf_hdrq_offset(packet->rhf)
773 					+ 2)) * 4));
774 
775 	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
776 	packet->numpkt++;
777 
778 	/* Set up for the next packet */
779 	packet->rhqoff += packet->rsize;
780 	if (packet->rhqoff >= packet->maxcnt)
781 		packet->rhqoff = 0;
782 
783 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
784 				      packet->rcd->rhf_offset;
785 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
786 }
787 
process_rcv_packet(struct hfi1_packet * packet,int thread)788 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
789 {
790 	int ret;
791 
792 	packet->etype = rhf_rcv_type(packet->rhf);
793 
794 	/* total length */
795 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
796 	/* retrieve eager buffer details */
797 	packet->ebuf = NULL;
798 	if (rhf_use_egr_bfr(packet->rhf)) {
799 		packet->etail = rhf_egr_index(packet->rhf);
800 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
801 				 &packet->updegr);
802 		/*
803 		 * Prefetch the contents of the eager buffer.  It is
804 		 * OK to send a negative length to prefetch_range().
805 		 * The +2 is the size of the RHF.
806 		 */
807 		prefetch_range(packet->ebuf,
808 			       packet->tlen - ((get_hdrqentsize(packet->rcd) -
809 					       (rhf_hdrq_offset(packet->rhf)
810 						+ 2)) * 4));
811 	}
812 
813 	/*
814 	 * Call a type specific handler for the packet. We
815 	 * should be able to trust that etype won't be beyond
816 	 * the range of valid indexes. If so something is really
817 	 * wrong and we can probably just let things come
818 	 * crashing down. There is no need to eat another
819 	 * comparison in this performance critical code.
820 	 */
821 	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
822 	packet->numpkt++;
823 
824 	/* Set up for the next packet */
825 	packet->rhqoff += packet->rsize;
826 	if (packet->rhqoff >= packet->maxcnt)
827 		packet->rhqoff = 0;
828 
829 	ret = check_max_packet(packet, thread);
830 
831 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
832 				      packet->rcd->rhf_offset;
833 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
834 
835 	return ret;
836 }
837 
process_rcv_update(int last,struct hfi1_packet * packet)838 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
839 {
840 	/*
841 	 * Update head regs etc., every 16 packets, if not last pkt,
842 	 * to help prevent rcvhdrq overflows, when many packets
843 	 * are processed and queue is nearly full.
844 	 * Don't request an interrupt for intermediate updates.
845 	 */
846 	if (!last && !(packet->numpkt & 0xf)) {
847 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
848 			       packet->etail, 0, 0);
849 		packet->updegr = 0;
850 	}
851 	packet->grh = NULL;
852 }
853 
finish_packet(struct hfi1_packet * packet)854 static inline void finish_packet(struct hfi1_packet *packet)
855 {
856 	/*
857 	 * Nothing we need to free for the packet.
858 	 *
859 	 * The only thing we need to do is a final update and call for an
860 	 * interrupt
861 	 */
862 	update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
863 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
864 }
865 
866 /*
867  * handle_receive_interrupt_napi_fp - receive a packet
868  * @rcd: the context
869  * @budget: polling budget
870  *
871  * Called from interrupt handler for receive interrupt.
872  * This is the fast path interrupt handler
873  * when executing napi soft irq environment.
874  */
handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata * rcd,int budget)875 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
876 {
877 	struct hfi1_packet packet;
878 
879 	init_packet(rcd, &packet);
880 	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
881 		goto bail;
882 
883 	while (packet.numpkt < budget) {
884 		process_rcv_packet_napi(&packet);
885 		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
886 			break;
887 
888 		process_rcv_update(0, &packet);
889 	}
890 	hfi1_set_rcd_head(rcd, packet.rhqoff);
891 bail:
892 	finish_packet(&packet);
893 	return packet.numpkt;
894 }
895 
896 /*
897  * Handle receive interrupts when using the no dma rtail option.
898  */
handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata * rcd,int thread)899 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
900 {
901 	int last = RCV_PKT_OK;
902 	struct hfi1_packet packet;
903 
904 	init_packet(rcd, &packet);
905 	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
906 		last = RCV_PKT_DONE;
907 		goto bail;
908 	}
909 
910 	prescan_rxq(rcd, &packet);
911 
912 	while (last == RCV_PKT_OK) {
913 		last = process_rcv_packet(&packet, thread);
914 		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
915 			last = RCV_PKT_DONE;
916 		process_rcv_update(last, &packet);
917 	}
918 	process_rcv_qp_work(&packet);
919 	hfi1_set_rcd_head(rcd, packet.rhqoff);
920 bail:
921 	finish_packet(&packet);
922 	return last;
923 }
924 
handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata * rcd,int thread)925 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
926 {
927 	u32 hdrqtail;
928 	int last = RCV_PKT_OK;
929 	struct hfi1_packet packet;
930 
931 	init_packet(rcd, &packet);
932 	hdrqtail = get_rcvhdrtail(rcd);
933 	if (packet.rhqoff == hdrqtail) {
934 		last = RCV_PKT_DONE;
935 		goto bail;
936 	}
937 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
938 
939 	prescan_rxq(rcd, &packet);
940 
941 	while (last == RCV_PKT_OK) {
942 		last = process_rcv_packet(&packet, thread);
943 		if (packet.rhqoff == hdrqtail)
944 			last = RCV_PKT_DONE;
945 		process_rcv_update(last, &packet);
946 	}
947 	process_rcv_qp_work(&packet);
948 	hfi1_set_rcd_head(rcd, packet.rhqoff);
949 bail:
950 	finish_packet(&packet);
951 	return last;
952 }
953 
set_all_fastpath(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)954 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
955 {
956 	u16 i;
957 
958 	/*
959 	 * For dynamically allocated kernel contexts (like vnic) switch
960 	 * interrupt handler only for that context. Otherwise, switch
961 	 * interrupt handler for all statically allocated kernel contexts.
962 	 */
963 	if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
964 		hfi1_rcd_get(rcd);
965 		hfi1_set_fast(rcd);
966 		hfi1_rcd_put(rcd);
967 		return;
968 	}
969 
970 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
971 		rcd = hfi1_rcd_get_by_index(dd, i);
972 		if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
973 			hfi1_set_fast(rcd);
974 		hfi1_rcd_put(rcd);
975 	}
976 }
977 
set_all_slowpath(struct hfi1_devdata * dd)978 void set_all_slowpath(struct hfi1_devdata *dd)
979 {
980 	struct hfi1_ctxtdata *rcd;
981 	u16 i;
982 
983 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
984 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
985 		rcd = hfi1_rcd_get_by_index(dd, i);
986 		if (!rcd)
987 			continue;
988 		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
989 			rcd->do_interrupt = rcd->slow_handler;
990 
991 		hfi1_rcd_put(rcd);
992 	}
993 }
994 
__set_armed_to_active(struct hfi1_packet * packet)995 static bool __set_armed_to_active(struct hfi1_packet *packet)
996 {
997 	u8 etype = rhf_rcv_type(packet->rhf);
998 	u8 sc = SC15_PACKET;
999 
1000 	if (etype == RHF_RCV_TYPE_IB) {
1001 		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
1002 							   packet->rhf_addr);
1003 		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1004 	} else if (etype == RHF_RCV_TYPE_BYPASS) {
1005 		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
1006 						packet->rcd,
1007 						packet->rhf_addr);
1008 		sc = hfi1_16B_get_sc(hdr);
1009 	}
1010 	if (sc != SC15_PACKET) {
1011 		int hwstate = driver_lstate(packet->rcd->ppd);
1012 		struct work_struct *lsaw =
1013 				&packet->rcd->ppd->linkstate_active_work;
1014 
1015 		if (hwstate != IB_PORT_ACTIVE) {
1016 			dd_dev_info(packet->rcd->dd,
1017 				    "Unexpected link state %s\n",
1018 				    opa_lstate_name(hwstate));
1019 			return false;
1020 		}
1021 
1022 		queue_work(packet->rcd->ppd->link_wq, lsaw);
1023 		return true;
1024 	}
1025 	return false;
1026 }
1027 
1028 /**
1029  * armed to active - the fast path for armed to active
1030  * @packet: the packet structure
1031  *
1032  * Return true if packet processing needs to bail.
1033  */
set_armed_to_active(struct hfi1_packet * packet)1034 static bool set_armed_to_active(struct hfi1_packet *packet)
1035 {
1036 	if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
1037 		return false;
1038 	return __set_armed_to_active(packet);
1039 }
1040 
1041 /*
1042  * handle_receive_interrupt - receive a packet
1043  * @rcd: the context
1044  *
1045  * Called from interrupt handler for errors or receive interrupt.
1046  * This is the slow path interrupt handler.
1047  */
handle_receive_interrupt(struct hfi1_ctxtdata * rcd,int thread)1048 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1049 {
1050 	struct hfi1_devdata *dd = rcd->dd;
1051 	u32 hdrqtail;
1052 	int needset, last = RCV_PKT_OK;
1053 	struct hfi1_packet packet;
1054 	int skip_pkt = 0;
1055 
1056 	/* Control context will always use the slow path interrupt handler */
1057 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1058 
1059 	init_packet(rcd, &packet);
1060 
1061 	if (!get_dma_rtail_setting(rcd)) {
1062 		if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1063 			last = RCV_PKT_DONE;
1064 			goto bail;
1065 		}
1066 		hdrqtail = 0;
1067 	} else {
1068 		hdrqtail = get_rcvhdrtail(rcd);
1069 		if (packet.rhqoff == hdrqtail) {
1070 			last = RCV_PKT_DONE;
1071 			goto bail;
1072 		}
1073 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1074 
1075 		/*
1076 		 * Control context can potentially receive an invalid
1077 		 * rhf. Drop such packets.
1078 		 */
1079 		if (rcd->ctxt == HFI1_CTRL_CTXT)
1080 			if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1081 				skip_pkt = 1;
1082 	}
1083 
1084 	prescan_rxq(rcd, &packet);
1085 
1086 	while (last == RCV_PKT_OK) {
1087 		if (hfi1_need_drop(dd)) {
1088 			/* On to the next packet */
1089 			packet.rhqoff += packet.rsize;
1090 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1091 					  packet.rhqoff +
1092 					  rcd->rhf_offset;
1093 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1094 
1095 		} else if (skip_pkt) {
1096 			last = skip_rcv_packet(&packet, thread);
1097 			skip_pkt = 0;
1098 		} else {
1099 			if (set_armed_to_active(&packet))
1100 				goto bail;
1101 			last = process_rcv_packet(&packet, thread);
1102 		}
1103 
1104 		if (!get_dma_rtail_setting(rcd)) {
1105 			if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1106 				last = RCV_PKT_DONE;
1107 		} else {
1108 			if (packet.rhqoff == hdrqtail)
1109 				last = RCV_PKT_DONE;
1110 			/*
1111 			 * Control context can potentially receive an invalid
1112 			 * rhf. Drop such packets.
1113 			 */
1114 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1115 				bool lseq;
1116 
1117 				lseq = hfi1_seq_incr(rcd,
1118 						     rhf_rcv_seq(packet.rhf));
1119 				if (!last && lseq)
1120 					skip_pkt = 1;
1121 			}
1122 		}
1123 
1124 		if (needset) {
1125 			needset = false;
1126 			set_all_fastpath(dd, rcd);
1127 		}
1128 		process_rcv_update(last, &packet);
1129 	}
1130 
1131 	process_rcv_qp_work(&packet);
1132 	hfi1_set_rcd_head(rcd, packet.rhqoff);
1133 
1134 bail:
1135 	/*
1136 	 * Always write head at end, and setup rcv interrupt, even
1137 	 * if no packets were processed.
1138 	 */
1139 	finish_packet(&packet);
1140 	return last;
1141 }
1142 
1143 /*
1144  * handle_receive_interrupt_napi_sp - receive a packet
1145  * @rcd: the context
1146  * @budget: polling budget
1147  *
1148  * Called from interrupt handler for errors or receive interrupt.
1149  * This is the slow path interrupt handler
1150  * when executing napi soft irq environment.
1151  */
handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata * rcd,int budget)1152 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1153 {
1154 	struct hfi1_devdata *dd = rcd->dd;
1155 	int last = RCV_PKT_OK;
1156 	bool needset = true;
1157 	struct hfi1_packet packet;
1158 
1159 	init_packet(rcd, &packet);
1160 	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1161 		goto bail;
1162 
1163 	while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1164 		if (hfi1_need_drop(dd)) {
1165 			/* On to the next packet */
1166 			packet.rhqoff += packet.rsize;
1167 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1168 					  packet.rhqoff +
1169 					  rcd->rhf_offset;
1170 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1171 
1172 		} else {
1173 			if (set_armed_to_active(&packet))
1174 				goto bail;
1175 			process_rcv_packet_napi(&packet);
1176 		}
1177 
1178 		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1179 			last = RCV_PKT_DONE;
1180 
1181 		if (needset) {
1182 			needset = false;
1183 			set_all_fastpath(dd, rcd);
1184 		}
1185 
1186 		process_rcv_update(last, &packet);
1187 	}
1188 
1189 	hfi1_set_rcd_head(rcd, packet.rhqoff);
1190 
1191 bail:
1192 	/*
1193 	 * Always write head at end, and setup rcv interrupt, even
1194 	 * if no packets were processed.
1195 	 */
1196 	finish_packet(&packet);
1197 	return packet.numpkt;
1198 }
1199 
1200 /*
1201  * We may discover in the interrupt that the hardware link state has
1202  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1203  * and we need to update the driver's notion of the link state.  We cannot
1204  * run set_link_state from interrupt context, so we queue this function on
1205  * a workqueue.
1206  *
1207  * We delay the regular interrupt processing until after the state changes
1208  * so that the link will be in the correct state by the time any application
1209  * we wake up attempts to send a reply to any message it received.
1210  * (Subsequent receive interrupts may possibly force the wakeup before we
1211  * update the link state.)
1212  *
1213  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1214  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1215  * so we're safe from use-after-free of the rcd.
1216  */
receive_interrupt_work(struct work_struct * work)1217 void receive_interrupt_work(struct work_struct *work)
1218 {
1219 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1220 						  linkstate_active_work);
1221 	struct hfi1_devdata *dd = ppd->dd;
1222 	struct hfi1_ctxtdata *rcd;
1223 	u16 i;
1224 
1225 	/* Received non-SC15 packet implies neighbor_normal */
1226 	ppd->neighbor_normal = 1;
1227 	set_link_state(ppd, HLS_UP_ACTIVE);
1228 
1229 	/*
1230 	 * Interrupt all statically allocated kernel contexts that could
1231 	 * have had an interrupt during auto activation.
1232 	 */
1233 	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1234 		rcd = hfi1_rcd_get_by_index(dd, i);
1235 		if (rcd)
1236 			force_recv_intr(rcd);
1237 		hfi1_rcd_put(rcd);
1238 	}
1239 }
1240 
1241 /*
1242  * Convert a given MTU size to the on-wire MAD packet enumeration.
1243  * Return -1 if the size is invalid.
1244  */
mtu_to_enum(u32 mtu,int default_if_bad)1245 int mtu_to_enum(u32 mtu, int default_if_bad)
1246 {
1247 	switch (mtu) {
1248 	case     0: return OPA_MTU_0;
1249 	case   256: return OPA_MTU_256;
1250 	case   512: return OPA_MTU_512;
1251 	case  1024: return OPA_MTU_1024;
1252 	case  2048: return OPA_MTU_2048;
1253 	case  4096: return OPA_MTU_4096;
1254 	case  8192: return OPA_MTU_8192;
1255 	case 10240: return OPA_MTU_10240;
1256 	}
1257 	return default_if_bad;
1258 }
1259 
enum_to_mtu(int mtu)1260 u16 enum_to_mtu(int mtu)
1261 {
1262 	switch (mtu) {
1263 	case OPA_MTU_0:     return 0;
1264 	case OPA_MTU_256:   return 256;
1265 	case OPA_MTU_512:   return 512;
1266 	case OPA_MTU_1024:  return 1024;
1267 	case OPA_MTU_2048:  return 2048;
1268 	case OPA_MTU_4096:  return 4096;
1269 	case OPA_MTU_8192:  return 8192;
1270 	case OPA_MTU_10240: return 10240;
1271 	default: return 0xffff;
1272 	}
1273 }
1274 
1275 /*
1276  * set_mtu - set the MTU
1277  * @ppd: the per port data
1278  *
1279  * We can handle "any" incoming size, the issue here is whether we
1280  * need to restrict our outgoing size.  We do not deal with what happens
1281  * to programs that are already running when the size changes.
1282  */
set_mtu(struct hfi1_pportdata * ppd)1283 int set_mtu(struct hfi1_pportdata *ppd)
1284 {
1285 	struct hfi1_devdata *dd = ppd->dd;
1286 	int i, drain, ret = 0, is_up = 0;
1287 
1288 	ppd->ibmtu = 0;
1289 	for (i = 0; i < ppd->vls_supported; i++)
1290 		if (ppd->ibmtu < dd->vld[i].mtu)
1291 			ppd->ibmtu = dd->vld[i].mtu;
1292 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1293 
1294 	mutex_lock(&ppd->hls_lock);
1295 	if (ppd->host_link_state == HLS_UP_INIT ||
1296 	    ppd->host_link_state == HLS_UP_ARMED ||
1297 	    ppd->host_link_state == HLS_UP_ACTIVE)
1298 		is_up = 1;
1299 
1300 	drain = !is_ax(dd) && is_up;
1301 
1302 	if (drain)
1303 		/*
1304 		 * MTU is specified per-VL. To ensure that no packet gets
1305 		 * stuck (due, e.g., to the MTU for the packet's VL being
1306 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1307 		 */
1308 		ret = stop_drain_data_vls(dd);
1309 
1310 	if (ret) {
1311 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1312 			   __func__);
1313 		goto err;
1314 	}
1315 
1316 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1317 
1318 	if (drain)
1319 		open_fill_data_vls(dd); /* reopen all VLs */
1320 
1321 err:
1322 	mutex_unlock(&ppd->hls_lock);
1323 
1324 	return ret;
1325 }
1326 
hfi1_set_lid(struct hfi1_pportdata * ppd,u32 lid,u8 lmc)1327 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1328 {
1329 	struct hfi1_devdata *dd = ppd->dd;
1330 
1331 	ppd->lid = lid;
1332 	ppd->lmc = lmc;
1333 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1334 
1335 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1336 
1337 	return 0;
1338 }
1339 
shutdown_led_override(struct hfi1_pportdata * ppd)1340 void shutdown_led_override(struct hfi1_pportdata *ppd)
1341 {
1342 	struct hfi1_devdata *dd = ppd->dd;
1343 
1344 	/*
1345 	 * This pairs with the memory barrier in hfi1_start_led_override to
1346 	 * ensure that we read the correct state of LED beaconing represented
1347 	 * by led_override_timer_active
1348 	 */
1349 	smp_rmb();
1350 	if (atomic_read(&ppd->led_override_timer_active)) {
1351 		del_timer_sync(&ppd->led_override_timer);
1352 		atomic_set(&ppd->led_override_timer_active, 0);
1353 		/* Ensure the atomic_set is visible to all CPUs */
1354 		smp_wmb();
1355 	}
1356 
1357 	/* Hand control of the LED to the DC for normal operation */
1358 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1359 }
1360 
run_led_override(struct timer_list * t)1361 static void run_led_override(struct timer_list *t)
1362 {
1363 	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1364 	struct hfi1_devdata *dd = ppd->dd;
1365 	unsigned long timeout;
1366 	int phase_idx;
1367 
1368 	if (!(dd->flags & HFI1_INITTED))
1369 		return;
1370 
1371 	phase_idx = ppd->led_override_phase & 1;
1372 
1373 	setextled(dd, phase_idx);
1374 
1375 	timeout = ppd->led_override_vals[phase_idx];
1376 
1377 	/* Set up for next phase */
1378 	ppd->led_override_phase = !ppd->led_override_phase;
1379 
1380 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1381 }
1382 
1383 /*
1384  * To have the LED blink in a particular pattern, provide timeon and timeoff
1385  * in milliseconds.
1386  * To turn off custom blinking and return to normal operation, use
1387  * shutdown_led_override()
1388  */
hfi1_start_led_override(struct hfi1_pportdata * ppd,unsigned int timeon,unsigned int timeoff)1389 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1390 			     unsigned int timeoff)
1391 {
1392 	if (!(ppd->dd->flags & HFI1_INITTED))
1393 		return;
1394 
1395 	/* Convert to jiffies for direct use in timer */
1396 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1397 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1398 
1399 	/* Arbitrarily start from LED on phase */
1400 	ppd->led_override_phase = 1;
1401 
1402 	/*
1403 	 * If the timer has not already been started, do so. Use a "quick"
1404 	 * timeout so the handler will be called soon to look at our request.
1405 	 */
1406 	if (!timer_pending(&ppd->led_override_timer)) {
1407 		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1408 		ppd->led_override_timer.expires = jiffies + 1;
1409 		add_timer(&ppd->led_override_timer);
1410 		atomic_set(&ppd->led_override_timer_active, 1);
1411 		/* Ensure the atomic_set is visible to all CPUs */
1412 		smp_wmb();
1413 	}
1414 }
1415 
1416 /**
1417  * hfi1_reset_device - reset the chip if possible
1418  * @unit: the device to reset
1419  *
1420  * Whether or not reset is successful, we attempt to re-initialize the chip
1421  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1422  * so that the various entry points will fail until we reinitialize.  For
1423  * now, we only allow this if no user contexts are open that use chip resources
1424  */
hfi1_reset_device(int unit)1425 int hfi1_reset_device(int unit)
1426 {
1427 	int ret;
1428 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1429 	struct hfi1_pportdata *ppd;
1430 	int pidx;
1431 
1432 	if (!dd) {
1433 		ret = -ENODEV;
1434 		goto bail;
1435 	}
1436 
1437 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1438 
1439 	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1440 		dd_dev_info(dd,
1441 			    "Invalid unit number %u or not initialized or not present\n",
1442 			    unit);
1443 		ret = -ENXIO;
1444 		goto bail;
1445 	}
1446 
1447 	/* If there are any user/vnic contexts, we cannot reset */
1448 	mutex_lock(&hfi1_mutex);
1449 	if (dd->rcd)
1450 		if (hfi1_stats.sps_ctxts) {
1451 			mutex_unlock(&hfi1_mutex);
1452 			ret = -EBUSY;
1453 			goto bail;
1454 		}
1455 	mutex_unlock(&hfi1_mutex);
1456 
1457 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1458 		ppd = dd->pport + pidx;
1459 
1460 		shutdown_led_override(ppd);
1461 	}
1462 	if (dd->flags & HFI1_HAS_SEND_DMA)
1463 		sdma_exit(dd);
1464 
1465 	hfi1_reset_cpu_counters(dd);
1466 
1467 	ret = hfi1_init(dd, 1);
1468 
1469 	if (ret)
1470 		dd_dev_err(dd,
1471 			   "Reinitialize unit %u after reset failed with %d\n",
1472 			   unit, ret);
1473 	else
1474 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1475 			    unit);
1476 
1477 bail:
1478 	return ret;
1479 }
1480 
hfi1_setup_ib_header(struct hfi1_packet * packet)1481 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1482 {
1483 	packet->hdr = (struct hfi1_ib_message_header *)
1484 			hfi1_get_msgheader(packet->rcd,
1485 					   packet->rhf_addr);
1486 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1487 }
1488 
hfi1_bypass_ingress_pkt_check(struct hfi1_packet * packet)1489 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1490 {
1491 	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1492 
1493 	/* slid and dlid cannot be 0 */
1494 	if ((!packet->slid) || (!packet->dlid))
1495 		return -EINVAL;
1496 
1497 	/* Compare port lid with incoming packet dlid */
1498 	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1499 	    (packet->dlid !=
1500 		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1501 		if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1502 			return -EINVAL;
1503 	}
1504 
1505 	/* No multicast packets with SC15 */
1506 	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1507 		return -EINVAL;
1508 
1509 	/* Packets with permissive DLID always on SC15 */
1510 	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1511 					 16B)) &&
1512 	    (packet->sc != 0xF))
1513 		return -EINVAL;
1514 
1515 	return 0;
1516 }
1517 
hfi1_setup_9B_packet(struct hfi1_packet * packet)1518 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1519 {
1520 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1521 	struct ib_header *hdr;
1522 	u8 lnh;
1523 
1524 	hfi1_setup_ib_header(packet);
1525 	hdr = packet->hdr;
1526 
1527 	lnh = ib_get_lnh(hdr);
1528 	if (lnh == HFI1_LRH_BTH) {
1529 		packet->ohdr = &hdr->u.oth;
1530 		packet->grh = NULL;
1531 	} else if (lnh == HFI1_LRH_GRH) {
1532 		u32 vtf;
1533 
1534 		packet->ohdr = &hdr->u.l.oth;
1535 		packet->grh = &hdr->u.l.grh;
1536 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1537 			goto drop;
1538 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1539 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1540 			goto drop;
1541 	} else {
1542 		goto drop;
1543 	}
1544 
1545 	/* Query commonly used fields from packet header */
1546 	packet->payload = packet->ebuf;
1547 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1548 	packet->slid = ib_get_slid(hdr);
1549 	packet->dlid = ib_get_dlid(hdr);
1550 	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1551 		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1552 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1553 				be16_to_cpu(IB_MULTICAST_LID_BASE);
1554 	packet->sl = ib_get_sl(hdr);
1555 	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1556 	packet->pad = ib_bth_get_pad(packet->ohdr);
1557 	packet->extra_byte = 0;
1558 	packet->pkey = ib_bth_get_pkey(packet->ohdr);
1559 	packet->migrated = ib_bth_is_migration(packet->ohdr);
1560 
1561 	return 0;
1562 drop:
1563 	ibp->rvp.n_pkt_drops++;
1564 	return -EINVAL;
1565 }
1566 
hfi1_setup_bypass_packet(struct hfi1_packet * packet)1567 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1568 {
1569 	/*
1570 	 * Bypass packets have a different header/payload split
1571 	 * compared to an IB packet.
1572 	 * Current split is set such that 16 bytes of the actual
1573 	 * header is in the header buffer and the remining is in
1574 	 * the eager buffer. We chose 16 since hfi1 driver only
1575 	 * supports 16B bypass packets and we will be able to
1576 	 * receive the entire LRH with such a split.
1577 	 */
1578 
1579 	struct hfi1_ctxtdata *rcd = packet->rcd;
1580 	struct hfi1_pportdata *ppd = rcd->ppd;
1581 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1582 	u8 l4;
1583 
1584 	packet->hdr = (struct hfi1_16b_header *)
1585 			hfi1_get_16B_header(packet->rcd,
1586 					    packet->rhf_addr);
1587 	l4 = hfi1_16B_get_l4(packet->hdr);
1588 	if (l4 == OPA_16B_L4_IB_LOCAL) {
1589 		packet->ohdr = packet->ebuf;
1590 		packet->grh = NULL;
1591 		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1592 		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1593 		/* hdr_len_by_opcode already has an IB LRH factored in */
1594 		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1595 			(LRH_16B_BYTES - LRH_9B_BYTES);
1596 		packet->migrated = opa_bth_is_migration(packet->ohdr);
1597 	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1598 		u32 vtf;
1599 		u8 grh_len = sizeof(struct ib_grh);
1600 
1601 		packet->ohdr = packet->ebuf + grh_len;
1602 		packet->grh = packet->ebuf;
1603 		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1604 		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1605 		/* hdr_len_by_opcode already has an IB LRH factored in */
1606 		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1607 			(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1608 		packet->migrated = opa_bth_is_migration(packet->ohdr);
1609 
1610 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1611 			goto drop;
1612 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1613 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1614 			goto drop;
1615 	} else if (l4 == OPA_16B_L4_FM) {
1616 		packet->mgmt = packet->ebuf;
1617 		packet->ohdr = NULL;
1618 		packet->grh = NULL;
1619 		packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1620 		packet->pad = OPA_16B_L4_FM_PAD;
1621 		packet->hlen = OPA_16B_L4_FM_HLEN;
1622 		packet->migrated = false;
1623 	} else {
1624 		goto drop;
1625 	}
1626 
1627 	/* Query commonly used fields from packet header */
1628 	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1629 	packet->slid = hfi1_16B_get_slid(packet->hdr);
1630 	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1631 	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1632 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1633 				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1634 					    16B);
1635 	packet->sc = hfi1_16B_get_sc(packet->hdr);
1636 	packet->sl = ibp->sc_to_sl[packet->sc];
1637 	packet->extra_byte = SIZE_OF_LT;
1638 	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1639 
1640 	if (hfi1_bypass_ingress_pkt_check(packet))
1641 		goto drop;
1642 
1643 	return 0;
1644 drop:
1645 	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1646 	ibp->rvp.n_pkt_drops++;
1647 	return -EINVAL;
1648 }
1649 
show_eflags_errs(struct hfi1_packet * packet)1650 static void show_eflags_errs(struct hfi1_packet *packet)
1651 {
1652 	struct hfi1_ctxtdata *rcd = packet->rcd;
1653 	u32 rte = rhf_rcv_type_err(packet->rhf);
1654 
1655 	dd_dev_err(rcd->dd,
1656 		   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1657 		   rcd->ctxt, packet->rhf,
1658 		   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1659 		   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1660 		   packet->rhf & RHF_DC_ERR ? "dc " : "",
1661 		   packet->rhf & RHF_TID_ERR ? "tid " : "",
1662 		   packet->rhf & RHF_LEN_ERR ? "len " : "",
1663 		   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1664 		   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1665 		   rte);
1666 }
1667 
handle_eflags(struct hfi1_packet * packet)1668 void handle_eflags(struct hfi1_packet *packet)
1669 {
1670 	struct hfi1_ctxtdata *rcd = packet->rcd;
1671 
1672 	rcv_hdrerr(rcd, rcd->ppd, packet);
1673 	if (rhf_err_flags(packet->rhf))
1674 		show_eflags_errs(packet);
1675 }
1676 
hfi1_ipoib_ib_rcv(struct hfi1_packet * packet)1677 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1678 {
1679 	struct hfi1_ibport *ibp;
1680 	struct net_device *netdev;
1681 	struct hfi1_ctxtdata *rcd = packet->rcd;
1682 	struct napi_struct *napi = rcd->napi;
1683 	struct sk_buff *skb;
1684 	struct hfi1_netdev_rxq *rxq = container_of(napi,
1685 			struct hfi1_netdev_rxq, napi);
1686 	u32 extra_bytes;
1687 	u32 tlen, qpnum;
1688 	bool do_work, do_cnp;
1689 	struct hfi1_ipoib_dev_priv *priv;
1690 
1691 	trace_hfi1_rcvhdr(packet);
1692 
1693 	hfi1_setup_ib_header(packet);
1694 
1695 	packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1696 	packet->grh = NULL;
1697 
1698 	if (unlikely(rhf_err_flags(packet->rhf))) {
1699 		handle_eflags(packet);
1700 		return;
1701 	}
1702 
1703 	qpnum = ib_bth_get_qpn(packet->ohdr);
1704 	netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1705 	if (!netdev)
1706 		goto drop_no_nd;
1707 
1708 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1709 	trace_ctxt_rsm_hist(rcd->ctxt);
1710 
1711 	/* handle congestion notifications */
1712 	do_work = hfi1_may_ecn(packet);
1713 	if (unlikely(do_work)) {
1714 		do_cnp = (packet->opcode != IB_OPCODE_CNP);
1715 		(void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1716 						 packet, do_cnp);
1717 	}
1718 
1719 	/*
1720 	 * We have split point after last byte of DETH
1721 	 * lets strip padding and CRC and ICRC.
1722 	 * tlen is whole packet len so we need to
1723 	 * subtract header size as well.
1724 	 */
1725 	tlen = packet->tlen;
1726 	extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1727 			packet->hlen;
1728 	if (unlikely(tlen < extra_bytes))
1729 		goto drop;
1730 
1731 	tlen -= extra_bytes;
1732 
1733 	skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1734 	if (unlikely(!skb))
1735 		goto drop;
1736 
1737 	priv = hfi1_ipoib_priv(netdev);
1738 	hfi1_ipoib_update_rx_netstats(priv, 1, skb->len);
1739 
1740 	skb->dev = netdev;
1741 	skb->pkt_type = PACKET_HOST;
1742 	netif_receive_skb(skb);
1743 
1744 	return;
1745 
1746 drop:
1747 	++netdev->stats.rx_dropped;
1748 drop_no_nd:
1749 	ibp = rcd_to_iport(packet->rcd);
1750 	++ibp->rvp.n_pkt_drops;
1751 }
1752 
1753 /*
1754  * The following functions are called by the interrupt handler. They are type
1755  * specific handlers for each packet type.
1756  */
process_receive_ib(struct hfi1_packet * packet)1757 static void process_receive_ib(struct hfi1_packet *packet)
1758 {
1759 	if (hfi1_setup_9B_packet(packet))
1760 		return;
1761 
1762 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1763 		return;
1764 
1765 	trace_hfi1_rcvhdr(packet);
1766 
1767 	if (unlikely(rhf_err_flags(packet->rhf))) {
1768 		handle_eflags(packet);
1769 		return;
1770 	}
1771 
1772 	hfi1_ib_rcv(packet);
1773 }
1774 
process_receive_bypass(struct hfi1_packet * packet)1775 static void process_receive_bypass(struct hfi1_packet *packet)
1776 {
1777 	struct hfi1_devdata *dd = packet->rcd->dd;
1778 
1779 	if (hfi1_setup_bypass_packet(packet))
1780 		return;
1781 
1782 	trace_hfi1_rcvhdr(packet);
1783 
1784 	if (unlikely(rhf_err_flags(packet->rhf))) {
1785 		handle_eflags(packet);
1786 		return;
1787 	}
1788 
1789 	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1790 		hfi1_16B_rcv(packet);
1791 	} else {
1792 		dd_dev_err(dd,
1793 			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1794 		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1795 		if (!(dd->err_info_rcvport.status_and_code &
1796 		      OPA_EI_STATUS_SMASK)) {
1797 			u64 *flits = packet->ebuf;
1798 
1799 			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1800 				dd->err_info_rcvport.packet_flit1 = flits[0];
1801 				dd->err_info_rcvport.packet_flit2 =
1802 					packet->tlen > sizeof(flits[0]) ?
1803 					flits[1] : 0;
1804 			}
1805 			dd->err_info_rcvport.status_and_code |=
1806 				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1807 		}
1808 	}
1809 }
1810 
process_receive_error(struct hfi1_packet * packet)1811 static void process_receive_error(struct hfi1_packet *packet)
1812 {
1813 	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1814 	if (unlikely(
1815 		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1816 		 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1817 		  packet->rhf & RHF_DC_ERR)))
1818 		return;
1819 
1820 	hfi1_setup_ib_header(packet);
1821 	handle_eflags(packet);
1822 
1823 	if (unlikely(rhf_err_flags(packet->rhf)))
1824 		dd_dev_err(packet->rcd->dd,
1825 			   "Unhandled error packet received. Dropping.\n");
1826 }
1827 
kdeth_process_expected(struct hfi1_packet * packet)1828 static void kdeth_process_expected(struct hfi1_packet *packet)
1829 {
1830 	hfi1_setup_9B_packet(packet);
1831 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1832 		return;
1833 
1834 	if (unlikely(rhf_err_flags(packet->rhf))) {
1835 		struct hfi1_ctxtdata *rcd = packet->rcd;
1836 
1837 		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1838 			return;
1839 	}
1840 
1841 	hfi1_kdeth_expected_rcv(packet);
1842 }
1843 
kdeth_process_eager(struct hfi1_packet * packet)1844 static void kdeth_process_eager(struct hfi1_packet *packet)
1845 {
1846 	hfi1_setup_9B_packet(packet);
1847 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1848 		return;
1849 
1850 	trace_hfi1_rcvhdr(packet);
1851 	if (unlikely(rhf_err_flags(packet->rhf))) {
1852 		struct hfi1_ctxtdata *rcd = packet->rcd;
1853 
1854 		show_eflags_errs(packet);
1855 		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1856 			return;
1857 	}
1858 
1859 	hfi1_kdeth_eager_rcv(packet);
1860 }
1861 
process_receive_invalid(struct hfi1_packet * packet)1862 static void process_receive_invalid(struct hfi1_packet *packet)
1863 {
1864 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1865 		   rhf_rcv_type(packet->rhf));
1866 }
1867 
1868 #define HFI1_RCVHDR_DUMP_MAX	5
1869 
seqfile_dump_rcd(struct seq_file * s,struct hfi1_ctxtdata * rcd)1870 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1871 {
1872 	struct hfi1_packet packet;
1873 	struct ps_mdata mdata;
1874 	int i;
1875 
1876 	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
1877 		   rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1878 		   get_dma_rtail_setting(rcd) ?
1879 		   "dma_rtail" : "nodma_rtail",
1880 		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1881 		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1882 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1883 		   RCV_HDR_HEAD_HEAD_MASK,
1884 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1885 		   rcd->head);
1886 
1887 	init_packet(rcd, &packet);
1888 	init_ps_mdata(&mdata, &packet);
1889 
1890 	for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1891 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1892 					 rcd->rhf_offset;
1893 		struct ib_header *hdr;
1894 		u64 rhf = rhf_to_cpu(rhf_addr);
1895 		u32 etype = rhf_rcv_type(rhf), qpn;
1896 		u8 opcode;
1897 		u32 psn;
1898 		u8 lnh;
1899 
1900 		if (ps_done(&mdata, rhf, rcd))
1901 			break;
1902 
1903 		if (ps_skip(&mdata, rhf, rcd))
1904 			goto next;
1905 
1906 		if (etype > RHF_RCV_TYPE_IB)
1907 			goto next;
1908 
1909 		packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1910 		hdr = packet.hdr;
1911 
1912 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1913 
1914 		if (lnh == HFI1_LRH_BTH)
1915 			packet.ohdr = &hdr->u.oth;
1916 		else if (lnh == HFI1_LRH_GRH)
1917 			packet.ohdr = &hdr->u.l.oth;
1918 		else
1919 			goto next; /* just in case */
1920 
1921 		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1922 		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1923 		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1924 
1925 		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1926 			   mdata.ps_head, opcode, qpn, psn);
1927 next:
1928 		update_ps_mdata(&mdata, rcd);
1929 	}
1930 }
1931 
1932 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1933 	[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1934 	[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1935 	[RHF_RCV_TYPE_IB] = process_receive_ib,
1936 	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1937 	[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1938 	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1939 	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1940 	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1941 };
1942 
1943 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1944 	[RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1945 	[RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1946 	[RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1947 	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1948 	[RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1949 	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1950 	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1951 	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1952 };
1953