1 /*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
15 *
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
19 *
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
32 *
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
39 *
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
44 *
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
54 *
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
66 *
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
78 *
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
84 *
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
90 *
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
94 *
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
102 *
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
107 *
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
116 *
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
133 *
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
140 *
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
150 *
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
158 *
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
169 *
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
196 * 14 Jun 2005 macro Use irqreturn_t.
197 * 23 Oct 2006 macro Big-endian host support.
198 * 14 Dec 2006 macro TURBOchannel support.
199 * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts.
200 */
201
202 /* Include files */
203 #include <linux/bitops.h>
204 #include <linux/compiler.h>
205 #include <linux/delay.h>
206 #include <linux/dma-mapping.h>
207 #include <linux/eisa.h>
208 #include <linux/errno.h>
209 #include <linux/fddidevice.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223
224 #include "defxx.h"
225
226 /* Version information string should be updated prior to each new release! */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.11"
229 #define DRV_RELDATE "2014/07/01"
230
231 static const char version[] =
232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
234
235 #define DYNAMIC_BUFFERS 1
236
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244 #ifdef CONFIG_EISA
245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246 #else
247 #define DFX_BUS_EISA(dev) 0
248 #endif
249
250 #ifdef CONFIG_TC
251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252 #else
253 #define DFX_BUS_TC(dev) 0
254 #endif
255
256 #ifdef CONFIG_DEFXX_MMIO
257 #define DFX_MMIO 1
258 #else
259 #define DFX_MMIO 0
260 #endif
261
262 /* Define module-wide (static) routines */
263
264 static void dfx_bus_init(struct net_device *dev);
265 static void dfx_bus_uninit(struct net_device *dev);
266 static void dfx_bus_config_check(DFX_board_t *bp);
267
268 static int dfx_driver_init(struct net_device *dev,
269 const char *print_name,
270 resource_size_t bar_start);
271 static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273 static int dfx_open(struct net_device *dev);
274 static int dfx_close(struct net_device *dev);
275
276 static void dfx_int_pr_halt_id(DFX_board_t *bp);
277 static void dfx_int_type_0_process(DFX_board_t *bp);
278 static void dfx_int_common(struct net_device *dev);
279 static irqreturn_t dfx_interrupt(int irq, void *dev_id);
280
281 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282 static void dfx_ctl_set_multicast_list(struct net_device *dev);
283 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284 static int dfx_ctl_update_cam(DFX_board_t *bp);
285 static int dfx_ctl_update_filters(DFX_board_t *bp);
286
287 static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
288 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290 static int dfx_hw_adap_state_rd(DFX_board_t *bp);
291 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294 static void dfx_rcv_queue_process(DFX_board_t *bp);
295 #ifdef DYNAMIC_BUFFERS
296 static void dfx_rcv_flush(DFX_board_t *bp);
297 #else
dfx_rcv_flush(DFX_board_t * bp)298 static inline void dfx_rcv_flush(DFX_board_t *bp) {}
299 #endif
300
301 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302 struct net_device *dev);
303 static int dfx_xmt_done(DFX_board_t *bp);
304 static void dfx_xmt_flush(DFX_board_t *bp);
305
306 /* Define module-wide (static) variables */
307
308 static struct pci_driver dfx_pci_driver;
309 static struct eisa_driver dfx_eisa_driver;
310 static struct tc_driver dfx_tc_driver;
311
312
313 /*
314 * =======================
315 * = dfx_port_write_long =
316 * = dfx_port_read_long =
317 * =======================
318 *
319 * Overview:
320 * Routines for reading and writing values from/to adapter
321 *
322 * Returns:
323 * None
324 *
325 * Arguments:
326 * bp - pointer to board information
327 * offset - register offset from base I/O address
328 * data - for dfx_port_write_long, this is a value to write;
329 * for dfx_port_read_long, this is a pointer to store
330 * the read value
331 *
332 * Functional Description:
333 * These routines perform the correct operation to read or write
334 * the adapter register.
335 *
336 * EISA port block base addresses are based on the slot number in which the
337 * controller is installed. For example, if the EISA controller is installed
338 * in slot 4, the port block base address is 0x4000. If the controller is
339 * installed in slot 2, the port block base address is 0x2000, and so on.
340 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
341 * registers using the register offsets defined in DEFXX.H.
342 *
343 * PCI port block base addresses are assigned by the PCI BIOS or system
344 * firmware. There is one 128 byte port block which can be accessed. It
345 * allows for I/O mapping of both PDQ and PFI registers using the register
346 * offsets defined in DEFXX.H.
347 *
348 * Return Codes:
349 * None
350 *
351 * Assumptions:
352 * bp->base is a valid base I/O address for this adapter.
353 * offset is a valid register offset for this adapter.
354 *
355 * Side Effects:
356 * Rather than produce macros for these functions, these routines
357 * are defined using "inline" to ensure that the compiler will
358 * generate inline code and not waste a procedure call and return.
359 * This provides all the benefits of macros, but with the
360 * advantage of strict data type checking.
361 */
362
dfx_writel(DFX_board_t * bp,int offset,u32 data)363 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364 {
365 writel(data, bp->base.mem + offset);
366 mb();
367 }
368
dfx_outl(DFX_board_t * bp,int offset,u32 data)369 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370 {
371 outl(data, bp->base.port + offset);
372 }
373
dfx_port_write_long(DFX_board_t * bp,int offset,u32 data)374 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375 {
376 struct device __maybe_unused *bdev = bp->bus_dev;
377 int dfx_bus_tc = DFX_BUS_TC(bdev);
378 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380 if (dfx_use_mmio)
381 dfx_writel(bp, offset, data);
382 else
383 dfx_outl(bp, offset, data);
384 }
385
386
dfx_readl(DFX_board_t * bp,int offset,u32 * data)387 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388 {
389 mb();
390 *data = readl(bp->base.mem + offset);
391 }
392
dfx_inl(DFX_board_t * bp,int offset,u32 * data)393 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394 {
395 *data = inl(bp->base.port + offset);
396 }
397
dfx_port_read_long(DFX_board_t * bp,int offset,u32 * data)398 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399 {
400 struct device __maybe_unused *bdev = bp->bus_dev;
401 int dfx_bus_tc = DFX_BUS_TC(bdev);
402 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404 if (dfx_use_mmio)
405 dfx_readl(bp, offset, data);
406 else
407 dfx_inl(bp, offset, data);
408 }
409
410
411 /*
412 * ================
413 * = dfx_get_bars =
414 * ================
415 *
416 * Overview:
417 * Retrieves the address ranges used to access control and status
418 * registers.
419 *
420 * Returns:
421 * None
422 *
423 * Arguments:
424 * bdev - pointer to device information
425 * bar_start - pointer to store the start addresses
426 * bar_len - pointer to store the lengths of the areas
427 *
428 * Assumptions:
429 * I am sure there are some.
430 *
431 * Side Effects:
432 * None
433 */
dfx_get_bars(struct device * bdev,resource_size_t * bar_start,resource_size_t * bar_len)434 static void dfx_get_bars(struct device *bdev,
435 resource_size_t *bar_start, resource_size_t *bar_len)
436 {
437 int dfx_bus_pci = dev_is_pci(bdev);
438 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439 int dfx_bus_tc = DFX_BUS_TC(bdev);
440 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442 if (dfx_bus_pci) {
443 int num = dfx_use_mmio ? 0 : 1;
444
445 bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
446 bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
447 bar_start[2] = bar_start[1] = 0;
448 bar_len[2] = bar_len[1] = 0;
449 }
450 if (dfx_bus_eisa) {
451 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452 resource_size_t bar_lo;
453 resource_size_t bar_hi;
454
455 if (dfx_use_mmio) {
456 bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
457 bar_lo <<= 8;
458 bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
459 bar_lo <<= 8;
460 bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
461 bar_lo <<= 8;
462 bar_start[0] = bar_lo;
463 bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
464 bar_hi <<= 8;
465 bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
466 bar_hi <<= 8;
467 bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
468 bar_hi <<= 8;
469 bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
470 1;
471 } else {
472 bar_start[0] = base_addr;
473 bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
474 }
475 bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
476 bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
477 bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
478 bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
479 }
480 if (dfx_bus_tc) {
481 bar_start[0] = to_tc_dev(bdev)->resource.start +
482 PI_TC_K_CSR_OFFSET;
483 bar_len[0] = PI_TC_K_CSR_LEN;
484 bar_start[2] = bar_start[1] = 0;
485 bar_len[2] = bar_len[1] = 0;
486 }
487 }
488
489 static const struct net_device_ops dfx_netdev_ops = {
490 .ndo_open = dfx_open,
491 .ndo_stop = dfx_close,
492 .ndo_start_xmit = dfx_xmt_queue_pkt,
493 .ndo_get_stats = dfx_ctl_get_stats,
494 .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
495 .ndo_set_mac_address = dfx_ctl_set_mac_address,
496 };
497
498 /*
499 * ================
500 * = dfx_register =
501 * ================
502 *
503 * Overview:
504 * Initializes a supported FDDI controller
505 *
506 * Returns:
507 * Condition code
508 *
509 * Arguments:
510 * bdev - pointer to device information
511 *
512 * Functional Description:
513 *
514 * Return Codes:
515 * 0 - This device (fddi0, fddi1, etc) configured successfully
516 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
517 *
518 * Assumptions:
519 * It compiles so it should work :-( (PCI cards do :-)
520 *
521 * Side Effects:
522 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
523 * initialized and the board resources are read and stored in
524 * the device structure.
525 */
dfx_register(struct device * bdev)526 static int dfx_register(struct device *bdev)
527 {
528 static int version_disp;
529 int dfx_bus_pci = dev_is_pci(bdev);
530 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
531 int dfx_bus_tc = DFX_BUS_TC(bdev);
532 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
533 const char *print_name = dev_name(bdev);
534 struct net_device *dev;
535 DFX_board_t *bp; /* board pointer */
536 resource_size_t bar_start[3] = {0}; /* pointers to ports */
537 resource_size_t bar_len[3] = {0}; /* resource length */
538 int alloc_size; /* total buffer size used */
539 struct resource *region;
540 int err = 0;
541
542 if (!version_disp) { /* display version info if adapter is found */
543 version_disp = 1; /* set display flag to TRUE so that */
544 printk(version); /* we only display this string ONCE */
545 }
546
547 dev = alloc_fddidev(sizeof(*bp));
548 if (!dev) {
549 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
550 print_name);
551 return -ENOMEM;
552 }
553
554 /* Enable PCI device. */
555 if (dfx_bus_pci) {
556 err = pci_enable_device(to_pci_dev(bdev));
557 if (err) {
558 pr_err("%s: Cannot enable PCI device, aborting\n",
559 print_name);
560 goto err_out;
561 }
562 }
563
564 SET_NETDEV_DEV(dev, bdev);
565
566 bp = netdev_priv(dev);
567 bp->bus_dev = bdev;
568 dev_set_drvdata(bdev, dev);
569
570 dfx_get_bars(bdev, bar_start, bar_len);
571 if (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0) {
572 pr_err("%s: Cannot use MMIO, no address set, aborting\n",
573 print_name);
574 pr_err("%s: Run ECU and set adapter's MMIO location\n",
575 print_name);
576 pr_err("%s: Or recompile driver with \"CONFIG_DEFXX_MMIO=n\""
577 "\n", print_name);
578 err = -ENXIO;
579 goto err_out;
580 }
581
582 if (dfx_use_mmio)
583 region = request_mem_region(bar_start[0], bar_len[0],
584 print_name);
585 else
586 region = request_region(bar_start[0], bar_len[0], print_name);
587 if (!region) {
588 pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, "
589 "aborting\n", dfx_use_mmio ? "MMIO" : "I/O", print_name,
590 (long)bar_len[0], (long)bar_start[0]);
591 err = -EBUSY;
592 goto err_out_disable;
593 }
594 if (bar_start[1] != 0) {
595 region = request_region(bar_start[1], bar_len[1], print_name);
596 if (!region) {
597 pr_err("%s: Cannot reserve I/O resource "
598 "0x%lx @ 0x%lx, aborting\n", print_name,
599 (long)bar_len[1], (long)bar_start[1]);
600 err = -EBUSY;
601 goto err_out_csr_region;
602 }
603 }
604 if (bar_start[2] != 0) {
605 region = request_region(bar_start[2], bar_len[2], print_name);
606 if (!region) {
607 pr_err("%s: Cannot reserve I/O resource "
608 "0x%lx @ 0x%lx, aborting\n", print_name,
609 (long)bar_len[2], (long)bar_start[2]);
610 err = -EBUSY;
611 goto err_out_bh_region;
612 }
613 }
614
615 /* Set up I/O base address. */
616 if (dfx_use_mmio) {
617 bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]);
618 if (!bp->base.mem) {
619 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
620 err = -ENOMEM;
621 goto err_out_esic_region;
622 }
623 } else {
624 bp->base.port = bar_start[0];
625 dev->base_addr = bar_start[0];
626 }
627
628 /* Initialize new device structure */
629 dev->netdev_ops = &dfx_netdev_ops;
630
631 if (dfx_bus_pci)
632 pci_set_master(to_pci_dev(bdev));
633
634 if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
635 err = -ENODEV;
636 goto err_out_unmap;
637 }
638
639 err = register_netdev(dev);
640 if (err)
641 goto err_out_kfree;
642
643 printk("%s: registered as %s\n", print_name, dev->name);
644 return 0;
645
646 err_out_kfree:
647 alloc_size = sizeof(PI_DESCR_BLOCK) +
648 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
649 #ifndef DYNAMIC_BUFFERS
650 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
651 #endif
652 sizeof(PI_CONSUMER_BLOCK) +
653 (PI_ALIGN_K_DESC_BLK - 1);
654 if (bp->kmalloced)
655 dma_free_coherent(bdev, alloc_size,
656 bp->kmalloced, bp->kmalloced_dma);
657
658 err_out_unmap:
659 if (dfx_use_mmio)
660 iounmap(bp->base.mem);
661
662 err_out_esic_region:
663 if (bar_start[2] != 0)
664 release_region(bar_start[2], bar_len[2]);
665
666 err_out_bh_region:
667 if (bar_start[1] != 0)
668 release_region(bar_start[1], bar_len[1]);
669
670 err_out_csr_region:
671 if (dfx_use_mmio)
672 release_mem_region(bar_start[0], bar_len[0]);
673 else
674 release_region(bar_start[0], bar_len[0]);
675
676 err_out_disable:
677 if (dfx_bus_pci)
678 pci_disable_device(to_pci_dev(bdev));
679
680 err_out:
681 free_netdev(dev);
682 return err;
683 }
684
685
686 /*
687 * ================
688 * = dfx_bus_init =
689 * ================
690 *
691 * Overview:
692 * Initializes the bus-specific controller logic.
693 *
694 * Returns:
695 * None
696 *
697 * Arguments:
698 * dev - pointer to device information
699 *
700 * Functional Description:
701 * Determine and save adapter IRQ in device table,
702 * then perform bus-specific logic initialization.
703 *
704 * Return Codes:
705 * None
706 *
707 * Assumptions:
708 * bp->base has already been set with the proper
709 * base I/O address for this device.
710 *
711 * Side Effects:
712 * Interrupts are enabled at the adapter bus-specific logic.
713 * Note: Interrupts at the DMA engine (PDQ chip) are not
714 * enabled yet.
715 */
716
dfx_bus_init(struct net_device * dev)717 static void dfx_bus_init(struct net_device *dev)
718 {
719 DFX_board_t *bp = netdev_priv(dev);
720 struct device *bdev = bp->bus_dev;
721 int dfx_bus_pci = dev_is_pci(bdev);
722 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
723 int dfx_bus_tc = DFX_BUS_TC(bdev);
724 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
725 u8 val;
726
727 DBG_printk("In dfx_bus_init...\n");
728
729 /* Initialize a pointer back to the net_device struct */
730 bp->dev = dev;
731
732 /* Initialize adapter based on bus type */
733
734 if (dfx_bus_tc)
735 dev->irq = to_tc_dev(bdev)->interrupt;
736 if (dfx_bus_eisa) {
737 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
738
739 /* Disable the board before fiddling with the decoders. */
740 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
741
742 /* Get the interrupt level from the ESIC chip. */
743 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
744 val &= PI_CONFIG_STAT_0_M_IRQ;
745 val >>= PI_CONFIG_STAT_0_V_IRQ;
746
747 switch (val) {
748 case PI_CONFIG_STAT_0_IRQ_K_9:
749 dev->irq = 9;
750 break;
751
752 case PI_CONFIG_STAT_0_IRQ_K_10:
753 dev->irq = 10;
754 break;
755
756 case PI_CONFIG_STAT_0_IRQ_K_11:
757 dev->irq = 11;
758 break;
759
760 case PI_CONFIG_STAT_0_IRQ_K_15:
761 dev->irq = 15;
762 break;
763 }
764
765 /*
766 * Enable memory decoding (MEMCS1) and/or port decoding
767 * (IOCS1/IOCS0) as appropriate in Function Control
768 * Register. MEMCS1 or IOCS0 is used for PDQ registers,
769 * taking 16 32-bit words, while IOCS1 is used for the
770 * Burst Holdoff register, taking a single 32-bit word
771 * only. We use the slot-specific I/O range as per the
772 * ESIC spec, that is set bits 15:12 in the mask registers
773 * to mask them out.
774 */
775
776 /* Set the decode range of the board. */
777 val = 0;
778 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
779 val = PI_DEFEA_K_CSR_IO;
780 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
781
782 val = PI_IO_CMP_M_SLOT;
783 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
784 val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
785 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
786
787 val = 0;
788 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
789 val = PI_DEFEA_K_BURST_HOLDOFF;
790 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
791
792 val = PI_IO_CMP_M_SLOT;
793 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
794 val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
795 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
796
797 /* Enable the decoders. */
798 val = PI_FUNCTION_CNTRL_M_IOCS1;
799 if (dfx_use_mmio)
800 val |= PI_FUNCTION_CNTRL_M_MEMCS1;
801 else
802 val |= PI_FUNCTION_CNTRL_M_IOCS0;
803 outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
804
805 /*
806 * Enable access to the rest of the module
807 * (including PDQ and packet memory).
808 */
809 val = PI_SLOT_CNTRL_M_ENB;
810 outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
811
812 /*
813 * Map PDQ registers into memory or port space. This is
814 * done with a bit in the Burst Holdoff register.
815 */
816 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
817 if (dfx_use_mmio)
818 val |= PI_BURST_HOLDOFF_M_MEM_MAP;
819 else
820 val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
821 outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
822
823 /* Enable interrupts at EISA bus interface chip (ESIC) */
824 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
825 val |= PI_CONFIG_STAT_0_M_INT_ENB;
826 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
827 }
828 if (dfx_bus_pci) {
829 struct pci_dev *pdev = to_pci_dev(bdev);
830
831 /* Get the interrupt level from the PCI Configuration Table */
832
833 dev->irq = pdev->irq;
834
835 /* Check Latency Timer and set if less than minimal */
836
837 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
838 if (val < PFI_K_LAT_TIMER_MIN) {
839 val = PFI_K_LAT_TIMER_DEF;
840 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
841 }
842
843 /* Enable interrupts at PCI bus interface chip (PFI) */
844 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
845 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
846 }
847 }
848
849 /*
850 * ==================
851 * = dfx_bus_uninit =
852 * ==================
853 *
854 * Overview:
855 * Uninitializes the bus-specific controller logic.
856 *
857 * Returns:
858 * None
859 *
860 * Arguments:
861 * dev - pointer to device information
862 *
863 * Functional Description:
864 * Perform bus-specific logic uninitialization.
865 *
866 * Return Codes:
867 * None
868 *
869 * Assumptions:
870 * bp->base has already been set with the proper
871 * base I/O address for this device.
872 *
873 * Side Effects:
874 * Interrupts are disabled at the adapter bus-specific logic.
875 */
876
dfx_bus_uninit(struct net_device * dev)877 static void dfx_bus_uninit(struct net_device *dev)
878 {
879 DFX_board_t *bp = netdev_priv(dev);
880 struct device *bdev = bp->bus_dev;
881 int dfx_bus_pci = dev_is_pci(bdev);
882 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
883 u8 val;
884
885 DBG_printk("In dfx_bus_uninit...\n");
886
887 /* Uninitialize adapter based on bus type */
888
889 if (dfx_bus_eisa) {
890 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
891
892 /* Disable interrupts at EISA bus interface chip (ESIC) */
893 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
894 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
895 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
896
897 /* Disable the board. */
898 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
899
900 /* Disable memory and port decoders. */
901 outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
902 }
903 if (dfx_bus_pci) {
904 /* Disable interrupts at PCI bus interface chip (PFI) */
905 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
906 }
907 }
908
909
910 /*
911 * ========================
912 * = dfx_bus_config_check =
913 * ========================
914 *
915 * Overview:
916 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
917 * are illegal, then this routine will set new defaults.
918 *
919 * Returns:
920 * None
921 *
922 * Arguments:
923 * bp - pointer to board information
924 *
925 * Functional Description:
926 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
927 * PDQ, and all FDDI PCI controllers, all values are legal.
928 *
929 * Return Codes:
930 * None
931 *
932 * Assumptions:
933 * dfx_adap_init has NOT been called yet so burst size and other items have
934 * not been set.
935 *
936 * Side Effects:
937 * None
938 */
939
dfx_bus_config_check(DFX_board_t * bp)940 static void dfx_bus_config_check(DFX_board_t *bp)
941 {
942 struct device __maybe_unused *bdev = bp->bus_dev;
943 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
944 int status; /* return code from adapter port control call */
945 u32 host_data; /* LW data returned from port control call */
946
947 DBG_printk("In dfx_bus_config_check...\n");
948
949 /* Configuration check only valid for EISA adapter */
950
951 if (dfx_bus_eisa) {
952 /*
953 * First check if revision 2 EISA controller. Rev. 1 cards used
954 * PDQ revision B, so no workaround needed in this case. Rev. 3
955 * cards used PDQ revision E, so no workaround needed in this
956 * case, either. Only Rev. 2 cards used either Rev. D or E
957 * chips, so we must verify the chip revision on Rev. 2 cards.
958 */
959 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
960 /*
961 * Revision 2 FDDI EISA controller found,
962 * so let's check PDQ revision of adapter.
963 */
964 status = dfx_hw_port_ctrl_req(bp,
965 PI_PCTRL_M_SUB_CMD,
966 PI_SUB_CMD_K_PDQ_REV_GET,
967 0,
968 &host_data);
969 if ((status != DFX_K_SUCCESS) || (host_data == 2))
970 {
971 /*
972 * Either we couldn't determine the PDQ revision, or
973 * we determined that it is at revision D. In either case,
974 * we need to implement the workaround.
975 */
976
977 /* Ensure that the burst size is set to 8 longwords or less */
978
979 switch (bp->burst_size)
980 {
981 case PI_PDATA_B_DMA_BURST_SIZE_32:
982 case PI_PDATA_B_DMA_BURST_SIZE_16:
983 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
984 break;
985
986 default:
987 break;
988 }
989
990 /* Ensure that full-duplex mode is not enabled */
991
992 bp->full_duplex_enb = PI_SNMP_K_FALSE;
993 }
994 }
995 }
996 }
997
998
999 /*
1000 * ===================
1001 * = dfx_driver_init =
1002 * ===================
1003 *
1004 * Overview:
1005 * Initializes remaining adapter board structure information
1006 * and makes sure adapter is in a safe state prior to dfx_open().
1007 *
1008 * Returns:
1009 * Condition code
1010 *
1011 * Arguments:
1012 * dev - pointer to device information
1013 * print_name - printable device name
1014 *
1015 * Functional Description:
1016 * This function allocates additional resources such as the host memory
1017 * blocks needed by the adapter (eg. descriptor and consumer blocks).
1018 * Remaining bus initialization steps are also completed. The adapter
1019 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
1020 * must call dfx_open() to open the adapter and bring it on-line.
1021 *
1022 * Return Codes:
1023 * DFX_K_SUCCESS - initialization succeeded
1024 * DFX_K_FAILURE - initialization failed - could not allocate memory
1025 * or read adapter MAC address
1026 *
1027 * Assumptions:
1028 * Memory allocated from pci_alloc_consistent() call is physically
1029 * contiguous, locked memory.
1030 *
1031 * Side Effects:
1032 * Adapter is reset and should be in DMA_UNAVAILABLE state before
1033 * returning from this routine.
1034 */
1035
dfx_driver_init(struct net_device * dev,const char * print_name,resource_size_t bar_start)1036 static int dfx_driver_init(struct net_device *dev, const char *print_name,
1037 resource_size_t bar_start)
1038 {
1039 DFX_board_t *bp = netdev_priv(dev);
1040 struct device *bdev = bp->bus_dev;
1041 int dfx_bus_pci = dev_is_pci(bdev);
1042 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1043 int dfx_bus_tc = DFX_BUS_TC(bdev);
1044 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1045 int alloc_size; /* total buffer size needed */
1046 char *top_v, *curr_v; /* virtual addrs into memory block */
1047 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
1048 u32 data; /* host data register value */
1049 __le32 le32;
1050 char *board_name = NULL;
1051
1052 DBG_printk("In dfx_driver_init...\n");
1053
1054 /* Initialize bus-specific hardware registers */
1055
1056 dfx_bus_init(dev);
1057
1058 /*
1059 * Initialize default values for configurable parameters
1060 *
1061 * Note: All of these parameters are ones that a user may
1062 * want to customize. It'd be nice to break these
1063 * out into Space.c or someplace else that's more
1064 * accessible/understandable than this file.
1065 */
1066
1067 bp->full_duplex_enb = PI_SNMP_K_FALSE;
1068 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
1069 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
1070 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
1071
1072 /*
1073 * Ensure that HW configuration is OK
1074 *
1075 * Note: Depending on the hardware revision, we may need to modify
1076 * some of the configurable parameters to workaround hardware
1077 * limitations. We'll perform this configuration check AFTER
1078 * setting the parameters to their default values.
1079 */
1080
1081 dfx_bus_config_check(bp);
1082
1083 /* Disable PDQ interrupts first */
1084
1085 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1086
1087 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1088
1089 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1090
1091 /* Read the factory MAC address from the adapter then save it */
1092
1093 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1094 &data) != DFX_K_SUCCESS) {
1095 printk("%s: Could not read adapter factory MAC address!\n",
1096 print_name);
1097 return DFX_K_FAILURE;
1098 }
1099 le32 = cpu_to_le32(data);
1100 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1101
1102 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1103 &data) != DFX_K_SUCCESS) {
1104 printk("%s: Could not read adapter factory MAC address!\n",
1105 print_name);
1106 return DFX_K_FAILURE;
1107 }
1108 le32 = cpu_to_le32(data);
1109 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1110
1111 /*
1112 * Set current address to factory address
1113 *
1114 * Note: Node address override support is handled through
1115 * dfx_ctl_set_mac_address.
1116 */
1117
1118 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1119 if (dfx_bus_tc)
1120 board_name = "DEFTA";
1121 if (dfx_bus_eisa)
1122 board_name = "DEFEA";
1123 if (dfx_bus_pci)
1124 board_name = "DEFPA";
1125 pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1126 print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1127 (long long)bar_start, dev->irq, dev->dev_addr);
1128
1129 /*
1130 * Get memory for descriptor block, consumer block, and other buffers
1131 * that need to be DMA read or written to by the adapter.
1132 */
1133
1134 alloc_size = sizeof(PI_DESCR_BLOCK) +
1135 PI_CMD_REQ_K_SIZE_MAX +
1136 PI_CMD_RSP_K_SIZE_MAX +
1137 #ifndef DYNAMIC_BUFFERS
1138 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1139 #endif
1140 sizeof(PI_CONSUMER_BLOCK) +
1141 (PI_ALIGN_K_DESC_BLK - 1);
1142 bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1143 &bp->kmalloced_dma,
1144 GFP_ATOMIC);
1145 if (top_v == NULL)
1146 return DFX_K_FAILURE;
1147
1148 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1149
1150 /*
1151 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1152 * plus the amount of memory needed was allocated. The physical address
1153 * is now 8K aligned. By carving up the memory in a specific order,
1154 * we'll guarantee the alignment requirements for all other structures.
1155 *
1156 * Note: If the assumptions change regarding the non-paged, non-cached,
1157 * physically contiguous nature of the memory block or the address
1158 * alignments, then we'll need to implement a different algorithm
1159 * for allocating the needed memory.
1160 */
1161
1162 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1163 curr_v = top_v + (curr_p - top_p);
1164
1165 /* Reserve space for descriptor block */
1166
1167 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1168 bp->descr_block_phys = curr_p;
1169 curr_v += sizeof(PI_DESCR_BLOCK);
1170 curr_p += sizeof(PI_DESCR_BLOCK);
1171
1172 /* Reserve space for command request buffer */
1173
1174 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1175 bp->cmd_req_phys = curr_p;
1176 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1177 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1178
1179 /* Reserve space for command response buffer */
1180
1181 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1182 bp->cmd_rsp_phys = curr_p;
1183 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1184 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1185
1186 /* Reserve space for the LLC host receive queue buffers */
1187
1188 bp->rcv_block_virt = curr_v;
1189 bp->rcv_block_phys = curr_p;
1190
1191 #ifndef DYNAMIC_BUFFERS
1192 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1193 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1194 #endif
1195
1196 /* Reserve space for the consumer block */
1197
1198 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1199 bp->cons_block_phys = curr_p;
1200
1201 /* Display virtual and physical addresses if debug driver */
1202
1203 DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1204 print_name, bp->descr_block_virt, &bp->descr_block_phys);
1205 DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1206 print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1207 DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1208 print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1209 DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1210 print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1211 DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1212 print_name, bp->cons_block_virt, &bp->cons_block_phys);
1213
1214 return DFX_K_SUCCESS;
1215 }
1216
1217
1218 /*
1219 * =================
1220 * = dfx_adap_init =
1221 * =================
1222 *
1223 * Overview:
1224 * Brings the adapter to the link avail/link unavailable state.
1225 *
1226 * Returns:
1227 * Condition code
1228 *
1229 * Arguments:
1230 * bp - pointer to board information
1231 * get_buffers - non-zero if buffers to be allocated
1232 *
1233 * Functional Description:
1234 * Issues the low-level firmware/hardware calls necessary to bring
1235 * the adapter up, or to properly reset and restore adapter during
1236 * run-time.
1237 *
1238 * Return Codes:
1239 * DFX_K_SUCCESS - Adapter brought up successfully
1240 * DFX_K_FAILURE - Adapter initialization failed
1241 *
1242 * Assumptions:
1243 * bp->reset_type should be set to a valid reset type value before
1244 * calling this routine.
1245 *
1246 * Side Effects:
1247 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1248 * upon a successful return of this routine.
1249 */
1250
dfx_adap_init(DFX_board_t * bp,int get_buffers)1251 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1252 {
1253 DBG_printk("In dfx_adap_init...\n");
1254
1255 /* Disable PDQ interrupts first */
1256
1257 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1258
1259 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1260
1261 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1262 {
1263 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1264 return DFX_K_FAILURE;
1265 }
1266
1267 /*
1268 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1269 * so we'll acknowledge all Type 0 interrupts now before continuing.
1270 */
1271
1272 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1273
1274 /*
1275 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1276 *
1277 * Note: We only need to clear host copies of these registers. The PDQ reset
1278 * takes care of the on-board register values.
1279 */
1280
1281 bp->cmd_req_reg.lword = 0;
1282 bp->cmd_rsp_reg.lword = 0;
1283 bp->rcv_xmt_reg.lword = 0;
1284
1285 /* Clear consumer block before going to DMA_AVAILABLE state */
1286
1287 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1288
1289 /* Initialize the DMA Burst Size */
1290
1291 if (dfx_hw_port_ctrl_req(bp,
1292 PI_PCTRL_M_SUB_CMD,
1293 PI_SUB_CMD_K_BURST_SIZE_SET,
1294 bp->burst_size,
1295 NULL) != DFX_K_SUCCESS)
1296 {
1297 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1298 return DFX_K_FAILURE;
1299 }
1300
1301 /*
1302 * Set base address of Consumer Block
1303 *
1304 * Assumption: 32-bit physical address of consumer block is 64 byte
1305 * aligned. That is, bits 0-5 of the address must be zero.
1306 */
1307
1308 if (dfx_hw_port_ctrl_req(bp,
1309 PI_PCTRL_M_CONS_BLOCK,
1310 bp->cons_block_phys,
1311 0,
1312 NULL) != DFX_K_SUCCESS)
1313 {
1314 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1315 return DFX_K_FAILURE;
1316 }
1317
1318 /*
1319 * Set the base address of Descriptor Block and bring adapter
1320 * to DMA_AVAILABLE state.
1321 *
1322 * Note: We also set the literal and data swapping requirements
1323 * in this command.
1324 *
1325 * Assumption: 32-bit physical address of descriptor block
1326 * is 8Kbyte aligned.
1327 */
1328 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1329 (u32)(bp->descr_block_phys |
1330 PI_PDATA_A_INIT_M_BSWAP_INIT),
1331 0, NULL) != DFX_K_SUCCESS) {
1332 printk("%s: Could not set descriptor block address!\n",
1333 bp->dev->name);
1334 return DFX_K_FAILURE;
1335 }
1336
1337 /* Set transmit flush timeout value */
1338
1339 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1340 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1341 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1342 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1343 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1344 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1345 {
1346 printk("%s: DMA command request failed!\n", bp->dev->name);
1347 return DFX_K_FAILURE;
1348 }
1349
1350 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1351
1352 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1353 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1354 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1355 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1356 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1357 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1358 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1359 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1360 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1361 {
1362 printk("%s: DMA command request failed!\n", bp->dev->name);
1363 return DFX_K_FAILURE;
1364 }
1365
1366 /* Initialize adapter CAM */
1367
1368 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1369 {
1370 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1371 return DFX_K_FAILURE;
1372 }
1373
1374 /* Initialize adapter filters */
1375
1376 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1377 {
1378 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1379 return DFX_K_FAILURE;
1380 }
1381
1382 /*
1383 * Remove any existing dynamic buffers (i.e. if the adapter is being
1384 * reinitialized)
1385 */
1386
1387 if (get_buffers)
1388 dfx_rcv_flush(bp);
1389
1390 /* Initialize receive descriptor block and produce buffers */
1391
1392 if (dfx_rcv_init(bp, get_buffers))
1393 {
1394 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1395 if (get_buffers)
1396 dfx_rcv_flush(bp);
1397 return DFX_K_FAILURE;
1398 }
1399
1400 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1401
1402 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1403 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1404 {
1405 printk("%s: Start command failed\n", bp->dev->name);
1406 if (get_buffers)
1407 dfx_rcv_flush(bp);
1408 return DFX_K_FAILURE;
1409 }
1410
1411 /* Initialization succeeded, reenable PDQ interrupts */
1412
1413 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1414 return DFX_K_SUCCESS;
1415 }
1416
1417
1418 /*
1419 * ============
1420 * = dfx_open =
1421 * ============
1422 *
1423 * Overview:
1424 * Opens the adapter
1425 *
1426 * Returns:
1427 * Condition code
1428 *
1429 * Arguments:
1430 * dev - pointer to device information
1431 *
1432 * Functional Description:
1433 * This function brings the adapter to an operational state.
1434 *
1435 * Return Codes:
1436 * 0 - Adapter was successfully opened
1437 * -EAGAIN - Could not register IRQ or adapter initialization failed
1438 *
1439 * Assumptions:
1440 * This routine should only be called for a device that was
1441 * initialized successfully.
1442 *
1443 * Side Effects:
1444 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1445 * if the open is successful.
1446 */
1447
dfx_open(struct net_device * dev)1448 static int dfx_open(struct net_device *dev)
1449 {
1450 DFX_board_t *bp = netdev_priv(dev);
1451 int ret;
1452
1453 DBG_printk("In dfx_open...\n");
1454
1455 /* Register IRQ - support shared interrupts by passing device ptr */
1456
1457 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1458 dev);
1459 if (ret) {
1460 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1461 return ret;
1462 }
1463
1464 /*
1465 * Set current address to factory MAC address
1466 *
1467 * Note: We've already done this step in dfx_driver_init.
1468 * However, it's possible that a user has set a node
1469 * address override, then closed and reopened the
1470 * adapter. Unless we reset the device address field
1471 * now, we'll continue to use the existing modified
1472 * address.
1473 */
1474
1475 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1476
1477 /* Clear local unicast/multicast address tables and counts */
1478
1479 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1480 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1481 bp->uc_count = 0;
1482 bp->mc_count = 0;
1483
1484 /* Disable promiscuous filter settings */
1485
1486 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1487 bp->group_prom = PI_FSTATE_K_BLOCK;
1488
1489 spin_lock_init(&bp->lock);
1490
1491 /* Reset and initialize adapter */
1492
1493 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1494 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1495 {
1496 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1497 free_irq(dev->irq, dev);
1498 return -EAGAIN;
1499 }
1500
1501 /* Set device structure info */
1502 netif_start_queue(dev);
1503 return 0;
1504 }
1505
1506
1507 /*
1508 * =============
1509 * = dfx_close =
1510 * =============
1511 *
1512 * Overview:
1513 * Closes the device/module.
1514 *
1515 * Returns:
1516 * Condition code
1517 *
1518 * Arguments:
1519 * dev - pointer to device information
1520 *
1521 * Functional Description:
1522 * This routine closes the adapter and brings it to a safe state.
1523 * The interrupt service routine is deregistered with the OS.
1524 * The adapter can be opened again with another call to dfx_open().
1525 *
1526 * Return Codes:
1527 * Always return 0.
1528 *
1529 * Assumptions:
1530 * No further requests for this adapter are made after this routine is
1531 * called. dfx_open() can be called to reset and reinitialize the
1532 * adapter.
1533 *
1534 * Side Effects:
1535 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1536 * routine.
1537 */
1538
dfx_close(struct net_device * dev)1539 static int dfx_close(struct net_device *dev)
1540 {
1541 DFX_board_t *bp = netdev_priv(dev);
1542
1543 DBG_printk("In dfx_close...\n");
1544
1545 /* Disable PDQ interrupts first */
1546
1547 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1548
1549 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1550
1551 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1552
1553 /*
1554 * Flush any pending transmit buffers
1555 *
1556 * Note: It's important that we flush the transmit buffers
1557 * BEFORE we clear our copy of the Type 2 register.
1558 * Otherwise, we'll have no idea how many buffers
1559 * we need to free.
1560 */
1561
1562 dfx_xmt_flush(bp);
1563
1564 /*
1565 * Clear Type 1 and Type 2 registers after adapter reset
1566 *
1567 * Note: Even though we're closing the adapter, it's
1568 * possible that an interrupt will occur after
1569 * dfx_close is called. Without some assurance to
1570 * the contrary we want to make sure that we don't
1571 * process receive and transmit LLC frames and update
1572 * the Type 2 register with bad information.
1573 */
1574
1575 bp->cmd_req_reg.lword = 0;
1576 bp->cmd_rsp_reg.lword = 0;
1577 bp->rcv_xmt_reg.lword = 0;
1578
1579 /* Clear consumer block for the same reason given above */
1580
1581 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1582
1583 /* Release all dynamically allocate skb in the receive ring. */
1584
1585 dfx_rcv_flush(bp);
1586
1587 /* Clear device structure flags */
1588
1589 netif_stop_queue(dev);
1590
1591 /* Deregister (free) IRQ */
1592
1593 free_irq(dev->irq, dev);
1594
1595 return 0;
1596 }
1597
1598
1599 /*
1600 * ======================
1601 * = dfx_int_pr_halt_id =
1602 * ======================
1603 *
1604 * Overview:
1605 * Displays halt id's in string form.
1606 *
1607 * Returns:
1608 * None
1609 *
1610 * Arguments:
1611 * bp - pointer to board information
1612 *
1613 * Functional Description:
1614 * Determine current halt id and display appropriate string.
1615 *
1616 * Return Codes:
1617 * None
1618 *
1619 * Assumptions:
1620 * None
1621 *
1622 * Side Effects:
1623 * None
1624 */
1625
dfx_int_pr_halt_id(DFX_board_t * bp)1626 static void dfx_int_pr_halt_id(DFX_board_t *bp)
1627 {
1628 PI_UINT32 port_status; /* PDQ port status register value */
1629 PI_UINT32 halt_id; /* PDQ port status halt ID */
1630
1631 /* Read the latest port status */
1632
1633 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1634
1635 /* Display halt state transition information */
1636
1637 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1638 switch (halt_id)
1639 {
1640 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1641 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1642 break;
1643
1644 case PI_HALT_ID_K_PARITY_ERROR:
1645 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1646 break;
1647
1648 case PI_HALT_ID_K_HOST_DIR_HALT:
1649 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1650 break;
1651
1652 case PI_HALT_ID_K_SW_FAULT:
1653 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1654 break;
1655
1656 case PI_HALT_ID_K_HW_FAULT:
1657 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1658 break;
1659
1660 case PI_HALT_ID_K_PC_TRACE:
1661 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1662 break;
1663
1664 case PI_HALT_ID_K_DMA_ERROR:
1665 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1666 break;
1667
1668 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1669 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1670 break;
1671
1672 case PI_HALT_ID_K_BUS_EXCEPTION:
1673 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1674 break;
1675
1676 default:
1677 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1678 break;
1679 }
1680 }
1681
1682
1683 /*
1684 * ==========================
1685 * = dfx_int_type_0_process =
1686 * ==========================
1687 *
1688 * Overview:
1689 * Processes Type 0 interrupts.
1690 *
1691 * Returns:
1692 * None
1693 *
1694 * Arguments:
1695 * bp - pointer to board information
1696 *
1697 * Functional Description:
1698 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1699 * is a serious fault on the adapter, then an error message is displayed
1700 * and the adapter is reset.
1701 *
1702 * One tricky potential timing window is the rapid succession of "link avail"
1703 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1704 * interrupt must be done before reading the state from the Port Status
1705 * register. This is true because a state change could occur after reading
1706 * the data, but before acknowledging the interrupt. If this state change
1707 * does happen, it would be lost because the driver is using the old state,
1708 * and it will never know about the new state because it subsequently
1709 * acknowledges the state change interrupt.
1710 *
1711 * INCORRECT CORRECT
1712 * read type 0 int reasons read type 0 int reasons
1713 * read adapter state ack type 0 interrupts
1714 * ack type 0 interrupts read adapter state
1715 * ... process interrupt ... ... process interrupt ...
1716 *
1717 * Return Codes:
1718 * None
1719 *
1720 * Assumptions:
1721 * None
1722 *
1723 * Side Effects:
1724 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1725 * or if the port status indicates that the adapter is halted. The driver
1726 * is responsible for reinitializing the adapter with the current CAM
1727 * contents and adapter filter settings.
1728 */
1729
dfx_int_type_0_process(DFX_board_t * bp)1730 static void dfx_int_type_0_process(DFX_board_t *bp)
1731
1732 {
1733 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1734 PI_UINT32 state; /* current adap state (from port status) */
1735
1736 /*
1737 * Read host interrupt Type 0 register to determine which Type 0
1738 * interrupts are pending. Immediately write it back out to clear
1739 * those interrupts.
1740 */
1741
1742 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1743 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1744
1745 /* Check for Type 0 error interrupts */
1746
1747 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1748 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1749 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1750 {
1751 /* Check for Non-Existent Memory error */
1752
1753 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1754 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1755
1756 /* Check for Packet Memory Parity error */
1757
1758 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1759 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1760
1761 /* Check for Host Bus Parity error */
1762
1763 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1764 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1765
1766 /* Reset adapter and bring it back on-line */
1767
1768 bp->link_available = PI_K_FALSE; /* link is no longer available */
1769 bp->reset_type = 0; /* rerun on-board diagnostics */
1770 printk("%s: Resetting adapter...\n", bp->dev->name);
1771 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1772 {
1773 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1774 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1775 return;
1776 }
1777 printk("%s: Adapter reset successful!\n", bp->dev->name);
1778 return;
1779 }
1780
1781 /* Check for transmit flush interrupt */
1782
1783 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1784 {
1785 /* Flush any pending xmt's and acknowledge the flush interrupt */
1786
1787 bp->link_available = PI_K_FALSE; /* link is no longer available */
1788 dfx_xmt_flush(bp); /* flush any outstanding packets */
1789 (void) dfx_hw_port_ctrl_req(bp,
1790 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1791 0,
1792 0,
1793 NULL);
1794 }
1795
1796 /* Check for adapter state change */
1797
1798 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1799 {
1800 /* Get latest adapter state */
1801
1802 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1803 if (state == PI_STATE_K_HALTED)
1804 {
1805 /*
1806 * Adapter has transitioned to HALTED state, try to reset
1807 * adapter to bring it back on-line. If reset fails,
1808 * leave the adapter in the broken state.
1809 */
1810
1811 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1812 dfx_int_pr_halt_id(bp); /* display halt id as string */
1813
1814 /* Reset adapter and bring it back on-line */
1815
1816 bp->link_available = PI_K_FALSE; /* link is no longer available */
1817 bp->reset_type = 0; /* rerun on-board diagnostics */
1818 printk("%s: Resetting adapter...\n", bp->dev->name);
1819 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1820 {
1821 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1822 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1823 return;
1824 }
1825 printk("%s: Adapter reset successful!\n", bp->dev->name);
1826 }
1827 else if (state == PI_STATE_K_LINK_AVAIL)
1828 {
1829 bp->link_available = PI_K_TRUE; /* set link available flag */
1830 }
1831 }
1832 }
1833
1834
1835 /*
1836 * ==================
1837 * = dfx_int_common =
1838 * ==================
1839 *
1840 * Overview:
1841 * Interrupt service routine (ISR)
1842 *
1843 * Returns:
1844 * None
1845 *
1846 * Arguments:
1847 * bp - pointer to board information
1848 *
1849 * Functional Description:
1850 * This is the ISR which processes incoming adapter interrupts.
1851 *
1852 * Return Codes:
1853 * None
1854 *
1855 * Assumptions:
1856 * This routine assumes PDQ interrupts have not been disabled.
1857 * When interrupts are disabled at the PDQ, the Port Status register
1858 * is automatically cleared. This routine uses the Port Status
1859 * register value to determine whether a Type 0 interrupt occurred,
1860 * so it's important that adapter interrupts are not normally
1861 * enabled/disabled at the PDQ.
1862 *
1863 * It's vital that this routine is NOT reentered for the
1864 * same board and that the OS is not in another section of
1865 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1866 * different thread.
1867 *
1868 * Side Effects:
1869 * Pending interrupts are serviced. Depending on the type of
1870 * interrupt, acknowledging and clearing the interrupt at the
1871 * PDQ involves writing a register to clear the interrupt bit
1872 * or updating completion indices.
1873 */
1874
dfx_int_common(struct net_device * dev)1875 static void dfx_int_common(struct net_device *dev)
1876 {
1877 DFX_board_t *bp = netdev_priv(dev);
1878 PI_UINT32 port_status; /* Port Status register */
1879
1880 /* Process xmt interrupts - frequent case, so always call this routine */
1881
1882 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1883 netif_wake_queue(dev);
1884
1885 /* Process rcv interrupts - frequent case, so always call this routine */
1886
1887 dfx_rcv_queue_process(bp); /* service received LLC frames */
1888
1889 /*
1890 * Transmit and receive producer and completion indices are updated on the
1891 * adapter by writing to the Type 2 Producer register. Since the frequent
1892 * case is that we'll be processing either LLC transmit or receive buffers,
1893 * we'll optimize I/O writes by doing a single register write here.
1894 */
1895
1896 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1897
1898 /* Read PDQ Port Status register to find out which interrupts need processing */
1899
1900 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1901
1902 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1903
1904 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1905 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1906 }
1907
1908
1909 /*
1910 * =================
1911 * = dfx_interrupt =
1912 * =================
1913 *
1914 * Overview:
1915 * Interrupt processing routine
1916 *
1917 * Returns:
1918 * Whether a valid interrupt was seen.
1919 *
1920 * Arguments:
1921 * irq - interrupt vector
1922 * dev_id - pointer to device information
1923 *
1924 * Functional Description:
1925 * This routine calls the interrupt processing routine for this adapter. It
1926 * disables and reenables adapter interrupts, as appropriate. We can support
1927 * shared interrupts since the incoming dev_id pointer provides our device
1928 * structure context.
1929 *
1930 * Return Codes:
1931 * IRQ_HANDLED - an IRQ was handled.
1932 * IRQ_NONE - no IRQ was handled.
1933 *
1934 * Assumptions:
1935 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1936 * on Intel-based systems) is done by the operating system outside this
1937 * routine.
1938 *
1939 * System interrupts are enabled through this call.
1940 *
1941 * Side Effects:
1942 * Interrupts are disabled, then reenabled at the adapter.
1943 */
1944
dfx_interrupt(int irq,void * dev_id)1945 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1946 {
1947 struct net_device *dev = dev_id;
1948 DFX_board_t *bp = netdev_priv(dev);
1949 struct device *bdev = bp->bus_dev;
1950 int dfx_bus_pci = dev_is_pci(bdev);
1951 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1952 int dfx_bus_tc = DFX_BUS_TC(bdev);
1953
1954 /* Service adapter interrupts */
1955
1956 if (dfx_bus_pci) {
1957 u32 status;
1958
1959 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1960 if (!(status & PFI_STATUS_M_PDQ_INT))
1961 return IRQ_NONE;
1962
1963 spin_lock(&bp->lock);
1964
1965 /* Disable PDQ-PFI interrupts at PFI */
1966 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1967 PFI_MODE_M_DMA_ENB);
1968
1969 /* Call interrupt service routine for this adapter */
1970 dfx_int_common(dev);
1971
1972 /* Clear PDQ interrupt status bit and reenable interrupts */
1973 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1974 PFI_STATUS_M_PDQ_INT);
1975 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1976 (PFI_MODE_M_PDQ_INT_ENB |
1977 PFI_MODE_M_DMA_ENB));
1978
1979 spin_unlock(&bp->lock);
1980 }
1981 if (dfx_bus_eisa) {
1982 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1983 u8 status;
1984
1985 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1986 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1987 return IRQ_NONE;
1988
1989 spin_lock(&bp->lock);
1990
1991 /* Disable interrupts at the ESIC */
1992 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1993 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1994
1995 /* Call interrupt service routine for this adapter */
1996 dfx_int_common(dev);
1997
1998 /* Reenable interrupts at the ESIC */
1999 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2000 status |= PI_CONFIG_STAT_0_M_INT_ENB;
2001 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2002
2003 spin_unlock(&bp->lock);
2004 }
2005 if (dfx_bus_tc) {
2006 u32 status;
2007
2008 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2009 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2010 PI_PSTATUS_M_XMT_DATA_PENDING |
2011 PI_PSTATUS_M_SMT_HOST_PENDING |
2012 PI_PSTATUS_M_UNSOL_PENDING |
2013 PI_PSTATUS_M_CMD_RSP_PENDING |
2014 PI_PSTATUS_M_CMD_REQ_PENDING |
2015 PI_PSTATUS_M_TYPE_0_PENDING)))
2016 return IRQ_NONE;
2017
2018 spin_lock(&bp->lock);
2019
2020 /* Call interrupt service routine for this adapter */
2021 dfx_int_common(dev);
2022
2023 spin_unlock(&bp->lock);
2024 }
2025
2026 return IRQ_HANDLED;
2027 }
2028
2029
2030 /*
2031 * =====================
2032 * = dfx_ctl_get_stats =
2033 * =====================
2034 *
2035 * Overview:
2036 * Get statistics for FDDI adapter
2037 *
2038 * Returns:
2039 * Pointer to FDDI statistics structure
2040 *
2041 * Arguments:
2042 * dev - pointer to device information
2043 *
2044 * Functional Description:
2045 * Gets current MIB objects from adapter, then
2046 * returns FDDI statistics structure as defined
2047 * in if_fddi.h.
2048 *
2049 * Note: Since the FDDI statistics structure is
2050 * still new and the device structure doesn't
2051 * have an FDDI-specific get statistics handler,
2052 * we'll return the FDDI statistics structure as
2053 * a pointer to an Ethernet statistics structure.
2054 * That way, at least the first part of the statistics
2055 * structure can be decoded properly, and it allows
2056 * "smart" applications to perform a second cast to
2057 * decode the FDDI-specific statistics.
2058 *
2059 * We'll have to pay attention to this routine as the
2060 * device structure becomes more mature and LAN media
2061 * independent.
2062 *
2063 * Return Codes:
2064 * None
2065 *
2066 * Assumptions:
2067 * None
2068 *
2069 * Side Effects:
2070 * None
2071 */
2072
dfx_ctl_get_stats(struct net_device * dev)2073 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2074 {
2075 DFX_board_t *bp = netdev_priv(dev);
2076
2077 /* Fill the bp->stats structure with driver-maintained counters */
2078
2079 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2080 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2081 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2082 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2083 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2084 bp->rcv_frame_status_errors +
2085 bp->rcv_length_errors;
2086 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2087 bp->stats.gen.rx_dropped = bp->rcv_discards;
2088 bp->stats.gen.tx_dropped = bp->xmt_discards;
2089 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2090 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2091
2092 /* Get FDDI SMT MIB objects */
2093
2094 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2095 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2096 return (struct net_device_stats *)&bp->stats;
2097
2098 /* Fill the bp->stats structure with the SMT MIB object values */
2099
2100 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2101 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2102 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2103 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2104 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2105 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2106 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2107 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2108 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2109 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2110 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2111 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2112 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2113 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2114 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2115 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2116 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2117 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2118 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2119 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2120 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2121 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2122 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2123 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2124 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2125 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2126 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2127 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2128 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2129 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2130 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2131 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2132 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2133 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2134 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2135 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2136 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2137 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2138 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2139 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2140 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2141 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2142 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2143 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2144 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2145 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2146 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2147 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2148 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2149 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2150 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2151 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2152 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2153 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2154 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2155 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2156 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2157 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2158 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2159 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2160 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2161 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2162 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2163 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2164 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2165 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2166 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2167 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2168 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2169 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2170 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2171 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2172 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2173 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2174 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2175 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2176 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2177 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2178 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2179 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2180 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2181 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2182 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2183 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2184 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2185 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2186 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2187 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2188 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2189 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2190 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2191 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2192
2193 /* Get FDDI counters */
2194
2195 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2196 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2197 return (struct net_device_stats *)&bp->stats;
2198
2199 /* Fill the bp->stats structure with the FDDI counter values */
2200
2201 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2202 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2203 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2204 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2205 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2206 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2207 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2208 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2209 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2210 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2211 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2212
2213 return (struct net_device_stats *)&bp->stats;
2214 }
2215
2216
2217 /*
2218 * ==============================
2219 * = dfx_ctl_set_multicast_list =
2220 * ==============================
2221 *
2222 * Overview:
2223 * Enable/Disable LLC frame promiscuous mode reception
2224 * on the adapter and/or update multicast address table.
2225 *
2226 * Returns:
2227 * None
2228 *
2229 * Arguments:
2230 * dev - pointer to device information
2231 *
2232 * Functional Description:
2233 * This routine follows a fairly simple algorithm for setting the
2234 * adapter filters and CAM:
2235 *
2236 * if IFF_PROMISC flag is set
2237 * enable LLC individual/group promiscuous mode
2238 * else
2239 * disable LLC individual/group promiscuous mode
2240 * if number of incoming multicast addresses >
2241 * (CAM max size - number of unicast addresses in CAM)
2242 * enable LLC group promiscuous mode
2243 * set driver-maintained multicast address count to zero
2244 * else
2245 * disable LLC group promiscuous mode
2246 * set driver-maintained multicast address count to incoming count
2247 * update adapter CAM
2248 * update adapter filters
2249 *
2250 * Return Codes:
2251 * None
2252 *
2253 * Assumptions:
2254 * Multicast addresses are presented in canonical (LSB) format.
2255 *
2256 * Side Effects:
2257 * On-board adapter CAM and filters are updated.
2258 */
2259
dfx_ctl_set_multicast_list(struct net_device * dev)2260 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2261 {
2262 DFX_board_t *bp = netdev_priv(dev);
2263 int i; /* used as index in for loop */
2264 struct netdev_hw_addr *ha;
2265
2266 /* Enable LLC frame promiscuous mode, if necessary */
2267
2268 if (dev->flags & IFF_PROMISC)
2269 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2270
2271 /* Else, update multicast address table */
2272
2273 else
2274 {
2275 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2276 /*
2277 * Check whether incoming multicast address count exceeds table size
2278 *
2279 * Note: The adapters utilize an on-board 64 entry CAM for
2280 * supporting perfect filtering of multicast packets
2281 * and bridge functions when adding unicast addresses.
2282 * There is no hash function available. To support
2283 * additional multicast addresses, the all multicast
2284 * filter (LLC group promiscuous mode) must be enabled.
2285 *
2286 * The firmware reserves two CAM entries for SMT-related
2287 * multicast addresses, which leaves 62 entries available.
2288 * The following code ensures that we're not being asked
2289 * to add more than 62 addresses to the CAM. If we are,
2290 * the driver will enable the all multicast filter.
2291 * Should the number of multicast addresses drop below
2292 * the high water mark, the filter will be disabled and
2293 * perfect filtering will be used.
2294 */
2295
2296 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2297 {
2298 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2299 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2300 }
2301 else
2302 {
2303 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2304 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
2305 }
2306
2307 /* Copy addresses to multicast address table, then update adapter CAM */
2308
2309 i = 0;
2310 netdev_for_each_mc_addr(ha, dev)
2311 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2312 ha->addr, FDDI_K_ALEN);
2313
2314 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2315 {
2316 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2317 }
2318 else
2319 {
2320 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2321 }
2322 }
2323
2324 /* Update adapter filters */
2325
2326 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2327 {
2328 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2329 }
2330 else
2331 {
2332 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2333 }
2334 }
2335
2336
2337 /*
2338 * ===========================
2339 * = dfx_ctl_set_mac_address =
2340 * ===========================
2341 *
2342 * Overview:
2343 * Add node address override (unicast address) to adapter
2344 * CAM and update dev_addr field in device table.
2345 *
2346 * Returns:
2347 * None
2348 *
2349 * Arguments:
2350 * dev - pointer to device information
2351 * addr - pointer to sockaddr structure containing unicast address to add
2352 *
2353 * Functional Description:
2354 * The adapter supports node address overrides by adding one or more
2355 * unicast addresses to the adapter CAM. This is similar to adding
2356 * multicast addresses. In this routine we'll update the driver and
2357 * device structures with the new address, then update the adapter CAM
2358 * to ensure that the adapter will copy and strip frames destined and
2359 * sourced by that address.
2360 *
2361 * Return Codes:
2362 * Always returns zero.
2363 *
2364 * Assumptions:
2365 * The address pointed to by addr->sa_data is a valid unicast
2366 * address and is presented in canonical (LSB) format.
2367 *
2368 * Side Effects:
2369 * On-board adapter CAM is updated. On-board adapter filters
2370 * may be updated.
2371 */
2372
dfx_ctl_set_mac_address(struct net_device * dev,void * addr)2373 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2374 {
2375 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2376 DFX_board_t *bp = netdev_priv(dev);
2377
2378 /* Copy unicast address to driver-maintained structs and update count */
2379
2380 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2381 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2382 bp->uc_count = 1;
2383
2384 /*
2385 * Verify we're not exceeding the CAM size by adding unicast address
2386 *
2387 * Note: It's possible that before entering this routine we've
2388 * already filled the CAM with 62 multicast addresses.
2389 * Since we need to place the node address override into
2390 * the CAM, we have to check to see that we're not
2391 * exceeding the CAM size. If we are, we have to enable
2392 * the LLC group (multicast) promiscuous mode filter as
2393 * in dfx_ctl_set_multicast_list.
2394 */
2395
2396 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2397 {
2398 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2399 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2400
2401 /* Update adapter filters */
2402
2403 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2404 {
2405 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2406 }
2407 else
2408 {
2409 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2410 }
2411 }
2412
2413 /* Update adapter CAM with new unicast address */
2414
2415 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2416 {
2417 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2418 }
2419 else
2420 {
2421 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2422 }
2423 return 0; /* always return zero */
2424 }
2425
2426
2427 /*
2428 * ======================
2429 * = dfx_ctl_update_cam =
2430 * ======================
2431 *
2432 * Overview:
2433 * Procedure to update adapter CAM (Content Addressable Memory)
2434 * with desired unicast and multicast address entries.
2435 *
2436 * Returns:
2437 * Condition code
2438 *
2439 * Arguments:
2440 * bp - pointer to board information
2441 *
2442 * Functional Description:
2443 * Updates adapter CAM with current contents of board structure
2444 * unicast and multicast address tables. Since there are only 62
2445 * free entries in CAM, this routine ensures that the command
2446 * request buffer is not overrun.
2447 *
2448 * Return Codes:
2449 * DFX_K_SUCCESS - Request succeeded
2450 * DFX_K_FAILURE - Request failed
2451 *
2452 * Assumptions:
2453 * All addresses being added (unicast and multicast) are in canonical
2454 * order.
2455 *
2456 * Side Effects:
2457 * On-board adapter CAM is updated.
2458 */
2459
dfx_ctl_update_cam(DFX_board_t * bp)2460 static int dfx_ctl_update_cam(DFX_board_t *bp)
2461 {
2462 int i; /* used as index */
2463 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2464
2465 /*
2466 * Fill in command request information
2467 *
2468 * Note: Even though both the unicast and multicast address
2469 * table entries are stored as contiguous 6 byte entries,
2470 * the firmware address filter set command expects each
2471 * entry to be two longwords (8 bytes total). We must be
2472 * careful to only copy the six bytes of each unicast and
2473 * multicast table entry into each command entry. This
2474 * is also why we must first clear the entire command
2475 * request buffer.
2476 */
2477
2478 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2479 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2480 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2481
2482 /* Now add unicast addresses to command request buffer, if any */
2483
2484 for (i=0; i < (int)bp->uc_count; i++)
2485 {
2486 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2487 {
2488 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2489 p_addr++; /* point to next command entry */
2490 }
2491 }
2492
2493 /* Now add multicast addresses to command request buffer, if any */
2494
2495 for (i=0; i < (int)bp->mc_count; i++)
2496 {
2497 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2498 {
2499 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2500 p_addr++; /* point to next command entry */
2501 }
2502 }
2503
2504 /* Issue command to update adapter CAM, then return */
2505
2506 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2507 return DFX_K_FAILURE;
2508 return DFX_K_SUCCESS;
2509 }
2510
2511
2512 /*
2513 * ==========================
2514 * = dfx_ctl_update_filters =
2515 * ==========================
2516 *
2517 * Overview:
2518 * Procedure to update adapter filters with desired
2519 * filter settings.
2520 *
2521 * Returns:
2522 * Condition code
2523 *
2524 * Arguments:
2525 * bp - pointer to board information
2526 *
2527 * Functional Description:
2528 * Enables or disables filter using current filter settings.
2529 *
2530 * Return Codes:
2531 * DFX_K_SUCCESS - Request succeeded.
2532 * DFX_K_FAILURE - Request failed.
2533 *
2534 * Assumptions:
2535 * We must always pass up packets destined to the broadcast
2536 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2537 * broadcast filter enabled.
2538 *
2539 * Side Effects:
2540 * On-board adapter filters are updated.
2541 */
2542
dfx_ctl_update_filters(DFX_board_t * bp)2543 static int dfx_ctl_update_filters(DFX_board_t *bp)
2544 {
2545 int i = 0; /* used as index */
2546
2547 /* Fill in command request information */
2548
2549 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2550
2551 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2552
2553 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2554 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2555
2556 /* Initialize LLC Individual/Group Promiscuous filter */
2557
2558 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2559 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2560
2561 /* Initialize LLC Group Promiscuous filter */
2562
2563 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2564 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2565
2566 /* Terminate the item code list */
2567
2568 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2569
2570 /* Issue command to update adapter filters, then return */
2571
2572 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2573 return DFX_K_FAILURE;
2574 return DFX_K_SUCCESS;
2575 }
2576
2577
2578 /*
2579 * ======================
2580 * = dfx_hw_dma_cmd_req =
2581 * ======================
2582 *
2583 * Overview:
2584 * Sends PDQ DMA command to adapter firmware
2585 *
2586 * Returns:
2587 * Condition code
2588 *
2589 * Arguments:
2590 * bp - pointer to board information
2591 *
2592 * Functional Description:
2593 * The command request and response buffers are posted to the adapter in the manner
2594 * described in the PDQ Port Specification:
2595 *
2596 * 1. Command Response Buffer is posted to adapter.
2597 * 2. Command Request Buffer is posted to adapter.
2598 * 3. Command Request consumer index is polled until it indicates that request
2599 * buffer has been DMA'd to adapter.
2600 * 4. Command Response consumer index is polled until it indicates that response
2601 * buffer has been DMA'd from adapter.
2602 *
2603 * This ordering ensures that a response buffer is already available for the firmware
2604 * to use once it's done processing the request buffer.
2605 *
2606 * Return Codes:
2607 * DFX_K_SUCCESS - DMA command succeeded
2608 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2609 * DFX_K_HW_TIMEOUT - DMA command timed out
2610 *
2611 * Assumptions:
2612 * Command request buffer has already been filled with desired DMA command.
2613 *
2614 * Side Effects:
2615 * None
2616 */
2617
dfx_hw_dma_cmd_req(DFX_board_t * bp)2618 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2619 {
2620 int status; /* adapter status */
2621 int timeout_cnt; /* used in for loops */
2622
2623 /* Make sure the adapter is in a state that we can issue the DMA command in */
2624
2625 status = dfx_hw_adap_state_rd(bp);
2626 if ((status == PI_STATE_K_RESET) ||
2627 (status == PI_STATE_K_HALTED) ||
2628 (status == PI_STATE_K_DMA_UNAVAIL) ||
2629 (status == PI_STATE_K_UPGRADE))
2630 return DFX_K_OUTSTATE;
2631
2632 /* Put response buffer on the command response queue */
2633
2634 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2635 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2636 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2637
2638 /* Bump (and wrap) the producer index and write out to register */
2639
2640 bp->cmd_rsp_reg.index.prod += 1;
2641 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2642 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2643
2644 /* Put request buffer on the command request queue */
2645
2646 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2647 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2648 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2649
2650 /* Bump (and wrap) the producer index and write out to register */
2651
2652 bp->cmd_req_reg.index.prod += 1;
2653 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2654 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2655
2656 /*
2657 * Here we wait for the command request consumer index to be equal
2658 * to the producer, indicating that the adapter has DMAed the request.
2659 */
2660
2661 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2662 {
2663 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2664 break;
2665 udelay(100); /* wait for 100 microseconds */
2666 }
2667 if (timeout_cnt == 0)
2668 return DFX_K_HW_TIMEOUT;
2669
2670 /* Bump (and wrap) the completion index and write out to register */
2671
2672 bp->cmd_req_reg.index.comp += 1;
2673 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2674 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2675
2676 /*
2677 * Here we wait for the command response consumer index to be equal
2678 * to the producer, indicating that the adapter has DMAed the response.
2679 */
2680
2681 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2682 {
2683 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2684 break;
2685 udelay(100); /* wait for 100 microseconds */
2686 }
2687 if (timeout_cnt == 0)
2688 return DFX_K_HW_TIMEOUT;
2689
2690 /* Bump (and wrap) the completion index and write out to register */
2691
2692 bp->cmd_rsp_reg.index.comp += 1;
2693 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2694 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2695 return DFX_K_SUCCESS;
2696 }
2697
2698
2699 /*
2700 * ========================
2701 * = dfx_hw_port_ctrl_req =
2702 * ========================
2703 *
2704 * Overview:
2705 * Sends PDQ port control command to adapter firmware
2706 *
2707 * Returns:
2708 * Host data register value in host_data if ptr is not NULL
2709 *
2710 * Arguments:
2711 * bp - pointer to board information
2712 * command - port control command
2713 * data_a - port data A register value
2714 * data_b - port data B register value
2715 * host_data - ptr to host data register value
2716 *
2717 * Functional Description:
2718 * Send generic port control command to adapter by writing
2719 * to various PDQ port registers, then polling for completion.
2720 *
2721 * Return Codes:
2722 * DFX_K_SUCCESS - port control command succeeded
2723 * DFX_K_HW_TIMEOUT - port control command timed out
2724 *
2725 * Assumptions:
2726 * None
2727 *
2728 * Side Effects:
2729 * None
2730 */
2731
dfx_hw_port_ctrl_req(DFX_board_t * bp,PI_UINT32 command,PI_UINT32 data_a,PI_UINT32 data_b,PI_UINT32 * host_data)2732 static int dfx_hw_port_ctrl_req(
2733 DFX_board_t *bp,
2734 PI_UINT32 command,
2735 PI_UINT32 data_a,
2736 PI_UINT32 data_b,
2737 PI_UINT32 *host_data
2738 )
2739
2740 {
2741 PI_UINT32 port_cmd; /* Port Control command register value */
2742 int timeout_cnt; /* used in for loops */
2743
2744 /* Set Command Error bit in command longword */
2745
2746 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2747
2748 /* Issue port command to the adapter */
2749
2750 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2751 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2752 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2753
2754 /* Now wait for command to complete */
2755
2756 if (command == PI_PCTRL_M_BLAST_FLASH)
2757 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2758 else
2759 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2760
2761 for (; timeout_cnt > 0; timeout_cnt--)
2762 {
2763 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2764 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2765 break;
2766 udelay(100); /* wait for 100 microseconds */
2767 }
2768 if (timeout_cnt == 0)
2769 return DFX_K_HW_TIMEOUT;
2770
2771 /*
2772 * If the address of host_data is non-zero, assume caller has supplied a
2773 * non NULL pointer, and return the contents of the HOST_DATA register in
2774 * it.
2775 */
2776
2777 if (host_data != NULL)
2778 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2779 return DFX_K_SUCCESS;
2780 }
2781
2782
2783 /*
2784 * =====================
2785 * = dfx_hw_adap_reset =
2786 * =====================
2787 *
2788 * Overview:
2789 * Resets adapter
2790 *
2791 * Returns:
2792 * None
2793 *
2794 * Arguments:
2795 * bp - pointer to board information
2796 * type - type of reset to perform
2797 *
2798 * Functional Description:
2799 * Issue soft reset to adapter by writing to PDQ Port Reset
2800 * register. Use incoming reset type to tell adapter what
2801 * kind of reset operation to perform.
2802 *
2803 * Return Codes:
2804 * None
2805 *
2806 * Assumptions:
2807 * This routine merely issues a soft reset to the adapter.
2808 * It is expected that after this routine returns, the caller
2809 * will appropriately poll the Port Status register for the
2810 * adapter to enter the proper state.
2811 *
2812 * Side Effects:
2813 * Internal adapter registers are cleared.
2814 */
2815
dfx_hw_adap_reset(DFX_board_t * bp,PI_UINT32 type)2816 static void dfx_hw_adap_reset(
2817 DFX_board_t *bp,
2818 PI_UINT32 type
2819 )
2820
2821 {
2822 /* Set Reset type and assert reset */
2823
2824 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2825 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2826
2827 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2828
2829 udelay(20);
2830
2831 /* Deassert reset */
2832
2833 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2834 }
2835
2836
2837 /*
2838 * ========================
2839 * = dfx_hw_adap_state_rd =
2840 * ========================
2841 *
2842 * Overview:
2843 * Returns current adapter state
2844 *
2845 * Returns:
2846 * Adapter state per PDQ Port Specification
2847 *
2848 * Arguments:
2849 * bp - pointer to board information
2850 *
2851 * Functional Description:
2852 * Reads PDQ Port Status register and returns adapter state.
2853 *
2854 * Return Codes:
2855 * None
2856 *
2857 * Assumptions:
2858 * None
2859 *
2860 * Side Effects:
2861 * None
2862 */
2863
dfx_hw_adap_state_rd(DFX_board_t * bp)2864 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2865 {
2866 PI_UINT32 port_status; /* Port Status register value */
2867
2868 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2869 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2870 }
2871
2872
2873 /*
2874 * =====================
2875 * = dfx_hw_dma_uninit =
2876 * =====================
2877 *
2878 * Overview:
2879 * Brings adapter to DMA_UNAVAILABLE state
2880 *
2881 * Returns:
2882 * Condition code
2883 *
2884 * Arguments:
2885 * bp - pointer to board information
2886 * type - type of reset to perform
2887 *
2888 * Functional Description:
2889 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2890 * 1. Set reset type bit in Port Data A Register then reset adapter.
2891 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2892 *
2893 * Return Codes:
2894 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2895 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2896 *
2897 * Assumptions:
2898 * None
2899 *
2900 * Side Effects:
2901 * Internal adapter registers are cleared.
2902 */
2903
dfx_hw_dma_uninit(DFX_board_t * bp,PI_UINT32 type)2904 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2905 {
2906 int timeout_cnt; /* used in for loops */
2907
2908 /* Set reset type bit and reset adapter */
2909
2910 dfx_hw_adap_reset(bp, type);
2911
2912 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2913
2914 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2915 {
2916 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2917 break;
2918 udelay(100); /* wait for 100 microseconds */
2919 }
2920 if (timeout_cnt == 0)
2921 return DFX_K_HW_TIMEOUT;
2922 return DFX_K_SUCCESS;
2923 }
2924
2925 /*
2926 * Align an sk_buff to a boundary power of 2
2927 *
2928 */
2929 #ifdef DYNAMIC_BUFFERS
my_skb_align(struct sk_buff * skb,int n)2930 static void my_skb_align(struct sk_buff *skb, int n)
2931 {
2932 unsigned long x = (unsigned long)skb->data;
2933 unsigned long v;
2934
2935 v = ALIGN(x, n); /* Where we want to be */
2936
2937 skb_reserve(skb, v - x);
2938 }
2939 #endif
2940
2941 /*
2942 * ================
2943 * = dfx_rcv_init =
2944 * ================
2945 *
2946 * Overview:
2947 * Produces buffers to adapter LLC Host receive descriptor block
2948 *
2949 * Returns:
2950 * None
2951 *
2952 * Arguments:
2953 * bp - pointer to board information
2954 * get_buffers - non-zero if buffers to be allocated
2955 *
2956 * Functional Description:
2957 * This routine can be called during dfx_adap_init() or during an adapter
2958 * reset. It initializes the descriptor block and produces all allocated
2959 * LLC Host queue receive buffers.
2960 *
2961 * Return Codes:
2962 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2963 * dynamic buffer allocation). If the buffer allocation failed, the
2964 * already allocated buffers will not be released and the caller should do
2965 * this.
2966 *
2967 * Assumptions:
2968 * The PDQ has been reset and the adapter and driver maintained Type 2
2969 * register indices are cleared.
2970 *
2971 * Side Effects:
2972 * Receive buffers are posted to the adapter LLC queue and the adapter
2973 * is notified.
2974 */
2975
dfx_rcv_init(DFX_board_t * bp,int get_buffers)2976 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2977 {
2978 int i, j; /* used in for loop */
2979
2980 /*
2981 * Since each receive buffer is a single fragment of same length, initialize
2982 * first longword in each receive descriptor for entire LLC Host descriptor
2983 * block. Also initialize second longword in each receive descriptor with
2984 * physical address of receive buffer. We'll always allocate receive
2985 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2986 * block and produce new receive buffers by simply updating the receive
2987 * producer index.
2988 *
2989 * Assumptions:
2990 * To support all shipping versions of PDQ, the receive buffer size
2991 * must be mod 128 in length and the physical address must be 128 byte
2992 * aligned. In other words, bits 0-6 of the length and address must
2993 * be zero for the following descriptor field entries to be correct on
2994 * all PDQ-based boards. We guaranteed both requirements during
2995 * driver initialization when we allocated memory for the receive buffers.
2996 */
2997
2998 if (get_buffers) {
2999 #ifdef DYNAMIC_BUFFERS
3000 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3001 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3002 {
3003 struct sk_buff *newskb;
3004 dma_addr_t dma_addr;
3005
3006 newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3007 GFP_NOIO);
3008 if (!newskb)
3009 return -ENOMEM;
3010 /*
3011 * align to 128 bytes for compatibility with
3012 * the old EISA boards.
3013 */
3014
3015 my_skb_align(newskb, 128);
3016 dma_addr = dma_map_single(bp->bus_dev,
3017 newskb->data,
3018 PI_RCV_DATA_K_SIZE_MAX,
3019 DMA_FROM_DEVICE);
3020 if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3021 dev_kfree_skb(newskb);
3022 return -ENOMEM;
3023 }
3024 bp->descr_block_virt->rcv_data[i + j].long_0 =
3025 (u32)(PI_RCV_DESCR_M_SOP |
3026 ((PI_RCV_DATA_K_SIZE_MAX /
3027 PI_ALIGN_K_RCV_DATA_BUFF) <<
3028 PI_RCV_DESCR_V_SEG_LEN));
3029 bp->descr_block_virt->rcv_data[i + j].long_1 =
3030 (u32)dma_addr;
3031
3032 /*
3033 * p_rcv_buff_va is only used inside the
3034 * kernel so we put the skb pointer here.
3035 */
3036 bp->p_rcv_buff_va[i+j] = (char *) newskb;
3037 }
3038 #else
3039 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3040 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3041 {
3042 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3043 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3044 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3045 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3046 }
3047 #endif
3048 }
3049
3050 /* Update receive producer and Type 2 register */
3051
3052 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3053 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3054 return 0;
3055 }
3056
3057
3058 /*
3059 * =========================
3060 * = dfx_rcv_queue_process =
3061 * =========================
3062 *
3063 * Overview:
3064 * Process received LLC frames.
3065 *
3066 * Returns:
3067 * None
3068 *
3069 * Arguments:
3070 * bp - pointer to board information
3071 *
3072 * Functional Description:
3073 * Received LLC frames are processed until there are no more consumed frames.
3074 * Once all frames are processed, the receive buffers are returned to the
3075 * adapter. Note that this algorithm fixes the length of time that can be spent
3076 * in this routine, because there are a fixed number of receive buffers to
3077 * process and buffers are not produced until this routine exits and returns
3078 * to the ISR.
3079 *
3080 * Return Codes:
3081 * None
3082 *
3083 * Assumptions:
3084 * None
3085 *
3086 * Side Effects:
3087 * None
3088 */
3089
dfx_rcv_queue_process(DFX_board_t * bp)3090 static void dfx_rcv_queue_process(
3091 DFX_board_t *bp
3092 )
3093
3094 {
3095 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3096 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3097 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3098 struct sk_buff *skb = NULL; /* pointer to a sk_buff to hold incoming packet data */
3099
3100 /* Service all consumed LLC receive frames */
3101
3102 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3103 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3104 {
3105 /* Process any errors */
3106 dma_addr_t dma_addr;
3107 int entry;
3108
3109 entry = bp->rcv_xmt_reg.index.rcv_comp;
3110 #ifdef DYNAMIC_BUFFERS
3111 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3112 #else
3113 p_buff = bp->p_rcv_buff_va[entry];
3114 #endif
3115 dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3116 dma_sync_single_for_cpu(bp->bus_dev,
3117 dma_addr + RCV_BUFF_K_DESCR,
3118 sizeof(u32),
3119 DMA_FROM_DEVICE);
3120 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3121
3122 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3123 {
3124 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3125 bp->rcv_crc_errors++;
3126 else
3127 bp->rcv_frame_status_errors++;
3128 }
3129 else
3130 {
3131 int rx_in_place = 0;
3132
3133 /* The frame was received without errors - verify packet length */
3134
3135 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3136 pkt_len -= 4; /* subtract 4 byte CRC */
3137 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3138 bp->rcv_length_errors++;
3139 else{
3140 #ifdef DYNAMIC_BUFFERS
3141 struct sk_buff *newskb = NULL;
3142
3143 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3144 dma_addr_t new_dma_addr;
3145
3146 newskb = netdev_alloc_skb(bp->dev,
3147 NEW_SKB_SIZE);
3148 if (newskb){
3149 my_skb_align(newskb, 128);
3150 new_dma_addr = dma_map_single(
3151 bp->bus_dev,
3152 newskb->data,
3153 PI_RCV_DATA_K_SIZE_MAX,
3154 DMA_FROM_DEVICE);
3155 if (dma_mapping_error(
3156 bp->bus_dev,
3157 new_dma_addr)) {
3158 dev_kfree_skb(newskb);
3159 newskb = NULL;
3160 }
3161 }
3162 if (newskb) {
3163 rx_in_place = 1;
3164
3165 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3166 dma_unmap_single(bp->bus_dev,
3167 dma_addr,
3168 PI_RCV_DATA_K_SIZE_MAX,
3169 DMA_FROM_DEVICE);
3170 skb_reserve(skb, RCV_BUFF_K_PADDING);
3171 bp->p_rcv_buff_va[entry] = (char *)newskb;
3172 bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3173 }
3174 }
3175 if (!newskb)
3176 #endif
3177 /* Alloc new buffer to pass up,
3178 * add room for PRH. */
3179 skb = netdev_alloc_skb(bp->dev,
3180 pkt_len + 3);
3181 if (skb == NULL)
3182 {
3183 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3184 bp->rcv_discards++;
3185 break;
3186 }
3187 else {
3188 if (!rx_in_place) {
3189 /* Receive buffer allocated, pass receive packet up */
3190 dma_sync_single_for_cpu(
3191 bp->bus_dev,
3192 dma_addr +
3193 RCV_BUFF_K_PADDING,
3194 pkt_len + 3,
3195 DMA_FROM_DEVICE);
3196
3197 skb_copy_to_linear_data(skb,
3198 p_buff + RCV_BUFF_K_PADDING,
3199 pkt_len + 3);
3200 }
3201
3202 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3203 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
3204 skb->protocol = fddi_type_trans(skb, bp->dev);
3205 bp->rcv_total_bytes += skb->len;
3206 netif_rx(skb);
3207
3208 /* Update the rcv counters */
3209 bp->rcv_total_frames++;
3210 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3211 bp->rcv_multicast_frames++;
3212 }
3213 }
3214 }
3215
3216 /*
3217 * Advance the producer (for recycling) and advance the completion
3218 * (for servicing received frames). Note that it is okay to
3219 * advance the producer without checking that it passes the
3220 * completion index because they are both advanced at the same
3221 * rate.
3222 */
3223
3224 bp->rcv_xmt_reg.index.rcv_prod += 1;
3225 bp->rcv_xmt_reg.index.rcv_comp += 1;
3226 }
3227 }
3228
3229
3230 /*
3231 * =====================
3232 * = dfx_xmt_queue_pkt =
3233 * =====================
3234 *
3235 * Overview:
3236 * Queues packets for transmission
3237 *
3238 * Returns:
3239 * Condition code
3240 *
3241 * Arguments:
3242 * skb - pointer to sk_buff to queue for transmission
3243 * dev - pointer to device information
3244 *
3245 * Functional Description:
3246 * Here we assume that an incoming skb transmit request
3247 * is contained in a single physically contiguous buffer
3248 * in which the virtual address of the start of packet
3249 * (skb->data) can be converted to a physical address
3250 * by using pci_map_single().
3251 *
3252 * Since the adapter architecture requires a three byte
3253 * packet request header to prepend the start of packet,
3254 * we'll write the three byte field immediately prior to
3255 * the FC byte. This assumption is valid because we've
3256 * ensured that dev->hard_header_len includes three pad
3257 * bytes. By posting a single fragment to the adapter,
3258 * we'll reduce the number of descriptor fetches and
3259 * bus traffic needed to send the request.
3260 *
3261 * Also, we can't free the skb until after it's been DMA'd
3262 * out by the adapter, so we'll queue it in the driver and
3263 * return it in dfx_xmt_done.
3264 *
3265 * Return Codes:
3266 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3267 * 1 - caller should requeue the sk_buff for later transmission
3268 *
3269 * Assumptions:
3270 * First and foremost, we assume the incoming skb pointer
3271 * is NOT NULL and is pointing to a valid sk_buff structure.
3272 *
3273 * The outgoing packet is complete, starting with the
3274 * frame control byte including the last byte of data,
3275 * but NOT including the 4 byte CRC. We'll let the
3276 * adapter hardware generate and append the CRC.
3277 *
3278 * The entire packet is stored in one physically
3279 * contiguous buffer which is not cached and whose
3280 * 32-bit physical address can be determined.
3281 *
3282 * It's vital that this routine is NOT reentered for the
3283 * same board and that the OS is not in another section of
3284 * code (eg. dfx_int_common) for the same board on a
3285 * different thread.
3286 *
3287 * Side Effects:
3288 * None
3289 */
3290
dfx_xmt_queue_pkt(struct sk_buff * skb,struct net_device * dev)3291 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3292 struct net_device *dev)
3293 {
3294 DFX_board_t *bp = netdev_priv(dev);
3295 u8 prod; /* local transmit producer index */
3296 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3297 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3298 dma_addr_t dma_addr;
3299 unsigned long flags;
3300
3301 netif_stop_queue(dev);
3302
3303 /*
3304 * Verify that incoming transmit request is OK
3305 *
3306 * Note: The packet size check is consistent with other
3307 * Linux device drivers, although the correct packet
3308 * size should be verified before calling the
3309 * transmit routine.
3310 */
3311
3312 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3313 {
3314 printk("%s: Invalid packet length - %u bytes\n",
3315 dev->name, skb->len);
3316 bp->xmt_length_errors++; /* bump error counter */
3317 netif_wake_queue(dev);
3318 dev_kfree_skb(skb);
3319 return NETDEV_TX_OK; /* return "success" */
3320 }
3321 /*
3322 * See if adapter link is available, if not, free buffer
3323 *
3324 * Note: If the link isn't available, free buffer and return 0
3325 * rather than tell the upper layer to requeue the packet.
3326 * The methodology here is that by the time the link
3327 * becomes available, the packet to be sent will be
3328 * fairly stale. By simply dropping the packet, the
3329 * higher layer protocols will eventually time out
3330 * waiting for response packets which it won't receive.
3331 */
3332
3333 if (bp->link_available == PI_K_FALSE)
3334 {
3335 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3336 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3337 else
3338 {
3339 bp->xmt_discards++; /* bump error counter */
3340 dev_kfree_skb(skb); /* free sk_buff now */
3341 netif_wake_queue(dev);
3342 return NETDEV_TX_OK; /* return "success" */
3343 }
3344 }
3345
3346 /* Write the three PRH bytes immediately before the FC byte */
3347
3348 skb_push(skb, 3);
3349 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3350 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3351 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3352
3353 dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3354 DMA_TO_DEVICE);
3355 if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3356 skb_pull(skb, 3);
3357 return NETDEV_TX_BUSY;
3358 }
3359
3360 spin_lock_irqsave(&bp->lock, flags);
3361
3362 /* Get the current producer and the next free xmt data descriptor */
3363
3364 prod = bp->rcv_xmt_reg.index.xmt_prod;
3365 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3366
3367 /*
3368 * Get pointer to auxiliary queue entry to contain information
3369 * for this packet.
3370 *
3371 * Note: The current xmt producer index will become the
3372 * current xmt completion index when we complete this
3373 * packet later on. So, we'll get the pointer to the
3374 * next auxiliary queue entry now before we bump the
3375 * producer index.
3376 */
3377
3378 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3379
3380 /*
3381 * Write the descriptor with buffer info and bump producer
3382 *
3383 * Note: Since we need to start DMA from the packet request
3384 * header, we'll add 3 bytes to the DMA buffer length,
3385 * and we'll determine the physical address of the
3386 * buffer from the PRH, not skb->data.
3387 *
3388 * Assumptions:
3389 * 1. Packet starts with the frame control (FC) byte
3390 * at skb->data.
3391 * 2. The 4-byte CRC is not appended to the buffer or
3392 * included in the length.
3393 * 3. Packet length (skb->len) is from FC to end of
3394 * data, inclusive.
3395 * 4. The packet length does not exceed the maximum
3396 * FDDI LLC frame length of 4491 bytes.
3397 * 5. The entire packet is contained in a physically
3398 * contiguous, non-cached, locked memory space
3399 * comprised of a single buffer pointed to by
3400 * skb->data.
3401 * 6. The physical address of the start of packet
3402 * can be determined from the virtual address
3403 * by using pci_map_single() and is only 32-bits
3404 * wide.
3405 */
3406
3407 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3408 p_xmt_descr->long_1 = (u32)dma_addr;
3409
3410 /*
3411 * Verify that descriptor is actually available
3412 *
3413 * Note: If descriptor isn't available, return 1 which tells
3414 * the upper layer to requeue the packet for later
3415 * transmission.
3416 *
3417 * We need to ensure that the producer never reaches the
3418 * completion, except to indicate that the queue is empty.
3419 */
3420
3421 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3422 {
3423 skb_pull(skb,3);
3424 spin_unlock_irqrestore(&bp->lock, flags);
3425 return NETDEV_TX_BUSY; /* requeue packet for later */
3426 }
3427
3428 /*
3429 * Save info for this packet for xmt done indication routine
3430 *
3431 * Normally, we'd save the producer index in the p_xmt_drv_descr
3432 * structure so that we'd have it handy when we complete this
3433 * packet later (in dfx_xmt_done). However, since the current
3434 * transmit architecture guarantees a single fragment for the
3435 * entire packet, we can simply bump the completion index by
3436 * one (1) for each completed packet.
3437 *
3438 * Note: If this assumption changes and we're presented with
3439 * an inconsistent number of transmit fragments for packet
3440 * data, we'll need to modify this code to save the current
3441 * transmit producer index.
3442 */
3443
3444 p_xmt_drv_descr->p_skb = skb;
3445
3446 /* Update Type 2 register */
3447
3448 bp->rcv_xmt_reg.index.xmt_prod = prod;
3449 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3450 spin_unlock_irqrestore(&bp->lock, flags);
3451 netif_wake_queue(dev);
3452 return NETDEV_TX_OK; /* packet queued to adapter */
3453 }
3454
3455
3456 /*
3457 * ================
3458 * = dfx_xmt_done =
3459 * ================
3460 *
3461 * Overview:
3462 * Processes all frames that have been transmitted.
3463 *
3464 * Returns:
3465 * None
3466 *
3467 * Arguments:
3468 * bp - pointer to board information
3469 *
3470 * Functional Description:
3471 * For all consumed transmit descriptors that have not
3472 * yet been completed, we'll free the skb we were holding
3473 * onto using dev_kfree_skb and bump the appropriate
3474 * counters.
3475 *
3476 * Return Codes:
3477 * None
3478 *
3479 * Assumptions:
3480 * The Type 2 register is not updated in this routine. It is
3481 * assumed that it will be updated in the ISR when dfx_xmt_done
3482 * returns.
3483 *
3484 * Side Effects:
3485 * None
3486 */
3487
dfx_xmt_done(DFX_board_t * bp)3488 static int dfx_xmt_done(DFX_board_t *bp)
3489 {
3490 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3491 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3492 u8 comp; /* local transmit completion index */
3493 int freed = 0; /* buffers freed */
3494
3495 /* Service all consumed transmit frames */
3496
3497 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3498 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3499 {
3500 /* Get pointer to the transmit driver descriptor block information */
3501
3502 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3503
3504 /* Increment transmit counters */
3505
3506 bp->xmt_total_frames++;
3507 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3508
3509 /* Return skb to operating system */
3510 comp = bp->rcv_xmt_reg.index.xmt_comp;
3511 dma_unmap_single(bp->bus_dev,
3512 bp->descr_block_virt->xmt_data[comp].long_1,
3513 p_xmt_drv_descr->p_skb->len,
3514 DMA_TO_DEVICE);
3515 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3516
3517 /*
3518 * Move to start of next packet by updating completion index
3519 *
3520 * Here we assume that a transmit packet request is always
3521 * serviced by posting one fragment. We can therefore
3522 * simplify the completion code by incrementing the
3523 * completion index by one. This code will need to be
3524 * modified if this assumption changes. See comments
3525 * in dfx_xmt_queue_pkt for more details.
3526 */
3527
3528 bp->rcv_xmt_reg.index.xmt_comp += 1;
3529 freed++;
3530 }
3531 return freed;
3532 }
3533
3534
3535 /*
3536 * =================
3537 * = dfx_rcv_flush =
3538 * =================
3539 *
3540 * Overview:
3541 * Remove all skb's in the receive ring.
3542 *
3543 * Returns:
3544 * None
3545 *
3546 * Arguments:
3547 * bp - pointer to board information
3548 *
3549 * Functional Description:
3550 * Free's all the dynamically allocated skb's that are
3551 * currently attached to the device receive ring. This
3552 * function is typically only used when the device is
3553 * initialized or reinitialized.
3554 *
3555 * Return Codes:
3556 * None
3557 *
3558 * Side Effects:
3559 * None
3560 */
3561 #ifdef DYNAMIC_BUFFERS
dfx_rcv_flush(DFX_board_t * bp)3562 static void dfx_rcv_flush( DFX_board_t *bp )
3563 {
3564 int i, j;
3565
3566 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3567 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3568 {
3569 struct sk_buff *skb;
3570 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3571 if (skb) {
3572 dma_unmap_single(bp->bus_dev,
3573 bp->descr_block_virt->rcv_data[i+j].long_1,
3574 PI_RCV_DATA_K_SIZE_MAX,
3575 DMA_FROM_DEVICE);
3576 dev_kfree_skb(skb);
3577 }
3578 bp->p_rcv_buff_va[i+j] = NULL;
3579 }
3580
3581 }
3582 #endif /* DYNAMIC_BUFFERS */
3583
3584 /*
3585 * =================
3586 * = dfx_xmt_flush =
3587 * =================
3588 *
3589 * Overview:
3590 * Processes all frames whether they've been transmitted
3591 * or not.
3592 *
3593 * Returns:
3594 * None
3595 *
3596 * Arguments:
3597 * bp - pointer to board information
3598 *
3599 * Functional Description:
3600 * For all produced transmit descriptors that have not
3601 * yet been completed, we'll free the skb we were holding
3602 * onto using dev_kfree_skb and bump the appropriate
3603 * counters. Of course, it's possible that some of
3604 * these transmit requests actually did go out, but we
3605 * won't make that distinction here. Finally, we'll
3606 * update the consumer index to match the producer.
3607 *
3608 * Return Codes:
3609 * None
3610 *
3611 * Assumptions:
3612 * This routine does NOT update the Type 2 register. It
3613 * is assumed that this routine is being called during a
3614 * transmit flush interrupt, or a shutdown or close routine.
3615 *
3616 * Side Effects:
3617 * None
3618 */
3619
dfx_xmt_flush(DFX_board_t * bp)3620 static void dfx_xmt_flush( DFX_board_t *bp )
3621 {
3622 u32 prod_cons; /* rcv/xmt consumer block longword */
3623 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3624 u8 comp; /* local transmit completion index */
3625
3626 /* Flush all outstanding transmit frames */
3627
3628 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3629 {
3630 /* Get pointer to the transmit driver descriptor block information */
3631
3632 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3633
3634 /* Return skb to operating system */
3635 comp = bp->rcv_xmt_reg.index.xmt_comp;
3636 dma_unmap_single(bp->bus_dev,
3637 bp->descr_block_virt->xmt_data[comp].long_1,
3638 p_xmt_drv_descr->p_skb->len,
3639 DMA_TO_DEVICE);
3640 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3641
3642 /* Increment transmit error counter */
3643
3644 bp->xmt_discards++;
3645
3646 /*
3647 * Move to start of next packet by updating completion index
3648 *
3649 * Here we assume that a transmit packet request is always
3650 * serviced by posting one fragment. We can therefore
3651 * simplify the completion code by incrementing the
3652 * completion index by one. This code will need to be
3653 * modified if this assumption changes. See comments
3654 * in dfx_xmt_queue_pkt for more details.
3655 */
3656
3657 bp->rcv_xmt_reg.index.xmt_comp += 1;
3658 }
3659
3660 /* Update the transmit consumer index in the consumer block */
3661
3662 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3663 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3664 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3665 }
3666
3667 /*
3668 * ==================
3669 * = dfx_unregister =
3670 * ==================
3671 *
3672 * Overview:
3673 * Shuts down an FDDI controller
3674 *
3675 * Returns:
3676 * Condition code
3677 *
3678 * Arguments:
3679 * bdev - pointer to device information
3680 *
3681 * Functional Description:
3682 *
3683 * Return Codes:
3684 * None
3685 *
3686 * Assumptions:
3687 * It compiles so it should work :-( (PCI cards do :-)
3688 *
3689 * Side Effects:
3690 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3691 * freed.
3692 */
dfx_unregister(struct device * bdev)3693 static void dfx_unregister(struct device *bdev)
3694 {
3695 struct net_device *dev = dev_get_drvdata(bdev);
3696 DFX_board_t *bp = netdev_priv(dev);
3697 int dfx_bus_pci = dev_is_pci(bdev);
3698 int dfx_bus_tc = DFX_BUS_TC(bdev);
3699 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3700 resource_size_t bar_start[3] = {0}; /* pointers to ports */
3701 resource_size_t bar_len[3] = {0}; /* resource lengths */
3702 int alloc_size; /* total buffer size used */
3703
3704 unregister_netdev(dev);
3705
3706 alloc_size = sizeof(PI_DESCR_BLOCK) +
3707 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3708 #ifndef DYNAMIC_BUFFERS
3709 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3710 #endif
3711 sizeof(PI_CONSUMER_BLOCK) +
3712 (PI_ALIGN_K_DESC_BLK - 1);
3713 if (bp->kmalloced)
3714 dma_free_coherent(bdev, alloc_size,
3715 bp->kmalloced, bp->kmalloced_dma);
3716
3717 dfx_bus_uninit(dev);
3718
3719 dfx_get_bars(bdev, bar_start, bar_len);
3720 if (bar_start[2] != 0)
3721 release_region(bar_start[2], bar_len[2]);
3722 if (bar_start[1] != 0)
3723 release_region(bar_start[1], bar_len[1]);
3724 if (dfx_use_mmio) {
3725 iounmap(bp->base.mem);
3726 release_mem_region(bar_start[0], bar_len[0]);
3727 } else
3728 release_region(bar_start[0], bar_len[0]);
3729
3730 if (dfx_bus_pci)
3731 pci_disable_device(to_pci_dev(bdev));
3732
3733 free_netdev(dev);
3734 }
3735
3736
3737 static int __maybe_unused dfx_dev_register(struct device *);
3738 static int __maybe_unused dfx_dev_unregister(struct device *);
3739
3740 #ifdef CONFIG_PCI
3741 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3742 static void dfx_pci_unregister(struct pci_dev *);
3743
3744 static const struct pci_device_id dfx_pci_table[] = {
3745 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3746 { }
3747 };
3748 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3749
3750 static struct pci_driver dfx_pci_driver = {
3751 .name = "defxx",
3752 .id_table = dfx_pci_table,
3753 .probe = dfx_pci_register,
3754 .remove = dfx_pci_unregister,
3755 };
3756
dfx_pci_register(struct pci_dev * pdev,const struct pci_device_id * ent)3757 static int dfx_pci_register(struct pci_dev *pdev,
3758 const struct pci_device_id *ent)
3759 {
3760 return dfx_register(&pdev->dev);
3761 }
3762
dfx_pci_unregister(struct pci_dev * pdev)3763 static void dfx_pci_unregister(struct pci_dev *pdev)
3764 {
3765 dfx_unregister(&pdev->dev);
3766 }
3767 #endif /* CONFIG_PCI */
3768
3769 #ifdef CONFIG_EISA
3770 static const struct eisa_device_id dfx_eisa_table[] = {
3771 { "DEC3001", DEFEA_PROD_ID_1 },
3772 { "DEC3002", DEFEA_PROD_ID_2 },
3773 { "DEC3003", DEFEA_PROD_ID_3 },
3774 { "DEC3004", DEFEA_PROD_ID_4 },
3775 { }
3776 };
3777 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3778
3779 static struct eisa_driver dfx_eisa_driver = {
3780 .id_table = dfx_eisa_table,
3781 .driver = {
3782 .name = "defxx",
3783 .bus = &eisa_bus_type,
3784 .probe = dfx_dev_register,
3785 .remove = dfx_dev_unregister,
3786 },
3787 };
3788 #endif /* CONFIG_EISA */
3789
3790 #ifdef CONFIG_TC
3791 static struct tc_device_id const dfx_tc_table[] = {
3792 { "DEC ", "PMAF-FA " },
3793 { "DEC ", "PMAF-FD " },
3794 { "DEC ", "PMAF-FS " },
3795 { "DEC ", "PMAF-FU " },
3796 { }
3797 };
3798 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3799
3800 static struct tc_driver dfx_tc_driver = {
3801 .id_table = dfx_tc_table,
3802 .driver = {
3803 .name = "defxx",
3804 .bus = &tc_bus_type,
3805 .probe = dfx_dev_register,
3806 .remove = dfx_dev_unregister,
3807 },
3808 };
3809 #endif /* CONFIG_TC */
3810
dfx_dev_register(struct device * dev)3811 static int __maybe_unused dfx_dev_register(struct device *dev)
3812 {
3813 int status;
3814
3815 status = dfx_register(dev);
3816 if (!status)
3817 get_device(dev);
3818 return status;
3819 }
3820
dfx_dev_unregister(struct device * dev)3821 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3822 {
3823 put_device(dev);
3824 dfx_unregister(dev);
3825 return 0;
3826 }
3827
3828
dfx_init(void)3829 static int dfx_init(void)
3830 {
3831 int status;
3832
3833 status = pci_register_driver(&dfx_pci_driver);
3834 if (!status)
3835 status = eisa_driver_register(&dfx_eisa_driver);
3836 if (!status)
3837 status = tc_register_driver(&dfx_tc_driver);
3838 return status;
3839 }
3840
dfx_cleanup(void)3841 static void dfx_cleanup(void)
3842 {
3843 tc_unregister_driver(&dfx_tc_driver);
3844 eisa_driver_unregister(&dfx_eisa_driver);
3845 pci_unregister_driver(&dfx_pci_driver);
3846 }
3847
3848 module_init(dfx_init);
3849 module_exit(dfx_cleanup);
3850 MODULE_AUTHOR("Lawrence V. Stefani");
3851 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3852 DRV_VERSION " " DRV_RELDATE);
3853 MODULE_LICENSE("GPL");
3854