1Virtual Routing and Forwarding (VRF) 2==================================== 3The VRF device combined with ip rules provides the ability to create virtual 4routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the 5Linux network stack. One use case is the multi-tenancy problem where each 6tenant has their own unique routing tables and in the very least need 7different default gateways. 8 9Processes can be "VRF aware" by binding a socket to the VRF device. Packets 10through the socket then use the routing table associated with the VRF 11device. An important feature of the VRF device implementation is that it 12impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected 13(ie., they do not need to be run in each VRF). The design also allows 14the use of higher priority ip rules (Policy Based Routing, PBR) to take 15precedence over the VRF device rules directing specific traffic as desired. 16 17In addition, VRF devices allow VRFs to be nested within namespaces. For 18example network namespaces provide separation of network interfaces at the 19device layer, VLANs on the interfaces within a namespace provide L2 separation 20and then VRF devices provide L3 separation. 21 22Design 23------ 24A VRF device is created with an associated route table. Network interfaces 25are then enslaved to a VRF device: 26 27 +-----------------------------+ 28 | vrf-blue | ===> route table 10 29 +-----------------------------+ 30 | | | 31 +------+ +------+ +-------------+ 32 | eth1 | | eth2 | ... | bond1 | 33 +------+ +------+ +-------------+ 34 | | 35 +------+ +------+ 36 | eth8 | | eth9 | 37 +------+ +------+ 38 39Packets received on an enslaved device and are switched to the VRF device 40in the IPv4 and IPv6 processing stacks giving the impression that packets 41flow through the VRF device. Similarly on egress routing rules are used to 42send packets to the VRF device driver before getting sent out the actual 43interface. This allows tcpdump on a VRF device to capture all packets into 44and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be 45applied using the VRF device to specify rules that apply to the VRF domain 46as a whole. 47 48[1] Packets in the forwarded state do not flow through the device, so those 49 packets are not seen by tcpdump. Will revisit this limitation in a 50 future release. 51 52[2] Iptables on ingress supports PREROUTING with skb->dev set to the real 53 ingress device and both INPUT and PREROUTING rules with skb->dev set to 54 the VRF device. For egress POSTROUTING and OUTPUT rules can be written 55 using either the VRF device or real egress device. 56 57Setup 58----- 591. VRF device is created with an association to a FIB table. 60 e.g, ip link add vrf-blue type vrf table 10 61 ip link set dev vrf-blue up 62 632. An l3mdev FIB rule directs lookups to the table associated with the device. 64 A single l3mdev rule is sufficient for all VRFs. The VRF device adds the 65 l3mdev rule for IPv4 and IPv6 when the first device is created with a 66 default preference of 1000. Users may delete the rule if desired and add 67 with a different priority or install per-VRF rules. 68 69 Prior to the v4.8 kernel iif and oif rules are needed for each VRF device: 70 ip ru add oif vrf-blue table 10 71 ip ru add iif vrf-blue table 10 72 733. Set the default route for the table (and hence default route for the VRF). 74 ip route add table 10 unreachable default metric 4278198272 75 76 This high metric value ensures that the default unreachable route can 77 be overridden by a routing protocol suite. FRRouting interprets 78 kernel metrics as a combined admin distance (upper byte) and priority 79 (lower 3 bytes). Thus the above metric translates to [255/8192]. 80 814. Enslave L3 interfaces to a VRF device. 82 ip link set dev eth1 master vrf-blue 83 84 Local and connected routes for enslaved devices are automatically moved to 85 the table associated with VRF device. Any additional routes depending on 86 the enslaved device are dropped and will need to be reinserted to the VRF 87 FIB table following the enslavement. 88 89 The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global 90 addresses as VRF enslavement changes. 91 sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 92 935. Additional VRF routes are added to associated table. 94 ip route add table 10 ... 95 96 97Applications 98------------ 99Applications that are to work within a VRF need to bind their socket to the 100VRF device: 101 102 setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1); 103 104or to specify the output device using cmsg and IP_PKTINFO. 105 106TCP & UDP services running in the default VRF context (ie., not bound 107to any VRF device) can work across all VRF domains by enabling the 108tcp_l3mdev_accept and udp_l3mdev_accept sysctl options: 109 sysctl -w net.ipv4.tcp_l3mdev_accept=1 110 sysctl -w net.ipv4.udp_l3mdev_accept=1 111 112netfilter rules on the VRF device can be used to limit access to services 113running in the default VRF context as well. 114 115The default VRF does not have limited scope with respect to port bindings. 116That is, if a process does a wildcard bind to a port in the default VRF it 117owns the port across all VRF domains within the network namespace. 118 119################################################################################ 120 121Using iproute2 for VRFs 122======================= 123iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this 124section lists both commands where appropriate -- with the vrf keyword and the 125older form without it. 126 1271. Create a VRF 128 129 To instantiate a VRF device and associate it with a table: 130 $ ip link add dev NAME type vrf table ID 131 132 As of v4.8 the kernel supports the l3mdev FIB rule where a single rule 133 covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first 134 device create. 135 1362. List VRFs 137 138 To list VRFs that have been created: 139 $ ip [-d] link show type vrf 140 NOTE: The -d option is needed to show the table id 141 142 For example: 143 $ ip -d link show type vrf 144 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 145 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0 146 vrf table 1 addrgenmode eui64 147 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 148 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0 149 vrf table 10 addrgenmode eui64 150 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 151 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0 152 vrf table 66 addrgenmode eui64 153 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 154 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0 155 vrf table 81 addrgenmode eui64 156 157 158 Or in brief output: 159 160 $ ip -br link show type vrf 161 mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP> 162 red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP> 163 blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP> 164 green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP> 165 166 1673. Assign a Network Interface to a VRF 168 169 Network interfaces are assigned to a VRF by enslaving the netdevice to a 170 VRF device: 171 $ ip link set dev NAME master NAME 172 173 On enslavement connected and local routes are automatically moved to the 174 table associated with the VRF device. 175 176 For example: 177 $ ip link set dev eth0 master mgmt 178 179 1804. Show Devices Assigned to a VRF 181 182 To show devices that have been assigned to a specific VRF add the master 183 option to the ip command: 184 $ ip link show vrf NAME 185 $ ip link show master NAME 186 187 For example: 188 $ ip link show vrf red 189 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000 190 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff 191 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000 192 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff 193 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000 194 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff 195 196 197 Or using the brief output: 198 $ ip -br link show vrf red 199 eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP> 200 eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP> 201 eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST> 202 203 2045. Show Neighbor Entries for a VRF 205 206 To list neighbor entries associated with devices enslaved to a VRF device 207 add the master option to the ip command: 208 $ ip [-6] neigh show vrf NAME 209 $ ip [-6] neigh show master NAME 210 211 For example: 212 $ ip neigh show vrf red 213 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 214 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE 215 216 $ ip -6 neigh show vrf red 217 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 218 219 2206. Show Addresses for a VRF 221 222 To show addresses for interfaces associated with a VRF add the master 223 option to the ip command: 224 $ ip addr show vrf NAME 225 $ ip addr show master NAME 226 227 For example: 228 $ ip addr show vrf red 229 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000 230 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff 231 inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1 232 valid_lft forever preferred_lft forever 233 inet6 2002:1::2/120 scope global 234 valid_lft forever preferred_lft forever 235 inet6 fe80::ff:fe00:202/64 scope link 236 valid_lft forever preferred_lft forever 237 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000 238 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff 239 inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2 240 valid_lft forever preferred_lft forever 241 inet6 2002:2::2/120 scope global 242 valid_lft forever preferred_lft forever 243 inet6 fe80::ff:fe00:203/64 scope link 244 valid_lft forever preferred_lft forever 245 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000 246 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff 247 248 Or in brief format: 249 $ ip -br addr show vrf red 250 eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64 251 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64 252 eth5 DOWN 253 254 2557. Show Routes for a VRF 256 257 To show routes for a VRF use the ip command to display the table associated 258 with the VRF device: 259 $ ip [-6] route show vrf NAME 260 $ ip [-6] route show table ID 261 262 For example: 263 $ ip route show vrf red 264 unreachable default metric 4278198272 265 broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2 266 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2 267 local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2 268 broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2 269 broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2 270 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2 271 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2 272 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2 273 274 $ ip -6 route show vrf red 275 local 2002:1:: dev lo proto none metric 0 pref medium 276 local 2002:1::2 dev lo proto none metric 0 pref medium 277 2002:1::/120 dev eth1 proto kernel metric 256 pref medium 278 local 2002:2:: dev lo proto none metric 0 pref medium 279 local 2002:2::2 dev lo proto none metric 0 pref medium 280 2002:2::/120 dev eth2 proto kernel metric 256 pref medium 281 local fe80:: dev lo proto none metric 0 pref medium 282 local fe80:: dev lo proto none metric 0 pref medium 283 local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium 284 local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium 285 fe80::/64 dev eth1 proto kernel metric 256 pref medium 286 fe80::/64 dev eth2 proto kernel metric 256 pref medium 287 ff00::/8 dev red metric 256 pref medium 288 ff00::/8 dev eth1 metric 256 pref medium 289 ff00::/8 dev eth2 metric 256 pref medium 290 unreachable default dev lo metric 4278198272 error -101 pref medium 291 2928. Route Lookup for a VRF 293 294 A test route lookup can be done for a VRF: 295 $ ip [-6] route get vrf NAME ADDRESS 296 $ ip [-6] route get oif NAME ADDRESS 297 298 For example: 299 $ ip route get 10.2.1.40 vrf red 300 10.2.1.40 dev eth1 table red src 10.2.1.2 301 cache 302 303 $ ip -6 route get 2002:1::32 vrf red 304 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium 305 306 3079. Removing Network Interface from a VRF 308 309 Network interfaces are removed from a VRF by breaking the enslavement to 310 the VRF device: 311 $ ip link set dev NAME nomaster 312 313 Connected routes are moved back to the default table and local entries are 314 moved to the local table. 315 316 For example: 317 $ ip link set dev eth0 nomaster 318 319-------------------------------------------------------------------------------- 320 321Commands used in this example: 322 323cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF 3241 mgmt 32510 red 32666 blue 32781 green 328EOF 329 330function vrf_create 331{ 332 VRF=$1 333 TBID=$2 334 335 # create VRF device 336 ip link add ${VRF} type vrf table ${TBID} 337 338 if [ "${VRF}" != "mgmt" ]; then 339 ip route add table ${TBID} unreachable default metric 4278198272 340 fi 341 ip link set dev ${VRF} up 342} 343 344vrf_create mgmt 1 345ip link set dev eth0 master mgmt 346 347vrf_create red 10 348ip link set dev eth1 master red 349ip link set dev eth2 master red 350ip link set dev eth5 master red 351 352vrf_create blue 66 353ip link set dev eth3 master blue 354 355vrf_create green 81 356ip link set dev eth4 master green 357 358 359Interface addresses from /etc/network/interfaces: 360auto eth0 361iface eth0 inet static 362 address 10.0.0.2 363 netmask 255.255.255.0 364 gateway 10.0.0.254 365 366iface eth0 inet6 static 367 address 2000:1::2 368 netmask 120 369 370auto eth1 371iface eth1 inet static 372 address 10.2.1.2 373 netmask 255.255.255.0 374 375iface eth1 inet6 static 376 address 2002:1::2 377 netmask 120 378 379auto eth2 380iface eth2 inet static 381 address 10.2.2.2 382 netmask 255.255.255.0 383 384iface eth2 inet6 static 385 address 2002:2::2 386 netmask 120 387 388auto eth3 389iface eth3 inet static 390 address 10.2.3.2 391 netmask 255.255.255.0 392 393iface eth3 inet6 static 394 address 2002:3::2 395 netmask 120 396 397auto eth4 398iface eth4 inet static 399 address 10.2.4.2 400 netmask 255.255.255.0 401 402iface eth4 inet6 static 403 address 2002:4::2 404 netmask 120 405