1This file contains brief information about the SCSI tape driver. 2The driver is currently maintained by Kai Mäkisara (email 3Kai.Makisara@kolumbus.fi) 4 5Last modified: Tue Feb 9 21:54:16 2016 by kai.makisara 6 7 8BASICS 9 10The driver is generic, i.e., it does not contain any code tailored 11to any specific tape drive. The tape parameters can be specified with 12one of the following three methods: 13 141. Each user can specify the tape parameters he/she wants to use 15directly with ioctls. This is administratively a very simple and 16flexible method and applicable to single-user workstations. However, 17in a multiuser environment the next user finds the tape parameters in 18state the previous user left them. 19 202. The system manager (root) can define default values for some tape 21parameters, like block size and density using the MTSETDRVBUFFER ioctl. 22These parameters can be programmed to come into effect either when a 23new tape is loaded into the drive or if writing begins at the 24beginning of the tape. The second method is applicable if the tape 25drive performs auto-detection of the tape format well (like some 26QIC-drives). The result is that any tape can be read, writing can be 27continued using existing format, and the default format is used if 28the tape is rewritten from the beginning (or a new tape is written 29for the first time). The first method is applicable if the drive 30does not perform auto-detection well enough and there is a single 31"sensible" mode for the device. An example is a DAT drive that is 32used only in variable block mode (I don't know if this is sensible 33or not :-). 34 35The user can override the parameters defined by the system 36manager. The changes persist until the defaults again come into 37effect. 38 393. By default, up to four modes can be defined and selected using the minor 40number (bits 5 and 6). The number of modes can be changed by changing 41ST_NBR_MODE_BITS in st.h. Mode 0 corresponds to the defaults discussed 42above. Additional modes are dormant until they are defined by the 43system manager (root). When specification of a new mode is started, 44the configuration of mode 0 is used to provide a starting point for 45definition of the new mode. 46 47Using the modes allows the system manager to give the users choices 48over some of the buffering parameters not directly accessible to the 49users (buffered and asynchronous writes). The modes also allow choices 50between formats in multi-tape operations (the explicitly overridden 51parameters are reset when a new tape is loaded). 52 53If more than one mode is used, all modes should contain definitions 54for the same set of parameters. 55 56Many Unices contain internal tables that associate different modes to 57supported devices. The Linux SCSI tape driver does not contain such 58tables (and will not do that in future). Instead of that, a utility 59program can be made that fetches the inquiry data sent by the device, 60scans its database, and sets up the modes using the ioctls. Another 61alternative is to make a small script that uses mt to set the defaults 62tailored to the system. 63 64The driver supports fixed and variable block size (within buffer 65limits). Both the auto-rewind (minor equals device number) and 66non-rewind devices (minor is 128 + device number) are implemented. 67 68In variable block mode, the byte count in write() determines the size 69of the physical block on tape. When reading, the drive reads the next 70tape block and returns to the user the data if the read() byte count 71is at least the block size. Otherwise, error ENOMEM is returned. 72 73In fixed block mode, the data transfer between the drive and the 74driver is in multiples of the block size. The write() byte count must 75be a multiple of the block size. This is not required when reading but 76may be advisable for portability. 77 78Support is provided for changing the tape partition and partitioning 79of the tape with one or two partitions. By default support for 80partitioned tape is disabled for each driver and it can be enabled 81with the ioctl MTSETDRVBUFFER. 82 83By default the driver writes one filemark when the device is closed after 84writing and the last operation has been a write. Two filemarks can be 85optionally written. In both cases end of data is signified by 86returning zero bytes for two consecutive reads. 87 88Writing filemarks without the immediate bit set in the SCSI command block acts 89as a synchronization point, i.e., all remaining data form the drive buffers is 90written to tape before the command returns. This makes sure that write errors 91are caught at that point, but this takes time. In some applications, several 92consecutive files must be written fast. The MTWEOFI operation can be used to 93write the filemarks without flushing the drive buffer. Writing filemark at 94close() is always flushing the drive buffers. However, if the previous 95operation is MTWEOFI, close() does not write a filemark. This can be used if 96the program wants to close/open the tape device between files and wants to 97skip waiting. 98 99If rewind, offline, bsf, or seek is done and previous tape operation was 100write, a filemark is written before moving tape. 101 102The compile options are defined in the file linux/drivers/scsi/st_options.h. 103 1044. If the open option O_NONBLOCK is used, open succeeds even if the 105drive is not ready. If O_NONBLOCK is not used, the driver waits for 106the drive to become ready. If this does not happen in ST_BLOCK_SECONDS 107seconds, open fails with the errno value EIO. With O_NONBLOCK the 108device can be opened for writing even if there is a write protected 109tape in the drive (commands trying to write something return error if 110attempted). 111 112 113MINOR NUMBERS 114 115The tape driver currently supports up to 2^17 drives if 4 modes for 116each drive are used. 117 118The minor numbers consist of the following bit fields: 119 120dev_upper non-rew mode dev-lower 121 20 - 8 7 6 5 4 0 122The non-rewind bit is always bit 7 (the uppermost bit in the lowermost 123byte). The bits defining the mode are below the non-rewind bit. The 124remaining bits define the tape device number. This numbering is 125backward compatible with the numbering used when the minor number was 126only 8 bits wide. 127 128 129SYSFS SUPPORT 130 131The driver creates the directory /sys/class/scsi_tape and populates it with 132directories corresponding to the existing tape devices. There are autorewind 133and non-rewind entries for each mode. The names are stxy and nstxy, where x 134is the tape number and y a character corresponding to the mode (none, l, m, 135a). For example, the directories for the first tape device are (assuming four 136modes): st0 nst0 st0l nst0l st0m nst0m st0a nst0a. 137 138Each directory contains the entries: default_blksize default_compression 139default_density defined dev device driver. The file 'defined' contains 1 140if the mode is defined and zero if not defined. The files 'default_*' contain 141the defaults set by the user. The value -1 means the default is not set. The 142file 'dev' contains the device numbers corresponding to this device. The links 143'device' and 'driver' point to the SCSI device and driver entries. 144 145Each directory also contains the entry 'options' which shows the currently 146enabled driver and mode options. The value in the file is a bit mask where the 147bit definitions are the same as those used with MTSETDRVBUFFER in setting the 148options. 149 150A link named 'tape' is made from the SCSI device directory to the class 151directory corresponding to the mode 0 auto-rewind device (e.g., st0). 152 153 154SYSFS AND STATISTICS FOR TAPE DEVICES 155 156The st driver maintains statistics for tape drives inside the sysfs filesystem. 157The following method can be used to locate the statistics that are 158available (assuming that sysfs is mounted at /sys): 159 1601. Use opendir(3) on the directory /sys/class/scsi_tape 1612. Use readdir(3) to read the directory contents 1623. Use regcomp(3)/regexec(3) to match directory entries to the extended 163 regular expression "^st[0-9]+$" 1644. Access the statistics from the /sys/class/scsi_tape/<match>/stats 165 directory (where <match> is a directory entry from /sys/class/scsi_tape 166 that matched the extended regular expression) 167 168The reason for using this approach is that all the character devices 169pointing to the same tape drive use the same statistics. That means 170that st0 would have the same statistics as nst0. 171 172The directory contains the following statistics files: 173 1741. in_flight - The number of I/Os currently outstanding to this device. 1752. io_ns - The amount of time spent waiting (in nanoseconds) for all I/O 176 to complete (including read and write). This includes tape movement 177 commands such as seeking between file or set marks and implicit tape 178 movement such as when rewind on close tape devices are used. 1793. other_cnt - The number of I/Os issued to the tape drive other than read or 180 write commands. The time taken to complete these commands uses the 181 following calculation io_ms-read_ms-write_ms. 1824. read_byte_cnt - The number of bytes read from the tape drive. 1835. read_cnt - The number of read requests issued to the tape drive. 1846. read_ns - The amount of time (in nanoseconds) spent waiting for read 185 requests to complete. 1867. write_byte_cnt - The number of bytes written to the tape drive. 1878. write_cnt - The number of write requests issued to the tape drive. 1889. write_ns - The amount of time (in nanoseconds) spent waiting for write 189 requests to complete. 19010. resid_cnt - The number of times during a read or write we found 191 the residual amount to be non-zero. This should mean that a program 192 is issuing a read larger thean the block size on tape. For write 193 not all data made it to tape. 194 195Note: The in_flight value is incremented when an I/O starts the I/O 196itself is not added to the statistics until it completes. 197 198The total of read_cnt, write_cnt, and other_cnt may not total to the same 199value as iodone_cnt at the device level. The tape statistics only count 200I/O issued via the st module. 201 202When read the statistics may not be temporally consistent while I/O is in 203progress. The individual values are read and written to atomically however 204when reading them back via sysfs they may be in the process of being 205updated when starting an I/O or when it is completed. 206 207The value shown in in_flight is incremented before any statstics are 208updated and decremented when an I/O completes after updating statistics. 209The value of in_flight is 0 when there are no I/Os outstanding that are 210issued by the st driver. Tape statistics do not take into account any 211I/O performed via the sg device. 212 213BSD AND SYS V SEMANTICS 214 215The user can choose between these two behaviours of the tape driver by 216defining the value of the symbol ST_SYSV. The semantics differ when a 217file being read is closed. The BSD semantics leaves the tape where it 218currently is whereas the SYS V semantics moves the tape past the next 219filemark unless the filemark has just been crossed. 220 221The default is BSD semantics. 222 223 224BUFFERING 225 226The driver tries to do transfers directly to/from user space. If this 227is not possible, a driver buffer allocated at run-time is used. If 228direct i/o is not possible for the whole transfer, the driver buffer 229is used (i.e., bounce buffers for individual pages are not 230used). Direct i/o can be impossible because of several reasons, e.g.: 231- one or more pages are at addresses not reachable by the HBA 232- the number of pages in the transfer exceeds the number of 233 scatter/gather segments permitted by the HBA 234- one or more pages can't be locked into memory (should not happen in 235 any reasonable situation) 236 237The size of the driver buffers is always at least one tape block. In fixed 238block mode, the minimum buffer size is defined (in 1024 byte units) by 239ST_FIXED_BUFFER_BLOCKS. With small block size this allows buffering of 240several blocks and using one SCSI read or write to transfer all of the 241blocks. Buffering of data across write calls in fixed block mode is 242allowed if ST_BUFFER_WRITES is non-zero and direct i/o is not used. 243Buffer allocation uses chunks of memory having sizes 2^n * (page 244size). Because of this the actual buffer size may be larger than the 245minimum allowable buffer size. 246 247NOTE that if direct i/o is used, the small writes are not buffered. This may 248cause a surprise when moving from 2.4. There small writes (e.g., tar without 249-b option) may have had good throughput but this is not true any more with 2502.6. Direct i/o can be turned off to solve this problem but a better solution 251is to use bigger write() byte counts (e.g., tar -b 64). 252 253Asynchronous writing. Writing the buffer contents to the tape is 254started and the write call returns immediately. The status is checked 255at the next tape operation. Asynchronous writes are not done with 256direct i/o and not in fixed block mode. 257 258Buffered writes and asynchronous writes may in some rare cases cause 259problems in multivolume operations if there is not enough space on the 260tape after the early-warning mark to flush the driver buffer. 261 262Read ahead for fixed block mode (ST_READ_AHEAD). Filling the buffer is 263attempted even if the user does not want to get all of the data at 264this read command. Should be disabled for those drives that don't like 265a filemark to truncate a read request or that don't like backspacing. 266 267Scatter/gather buffers (buffers that consist of chunks non-contiguous 268in the physical memory) are used if contiguous buffers can't be 269allocated. To support all SCSI adapters (including those not 270supporting scatter/gather), buffer allocation is using the following 271three kinds of chunks: 2721. The initial segment that is used for all SCSI adapters including 273those not supporting scatter/gather. The size of this buffer will be 274(PAGE_SIZE << ST_FIRST_ORDER) bytes if the system can give a chunk of 275this size (and it is not larger than the buffer size specified by 276ST_BUFFER_BLOCKS). If this size is not available, the driver halves 277the size and tries again until the size of one page. The default 278settings in st_options.h make the driver to try to allocate all of the 279buffer as one chunk. 2802. The scatter/gather segments to fill the specified buffer size are 281allocated so that as many segments as possible are used but the number 282of segments does not exceed ST_FIRST_SG. 2833. The remaining segments between ST_MAX_SG (or the module parameter 284max_sg_segs) and the number of segments used in phases 1 and 2 285are used to extend the buffer at run-time if this is necessary. The 286number of scatter/gather segments allowed for the SCSI adapter is not 287exceeded if it is smaller than the maximum number of scatter/gather 288segments specified. If the maximum number allowed for the SCSI adapter 289is smaller than the number of segments used in phases 1 and 2, 290extending the buffer will always fail. 291 292 293EOM BEHAVIOUR WHEN WRITING 294 295When the end of medium early warning is encountered, the current write 296is finished and the number of bytes is returned. The next write 297returns -1 and errno is set to ENOSPC. To enable writing a trailer, 298the next write is allowed to proceed and, if successful, the number of 299bytes is returned. After this, -1 and the number of bytes are 300alternately returned until the physical end of medium (or some other 301error) is encountered. 302 303 304MODULE PARAMETERS 305 306The buffer size, write threshold, and the maximum number of allocated buffers 307are configurable when the driver is loaded as a module. The keywords are: 308 309buffer_kbs=xxx the buffer size for fixed block mode is set 310 to xxx kilobytes 311write_threshold_kbs=xxx the write threshold in kilobytes set to xxx 312max_sg_segs=xxx the maximum number of scatter/gather 313 segments 314try_direct_io=x try direct transfer between user buffer and 315 tape drive if this is non-zero 316 317Note that if the buffer size is changed but the write threshold is not 318set, the write threshold is set to the new buffer size - 2 kB. 319 320 321BOOT TIME CONFIGURATION 322 323If the driver is compiled into the kernel, the same parameters can be 324also set using, e.g., the LILO command line. The preferred syntax is 325to use the same keyword used when loading as module but prepended 326with 'st.'. For instance, to set the maximum number of scatter/gather 327segments, the parameter 'st.max_sg_segs=xx' should be used (xx is the 328number of scatter/gather segments). 329 330For compatibility, the old syntax from early 2.5 and 2.4 kernel 331versions is supported. The same keywords can be used as when loading 332the driver as module. If several parameters are set, the keyword-value 333pairs are separated with a comma (no spaces allowed). A colon can be 334used instead of the equal mark. The definition is prepended by the 335string st=. Here is an example: 336 337 st=buffer_kbs:64,write_threshold_kbs:60 338 339The following syntax used by the old kernel versions is also supported: 340 341 st=aa[,bb[,dd]] 342 343where 344 aa is the buffer size for fixed block mode in 1024 byte units 345 bb is the write threshold in 1024 byte units 346 dd is the maximum number of scatter/gather segments 347 348 349IOCTLS 350 351The tape is positioned and the drive parameters are set with ioctls 352defined in mtio.h The tape control program 'mt' uses these ioctls. Try 353to find an mt that supports all of the Linux SCSI tape ioctls and 354opens the device for writing if the tape contents will be modified 355(look for a package mt-st* from the Linux ftp sites; the GNU mt does 356not open for writing for, e.g., erase). 357 358The supported ioctls are: 359 360The following use the structure mtop: 361 362MTFSF Space forward over count filemarks. Tape positioned after filemark. 363MTFSFM As above but tape positioned before filemark. 364MTBSF Space backward over count filemarks. Tape positioned before 365 filemark. 366MTBSFM As above but ape positioned after filemark. 367MTFSR Space forward over count records. 368MTBSR Space backward over count records. 369MTFSS Space forward over count setmarks. 370MTBSS Space backward over count setmarks. 371MTWEOF Write count filemarks. 372MTWEOFI Write count filemarks with immediate bit set (i.e., does not 373 wait until data is on tape) 374MTWSM Write count setmarks. 375MTREW Rewind tape. 376MTOFFL Set device off line (often rewind plus eject). 377MTNOP Do nothing except flush the buffers. 378MTRETEN Re-tension tape. 379MTEOM Space to end of recorded data. 380MTERASE Erase tape. If the argument is zero, the short erase command 381 is used. The long erase command is used with all other values 382 of the argument. 383MTSEEK Seek to tape block count. Uses Tandberg-compatible seek (QFA) 384 for SCSI-1 drives and SCSI-2 seek for SCSI-2 drives. The file and 385 block numbers in the status are not valid after a seek. 386MTSETBLK Set the drive block size. Setting to zero sets the drive into 387 variable block mode (if applicable). 388MTSETDENSITY Sets the drive density code to arg. See drive 389 documentation for available codes. 390MTLOCK and MTUNLOCK Explicitly lock/unlock the tape drive door. 391MTLOAD and MTUNLOAD Explicitly load and unload the tape. If the 392 command argument x is between MT_ST_HPLOADER_OFFSET + 1 and 393 MT_ST_HPLOADER_OFFSET + 6, the number x is used sent to the 394 drive with the command and it selects the tape slot to use of 395 HP C1553A changer. 396MTCOMPRESSION Sets compressing or uncompressing drive mode using the 397 SCSI mode page 15. Note that some drives other methods for 398 control of compression. Some drives (like the Exabytes) use 399 density codes for compression control. Some drives use another 400 mode page but this page has not been implemented in the 401 driver. Some drives without compression capability will accept 402 any compression mode without error. 403MTSETPART Moves the tape to the partition given by the argument at the 404 next tape operation. The block at which the tape is positioned 405 is the block where the tape was previously positioned in the 406 new active partition unless the next tape operation is 407 MTSEEK. In this case the tape is moved directly to the block 408 specified by MTSEEK. MTSETPART is inactive unless 409 MT_ST_CAN_PARTITIONS set. 410MTMKPART Formats the tape with one partition (argument zero) or two 411 partitions (argument non-zero). If the argument is positive, 412 it specifies the size of partition 1 in megabytes. For DDS 413 drives and several early drives this is the physically first 414 partition of the tape. If the argument is negative, its absolute 415 value specifies the size of partition 0 in megabytes. This is 416 the physically first partition of many later drives, like the 417 LTO drives from LTO-5 upwards. The drive has to support partitions 418 with size specified by the initiator. Inactive unless 419 MT_ST_CAN_PARTITIONS set. 420MTSETDRVBUFFER 421 Is used for several purposes. The command is obtained from count 422 with mask MT_SET_OPTIONS, the low order bits are used as argument. 423 This command is only allowed for the superuser (root). The 424 subcommands are: 425 0 426 The drive buffer option is set to the argument. Zero means 427 no buffering. 428 MT_ST_BOOLEANS 429 Sets the buffering options. The bits are the new states 430 (enabled/disabled) the following options (in the 431 parenthesis is specified whether the option is global or 432 can be specified differently for each mode): 433 MT_ST_BUFFER_WRITES write buffering (mode) 434 MT_ST_ASYNC_WRITES asynchronous writes (mode) 435 MT_ST_READ_AHEAD read ahead (mode) 436 MT_ST_TWO_FM writing of two filemarks (global) 437 MT_ST_FAST_EOM using the SCSI spacing to EOD (global) 438 MT_ST_AUTO_LOCK automatic locking of the drive door (global) 439 MT_ST_DEF_WRITES the defaults are meant only for writes (mode) 440 MT_ST_CAN_BSR backspacing over more than one records can 441 be used for repositioning the tape (global) 442 MT_ST_NO_BLKLIMS the driver does not ask the block limits 443 from the drive (block size can be changed only to 444 variable) (global) 445 MT_ST_CAN_PARTITIONS enables support for partitioned 446 tapes (global) 447 MT_ST_SCSI2LOGICAL the logical block number is used in 448 the MTSEEK and MTIOCPOS for SCSI-2 drives instead of 449 the device dependent address. It is recommended to set 450 this flag unless there are tapes using the device 451 dependent (from the old times) (global) 452 MT_ST_SYSV sets the SYSV semantics (mode) 453 MT_ST_NOWAIT enables immediate mode (i.e., don't wait for 454 the command to finish) for some commands (e.g., rewind) 455 MT_ST_NOWAIT_EOF enables immediate filemark mode (i.e. when 456 writing a filemark, don't wait for it to complete). Please 457 see the BASICS note about MTWEOFI with respect to the 458 possible dangers of writing immediate filemarks. 459 MT_ST_SILI enables setting the SILI bit in SCSI commands when 460 reading in variable block mode to enhance performance when 461 reading blocks shorter than the byte count; set this only 462 if you are sure that the drive supports SILI and the HBA 463 correctly returns transfer residuals 464 MT_ST_DEBUGGING debugging (global; debugging must be 465 compiled into the driver) 466 MT_ST_SETBOOLEANS 467 MT_ST_CLEARBOOLEANS 468 Sets or clears the option bits. 469 MT_ST_WRITE_THRESHOLD 470 Sets the write threshold for this device to kilobytes 471 specified by the lowest bits. 472 MT_ST_DEF_BLKSIZE 473 Defines the default block size set automatically. Value 474 0xffffff means that the default is not used any more. 475 MT_ST_DEF_DENSITY 476 MT_ST_DEF_DRVBUFFER 477 Used to set or clear the density (8 bits), and drive buffer 478 state (3 bits). If the value is MT_ST_CLEAR_DEFAULT 479 (0xfffff) the default will not be used any more. Otherwise 480 the lowermost bits of the value contain the new value of 481 the parameter. 482 MT_ST_DEF_COMPRESSION 483 The compression default will not be used if the value of 484 the lowermost byte is 0xff. Otherwise the lowermost bit 485 contains the new default. If the bits 8-15 are set to a 486 non-zero number, and this number is not 0xff, the number is 487 used as the compression algorithm. The value 488 MT_ST_CLEAR_DEFAULT can be used to clear the compression 489 default. 490 MT_ST_SET_TIMEOUT 491 Set the normal timeout in seconds for this device. The 492 default is 900 seconds (15 minutes). The timeout should be 493 long enough for the retries done by the device while 494 reading/writing. 495 MT_ST_SET_LONG_TIMEOUT 496 Set the long timeout that is used for operations that are 497 known to take a long time. The default is 14000 seconds 498 (3.9 hours). For erase this value is further multiplied by 499 eight. 500 MT_ST_SET_CLN 501 Set the cleaning request interpretation parameters using 502 the lowest 24 bits of the argument. The driver can set the 503 generic status bit GMT_CLN if a cleaning request bit pattern 504 is found from the extended sense data. Many drives set one or 505 more bits in the extended sense data when the drive needs 506 cleaning. The bits are device-dependent. The driver is 507 given the number of the sense data byte (the lowest eight 508 bits of the argument; must be >= 18 (values 1 - 17 509 reserved) and <= the maximum requested sense data sixe), 510 a mask to select the relevant bits (the bits 9-16), and the 511 bit pattern (bits 17-23). If the bit pattern is zero, one 512 or more bits under the mask indicate cleaning request. If 513 the pattern is non-zero, the pattern must match the masked 514 sense data byte. 515 516 (The cleaning bit is set if the additional sense code and 517 qualifier 00h 17h are seen regardless of the setting of 518 MT_ST_SET_CLN.) 519 520The following ioctl uses the structure mtpos: 521MTIOCPOS Reads the current position from the drive. Uses 522 Tandberg-compatible QFA for SCSI-1 drives and the SCSI-2 523 command for the SCSI-2 drives. 524 525The following ioctl uses the structure mtget to return the status: 526MTIOCGET Returns some status information. 527 The file number and block number within file are returned. The 528 block is -1 when it can't be determined (e.g., after MTBSF). 529 The drive type is either MTISSCSI1 or MTISSCSI2. 530 The number of recovered errors since the previous status call 531 is stored in the lower word of the field mt_erreg. 532 The current block size and the density code are stored in the field 533 mt_dsreg (shifts for the subfields are MT_ST_BLKSIZE_SHIFT and 534 MT_ST_DENSITY_SHIFT). 535 The GMT_xxx status bits reflect the drive status. GMT_DR_OPEN 536 is set if there is no tape in the drive. GMT_EOD means either 537 end of recorded data or end of tape. GMT_EOT means end of tape. 538 539 540MISCELLANEOUS COMPILE OPTIONS 541 542The recovered write errors are considered fatal if ST_RECOVERED_WRITE_FATAL 543is defined. 544 545The maximum number of tape devices is determined by the define 546ST_MAX_TAPES. If more tapes are detected at driver initialization, the 547maximum is adjusted accordingly. 548 549Immediate return from tape positioning SCSI commands can be enabled by 550defining ST_NOWAIT. If this is defined, the user should take care that 551the next tape operation is not started before the previous one has 552finished. The drives and SCSI adapters should handle this condition 553gracefully, but some drive/adapter combinations are known to hang the 554SCSI bus in this case. 555 556The MTEOM command is by default implemented as spacing over 32767 557filemarks. With this method the file number in the status is 558correct. The user can request using direct spacing to EOD by setting 559ST_FAST_EOM 1 (or using the MT_ST_OPTIONS ioctl). In this case the file 560number will be invalid. 561 562When using read ahead or buffered writes the position within the file 563may not be correct after the file is closed (correct position may 564require backspacing over more than one record). The correct position 565within file can be obtained if ST_IN_FILE_POS is defined at compile 566time or the MT_ST_CAN_BSR bit is set for the drive with an ioctl. 567(The driver always backs over a filemark crossed by read ahead if the 568user does not request data that far.) 569 570 571DEBUGGING HINTS 572 573Debugging code is now compiled in by default but debugging is turned off 574with the kernel module parameter debug_flag defaulting to 0. Debugging 575can still be switched on and off with an ioctl. To enable debug at 576module load time add debug_flag=1 to the module load options, the 577debugging output is not voluminous. Debugging can also be enabled 578and disabled by writing a '0' (disable) or '1' (enable) to the sysfs 579file /sys/bus/scsi/drivers/st/debug_flag. 580 581If the tape seems to hang, I would be very interested to hear where 582the driver is waiting. With the command 'ps -l' you can see the state 583of the process using the tape. If the state is D, the process is 584waiting for something. The field WCHAN tells where the driver is 585waiting. If you have the current System.map in the correct place (in 586/boot for the procps I use) or have updated /etc/psdatabase (for kmem 587ps), ps writes the function name in the WCHAN field. If not, you have 588to look up the function from System.map. 589 590Note also that the timeouts are very long compared to most other 591drivers. This means that the Linux driver may appear hung although the 592real reason is that the tape firmware has got confused. 593