1The Kernel Address Sanitizer (KASAN) 2==================================== 3 4Overview 5-------- 6 7KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides 8a fast and comprehensive solution for finding use-after-free and out-of-bounds 9bugs. 10 11KASAN uses compile-time instrumentation for checking every memory access, 12therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is 13required for detection of out-of-bounds accesses to stack or global variables. 14 15Currently KASAN is supported only for the x86_64 and arm64 architectures. 16 17Usage 18----- 19 20To enable KASAN configure kernel with:: 21 22 CONFIG_KASAN = y 23 24and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and 25inline are compiler instrumentation types. The former produces smaller binary 26the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC 27version 5.0 or later. 28 29KASAN works with both SLUB and SLAB memory allocators. 30For better bug detection and nicer reporting, enable CONFIG_STACKTRACE. 31 32To disable instrumentation for specific files or directories, add a line 33similar to the following to the respective kernel Makefile: 34 35- For a single file (e.g. main.o):: 36 37 KASAN_SANITIZE_main.o := n 38 39- For all files in one directory:: 40 41 KASAN_SANITIZE := n 42 43Error reports 44~~~~~~~~~~~~~ 45 46A typical out of bounds access report looks like this:: 47 48 ================================================================== 49 BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3 50 Write of size 1 by task modprobe/1689 51 ============================================================================= 52 BUG kmalloc-128 (Not tainted): kasan error 53 ----------------------------------------------------------------------------- 54 55 Disabling lock debugging due to kernel taint 56 INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689 57 __slab_alloc+0x4b4/0x4f0 58 kmem_cache_alloc_trace+0x10b/0x190 59 kmalloc_oob_right+0x3d/0x75 [test_kasan] 60 init_module+0x9/0x47 [test_kasan] 61 do_one_initcall+0x99/0x200 62 load_module+0x2cb3/0x3b20 63 SyS_finit_module+0x76/0x80 64 system_call_fastpath+0x12/0x17 65 INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080 66 INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720 67 68 Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ 69 Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 70 Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 71 Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 72 Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 73 Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 74 Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 75 Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 76 Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk. 77 Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........ 78 Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ 79 CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98 80 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 81 ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78 82 ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8 83 ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558 84 Call Trace: 85 [<ffffffff81cc68ae>] dump_stack+0x46/0x58 86 [<ffffffff811fd848>] print_trailer+0xf8/0x160 87 [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] 88 [<ffffffff811ff0f5>] object_err+0x35/0x40 89 [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] 90 [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0 91 [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 92 [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40 93 [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 94 [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] 95 [<ffffffff8120a995>] __asan_store1+0x75/0xb0 96 [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan] 97 [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] 98 [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan] 99 [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan] 100 [<ffffffff810002d9>] do_one_initcall+0x99/0x200 101 [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160 102 [<ffffffff81114f63>] load_module+0x2cb3/0x3b20 103 [<ffffffff8110fd70>] ? m_show+0x240/0x240 104 [<ffffffff81115f06>] SyS_finit_module+0x76/0x80 105 [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17 106 Memory state around the buggy address: 107 ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 108 ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc 109 ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 110 ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 111 ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00 112 >ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc 113 ^ 114 ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 115 ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 116 ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb 117 ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb 118 ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb 119 ================================================================== 120 121The header of the report discribe what kind of bug happened and what kind of 122access caused it. It's followed by the description of the accessed slub object 123(see 'SLUB Debug output' section in Documentation/vm/slub.rst for details) and 124the description of the accessed memory page. 125 126In the last section the report shows memory state around the accessed address. 127Reading this part requires some understanding of how KASAN works. 128 129The state of each 8 aligned bytes of memory is encoded in one shadow byte. 130Those 8 bytes can be accessible, partially accessible, freed or be a redzone. 131We use the following encoding for each shadow byte: 0 means that all 8 bytes 132of the corresponding memory region are accessible; number N (1 <= N <= 7) means 133that the first N bytes are accessible, and other (8 - N) bytes are not; 134any negative value indicates that the entire 8-byte word is inaccessible. 135We use different negative values to distinguish between different kinds of 136inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h). 137 138In the report above the arrows point to the shadow byte 03, which means that 139the accessed address is partially accessible. 140 141 142Implementation details 143---------------------- 144 145From a high level, our approach to memory error detection is similar to that 146of kmemcheck: use shadow memory to record whether each byte of memory is safe 147to access, and use compile-time instrumentation to check shadow memory on each 148memory access. 149 150AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory 151(e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and 152offset to translate a memory address to its corresponding shadow address. 153 154Here is the function which translates an address to its corresponding shadow 155address:: 156 157 static inline void *kasan_mem_to_shadow(const void *addr) 158 { 159 return ((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT) 160 + KASAN_SHADOW_OFFSET; 161 } 162 163where ``KASAN_SHADOW_SCALE_SHIFT = 3``. 164 165Compile-time instrumentation used for checking memory accesses. Compiler inserts 166function calls (__asan_load*(addr), __asan_store*(addr)) before each memory 167access of size 1, 2, 4, 8 or 16. These functions check whether memory access is 168valid or not by checking corresponding shadow memory. 169 170GCC 5.0 has possibility to perform inline instrumentation. Instead of making 171function calls GCC directly inserts the code to check the shadow memory. 172This option significantly enlarges kernel but it gives x1.1-x2 performance 173boost over outline instrumented kernel. 174