1.. SPDX-License-Identifier: GPL-2.0 2 3=========================== 4AMD64 Specific Boot Options 5=========================== 6 7There are many others (usually documented in driver documentation), but 8only the AMD64 specific ones are listed here. 9 10Machine check 11============= 12Please see Documentation/x86/x86_64/machinecheck.rst for sysfs runtime tunables. 13 14 mce=off 15 Disable machine check 16 mce=no_cmci 17 Disable CMCI(Corrected Machine Check Interrupt) that 18 Intel processor supports. Usually this disablement is 19 not recommended, but it might be handy if your hardware 20 is misbehaving. 21 Note that you'll get more problems without CMCI than with 22 due to the shared banks, i.e. you might get duplicated 23 error logs. 24 mce=dont_log_ce 25 Don't make logs for corrected errors. All events reported 26 as corrected are silently cleared by OS. 27 This option will be useful if you have no interest in any 28 of corrected errors. 29 mce=ignore_ce 30 Disable features for corrected errors, e.g. polling timer 31 and CMCI. All events reported as corrected are not cleared 32 by OS and remained in its error banks. 33 Usually this disablement is not recommended, however if 34 there is an agent checking/clearing corrected errors 35 (e.g. BIOS or hardware monitoring applications), conflicting 36 with OS's error handling, and you cannot deactivate the agent, 37 then this option will be a help. 38 mce=no_lmce 39 Do not opt-in to Local MCE delivery. Use legacy method 40 to broadcast MCEs. 41 mce=bootlog 42 Enable logging of machine checks left over from booting. 43 Disabled by default on AMD Fam10h and older because some BIOS 44 leave bogus ones. 45 If your BIOS doesn't do that it's a good idea to enable though 46 to make sure you log even machine check events that result 47 in a reboot. On Intel systems it is enabled by default. 48 mce=nobootlog 49 Disable boot machine check logging. 50 mce=tolerancelevel[,monarchtimeout] (number,number) 51 tolerance levels: 52 0: always panic on uncorrected errors, log corrected errors 53 1: panic or SIGBUS on uncorrected errors, log corrected errors 54 2: SIGBUS or log uncorrected errors, log corrected errors 55 3: never panic or SIGBUS, log all errors (for testing only) 56 Default is 1 57 Can be also set using sysfs which is preferable. 58 monarchtimeout: 59 Sets the time in us to wait for other CPUs on machine checks. 0 60 to disable. 61 mce=bios_cmci_threshold 62 Don't overwrite the bios-set CMCI threshold. This boot option 63 prevents Linux from overwriting the CMCI threshold set by the 64 bios. Without this option, Linux always sets the CMCI 65 threshold to 1. Enabling this may make memory predictive failure 66 analysis less effective if the bios sets thresholds for memory 67 errors since we will not see details for all errors. 68 mce=recovery 69 Force-enable recoverable machine check code paths 70 71 nomce (for compatibility with i386) 72 same as mce=off 73 74 Everything else is in sysfs now. 75 76APICs 77===== 78 79 apic 80 Use IO-APIC. Default 81 82 noapic 83 Don't use the IO-APIC. 84 85 disableapic 86 Don't use the local APIC 87 88 nolapic 89 Don't use the local APIC (alias for i386 compatibility) 90 91 pirq=... 92 See Documentation/x86/i386/IO-APIC.rst 93 94 noapictimer 95 Don't set up the APIC timer 96 97 no_timer_check 98 Don't check the IO-APIC timer. This can work around 99 problems with incorrect timer initialization on some boards. 100 101 apicpmtimer 102 Do APIC timer calibration using the pmtimer. Implies 103 apicmaintimer. Useful when your PIT timer is totally broken. 104 105Timing 106====== 107 108 notsc 109 Deprecated, use tsc=unstable instead. 110 111 nohpet 112 Don't use the HPET timer. 113 114Idle loop 115========= 116 117 idle=poll 118 Don't do power saving in the idle loop using HLT, but poll for rescheduling 119 event. This will make the CPUs eat a lot more power, but may be useful 120 to get slightly better performance in multiprocessor benchmarks. It also 121 makes some profiling using performance counters more accurate. 122 Please note that on systems with MONITOR/MWAIT support (like Intel EM64T 123 CPUs) this option has no performance advantage over the normal idle loop. 124 It may also interact badly with hyperthreading. 125 126Rebooting 127========= 128 129 reboot=b[ios] | t[riple] | k[bd] | a[cpi] | e[fi] [, [w]arm | [c]old] 130 bios 131 Use the CPU reboot vector for warm reset 132 warm 133 Don't set the cold reboot flag 134 cold 135 Set the cold reboot flag 136 triple 137 Force a triple fault (init) 138 kbd 139 Use the keyboard controller. cold reset (default) 140 acpi 141 Use the ACPI RESET_REG in the FADT. If ACPI is not configured or 142 the ACPI reset does not work, the reboot path attempts the reset 143 using the keyboard controller. 144 efi 145 Use efi reset_system runtime service. If EFI is not configured or 146 the EFI reset does not work, the reboot path attempts the reset using 147 the keyboard controller. 148 149 Using warm reset will be much faster especially on big memory 150 systems because the BIOS will not go through the memory check. 151 Disadvantage is that not all hardware will be completely reinitialized 152 on reboot so there may be boot problems on some systems. 153 154 reboot=force 155 Don't stop other CPUs on reboot. This can make reboot more reliable 156 in some cases. 157 158Non Executable Mappings 159======================= 160 161 noexec=on|off 162 on 163 Enable(default) 164 off 165 Disable 166 167NUMA 168==== 169 170 numa=off 171 Only set up a single NUMA node spanning all memory. 172 173 numa=noacpi 174 Don't parse the SRAT table for NUMA setup 175 176 numa=fake=<size>[MG] 177 If given as a memory unit, fills all system RAM with nodes of 178 size interleaved over physical nodes. 179 180 numa=fake=<N> 181 If given as an integer, fills all system RAM with N fake nodes 182 interleaved over physical nodes. 183 184 numa=fake=<N>U 185 If given as an integer followed by 'U', it will divide each 186 physical node into N emulated nodes. 187 188ACPI 189==== 190 191 acpi=off 192 Don't enable ACPI 193 acpi=ht 194 Use ACPI boot table parsing, but don't enable ACPI interpreter 195 acpi=force 196 Force ACPI on (currently not needed) 197 acpi=strict 198 Disable out of spec ACPI workarounds. 199 acpi_sci={edge,level,high,low} 200 Set up ACPI SCI interrupt. 201 acpi=noirq 202 Don't route interrupts 203 acpi=nocmcff 204 Disable firmware first mode for corrected errors. This 205 disables parsing the HEST CMC error source to check if 206 firmware has set the FF flag. This may result in 207 duplicate corrected error reports. 208 209PCI 210=== 211 212 pci=off 213 Don't use PCI 214 pci=conf1 215 Use conf1 access. 216 pci=conf2 217 Use conf2 access. 218 pci=rom 219 Assign ROMs. 220 pci=assign-busses 221 Assign busses 222 pci=irqmask=MASK 223 Set PCI interrupt mask to MASK 224 pci=lastbus=NUMBER 225 Scan up to NUMBER busses, no matter what the mptable says. 226 pci=noacpi 227 Don't use ACPI to set up PCI interrupt routing. 228 229IOMMU (input/output memory management unit) 230=========================================== 231Multiple x86-64 PCI-DMA mapping implementations exist, for example: 232 233 1. <kernel/dma/direct.c>: use no hardware/software IOMMU at all 234 (e.g. because you have < 3 GB memory). 235 Kernel boot message: "PCI-DMA: Disabling IOMMU" 236 237 2. <arch/x86/kernel/amd_gart_64.c>: AMD GART based hardware IOMMU. 238 Kernel boot message: "PCI-DMA: using GART IOMMU" 239 240 3. <arch/x86_64/kernel/pci-swiotlb.c> : Software IOMMU implementation. Used 241 e.g. if there is no hardware IOMMU in the system and it is need because 242 you have >3GB memory or told the kernel to us it (iommu=soft)) 243 Kernel boot message: "PCI-DMA: Using software bounce buffering 244 for IO (SWIOTLB)" 245 246 4. <arch/x86_64/pci-calgary.c> : IBM Calgary hardware IOMMU. Used in IBM 247 pSeries and xSeries servers. This hardware IOMMU supports DMA address 248 mapping with memory protection, etc. 249 Kernel boot message: "PCI-DMA: Using Calgary IOMMU" 250 251:: 252 253 iommu=[<size>][,noagp][,off][,force][,noforce] 254 [,memaper[=<order>]][,merge][,fullflush][,nomerge] 255 [,noaperture][,calgary] 256 257General iommu options: 258 259 off 260 Don't initialize and use any kind of IOMMU. 261 noforce 262 Don't force hardware IOMMU usage when it is not needed. (default). 263 force 264 Force the use of the hardware IOMMU even when it is 265 not actually needed (e.g. because < 3 GB memory). 266 soft 267 Use software bounce buffering (SWIOTLB) (default for 268 Intel machines). This can be used to prevent the usage 269 of an available hardware IOMMU. 270 271iommu options only relevant to the AMD GART hardware IOMMU: 272 273 <size> 274 Set the size of the remapping area in bytes. 275 allowed 276 Overwrite iommu off workarounds for specific chipsets. 277 fullflush 278 Flush IOMMU on each allocation (default). 279 nofullflush 280 Don't use IOMMU fullflush. 281 memaper[=<order>] 282 Allocate an own aperture over RAM with size 32MB<<order. 283 (default: order=1, i.e. 64MB) 284 merge 285 Do scatter-gather (SG) merging. Implies "force" (experimental). 286 nomerge 287 Don't do scatter-gather (SG) merging. 288 noaperture 289 Ask the IOMMU not to touch the aperture for AGP. 290 noagp 291 Don't initialize the AGP driver and use full aperture. 292 panic 293 Always panic when IOMMU overflows. 294 calgary 295 Use the Calgary IOMMU if it is available 296 297iommu options only relevant to the software bounce buffering (SWIOTLB) IOMMU 298implementation: 299 300 swiotlb=<pages>[,force] 301 <pages> 302 Prereserve that many 128K pages for the software IO bounce buffering. 303 force 304 Force all IO through the software TLB. 305 306Settings for the IBM Calgary hardware IOMMU currently found in IBM 307pSeries and xSeries machines 308 309 calgary=[64k,128k,256k,512k,1M,2M,4M,8M] 310 Set the size of each PCI slot's translation table when using the 311 Calgary IOMMU. This is the size of the translation table itself 312 in main memory. The smallest table, 64k, covers an IO space of 313 32MB; the largest, 8MB table, can cover an IO space of 4GB. 314 Normally the kernel will make the right choice by itself. 315 calgary=[translate_empty_slots] 316 Enable translation even on slots that have no devices attached to 317 them, in case a device will be hotplugged in the future. 318 calgary=[disable=<PCI bus number>] 319 Disable translation on a given PHB. For 320 example, the built-in graphics adapter resides on the first bridge 321 (PCI bus number 0); if translation (isolation) is enabled on this 322 bridge, X servers that access the hardware directly from user 323 space might stop working. Use this option if you have devices that 324 are accessed from userspace directly on some PCI host bridge. 325 panic 326 Always panic when IOMMU overflows 327 328 329Miscellaneous 330============= 331 332 nogbpages 333 Do not use GB pages for kernel direct mappings. 334 gbpages 335 Use GB pages for kernel direct mappings. 336