1 /*  de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2              ethernet driver for Linux.
3 
4     Copyright 1994, 1995 Digital Equipment Corporation.
5 
6     Testing resources for this driver have been made available
7     in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8 
9     The author may be reached at davies@maniac.ultranet.com.
10 
11     This program is free software; you can redistribute  it and/or modify it
12     under  the terms of  the GNU General  Public License as published by the
13     Free Software Foundation;  either version 2 of the  License, or (at your
14     option) any later version.
15 
16     THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR   IMPLIED
17     WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18     MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19     NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT,  INDIRECT,
20     INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21     NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22     USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23     ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25     THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27     You should have received a copy of the  GNU General Public License along
28     with this program; if not, write  to the Free Software Foundation, Inc.,
29     675 Mass Ave, Cambridge, MA 02139, USA.
30 
31     Originally,   this  driver  was    written  for the  Digital   Equipment
32     Corporation series of EtherWORKS ethernet cards:
33 
34         DE425 TP/COAX EISA
35 	DE434 TP PCI
36 	DE435 TP/COAX/AUI PCI
37 	DE450 TP/COAX/AUI PCI
38 	DE500 10/100 PCI Fasternet
39 
40     but it  will  now attempt  to  support all  cards which   conform to the
41     Digital Semiconductor   SROM   Specification.    The  driver   currently
42     recognises the following chips:
43 
44         DC21040  (no SROM)
45 	DC21041[A]
46 	DC21140[A]
47 	DC21142
48 	DC21143
49 
50     So far the driver is known to work with the following cards:
51 
52         KINGSTON
53 	Linksys
54 	ZNYX342
55 	SMC8432
56 	SMC9332 (w/new SROM)
57 	ZNYX31[45]
58 	ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59 
60     The driver has been tested on a relatively busy network using the DE425,
61     DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62     16M of data to a DECstation 5000/200 as follows:
63 
64                 TCP           UDP
65              TX     RX     TX     RX
66     DE425   1030k  997k   1170k  1128k
67     DE434   1063k  995k   1170k  1125k
68     DE435   1063k  995k   1170k  1125k
69     DE500   1063k  998k   1170k  1125k  in 10Mb/s mode
70 
71     All  values are typical (in   kBytes/sec) from a  sample  of 4 for  each
72     measurement. Their error is +/-20k on a quiet (private) network and also
73     depend on what load the CPU has.
74 
75     =========================================================================
76     This driver  has been written substantially  from  scratch, although its
77     inheritance of style and stack interface from 'ewrk3.c' and in turn from
78     Donald Becker's 'lance.c' should be obvious. With the module autoload of
79     every  usable DECchip board,  I  pinched Donald's 'next_module' field to
80     link my modules together.
81 
82     Up to 15 EISA cards can be supported under this driver, limited primarily
83     by the available IRQ lines.  I have  checked different configurations of
84     multiple depca, EtherWORKS 3 cards and de4x5 cards and  have not found a
85     problem yet (provided you have at least depca.c v0.38) ...
86 
87     PCI support has been added  to allow the driver  to work with the DE434,
88     DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89     to the differences in the EISA and PCI CSR address offsets from the base
90     address.
91 
92     The ability to load this  driver as a loadable  module has been included
93     and used extensively  during the driver development  (to save those long
94     reboot sequences).  Loadable module support  under PCI and EISA has been
95     achieved by letting the driver autoprobe as if it were compiled into the
96     kernel. Do make sure  you're not sharing  interrupts with anything  that
97     cannot accommodate  interrupt  sharing!
98 
99     To utilise this ability, you have to do 8 things:
100 
101     0) have a copy of the loadable modules code installed on your system.
102     1) copy de4x5.c from the  /linux/drivers/net directory to your favourite
103     temporary directory.
104     2) for fixed  autoprobes (not  recommended),  edit the source code  near
105     line 5594 to reflect the I/O address  you're using, or assign these when
106     loading by:
107 
108                    insmod de4x5 io=0xghh           where g = bus number
109 		                                        hh = device number
110 
111        NB: autoprobing for modules is now supported by default. You may just
112            use:
113 
114                    insmod de4x5
115 
116            to load all available boards. For a specific board, still use
117 	   the 'io=?' above.
118     3) compile  de4x5.c, but include -DMODULE in  the command line to ensure
119     that the correct bits are compiled (see end of source code).
120     4) if you are wanting to add a new  card, goto 5. Otherwise, recompile a
121     kernel with the de4x5 configuration turned off and reboot.
122     5) insmod de4x5 [io=0xghh]
123     6) run the net startup bits for your new eth?? interface(s) manually
124     (usually /etc/rc.inet[12] at boot time).
125     7) enjoy!
126 
127     To unload a module, turn off the associated interface(s)
128     'ifconfig eth?? down' then 'rmmod de4x5'.
129 
130     Automedia detection is included so that in  principal you can disconnect
131     from, e.g.  TP, reconnect  to BNC  and  things will still work  (after a
132     pause whilst the   driver figures out   where its media went).  My tests
133     using ping showed that it appears to work....
134 
135     By  default,  the driver will  now   autodetect any  DECchip based card.
136     Should you have a need to restrict the driver to DIGITAL only cards, you
137     can compile with a  DEC_ONLY define, or if  loading as a module, use the
138     'dec_only=1'  parameter.
139 
140     I've changed the timing routines to  use the kernel timer and scheduling
141     functions  so that the  hangs  and other assorted problems that occurred
142     while autosensing the  media  should be gone.  A  bonus  for the DC21040
143     auto  media sense algorithm is  that it can now  use one that is more in
144     line with the  rest (the DC21040  chip doesn't  have a hardware  timer).
145     The downside is the 1 'jiffies' (10ms) resolution.
146 
147     IEEE 802.3u MII interface code has  been added in anticipation that some
148     products may use it in the future.
149 
150     The SMC9332 card  has a non-compliant SROM  which needs fixing -  I have
151     patched this  driver to detect it  because the SROM format used complies
152     to a previous DEC-STD format.
153 
154     I have removed the buffer copies needed for receive on Intels.  I cannot
155     remove them for   Alphas since  the  Tulip hardware   only does longword
156     aligned  DMA transfers  and  the  Alphas get   alignment traps with  non
157     longword aligned data copies (which makes them really slow). No comment.
158 
159     I  have added SROM decoding  routines to make this  driver work with any
160     card that  supports the Digital  Semiconductor SROM spec. This will help
161     all  cards running the dc2114x  series chips in particular.  Cards using
162     the dc2104x  chips should run correctly with  the basic  driver.  I'm in
163     debt to <mjacob@feral.com> for the  testing and feedback that helped get
164     this feature working.  So far we have  tested KINGSTON, SMC8432, SMC9332
165     (with the latest SROM complying  with the SROM spec  V3: their first was
166     broken), ZNYX342  and  LinkSys. ZYNX314 (dual  21041  MAC) and  ZNYX 315
167     (quad 21041 MAC)  cards also  appear  to work despite their  incorrectly
168     wired IRQs.
169 
170     I have added a temporary fix for interrupt problems when some SCSI cards
171     share the same interrupt as the DECchip based  cards. The problem occurs
172     because  the SCSI card wants to  grab the interrupt  as a fast interrupt
173     (runs the   service routine with interrupts turned   off) vs.  this card
174     which really needs to run the service routine with interrupts turned on.
175     This driver will  now   add the interrupt service   routine  as  a  fast
176     interrupt if it   is bounced from the   slow interrupt.  THIS IS NOT   A
177     RECOMMENDED WAY TO RUN THE DRIVER  and has been done  for a limited time
178     until  people   sort  out their  compatibility    issues and the  kernel
179     interrupt  service code  is  fixed.   YOU  SHOULD SEPARATE OUT  THE FAST
180     INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181     run on the same interrupt. PCMCIA/CardBus is another can of worms...
182 
183     Finally, I think  I have really  fixed  the module  loading problem with
184     more than one DECchip based  card.  As a  side effect, I don't mess with
185     the  device structure any  more which means that  if more than 1 card in
186     2.0.x is    installed (4  in   2.1.x),  the  user   will have   to  edit
187     linux/drivers/net/Space.c  to make room for  them. Hence, module loading
188     is  the preferred way to use   this driver, since  it  doesn't have this
189     limitation.
190 
191     Where SROM media  detection is used and  full duplex is specified in the
192     SROM,  the feature is  ignored unless  lp->params.fdx  is set at compile
193     time  OR during  a   module load  (insmod  de4x5   args='eth??:fdx' [see
194     below]).  This is because there  is no way  to automatically detect full
195     duplex   links  except through   autonegotiation.    When I  include the
196     autonegotiation feature in  the SROM autoconf  code, this detection will
197     occur automatically for that case.
198 
199     Command  line arguments are  now  allowed, similar  to passing arguments
200     through LILO. This will allow a per adapter board  set up of full duplex
201     and media. The only lexical constraints  are: the board name (dev->name)
202     appears in the list before its  parameters.  The list of parameters ends
203     either at the end of the parameter list or with another board name.  The
204     following parameters are allowed:
205 
206             fdx        for full duplex
207 	    autosense  to set the media/speed; with the following
208 	               sub-parameters:
209 		       TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210 
211     Case sensitivity is important  for  the sub-parameters. They *must*   be
212     upper case. Examples:
213 
214         insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215 
216     For a compiled in driver, at or above line 548, place e.g.
217 	#define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218 
219     Yes,  I know full duplex isn't  permissible on BNC  or AUI; they're just
220     examples. By default, full duplex is turned off and  AUTO is the default
221     autosense setting.  In reality, I expect only  the full duplex option to
222     be used. Note the use of single quotes in the two examples above and the
223     lack of commas to separate items. ALSO, you must get the requested media
224     correct in relation to what the adapter SROM says it has. There's no way
225     to  determine this in  advance other than by  trial and error and common
226     sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227 
228     Changed the bus probing.  EISA used to be  done first,  followed by PCI.
229     Most people probably don't even know  what a de425 is today and the EISA
230     probe has messed  up some SCSI cards  in the past,  so now PCI is always
231     probed  first  followed by  EISA if  a) the architecture allows EISA and
232     either  b) there have been no PCI cards detected or  c) an EISA probe is
233     forced by  the user.  To force  a probe  include  "force_eisa"  in  your
234     insmod "args" line;  for built-in kernels either change the driver to do
235     this  automatically  or include  #define DE4X5_FORCE_EISA  on or  before
236     line 1040 in the driver.
237 
238     TO DO:
239     ------
240 
241     Revision History
242     ----------------
243 
244     Version   Date        Description
245 
246       0.1     17-Nov-94   Initial writing. ALPHA code release.
247       0.2     13-Jan-95   Added PCI support for DE435's.
248       0.21    19-Jan-95   Added auto media detection.
249       0.22    10-Feb-95   Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250                           Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 			  Add request/release_region code.
252 			  Add loadable modules support for PCI.
253 			  Clean up loadable modules support.
254       0.23    28-Feb-95   Added DC21041 and DC21140 support.
255                           Fix missed frame counter value and initialisation.
256 			  Fixed EISA probe.
257       0.24    11-Apr-95   Change delay routine to use <linux/udelay>.
258                           Change TX_BUFFS_AVAIL macro.
259 			  Change media autodetection to allow manual setting.
260 			  Completed DE500 (DC21140) support.
261       0.241   18-Apr-95   Interim release without DE500 Autosense Algorithm.
262       0.242   10-May-95   Minor changes.
263       0.30    12-Jun-95   Timer fix for DC21140.
264                           Portability changes.
265 			  Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 			  Add DE500 semi automatic autosense.
267 			  Add Link Fail interrupt TP failure detection.
268 			  Add timer based link change detection.
269 			  Plugged a memory leak in de4x5_queue_pkt().
270       0.31    13-Jun-95   Fixed PCI stuff for 1.3.1.
271       0.32    26-Jun-95   Added verify_area() calls in de4x5_ioctl() from a
272                           suggestion by <heiko@colossus.escape.de>.
273       0.33     8-Aug-95   Add shared interrupt support (not released yet).
274       0.331   21-Aug-95   Fix de4x5_open() with fast CPUs.
275                           Fix de4x5_interrupt().
276                           Fix dc21140_autoconf() mess.
277 			  No shared interrupt support.
278       0.332   11-Sep-95   Added MII management interface routines.
279       0.40     5-Mar-96   Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280                           Add kernel timer code (h/w is too flaky).
281 			  Add MII based PHY autosense.
282 			  Add new multicasting code.
283 			  Add new autosense algorithms for media/mode
284 			  selection using kernel scheduling/timing.
285 			  Re-formatted.
286 			  Made changes suggested by <jeff@router.patch.net>:
287 			    Change driver to detect all DECchip based cards
288 			    with DEC_ONLY restriction a special case.
289 			    Changed driver to autoprobe as a module. No irq
290 			    checking is done now - assume BIOS is good!
291 			  Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292       0.41    21-Mar-96   Don't check for get_hw_addr checksum unless DEC card
293                           only <niles@axp745gsfc.nasa.gov>
294 			  Fix for multiple PCI cards reported by <jos@xos.nl>
295 			  Duh, put the IRQF_SHARED flag into request_interrupt().
296 			  Fix SMC ethernet address in enet_det[].
297 			  Print chip name instead of "UNKNOWN" during boot.
298       0.42    26-Apr-96   Fix MII write TA bit error.
299                           Fix bug in dc21040 and dc21041 autosense code.
300 			  Remove buffer copies on receive for Intels.
301 			  Change sk_buff handling during media disconnects to
302 			   eliminate DUP packets.
303 			  Add dynamic TX thresholding.
304 			  Change all chips to use perfect multicast filtering.
305 			  Fix alloc_device() bug <jari@markkus2.fimr.fi>
306       0.43   21-Jun-96    Fix unconnected media TX retry bug.
307                           Add Accton to the list of broken cards.
308 			  Fix TX under-run bug for non DC21140 chips.
309 			  Fix boot command probe bug in alloc_device() as
310 			   reported by <koen.gadeyne@barco.com> and
311 			   <orava@nether.tky.hut.fi>.
312 			  Add cache locks to prevent a race condition as
313 			   reported by <csd@microplex.com> and
314 			   <baba@beckman.uiuc.edu>.
315 			  Upgraded alloc_device() code.
316       0.431  28-Jun-96    Fix potential bug in queue_pkt() from discussion
317                           with <csd@microplex.com>
318       0.44   13-Aug-96    Fix RX overflow bug in 2114[023] chips.
319                           Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 			  and <michael@compurex.com>.
321       0.441   9-Sep-96    Change dc21041_autoconf() to probe quiet BNC media
322                            with a loopback packet.
323       0.442   9-Sep-96    Include AUI in dc21041 media printout. Bug reported
324                            by <bhat@mundook.cs.mu.OZ.AU>
325       0.45    8-Dec-96    Include endian functions for PPC use, from work
326                            by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327       0.451  28-Dec-96    Added fix to allow autoprobe for modules after
328                            suggestion from <mjacob@feral.com>.
329       0.5    30-Jan-97    Added SROM decoding functions.
330                           Updated debug flags.
331 			  Fix sleep/wakeup calls for PCI cards, bug reported
332 			   by <cross@gweep.lkg.dec.com>.
333 			  Added multi-MAC, one SROM feature from discussion
334 			   with <mjacob@feral.com>.
335 			  Added full module autoprobe capability.
336 			  Added attempt to use an SMC9332 with broken SROM.
337 			  Added fix for ZYNX multi-mac cards that didn't
338 			   get their IRQs wired correctly.
339       0.51   13-Feb-97    Added endian fixes for the SROM accesses from
340 			   <paubert@iram.es>
341 			  Fix init_connection() to remove extra device reset.
342 			  Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 			  Fix initialisation problem with lp->timeout in
344 			   typeX_infoblock() from <paubert@iram.es>.
345 			  Fix MII PHY reset problem from work done by
346 			   <paubert@iram.es>.
347       0.52   26-Apr-97    Some changes may not credit the right people -
348                            a disk crash meant I lost some mail.
349 			  Change RX interrupt routine to drop rather than
350 			   defer packets to avoid hang reported by
351 			   <g.thomas@opengroup.org>.
352 			  Fix srom_exec() to return for COMPACT and type 1
353 			   infoblocks.
354 			  Added DC21142 and DC21143 functions.
355 			  Added byte counters from <phil@tazenda.demon.co.uk>
356 			  Added IRQF_DISABLED temporary fix from
357 			   <mjacob@feral.com>.
358       0.53   12-Nov-97    Fix the *_probe() to include 'eth??' name during
359                            module load: bug reported by
360 			   <Piete.Brooks@cl.cam.ac.uk>
361 			  Fix multi-MAC, one SROM, to work with 2114x chips:
362 			   bug reported by <cmetz@inner.net>.
363 			  Make above search independent of BIOS device scan
364 			   direction.
365 			  Completed DC2114[23] autosense functions.
366       0.531  21-Dec-97    Fix DE500-XA 100Mb/s bug reported by
367                            <robin@intercore.com
368 			  Fix type1_infoblock() bug introduced in 0.53, from
369 			   problem reports by
370 			   <parmee@postecss.ncrfran.france.ncr.com> and
371 			   <jo@ice.dillingen.baynet.de>.
372 			  Added argument list to set up each board from either
373 			   a module's command line or a compiled in #define.
374 			  Added generic MII PHY functionality to deal with
375 			   newer PHY chips.
376 			  Fix the mess in 2.1.67.
377       0.532   5-Jan-98    Fix bug in mii_get_phy() reported by
378                            <redhat@cococo.net>.
379                           Fix bug in pci_probe() for 64 bit systems reported
380 			   by <belliott@accessone.com>.
381       0.533   9-Jan-98    Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382       0.534  24-Jan-98    Fix last (?) endian bug from <geert@linux-m68k.org>
383       0.535  21-Feb-98    Fix Ethernet Address PROM reset bug for DC21040.
384       0.536  21-Mar-98    Change pci_probe() to use the pci_dev structure.
385 			  **Incompatible with 2.0.x from here.**
386       0.540   5-Jul-98    Atomicize assertion of dev->interrupt for SMP
387                            from <lma@varesearch.com>
388 			  Add TP, AUI and BNC cases to 21140m_autoconf() for
389 			   case where a 21140 under SROM control uses, e.g. AUI
390 			   from problem report by <delchini@lpnp09.in2p3.fr>
391 			  Add MII parallel detection to 2114x_autoconf() for
392 			   case where no autonegotiation partner exists from
393 			   problem report by <mlapsley@ndirect.co.uk>.
394 			  Add ability to force connection type directly even
395 			   when using SROM control from problem report by
396 			   <earl@exis.net>.
397 			  Updated the PCI interface to conform with the latest
398 			   version. I hope nothing is broken...
399           		  Add TX done interrupt modification from suggestion
400 			   by <Austin.Donnelly@cl.cam.ac.uk>.
401 			  Fix is_anc_capable() bug reported by
402 			   <Austin.Donnelly@cl.cam.ac.uk>.
403 			  Fix type[13]_infoblock() bug: during MII search, PHY
404 			   lp->rst not run because lp->ibn not initialised -
405 			   from report & fix by <paubert@iram.es>.
406 			  Fix probe bug with EISA & PCI cards present from
407                            report by <eirik@netcom.com>.
408       0.541  24-Aug-98    Fix compiler problems associated with i386-string
409                            ops from multiple bug reports and temporary fix
410 			   from <paubert@iram.es>.
411 			  Fix pci_probe() to correctly emulate the old
412 			   pcibios_find_class() function.
413 			  Add an_exception() for old ZYNX346 and fix compile
414 			   warning on PPC & SPARC, from <ecd@skynet.be>.
415 			  Fix lastPCI to correctly work with compiled in
416 			   kernels and modules from bug report by
417 			   <Zlatko.Calusic@CARNet.hr> et al.
418       0.542  15-Sep-98    Fix dc2114x_autoconf() to stop multiple messages
419                            when media is unconnected.
420 			  Change dev->interrupt to lp->interrupt to ensure
421 			   alignment for Alpha's and avoid their unaligned
422 			   access traps. This flag is merely for log messages:
423 			   should do something more definitive though...
424       0.543  30-Dec-98    Add SMP spin locking.
425       0.544   8-May-99    Fix for buggy SROM in Motorola embedded boards using
426                            a 21143 by <mmporter@home.com>.
427 			  Change PCI/EISA bus probing order.
428       0.545  28-Nov-99    Further Moto SROM bug fix from
429                            <mporter@eng.mcd.mot.com>
430                           Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 			   from report by <geert@linux-m68k.org>
432       0.546  22-Feb-01    Fixes Alpha XP1000 oops.  The srom_search function
433                            was causing a page fault when initializing the
434                            variable 'pb', on a non de4x5 PCI device, in this
435                            case a PCI bridge (DEC chip 21152). The value of
436                            'pb' is now only initialized if a de4x5 chip is
437                            present.
438                            <france@handhelds.org>
439       0.547  08-Nov-01    Use library crc32 functions by <Matt_Domsch@dell.com>
440       0.548  30-Aug-03    Big 2.6 cleanup. Ported to PCI/EISA probing and
441                            generic DMA APIs. Fixed DE425 support on Alpha.
442 			   <maz@wild-wind.fr.eu.org>
443     =========================================================================
444 */
445 
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470 
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <linux/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479 
480 #include "de4x5.h"
481 
482 static const char version[] =
483 	KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484 
485 #define c_char const char
486 
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491     int reset;              /* Hard reset required?                         */
492     int id;                 /* IEEE OUI                                     */
493     int ta;                 /* One cycle TA time - 802.3u is confusing here */
494     struct {                /* Non autonegotiation (parallel) speed det.    */
495 	int reg;
496 	int mask;
497 	int value;
498     } spd;
499 };
500 
501 struct mii_phy {
502     int reset;              /* Hard reset required?                      */
503     int id;                 /* IEEE OUI                                  */
504     int ta;                 /* One cycle TA time                         */
505     struct {                /* Non autonegotiation (parallel) speed det. */
506 	int reg;
507 	int mask;
508 	int value;
509     } spd;
510     int addr;               /* MII address for the PHY                   */
511     u_char  *gep;           /* Start of GEP sequence block in SROM       */
512     u_char  *rst;           /* Start of reset sequence in SROM           */
513     u_int mc;               /* Media Capabilities                        */
514     u_int ana;              /* NWay Advertisement                        */
515     u_int fdx;              /* Full DupleX capabilities for each media   */
516     u_int ttm;              /* Transmit Threshold Mode for each media    */
517     u_int mci;              /* 21142 MII Connector Interrupt info        */
518 };
519 
520 #define DE4X5_MAX_PHY 8     /* Allow up to 8 attached PHY devices per board */
521 
522 struct sia_phy {
523     u_char mc;              /* Media Code                                */
524     u_char ext;             /* csr13-15 valid when set                   */
525     int csr13;              /* SIA Connectivity Register                 */
526     int csr14;              /* SIA TX/RX Register                        */
527     int csr15;              /* SIA General Register                      */
528     int gepc;               /* SIA GEP Control Information               */
529     int gep;                /* SIA GEP Data                              */
530 };
531 
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537     {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}},       /* National TX      */
538     {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}},       /* Broadcom T4      */
539     {0, SEEQ_T4    , 1, {0x12, 0x10, 0x10}},       /* SEEQ T4          */
540     {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}},       /* Cypress T4       */
541     {0, 0x7810     , 1, {0x14, 0x0800, 0x0800}}    /* Level One LTX970 */
542 };
543 
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG   0x05      /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK  MII_ANLPA_100M /* All 100Mb/s Technologies            */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4       */
552 
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557     {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558     {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560 
561 #define SMC    1
562 #define ACCTON 2
563 
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570     {0x00,0x1e,0x00,0x00,0x00,0x08,             /* SMC9332 */
571      0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572      0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573      0x00,0x18,}
574 };
575 
576 
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583 
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 **     #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598 
599 struct parameters {
600     bool fdx;
601     int autosense;
602 };
603 
604 #define DE4X5_AUTOSENSE_MS 250      /* msec autosense tick (DE500) */
605 
606 #define DE4X5_NDA 0xffe0            /* No Device (I/O) Address */
607 
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH    32
612 #define ETH_PROM_SIG    0xAA5500FFUL
613 
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ	1536            /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ    1518            /* Packet + CRC */
619 #define MAX_PKT_SZ   	1514            /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ   	1500            /* Maximum ethernet data length */
621 #define MIN_DAT_SZ   	1               /* Minimum ethernet data length */
622 #define PKT_HDR_LEN     14              /* Addresses and data length info */
623 #define FAKE_FRAME_LEN  (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ)        /* 3 second timeout */
625 
626 
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS   0x0c00    /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100     /* I/O address extent */
632 
633 #define EISA_ALLOWED_IRQ_LIST  {5, 9, 10, 11}
634 
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637 
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639 
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH    32
644 #define ETH_PROM_SIG    0xAA5500FFUL
645 
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM      8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80       /* I/O address extent */
651 #define DE4X5_CLASS_CODE     0x00020000 /* Network controller, Ethernet */
652 
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4      ((u_long)4 - 1)     /* 1 longword align */
660 #define DE4X5_ALIGN8      ((u_long)8 - 1)     /* 2 longword align */
661 #define DE4X5_ALIGN16     ((u_long)16 - 1)    /* 4 longword align */
662 #define DE4X5_ALIGN32     ((u_long)32 - 1)    /* 8 longword align */
663 #define DE4X5_ALIGN64     ((u_long)64 - 1)    /* 16 longword align */
664 #define DE4X5_ALIGN128    ((u_long)128 - 1)   /* 32 longword align */
665 
666 #define DE4X5_ALIGN         DE4X5_ALIGN32           /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN   CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0             /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN    u32 dummy[4];  / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671 
672 #ifndef DEC_ONLY                        /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677 
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682     imr |= lp->irq_en;\
683     outl(imr, DE4X5_IMR);               /* Enable the IRQs */\
684 }
685 
686 #define DISABLE_IRQs {\
687     imr = inl(DE4X5_IMR);\
688     imr &= ~lp->irq_en;\
689     outl(imr, DE4X5_IMR);               /* Disable the IRQs */\
690 }
691 
692 #define UNMASK_IRQs {\
693     imr |= lp->irq_mask;\
694     outl(imr, DE4X5_IMR);               /* Unmask the IRQs */\
695 }
696 
697 #define MASK_IRQs {\
698     imr = inl(DE4X5_IMR);\
699     imr &= ~lp->irq_mask;\
700     outl(imr, DE4X5_IMR);               /* Mask the IRQs */\
701 }
702 
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707     omr = inl(DE4X5_OMR);\
708     omr |= OMR_ST | OMR_SR;\
709     outl(omr, DE4X5_OMR);               /* Enable the TX and/or RX */\
710 }
711 
712 #define STOP_DE4X5 {\
713     omr = inl(DE4X5_OMR);\
714     omr &= ~(OMR_ST|OMR_SR);\
715     outl(omr, DE4X5_OMR);               /* Disable the TX and/or RX */ \
716 }
717 
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR);  /* Reset SIA connectivity regs */
722 
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS  250
727 
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732     char sub_vendor_id[2];
733     char sub_system_id[2];
734     char reserved[12];
735     char id_block_crc;
736     char reserved2;
737     char version;
738     char num_controllers;
739     char ieee_addr[6];
740     char info[100];
741     short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744 
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8                   /* Number of RX descriptors   */
754 #define NUM_TX_DESC 32                  /* Number of TX descriptors   */
755 #define RX_BUFF_SZ  1536                /* Power of 2 for kmalloc and */
756                                         /* Multiple of 4 for DC21040  */
757                                         /* Allows 512 byte alignment  */
758 struct de4x5_desc {
759     volatile __le32 status;
760     __le32 des1;
761     __le32 buf;
762     __le32 next;
763     DESC_ALIGN
764 };
765 
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ  128            /* Should be >=100 unless you
771                                             increase DE4X5_PKT_STAT_SZ */
772 
773 struct pkt_stats {
774 	u_int bins[DE4X5_PKT_STAT_SZ];      /* Private stats counters       */
775 	u_int unicast;
776 	u_int multicast;
777 	u_int broadcast;
778 	u_int excessive_collisions;
779 	u_int tx_underruns;
780 	u_int excessive_underruns;
781 	u_int rx_runt_frames;
782 	u_int rx_collision;
783 	u_int rx_dribble;
784 	u_int rx_overflow;
785 };
786 
787 struct de4x5_private {
788     char adapter_name[80];                  /* Adapter name                 */
789     u_long interrupt;                       /* Aligned ISR flag             */
790     struct de4x5_desc *rx_ring;		    /* RX descriptor ring           */
791     struct de4x5_desc *tx_ring;		    /* TX descriptor ring           */
792     struct sk_buff *tx_skb[NUM_TX_DESC];    /* TX skb for freeing when sent */
793     struct sk_buff *rx_skb[NUM_RX_DESC];    /* RX skb's                     */
794     int rx_new, rx_old;                     /* RX descriptor ring pointers  */
795     int tx_new, tx_old;                     /* TX descriptor ring pointers  */
796     char setup_frame[SETUP_FRAME_LEN];      /* Holds MCA and PA info.       */
797     char frame[64];                         /* Min sized packet for loopback*/
798     spinlock_t lock;                        /* Adapter specific spinlock    */
799     struct net_device_stats stats;          /* Public stats                 */
800     struct pkt_stats pktStats;	            /* Private stats counters	    */
801     char rxRingSize;
802     char txRingSize;
803     int  bus;                               /* EISA or PCI                  */
804     int  bus_num;                           /* PCI Bus number               */
805     int  device;                            /* Device number on PCI bus     */
806     int  state;                             /* Adapter OPENED or CLOSED     */
807     int  chipset;                           /* DC21040, DC21041 or DC21140  */
808     s32  irq_mask;                          /* Interrupt Mask (Enable) bits */
809     s32  irq_en;                            /* Summary interrupt bits       */
810     int  media;                             /* Media (eg TP), mode (eg 100B)*/
811     int  c_media;                           /* Remember the last media conn */
812     bool fdx;                               /* media full duplex flag       */
813     int  linkOK;                            /* Link is OK                   */
814     int  autosense;                         /* Allow/disallow autosensing   */
815     bool tx_enable;                         /* Enable descriptor polling    */
816     int  setup_f;                           /* Setup frame filtering type   */
817     int  local_state;                       /* State within a 'media' state */
818     struct mii_phy phy[DE4X5_MAX_PHY];      /* List of attached PHY devices */
819     struct sia_phy sia;                     /* SIA PHY Information          */
820     int  active;                            /* Index to active PHY device   */
821     int  mii_cnt;                           /* Number of attached PHY's     */
822     int  timeout;                           /* Scheduling counter           */
823     struct timer_list timer;                /* Timer info for kernel        */
824     int tmp;                                /* Temporary global per card    */
825     struct {
826 	u_long lock;                        /* Lock the cache accesses      */
827 	s32 csr0;                           /* Saved Bus Mode Register      */
828 	s32 csr6;                           /* Saved Operating Mode Reg.    */
829 	s32 csr7;                           /* Saved IRQ Mask Register      */
830 	s32 gep;                            /* Saved General Purpose Reg.   */
831 	s32 gepc;                           /* Control info for GEP         */
832 	s32 csr13;                          /* Saved SIA Connectivity Reg.  */
833 	s32 csr14;                          /* Saved SIA TX/RX Register     */
834 	s32 csr15;                          /* Saved SIA General Register   */
835 	int save_cnt;                       /* Flag if state already saved  */
836 	struct sk_buff_head queue;          /* Save the (re-ordered) skb's  */
837     } cache;
838     struct de4x5_srom srom;                 /* A copy of the SROM           */
839     int cfrv;				    /* Card CFRV copy */
840     int rx_ovf;                             /* Check for 'RX overflow' tag  */
841     bool useSROM;                           /* For non-DEC card use SROM    */
842     bool useMII;                            /* Infoblock using the MII      */
843     int asBitValid;                         /* Autosense bits in GEP?       */
844     int asPolarity;                         /* 0 => asserted high           */
845     int asBit;                              /* Autosense bit number in GEP  */
846     int defMedium;                          /* SROM default medium          */
847     int tcount;                             /* Last infoblock number        */
848     int infoblock_init;                     /* Initialised this infoblock?  */
849     int infoleaf_offset;                    /* SROM infoleaf for controller */
850     s32 infoblock_csr6;                     /* csr6 value in SROM infoblock */
851     int infoblock_media;                    /* infoblock media              */
852     int (*infoleaf_fn)(struct net_device *);    /* Pointer to infoleaf function */
853     u_char *rst;                            /* Pointer to Type 5 reset info */
854     u_char  ibn;                            /* Infoblock number             */
855     struct parameters params;               /* Command line/ #defined params */
856     struct device *gendev;	            /* Generic device */
857     dma_addr_t dma_rings;		    /* DMA handle for rings	    */
858     int dma_size;			    /* Size of the DMA area	    */
859     char *rx_bufs;			    /* rx bufs on alpha, sparc, ... */
860 };
861 
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 **      o the chipset is the same
868 **      o the bus number is the same and > 0
869 **      o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875     int chipset;
876     int bus;
877     int irq;
878     u_char addr[ETH_ALEN];
879 } last = {0,};
880 
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 **    tx_old            = tx_new    Empty ring
885 **    tx_old            = tx_new+1  Full ring
886 **    tx_old+txRingSize = tx_new+1  Full ring  (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 			lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 			lp->tx_old               -lp->tx_new-1)
891 
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893 
894 /*
895 ** Public Functions
896 */
897 static int     de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 					 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int     de4x5_close(struct net_device *dev);
902 static struct  net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void    de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void    set_multicast_list(struct net_device *dev);
905 static int     de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906 
907 /*
908 ** Private functions
909 */
910 static int     de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int     de4x5_init(struct net_device *dev);
912 static int     de4x5_sw_reset(struct net_device *dev);
913 static int     de4x5_rx(struct net_device *dev);
914 static int     de4x5_tx(struct net_device *dev);
915 static void    de4x5_ast(struct timer_list *t);
916 static int     de4x5_txur(struct net_device *dev);
917 static int     de4x5_rx_ovfc(struct net_device *dev);
918 
919 static int     autoconf_media(struct net_device *dev);
920 static void    create_packet(struct net_device *dev, char *frame, int len);
921 static void    load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int     dc21040_autoconf(struct net_device *dev);
923 static int     dc21041_autoconf(struct net_device *dev);
924 static int     dc21140m_autoconf(struct net_device *dev);
925 static int     dc2114x_autoconf(struct net_device *dev);
926 static int     srom_autoconf(struct net_device *dev);
927 static int     de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int     dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int     test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int     test_for_100Mb(struct net_device *dev, int msec);
931 static int     wait_for_link(struct net_device *dev);
932 static int     test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int     is_spd_100(struct net_device *dev);
934 static int     is_100_up(struct net_device *dev);
935 static int     is_10_up(struct net_device *dev);
936 static int     is_anc_capable(struct net_device *dev);
937 static int     ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void    de4x5_free_rx_buffs(struct net_device *dev);
940 static void    de4x5_free_tx_buffs(struct net_device *dev);
941 static void    de4x5_save_skbs(struct net_device *dev);
942 static void    de4x5_rst_desc_ring(struct net_device *dev);
943 static void    de4x5_cache_state(struct net_device *dev, int flag);
944 static void    de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void    de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct  sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void    de4x5_setup_intr(struct net_device *dev);
948 static void    de4x5_init_connection(struct net_device *dev);
949 static int     de4x5_reset_phy(struct net_device *dev);
950 static void    reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int     test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int     test_tp(struct net_device *dev, s32 msec);
953 static int     EISA_signature(char *name, struct device *device);
954 static int     PCI_signature(char *name, struct de4x5_private *lp);
955 static void    DevicePresent(struct net_device *dev, u_long iobase);
956 static void    enet_addr_rst(u_long aprom_addr);
957 static int     de4x5_bad_srom(struct de4x5_private *lp);
958 static short   srom_rd(u_long address, u_char offset);
959 static void    srom_latch(u_int command, u_long address);
960 static void    srom_command(u_int command, u_long address);
961 static void    srom_address(u_int command, u_long address, u_char offset);
962 static short   srom_data(u_int command, u_long address);
963 /*static void    srom_busy(u_int command, u_long address);*/
964 static void    sendto_srom(u_int command, u_long addr);
965 static int     getfrom_srom(u_long addr);
966 static int     srom_map_media(struct net_device *dev);
967 static int     srom_infoleaf_info(struct net_device *dev);
968 static void    srom_init(struct net_device *dev);
969 static void    srom_exec(struct net_device *dev, u_char *p);
970 static int     mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void    mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int     mii_rdata(u_long ioaddr);
973 static void    mii_wdata(int data, int len, u_long ioaddr);
974 static void    mii_ta(u_long rw, u_long ioaddr);
975 static int     mii_swap(int data, int len);
976 static void    mii_address(u_char addr, u_long ioaddr);
977 static void    sendto_mii(u32 command, int data, u_long ioaddr);
978 static int     getfrom_mii(u32 command, u_long ioaddr);
979 static int     mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int     mii_get_phy(struct net_device *dev);
981 static void    SetMulticastFilter(struct net_device *dev);
982 static int     get_hw_addr(struct net_device *dev);
983 static void    srom_repair(struct net_device *dev, int card);
984 static int     test_bad_enet(struct net_device *dev, int status);
985 static int     an_exception(struct de4x5_private *lp);
986 static char    *build_setup_frame(struct net_device *dev, int mode);
987 static void    disable_ast(struct net_device *dev);
988 static long    de4x5_switch_mac_port(struct net_device *dev);
989 static int     gep_rd(struct net_device *dev);
990 static void    gep_wr(s32 data, struct net_device *dev);
991 static void    yawn(struct net_device *dev, int state);
992 static void    de4x5_parse_params(struct net_device *dev);
993 static void    de4x5_dbg_open(struct net_device *dev);
994 static void    de4x5_dbg_mii(struct net_device *dev, int k);
995 static void    de4x5_dbg_media(struct net_device *dev);
996 static void    de4x5_dbg_srom(struct de4x5_srom *p);
997 static void    de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int     dc21041_infoleaf(struct net_device *dev);
999 static int     dc21140_infoleaf(struct net_device *dev);
1000 static int     dc21142_infoleaf(struct net_device *dev);
1001 static int     dc21143_infoleaf(struct net_device *dev);
1002 static int     type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int     type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int     type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int     type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int     type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int     type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int     compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009 
1010 /*
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1014 */
1015 
1016 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED        */
1017 
1018 module_param_hw(io, int, ioport, 0);
1019 module_param(de4x5_debug, int, 0);
1020 module_param(dec_only, int, 0);
1021 module_param(args, charp, 0);
1022 
1023 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1028 
1029 /*
1030 ** List the SROM infoleaf functions and chipsets
1031 */
1032 struct InfoLeaf {
1033     int chipset;
1034     int (*fn)(struct net_device *);
1035 };
1036 static struct InfoLeaf infoleaf_array[] = {
1037     {DC21041, dc21041_infoleaf},
1038     {DC21140, dc21140_infoleaf},
1039     {DC21142, dc21142_infoleaf},
1040     {DC21143, dc21143_infoleaf}
1041 };
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043 
1044 /*
1045 ** List the SROM info block functions
1046 */
1047 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048     type0_infoblock,
1049     type1_infoblock,
1050     type2_infoblock,
1051     type3_infoblock,
1052     type4_infoblock,
1053     type5_infoblock,
1054     compact_infoblock
1055 };
1056 
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058 
1059 /*
1060 ** Miscellaneous defines...
1061 */
1062 #define RESET_DE4X5 {\
1063     int i;\
1064     i=inl(DE4X5_BMR);\
1065     mdelay(1);\
1066     outl(i | BMR_SWR, DE4X5_BMR);\
1067     mdelay(1);\
1068     outl(i, DE4X5_BMR);\
1069     mdelay(1);\
1070     for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071     mdelay(1);\
1072 }
1073 
1074 #define PHY_HARD_RESET {\
1075     outl(GEP_HRST, DE4X5_GEP);           /* Hard RESET the PHY dev. */\
1076     mdelay(1);                           /* Assert for 1ms */\
1077     outl(0x00, DE4X5_GEP);\
1078     mdelay(2);                           /* Wait for 2ms */\
1079 }
1080 
1081 static const struct net_device_ops de4x5_netdev_ops = {
1082     .ndo_open		= de4x5_open,
1083     .ndo_stop		= de4x5_close,
1084     .ndo_start_xmit	= de4x5_queue_pkt,
1085     .ndo_get_stats	= de4x5_get_stats,
1086     .ndo_set_rx_mode	= set_multicast_list,
1087     .ndo_do_ioctl	= de4x5_ioctl,
1088     .ndo_set_mac_address= eth_mac_addr,
1089     .ndo_validate_addr	= eth_validate_addr,
1090 };
1091 
1092 
1093 static int
de4x5_hw_init(struct net_device * dev,u_long iobase,struct device * gendev)1094 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1095 {
1096     char name[DE4X5_NAME_LENGTH + 1];
1097     struct de4x5_private *lp = netdev_priv(dev);
1098     struct pci_dev *pdev = NULL;
1099     int i, status=0;
1100 
1101     dev_set_drvdata(gendev, dev);
1102 
1103     /* Ensure we're not sleeping */
1104     if (lp->bus == EISA) {
1105 	outb(WAKEUP, PCI_CFPM);
1106     } else {
1107 	pdev = to_pci_dev (gendev);
1108 	pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1109     }
1110     mdelay(10);
1111 
1112     RESET_DE4X5;
1113 
1114     if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1115 	return -ENXIO;                       /* Hardware could not reset */
1116     }
1117 
1118     /*
1119     ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1120     */
1121     lp->useSROM = false;
1122     if (lp->bus == PCI) {
1123 	PCI_signature(name, lp);
1124     } else {
1125 	EISA_signature(name, gendev);
1126     }
1127 
1128     if (*name == '\0') {                     /* Not found a board signature */
1129 	return -ENXIO;
1130     }
1131 
1132     dev->base_addr = iobase;
1133     printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1134 
1135     status = get_hw_addr(dev);
1136     printk(", h/w address %pM\n", dev->dev_addr);
1137 
1138     if (status != 0) {
1139 	printk("      which has an Ethernet PROM CRC error.\n");
1140 	return -ENXIO;
1141     } else {
1142 	skb_queue_head_init(&lp->cache.queue);
1143 	lp->cache.gepc = GEP_INIT;
1144 	lp->asBit = GEP_SLNK;
1145 	lp->asPolarity = GEP_SLNK;
1146 	lp->asBitValid = ~0;
1147 	lp->timeout = -1;
1148 	lp->gendev = gendev;
1149 	spin_lock_init(&lp->lock);
1150 	timer_setup(&lp->timer, de4x5_ast, 0);
1151 	de4x5_parse_params(dev);
1152 
1153 	/*
1154 	** Choose correct autosensing in case someone messed up
1155 	*/
1156         lp->autosense = lp->params.autosense;
1157         if (lp->chipset != DC21140) {
1158             if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1159                 lp->params.autosense = TP;
1160             }
1161             if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1162                 lp->params.autosense = BNC;
1163             }
1164         }
1165 	lp->fdx = lp->params.fdx;
1166 	sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1167 
1168 	lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1169 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1170 	lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1171 #endif
1172 	lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1173 					 &lp->dma_rings, GFP_ATOMIC);
1174 	if (lp->rx_ring == NULL) {
1175 	    return -ENOMEM;
1176 	}
1177 
1178 	lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1179 
1180 	/*
1181 	** Set up the RX descriptor ring (Intels)
1182 	** Allocate contiguous receive buffers, long word aligned (Alphas)
1183 	*/
1184 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1185 	for (i=0; i<NUM_RX_DESC; i++) {
1186 	    lp->rx_ring[i].status = 0;
1187 	    lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1188 	    lp->rx_ring[i].buf = 0;
1189 	    lp->rx_ring[i].next = 0;
1190 	    lp->rx_skb[i] = (struct sk_buff *) 1;     /* Dummy entry */
1191 	}
1192 
1193 #else
1194 	{
1195 		dma_addr_t dma_rx_bufs;
1196 
1197 		dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1198 		      	* sizeof(struct de4x5_desc);
1199 		dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1200 		lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1201 		      	+ NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1202 		for (i=0; i<NUM_RX_DESC; i++) {
1203 	    		lp->rx_ring[i].status = 0;
1204 	    		lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1205 	    		lp->rx_ring[i].buf =
1206 				cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1207 	    		lp->rx_ring[i].next = 0;
1208 	    		lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1209 		}
1210 
1211 	}
1212 #endif
1213 
1214 	barrier();
1215 
1216 	lp->rxRingSize = NUM_RX_DESC;
1217 	lp->txRingSize = NUM_TX_DESC;
1218 
1219 	/* Write the end of list marker to the descriptor lists */
1220 	lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1221 	lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1222 
1223 	/* Tell the adapter where the TX/RX rings are located. */
1224 	outl(lp->dma_rings, DE4X5_RRBA);
1225 	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1226 	     DE4X5_TRBA);
1227 
1228 	/* Initialise the IRQ mask and Enable/Disable */
1229 	lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1230 	lp->irq_en   = IMR_NIM | IMR_AIM;
1231 
1232 	/* Create a loopback packet frame for later media probing */
1233 	create_packet(dev, lp->frame, sizeof(lp->frame));
1234 
1235 	/* Check if the RX overflow bug needs testing for */
1236 	i = lp->cfrv & 0x000000fe;
1237 	if ((lp->chipset == DC21140) && (i == 0x20)) {
1238 	    lp->rx_ovf = 1;
1239 	}
1240 
1241 	/* Initialise the SROM pointers if possible */
1242 	if (lp->useSROM) {
1243 	    lp->state = INITIALISED;
1244 	    if (srom_infoleaf_info(dev)) {
1245 	        dma_free_coherent (gendev, lp->dma_size,
1246 			       lp->rx_ring, lp->dma_rings);
1247 		return -ENXIO;
1248 	    }
1249 	    srom_init(dev);
1250 	}
1251 
1252 	lp->state = CLOSED;
1253 
1254 	/*
1255 	** Check for an MII interface
1256 	*/
1257 	if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1258 	    mii_get_phy(dev);
1259 	}
1260 
1261 	printk("      and requires IRQ%d (provided by %s).\n", dev->irq,
1262 	       ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1263     }
1264 
1265     if (de4x5_debug & DEBUG_VERSION) {
1266 	printk(version);
1267     }
1268 
1269     /* The DE4X5-specific entries in the device structure. */
1270     SET_NETDEV_DEV(dev, gendev);
1271     dev->netdev_ops = &de4x5_netdev_ops;
1272     dev->mem_start = 0;
1273 
1274     /* Fill in the generic fields of the device structure. */
1275     if ((status = register_netdev (dev))) {
1276 	    dma_free_coherent (gendev, lp->dma_size,
1277 			       lp->rx_ring, lp->dma_rings);
1278 	    return status;
1279     }
1280 
1281     /* Let the adapter sleep to save power */
1282     yawn(dev, SLEEP);
1283 
1284     return status;
1285 }
1286 
1287 
1288 static int
de4x5_open(struct net_device * dev)1289 de4x5_open(struct net_device *dev)
1290 {
1291     struct de4x5_private *lp = netdev_priv(dev);
1292     u_long iobase = dev->base_addr;
1293     int i, status = 0;
1294     s32 omr;
1295 
1296     /* Allocate the RX buffers */
1297     for (i=0; i<lp->rxRingSize; i++) {
1298 	if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1299 	    de4x5_free_rx_buffs(dev);
1300 	    return -EAGAIN;
1301 	}
1302     }
1303 
1304     /*
1305     ** Wake up the adapter
1306     */
1307     yawn(dev, WAKEUP);
1308 
1309     /*
1310     ** Re-initialize the DE4X5...
1311     */
1312     status = de4x5_init(dev);
1313     spin_lock_init(&lp->lock);
1314     lp->state = OPEN;
1315     de4x5_dbg_open(dev);
1316 
1317     if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1318 		                                     lp->adapter_name, dev)) {
1319 	printk("de4x5_open(): Requested IRQ%d is busy - attempting FAST/SHARE...", dev->irq);
1320 	if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321 			                             lp->adapter_name, dev)) {
1322 	    printk("\n              Cannot get IRQ- reconfigure your hardware.\n");
1323 	    disable_ast(dev);
1324 	    de4x5_free_rx_buffs(dev);
1325 	    de4x5_free_tx_buffs(dev);
1326 	    yawn(dev, SLEEP);
1327 	    lp->state = CLOSED;
1328 	    return -EAGAIN;
1329 	} else {
1330 	    printk("\n              Succeeded, but you should reconfigure your hardware to avoid this.\n");
1331 	    printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1332 	}
1333     }
1334 
1335     lp->interrupt = UNMASK_INTERRUPTS;
1336     netif_trans_update(dev); /* prevent tx timeout */
1337 
1338     START_DE4X5;
1339 
1340     de4x5_setup_intr(dev);
1341 
1342     if (de4x5_debug & DEBUG_OPEN) {
1343 	printk("\tsts:  0x%08x\n", inl(DE4X5_STS));
1344 	printk("\tbmr:  0x%08x\n", inl(DE4X5_BMR));
1345 	printk("\timr:  0x%08x\n", inl(DE4X5_IMR));
1346 	printk("\tomr:  0x%08x\n", inl(DE4X5_OMR));
1347 	printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1348 	printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1349 	printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1350 	printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1351     }
1352 
1353     return status;
1354 }
1355 
1356 /*
1357 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1358 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1359 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1360 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1361 ** to be data corruption problems if it is larger (UDP errors seen from a
1362 ** ttcp source).
1363 */
1364 static int
de4x5_init(struct net_device * dev)1365 de4x5_init(struct net_device *dev)
1366 {
1367     /* Lock out other processes whilst setting up the hardware */
1368     netif_stop_queue(dev);
1369 
1370     de4x5_sw_reset(dev);
1371 
1372     /* Autoconfigure the connected port */
1373     autoconf_media(dev);
1374 
1375     return 0;
1376 }
1377 
1378 static int
de4x5_sw_reset(struct net_device * dev)1379 de4x5_sw_reset(struct net_device *dev)
1380 {
1381     struct de4x5_private *lp = netdev_priv(dev);
1382     u_long iobase = dev->base_addr;
1383     int i, j, status = 0;
1384     s32 bmr, omr;
1385 
1386     /* Select the MII or SRL port now and RESET the MAC */
1387     if (!lp->useSROM) {
1388 	if (lp->phy[lp->active].id != 0) {
1389 	    lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1390 	} else {
1391 	    lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1392 	}
1393 	de4x5_switch_mac_port(dev);
1394     }
1395 
1396     /*
1397     ** Set the programmable burst length to 8 longwords for all the DC21140
1398     ** Fasternet chips and 4 longwords for all others: DMA errors result
1399     ** without these values. Cache align 16 long.
1400     */
1401     bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1402     bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1403     outl(bmr, DE4X5_BMR);
1404 
1405     omr = inl(DE4X5_OMR) & ~OMR_PR;             /* Turn off promiscuous mode */
1406     if (lp->chipset == DC21140) {
1407 	omr |= (OMR_SDP | OMR_SB);
1408     }
1409     lp->setup_f = PERFECT;
1410     outl(lp->dma_rings, DE4X5_RRBA);
1411     outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1412 	 DE4X5_TRBA);
1413 
1414     lp->rx_new = lp->rx_old = 0;
1415     lp->tx_new = lp->tx_old = 0;
1416 
1417     for (i = 0; i < lp->rxRingSize; i++) {
1418 	lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1419     }
1420 
1421     for (i = 0; i < lp->txRingSize; i++) {
1422 	lp->tx_ring[i].status = cpu_to_le32(0);
1423     }
1424 
1425     barrier();
1426 
1427     /* Build the setup frame depending on filtering mode */
1428     SetMulticastFilter(dev);
1429 
1430     load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1431     outl(omr|OMR_ST, DE4X5_OMR);
1432 
1433     /* Poll for setup frame completion (adapter interrupts are disabled now) */
1434 
1435     for (j=0, i=0;(i<500) && (j==0);i++) {       /* Up to 500ms delay */
1436 	mdelay(1);
1437 	if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1438     }
1439     outl(omr, DE4X5_OMR);                        /* Stop everything! */
1440 
1441     if (j == 0) {
1442 	printk("%s: Setup frame timed out, status %08x\n", dev->name,
1443 	       inl(DE4X5_STS));
1444 	status = -EIO;
1445     }
1446 
1447     lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1448     lp->tx_old = lp->tx_new;
1449 
1450     return status;
1451 }
1452 
1453 /*
1454 ** Writes a socket buffer address to the next available transmit descriptor.
1455 */
1456 static netdev_tx_t
de4x5_queue_pkt(struct sk_buff * skb,struct net_device * dev)1457 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1458 {
1459     struct de4x5_private *lp = netdev_priv(dev);
1460     u_long iobase = dev->base_addr;
1461     u_long flags = 0;
1462 
1463     netif_stop_queue(dev);
1464     if (!lp->tx_enable)                   /* Cannot send for now */
1465 		goto tx_err;
1466 
1467     /*
1468     ** Clean out the TX ring asynchronously to interrupts - sometimes the
1469     ** interrupts are lost by delayed descriptor status updates relative to
1470     ** the irq assertion, especially with a busy PCI bus.
1471     */
1472     spin_lock_irqsave(&lp->lock, flags);
1473     de4x5_tx(dev);
1474     spin_unlock_irqrestore(&lp->lock, flags);
1475 
1476     /* Test if cache is already locked - requeue skb if so */
1477     if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1478 		goto tx_err;
1479 
1480     /* Transmit descriptor ring full or stale skb */
1481     if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1482 	if (lp->interrupt) {
1483 	    de4x5_putb_cache(dev, skb);          /* Requeue the buffer */
1484 	} else {
1485 	    de4x5_put_cache(dev, skb);
1486 	}
1487 	if (de4x5_debug & DEBUG_TX) {
1488 	    printk("%s: transmit busy, lost media or stale skb found:\n  STS:%08x\n  tbusy:%d\n  IMR:%08x\n  OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1489 	}
1490     } else if (skb->len > 0) {
1491 	/* If we already have stuff queued locally, use that first */
1492 	if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1493 	    de4x5_put_cache(dev, skb);
1494 	    skb = de4x5_get_cache(dev);
1495 	}
1496 
1497 	while (skb && !netif_queue_stopped(dev) &&
1498 	       (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1499 	    spin_lock_irqsave(&lp->lock, flags);
1500 	    netif_stop_queue(dev);
1501 	    load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1502  	    lp->stats.tx_bytes += skb->len;
1503 	    outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1504 
1505 	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1506 
1507 	    if (TX_BUFFS_AVAIL) {
1508 		netif_start_queue(dev);         /* Another pkt may be queued */
1509 	    }
1510 	    skb = de4x5_get_cache(dev);
1511 	    spin_unlock_irqrestore(&lp->lock, flags);
1512 	}
1513 	if (skb) de4x5_putb_cache(dev, skb);
1514     }
1515 
1516     lp->cache.lock = 0;
1517 
1518     return NETDEV_TX_OK;
1519 tx_err:
1520 	dev_kfree_skb_any(skb);
1521 	return NETDEV_TX_OK;
1522 }
1523 
1524 /*
1525 ** The DE4X5 interrupt handler.
1526 **
1527 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528 ** so that the asserted interrupt always has some real data to work with -
1529 ** if these I/O accesses are ever changed to memory accesses, ensure the
1530 ** STS write is read immediately to complete the transaction if the adapter
1531 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532 ** is high and descriptor status bits cannot be set before the associated
1533 ** interrupt is asserted and this routine entered.
1534 */
1535 static irqreturn_t
de4x5_interrupt(int irq,void * dev_id)1536 de4x5_interrupt(int irq, void *dev_id)
1537 {
1538     struct net_device *dev = dev_id;
1539     struct de4x5_private *lp;
1540     s32 imr, omr, sts, limit;
1541     u_long iobase;
1542     unsigned int handled = 0;
1543 
1544     lp = netdev_priv(dev);
1545     spin_lock(&lp->lock);
1546     iobase = dev->base_addr;
1547 
1548     DISABLE_IRQs;                        /* Ensure non re-entrancy */
1549 
1550     if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551 	printk("%s: Re-entering the interrupt handler.\n", dev->name);
1552 
1553     synchronize_irq(dev->irq);
1554 
1555     for (limit=0; limit<8; limit++) {
1556 	sts = inl(DE4X5_STS);            /* Read IRQ status */
1557 	outl(sts, DE4X5_STS);            /* Reset the board interrupts */
1558 
1559 	if (!(sts & lp->irq_mask)) break;/* All done */
1560 	handled = 1;
1561 
1562 	if (sts & (STS_RI | STS_RU))     /* Rx interrupt (packet[s] arrived) */
1563 	  de4x5_rx(dev);
1564 
1565 	if (sts & (STS_TI | STS_TU))     /* Tx interrupt (packet sent) */
1566 	  de4x5_tx(dev);
1567 
1568 	if (sts & STS_LNF) {             /* TP Link has failed */
1569 	    lp->irq_mask &= ~IMR_LFM;
1570 	}
1571 
1572 	if (sts & STS_UNF) {             /* Transmit underrun */
1573 	    de4x5_txur(dev);
1574 	}
1575 
1576 	if (sts & STS_SE) {              /* Bus Error */
1577 	    STOP_DE4X5;
1578 	    printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579 		   dev->name, sts);
1580 	    spin_unlock(&lp->lock);
1581 	    return IRQ_HANDLED;
1582 	}
1583     }
1584 
1585     /* Load the TX ring with any locally stored packets */
1586     if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587 	while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588 	    de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1589 	}
1590 	lp->cache.lock = 0;
1591     }
1592 
1593     lp->interrupt = UNMASK_INTERRUPTS;
1594     ENABLE_IRQs;
1595     spin_unlock(&lp->lock);
1596 
1597     return IRQ_RETVAL(handled);
1598 }
1599 
1600 static int
de4x5_rx(struct net_device * dev)1601 de4x5_rx(struct net_device *dev)
1602 {
1603     struct de4x5_private *lp = netdev_priv(dev);
1604     u_long iobase = dev->base_addr;
1605     int entry;
1606     s32 status;
1607 
1608     for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609 	                                                    entry=lp->rx_new) {
1610 	status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1611 
1612 	if (lp->rx_ovf) {
1613 	    if (inl(DE4X5_MFC) & MFC_FOCM) {
1614 		de4x5_rx_ovfc(dev);
1615 		break;
1616 	    }
1617 	}
1618 
1619 	if (status & RD_FS) {                 /* Remember the start of frame */
1620 	    lp->rx_old = entry;
1621 	}
1622 
1623 	if (status & RD_LS) {                 /* Valid frame status */
1624 	    if (lp->tx_enable) lp->linkOK++;
1625 	    if (status & RD_ES) {	      /* There was an error. */
1626 		lp->stats.rx_errors++;        /* Update the error stats. */
1627 		if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628 		if (status & RD_CE)           lp->stats.rx_crc_errors++;
1629 		if (status & RD_OF)           lp->stats.rx_fifo_errors++;
1630 		if (status & RD_TL)           lp->stats.rx_length_errors++;
1631 		if (status & RD_RF)           lp->pktStats.rx_runt_frames++;
1632 		if (status & RD_CS)           lp->pktStats.rx_collision++;
1633 		if (status & RD_DB)           lp->pktStats.rx_dribble++;
1634 		if (status & RD_OF)           lp->pktStats.rx_overflow++;
1635 	    } else {                          /* A valid frame received */
1636 		struct sk_buff *skb;
1637 		short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638 					                            >> 16) - 4;
1639 
1640 		if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641 		    printk("%s: Insufficient memory; nuking packet.\n",
1642 			                                            dev->name);
1643 		    lp->stats.rx_dropped++;
1644 		} else {
1645 		    de4x5_dbg_rx(skb, pkt_len);
1646 
1647 		    /* Push up the protocol stack */
1648 		    skb->protocol=eth_type_trans(skb,dev);
1649 		    de4x5_local_stats(dev, skb->data, pkt_len);
1650 		    netif_rx(skb);
1651 
1652 		    /* Update stats */
1653 		    lp->stats.rx_packets++;
1654  		    lp->stats.rx_bytes += pkt_len;
1655 		}
1656 	    }
1657 
1658 	    /* Change buffer ownership for this frame, back to the adapter */
1659 	    for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660 		lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661 		barrier();
1662 	    }
1663 	    lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664 	    barrier();
1665 	}
1666 
1667 	/*
1668 	** Update entry information
1669 	*/
1670 	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1671     }
1672 
1673     return 0;
1674 }
1675 
1676 static inline void
de4x5_free_tx_buff(struct de4x5_private * lp,int entry)1677 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1678 {
1679     dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680 		     le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681 		     DMA_TO_DEVICE);
1682     if ((u_long) lp->tx_skb[entry] > 1)
1683 	dev_kfree_skb_irq(lp->tx_skb[entry]);
1684     lp->tx_skb[entry] = NULL;
1685 }
1686 
1687 /*
1688 ** Buffer sent - check for TX buffer errors.
1689 */
1690 static int
de4x5_tx(struct net_device * dev)1691 de4x5_tx(struct net_device *dev)
1692 {
1693     struct de4x5_private *lp = netdev_priv(dev);
1694     u_long iobase = dev->base_addr;
1695     int entry;
1696     s32 status;
1697 
1698     for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699 	status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700 	if (status < 0) {                     /* Buffer not sent yet */
1701 	    break;
1702 	} else if (status != 0x7fffffff) {    /* Not setup frame */
1703 	    if (status & TD_ES) {             /* An error happened */
1704 		lp->stats.tx_errors++;
1705 		if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706 		if (status & TD_LC) lp->stats.tx_window_errors++;
1707 		if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708 		if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709 		if (status & TD_DE) lp->stats.tx_aborted_errors++;
1710 
1711 		if (TX_PKT_PENDING) {
1712 		    outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1713 		}
1714 	    } else {                      /* Packet sent */
1715 		lp->stats.tx_packets++;
1716 		if (lp->tx_enable) lp->linkOK++;
1717 	    }
1718 	    /* Update the collision counter */
1719 	    lp->stats.collisions += ((status & TD_EC) ? 16 :
1720 				                      ((status & TD_CC) >> 3));
1721 
1722 	    /* Free the buffer. */
1723 	    if (lp->tx_skb[entry] != NULL)
1724 	    	de4x5_free_tx_buff(lp, entry);
1725 	}
1726 
1727 	/* Update all the pointers */
1728 	lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1729     }
1730 
1731     /* Any resources available? */
1732     if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733 	if (lp->interrupt)
1734 	    netif_wake_queue(dev);
1735 	else
1736 	    netif_start_queue(dev);
1737     }
1738 
1739     return 0;
1740 }
1741 
1742 static void
de4x5_ast(struct timer_list * t)1743 de4x5_ast(struct timer_list *t)
1744 {
1745 	struct de4x5_private *lp = from_timer(lp, t, timer);
1746 	struct net_device *dev = dev_get_drvdata(lp->gendev);
1747 	int next_tick = DE4X5_AUTOSENSE_MS;
1748 	int dt;
1749 
1750 	if (lp->useSROM)
1751 		next_tick = srom_autoconf(dev);
1752 	else if (lp->chipset == DC21140)
1753 		next_tick = dc21140m_autoconf(dev);
1754 	else if (lp->chipset == DC21041)
1755 		next_tick = dc21041_autoconf(dev);
1756 	else if (lp->chipset == DC21040)
1757 		next_tick = dc21040_autoconf(dev);
1758 	lp->linkOK = 0;
1759 
1760 	dt = (next_tick * HZ) / 1000;
1761 
1762 	if (!dt)
1763 		dt = 1;
1764 
1765 	mod_timer(&lp->timer, jiffies + dt);
1766 }
1767 
1768 static int
de4x5_txur(struct net_device * dev)1769 de4x5_txur(struct net_device *dev)
1770 {
1771     struct de4x5_private *lp = netdev_priv(dev);
1772     u_long iobase = dev->base_addr;
1773     int omr;
1774 
1775     omr = inl(DE4X5_OMR);
1776     if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777 	omr &= ~(OMR_ST|OMR_SR);
1778 	outl(omr, DE4X5_OMR);
1779 	while (inl(DE4X5_STS) & STS_TS);
1780 	if ((omr & OMR_TR) < OMR_TR) {
1781 	    omr += 0x4000;
1782 	} else {
1783 	    omr |= OMR_SF;
1784 	}
1785 	outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786     }
1787 
1788     return 0;
1789 }
1790 
1791 static int
de4x5_rx_ovfc(struct net_device * dev)1792 de4x5_rx_ovfc(struct net_device *dev)
1793 {
1794     struct de4x5_private *lp = netdev_priv(dev);
1795     u_long iobase = dev->base_addr;
1796     int omr;
1797 
1798     omr = inl(DE4X5_OMR);
1799     outl(omr & ~OMR_SR, DE4X5_OMR);
1800     while (inl(DE4X5_STS) & STS_RS);
1801 
1802     for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803 	lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804 	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805     }
1806 
1807     outl(omr, DE4X5_OMR);
1808 
1809     return 0;
1810 }
1811 
1812 static int
de4x5_close(struct net_device * dev)1813 de4x5_close(struct net_device *dev)
1814 {
1815     struct de4x5_private *lp = netdev_priv(dev);
1816     u_long iobase = dev->base_addr;
1817     s32 imr, omr;
1818 
1819     disable_ast(dev);
1820 
1821     netif_stop_queue(dev);
1822 
1823     if (de4x5_debug & DEBUG_CLOSE) {
1824 	printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825 	       dev->name, inl(DE4X5_STS));
1826     }
1827 
1828     /*
1829     ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830     */
1831     DISABLE_IRQs;
1832     STOP_DE4X5;
1833 
1834     /* Free the associated irq */
1835     free_irq(dev->irq, dev);
1836     lp->state = CLOSED;
1837 
1838     /* Free any socket buffers */
1839     de4x5_free_rx_buffs(dev);
1840     de4x5_free_tx_buffs(dev);
1841 
1842     /* Put the adapter to sleep to save power */
1843     yawn(dev, SLEEP);
1844 
1845     return 0;
1846 }
1847 
1848 static struct net_device_stats *
de4x5_get_stats(struct net_device * dev)1849 de4x5_get_stats(struct net_device *dev)
1850 {
1851     struct de4x5_private *lp = netdev_priv(dev);
1852     u_long iobase = dev->base_addr;
1853 
1854     lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855 
1856     return &lp->stats;
1857 }
1858 
1859 static void
de4x5_local_stats(struct net_device * dev,char * buf,int pkt_len)1860 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861 {
1862     struct de4x5_private *lp = netdev_priv(dev);
1863     int i;
1864 
1865     for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866         if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867 	    lp->pktStats.bins[i]++;
1868 	    i = DE4X5_PKT_STAT_SZ;
1869 	}
1870     }
1871     if (is_multicast_ether_addr(buf)) {
1872         if (is_broadcast_ether_addr(buf)) {
1873 	    lp->pktStats.broadcast++;
1874 	} else {
1875 	    lp->pktStats.multicast++;
1876 	}
1877     } else if (ether_addr_equal(buf, dev->dev_addr)) {
1878         lp->pktStats.unicast++;
1879     }
1880 
1881     lp->pktStats.bins[0]++;       /* Duplicates stats.rx_packets */
1882     if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883         memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884     }
1885 }
1886 
1887 /*
1888 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889 ** If the flag is changed on a descriptor that is being read by the hardware,
1890 ** I assume PCI transaction ordering will mean you are either successful or
1891 ** just miss asserting the change to the hardware. Anyway you're messing with
1892 ** a descriptor you don't own, but this shouldn't kill the chip provided
1893 ** the descriptor register is read only to the hardware.
1894 */
1895 static void
load_packet(struct net_device * dev,char * buf,u32 flags,struct sk_buff * skb)1896 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897 {
1898     struct de4x5_private *lp = netdev_priv(dev);
1899     int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900     dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901 
1902     lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903     lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904     lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905     lp->tx_skb[lp->tx_new] = skb;
1906     lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907     barrier();
1908 
1909     lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910     barrier();
1911 }
1912 
1913 /*
1914 ** Set or clear the multicast filter for this adaptor.
1915 */
1916 static void
set_multicast_list(struct net_device * dev)1917 set_multicast_list(struct net_device *dev)
1918 {
1919     struct de4x5_private *lp = netdev_priv(dev);
1920     u_long iobase = dev->base_addr;
1921 
1922     /* First, double check that the adapter is open */
1923     if (lp->state == OPEN) {
1924 	if (dev->flags & IFF_PROMISC) {         /* set promiscuous mode */
1925 	    u32 omr;
1926 	    omr = inl(DE4X5_OMR);
1927 	    omr |= OMR_PR;
1928 	    outl(omr, DE4X5_OMR);
1929 	} else {
1930 	    SetMulticastFilter(dev);
1931 	    load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932 			                                SETUP_FRAME_LEN, (struct sk_buff *)1);
1933 
1934 	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935 	    outl(POLL_DEMAND, DE4X5_TPD);       /* Start the TX */
1936 	    netif_trans_update(dev); /* prevent tx timeout */
1937 	}
1938     }
1939 }
1940 
1941 /*
1942 ** Calculate the hash code and update the logical address filter
1943 ** from a list of ethernet multicast addresses.
1944 ** Little endian crc one liner from Matt Thomas, DEC.
1945 */
1946 static void
SetMulticastFilter(struct net_device * dev)1947 SetMulticastFilter(struct net_device *dev)
1948 {
1949     struct de4x5_private *lp = netdev_priv(dev);
1950     struct netdev_hw_addr *ha;
1951     u_long iobase = dev->base_addr;
1952     int i, bit, byte;
1953     u16 hashcode;
1954     u32 omr, crc;
1955     char *pa;
1956     unsigned char *addrs;
1957 
1958     omr = inl(DE4X5_OMR);
1959     omr &= ~(OMR_PR | OMR_PM);
1960     pa = build_setup_frame(dev, ALL);        /* Build the basic frame */
1961 
1962     if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963 	omr |= OMR_PM;                       /* Pass all multicasts */
1964     } else if (lp->setup_f == HASH_PERF) {   /* Hash Filtering */
1965 	netdev_for_each_mc_addr(ha, dev) {
1966 		crc = ether_crc_le(ETH_ALEN, ha->addr);
1967 		hashcode = crc & DE4X5_HASH_BITS;  /* hashcode is 9 LSb of CRC */
1968 
1969 		byte = hashcode >> 3;        /* bit[3-8] -> byte in filter */
1970 		bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1971 
1972 		byte <<= 1;                  /* calc offset into setup frame */
1973 		if (byte & 0x02) {
1974 		    byte -= 1;
1975 		}
1976 		lp->setup_frame[byte] |= bit;
1977 	}
1978     } else {                                 /* Perfect filtering */
1979 	netdev_for_each_mc_addr(ha, dev) {
1980 	    addrs = ha->addr;
1981 	    for (i=0; i<ETH_ALEN; i++) {
1982 		*(pa + (i&1)) = *addrs++;
1983 		if (i & 0x01) pa += 4;
1984 	    }
1985 	}
1986     }
1987     outl(omr, DE4X5_OMR);
1988 }
1989 
1990 #ifdef CONFIG_EISA
1991 
1992 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1993 
de4x5_eisa_probe(struct device * gendev)1994 static int de4x5_eisa_probe(struct device *gendev)
1995 {
1996 	struct eisa_device *edev;
1997 	u_long iobase;
1998 	u_char irq, regval;
1999 	u_short vendor;
2000 	u32 cfid;
2001 	int status, device;
2002 	struct net_device *dev;
2003 	struct de4x5_private *lp;
2004 
2005 	edev = to_eisa_device (gendev);
2006 	iobase = edev->base_addr;
2007 
2008 	if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009 		return -EBUSY;
2010 
2011 	if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012 			     DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013 		status = -EBUSY;
2014 		goto release_reg_1;
2015 	}
2016 
2017 	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018 		status = -ENOMEM;
2019 		goto release_reg_2;
2020 	}
2021 	lp = netdev_priv(dev);
2022 
2023 	cfid = (u32) inl(PCI_CFID);
2024 	lp->cfrv = (u_short) inl(PCI_CFRV);
2025 	device = (cfid >> 8) & 0x00ffff00;
2026 	vendor = (u_short) cfid;
2027 
2028 	/* Read the EISA Configuration Registers */
2029 	regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030 #ifdef CONFIG_ALPHA
2031 	/* Looks like the Jensen firmware (rev 2.2) doesn't really
2032 	 * care about the EISA configuration, and thus doesn't
2033 	 * configure the PLX bridge properly. Oh well... Simply mimic
2034 	 * the EISA config file to sort it out. */
2035 
2036 	/* EISA REG1: Assert DecChip 21040 HW Reset */
2037 	outb (ER1_IAM | 1, EISA_REG1);
2038 	mdelay (1);
2039 
2040         /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041 	outb (ER1_IAM, EISA_REG1);
2042 	mdelay (1);
2043 
2044 	/* EISA REG3: R/W Burst Transfer Enable */
2045 	outb (ER3_BWE | ER3_BRE, EISA_REG3);
2046 
2047 	/* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048 	outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049 #endif
2050 	irq = de4x5_irq[(regval >> 1) & 0x03];
2051 
2052 	if (is_DC2114x) {
2053 	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2054 	}
2055 	lp->chipset = device;
2056 	lp->bus = EISA;
2057 
2058 	/* Write the PCI Configuration Registers */
2059 	outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060 	outl(0x00006000, PCI_CFLT);
2061 	outl(iobase, PCI_CBIO);
2062 
2063 	DevicePresent(dev, EISA_APROM);
2064 
2065 	dev->irq = irq;
2066 
2067 	if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068 		return 0;
2069 	}
2070 
2071 	free_netdev (dev);
2072  release_reg_2:
2073 	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074  release_reg_1:
2075 	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2076 
2077 	return status;
2078 }
2079 
de4x5_eisa_remove(struct device * device)2080 static int de4x5_eisa_remove(struct device *device)
2081 {
2082 	struct net_device *dev;
2083 	u_long iobase;
2084 
2085 	dev = dev_get_drvdata(device);
2086 	iobase = dev->base_addr;
2087 
2088 	unregister_netdev (dev);
2089 	free_netdev (dev);
2090 	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091 	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2092 
2093 	return 0;
2094 }
2095 
2096 static const struct eisa_device_id de4x5_eisa_ids[] = {
2097         { "DEC4250", 0 },	/* 0 is the board name index... */
2098         { "" }
2099 };
2100 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2101 
2102 static struct eisa_driver de4x5_eisa_driver = {
2103         .id_table = de4x5_eisa_ids,
2104         .driver   = {
2105                 .name    = "de4x5",
2106                 .probe   = de4x5_eisa_probe,
2107 		.remove  = de4x5_eisa_remove,
2108         }
2109 };
2110 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2111 #endif
2112 
2113 #ifdef CONFIG_PCI
2114 
2115 /*
2116 ** This function searches the current bus (which is >0) for a DECchip with an
2117 ** SROM, so that in multiport cards that have one SROM shared between multiple
2118 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2119 ** For single port cards this is a time waster...
2120 */
2121 static void
srom_search(struct net_device * dev,struct pci_dev * pdev)2122 srom_search(struct net_device *dev, struct pci_dev *pdev)
2123 {
2124     u_char pb;
2125     u_short vendor, status;
2126     u_int irq = 0, device;
2127     u_long iobase = 0;                     /* Clear upper 32 bits in Alphas */
2128     int i, j;
2129     struct de4x5_private *lp = netdev_priv(dev);
2130     struct pci_dev *this_dev;
2131 
2132     list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2133 	vendor = this_dev->vendor;
2134 	device = this_dev->device << 8;
2135 	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2136 
2137 	/* Get the chip configuration revision register */
2138 	pb = this_dev->bus->number;
2139 
2140 	/* Set the device number information */
2141 	lp->device = PCI_SLOT(this_dev->devfn);
2142 	lp->bus_num = pb;
2143 
2144 	/* Set the chipset information */
2145 	if (is_DC2114x) {
2146 	    device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2147 		      ? DC21142 : DC21143);
2148 	}
2149 	lp->chipset = device;
2150 
2151 	/* Get the board I/O address (64 bits on sparc64) */
2152 	iobase = pci_resource_start(this_dev, 0);
2153 
2154 	/* Fetch the IRQ to be used */
2155 	irq = this_dev->irq;
2156 	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2157 
2158 	/* Check if I/O accesses are enabled */
2159 	pci_read_config_word(this_dev, PCI_COMMAND, &status);
2160 	if (!(status & PCI_COMMAND_IO)) continue;
2161 
2162 	/* Search for a valid SROM attached to this DECchip */
2163 	DevicePresent(dev, DE4X5_APROM);
2164 	for (j=0, i=0; i<ETH_ALEN; i++) {
2165 	    j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2166 	}
2167 	if (j != 0 && j != 6 * 0xff) {
2168 	    last.chipset = device;
2169 	    last.bus = pb;
2170 	    last.irq = irq;
2171 	    for (i=0; i<ETH_ALEN; i++) {
2172 		last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2173 	    }
2174 	    return;
2175 	}
2176     }
2177 }
2178 
2179 /*
2180 ** PCI bus I/O device probe
2181 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2182 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2183 ** enabled by the user first in the set up utility. Hence we just check for
2184 ** enabled features and silently ignore the card if they're not.
2185 **
2186 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2187 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2188 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2189 ** PC doesn't conform to the PCI standard)!
2190 **
2191 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2192 ** kernels use the V0.535[n] drivers.
2193 */
2194 
de4x5_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2195 static int de4x5_pci_probe(struct pci_dev *pdev,
2196 			   const struct pci_device_id *ent)
2197 {
2198 	u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2199 	u_short vendor, status;
2200 	u_int irq = 0, device;
2201 	u_long iobase = 0;	/* Clear upper 32 bits in Alphas */
2202 	int error;
2203 	struct net_device *dev;
2204 	struct de4x5_private *lp;
2205 
2206 	dev_num = PCI_SLOT(pdev->devfn);
2207 	pb = pdev->bus->number;
2208 
2209 	if (io) { /* probe a single PCI device */
2210 		pbus = (u_short)(io >> 8);
2211 		dnum = (u_short)(io & 0xff);
2212 		if ((pbus != pb) || (dnum != dev_num))
2213 			return -ENODEV;
2214 	}
2215 
2216 	vendor = pdev->vendor;
2217 	device = pdev->device << 8;
2218 	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2219 		return -ENODEV;
2220 
2221 	/* Ok, the device seems to be for us. */
2222 	if ((error = pci_enable_device (pdev)))
2223 		return error;
2224 
2225 	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2226 		error = -ENOMEM;
2227 		goto disable_dev;
2228 	}
2229 
2230 	lp = netdev_priv(dev);
2231 	lp->bus = PCI;
2232 	lp->bus_num = 0;
2233 
2234 	/* Search for an SROM on this bus */
2235 	if (lp->bus_num != pb) {
2236 	    lp->bus_num = pb;
2237 	    srom_search(dev, pdev);
2238 	}
2239 
2240 	/* Get the chip configuration revision register */
2241 	lp->cfrv = pdev->revision;
2242 
2243 	/* Set the device number information */
2244 	lp->device = dev_num;
2245 	lp->bus_num = pb;
2246 
2247 	/* Set the chipset information */
2248 	if (is_DC2114x) {
2249 	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2250 	}
2251 	lp->chipset = device;
2252 
2253 	/* Get the board I/O address (64 bits on sparc64) */
2254 	iobase = pci_resource_start(pdev, 0);
2255 
2256 	/* Fetch the IRQ to be used */
2257 	irq = pdev->irq;
2258 	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2259 		error = -ENODEV;
2260 		goto free_dev;
2261 	}
2262 
2263 	/* Check if I/O accesses and Bus Mastering are enabled */
2264 	pci_read_config_word(pdev, PCI_COMMAND, &status);
2265 #ifdef __powerpc__
2266 	if (!(status & PCI_COMMAND_IO)) {
2267 	    status |= PCI_COMMAND_IO;
2268 	    pci_write_config_word(pdev, PCI_COMMAND, status);
2269 	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2270 	}
2271 #endif /* __powerpc__ */
2272 	if (!(status & PCI_COMMAND_IO)) {
2273 		error = -ENODEV;
2274 		goto free_dev;
2275 	}
2276 
2277 	if (!(status & PCI_COMMAND_MASTER)) {
2278 	    status |= PCI_COMMAND_MASTER;
2279 	    pci_write_config_word(pdev, PCI_COMMAND, status);
2280 	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2281 	}
2282 	if (!(status & PCI_COMMAND_MASTER)) {
2283 		error = -ENODEV;
2284 		goto free_dev;
2285 	}
2286 
2287 	/* Check the latency timer for values >= 0x60 */
2288 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2289 	if (timer < 0x60) {
2290 	    pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2291 	}
2292 
2293 	DevicePresent(dev, DE4X5_APROM);
2294 
2295 	if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2296 		error = -EBUSY;
2297 		goto free_dev;
2298 	}
2299 
2300 	dev->irq = irq;
2301 
2302 	if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2303 		goto release;
2304 	}
2305 
2306 	return 0;
2307 
2308  release:
2309 	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2310  free_dev:
2311 	free_netdev (dev);
2312  disable_dev:
2313 	pci_disable_device (pdev);
2314 	return error;
2315 }
2316 
de4x5_pci_remove(struct pci_dev * pdev)2317 static void de4x5_pci_remove(struct pci_dev *pdev)
2318 {
2319 	struct net_device *dev;
2320 	u_long iobase;
2321 
2322 	dev = pci_get_drvdata(pdev);
2323 	iobase = dev->base_addr;
2324 
2325 	unregister_netdev (dev);
2326 	free_netdev (dev);
2327 	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2328 	pci_disable_device (pdev);
2329 }
2330 
2331 static const struct pci_device_id de4x5_pci_tbl[] = {
2332         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2333           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2334         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2335           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2336         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2337 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2338         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2339 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2340         { },
2341 };
2342 
2343 static struct pci_driver de4x5_pci_driver = {
2344         .name           = "de4x5",
2345         .id_table       = de4x5_pci_tbl,
2346         .probe          = de4x5_pci_probe,
2347 	.remove         = de4x5_pci_remove,
2348 };
2349 
2350 #endif
2351 
2352 /*
2353 ** Auto configure the media here rather than setting the port at compile
2354 ** time. This routine is called by de4x5_init() and when a loss of media is
2355 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2356 ** [TP] or no recent receive activity) to check whether the user has been
2357 ** sneaky and changed the port on us.
2358 */
2359 static int
autoconf_media(struct net_device * dev)2360 autoconf_media(struct net_device *dev)
2361 {
2362 	struct de4x5_private *lp = netdev_priv(dev);
2363 	u_long iobase = dev->base_addr;
2364 
2365 	disable_ast(dev);
2366 
2367 	lp->c_media = AUTO;                     /* Bogus last media */
2368 	inl(DE4X5_MFC);                         /* Zero the lost frames counter */
2369 	lp->media = INIT;
2370 	lp->tcount = 0;
2371 
2372 	de4x5_ast(&lp->timer);
2373 
2374 	return lp->media;
2375 }
2376 
2377 /*
2378 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2379 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2380 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2381 ** The only way to test for that is to place a loopback packet onto the
2382 ** network and watch for errors. Since we're messing with the interrupt mask
2383 ** register, disable the board interrupts and do not allow any more packets to
2384 ** be queued to the hardware. Re-enable everything only when the media is
2385 ** found.
2386 ** I may have to "age out" locally queued packets so that the higher layer
2387 ** timeouts don't effectively duplicate packets on the network.
2388 */
2389 static int
dc21040_autoconf(struct net_device * dev)2390 dc21040_autoconf(struct net_device *dev)
2391 {
2392     struct de4x5_private *lp = netdev_priv(dev);
2393     u_long iobase = dev->base_addr;
2394     int next_tick = DE4X5_AUTOSENSE_MS;
2395     s32 imr;
2396 
2397     switch (lp->media) {
2398     case INIT:
2399 	DISABLE_IRQs;
2400 	lp->tx_enable = false;
2401 	lp->timeout = -1;
2402 	de4x5_save_skbs(dev);
2403 	if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2404 	    lp->media = TP;
2405 	} else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2406 	    lp->media = BNC_AUI;
2407 	} else if (lp->autosense == EXT_SIA) {
2408 	    lp->media = EXT_SIA;
2409 	} else {
2410 	    lp->media = NC;
2411 	}
2412 	lp->local_state = 0;
2413 	next_tick = dc21040_autoconf(dev);
2414 	break;
2415 
2416     case TP:
2417 	next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2418 		                                         TP_SUSPECT, test_tp);
2419 	break;
2420 
2421     case TP_SUSPECT:
2422 	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2423 	break;
2424 
2425     case BNC:
2426     case AUI:
2427     case BNC_AUI:
2428 	next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2429 		                                  BNC_AUI_SUSPECT, ping_media);
2430 	break;
2431 
2432     case BNC_AUI_SUSPECT:
2433 	next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2434 	break;
2435 
2436     case EXT_SIA:
2437 	next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2438 		                              NC, EXT_SIA_SUSPECT, ping_media);
2439 	break;
2440 
2441     case EXT_SIA_SUSPECT:
2442 	next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2443 	break;
2444 
2445     case NC:
2446 	/* default to TP for all */
2447 	reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2448 	if (lp->media != lp->c_media) {
2449 	    de4x5_dbg_media(dev);
2450 	    lp->c_media = lp->media;
2451 	}
2452 	lp->media = INIT;
2453 	lp->tx_enable = false;
2454 	break;
2455     }
2456 
2457     return next_tick;
2458 }
2459 
2460 static int
dc21040_state(struct net_device * dev,int csr13,int csr14,int csr15,int timeout,int next_state,int suspect_state,int (* fn)(struct net_device *,int))2461 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2462 	      int next_state, int suspect_state,
2463 	      int (*fn)(struct net_device *, int))
2464 {
2465     struct de4x5_private *lp = netdev_priv(dev);
2466     int next_tick = DE4X5_AUTOSENSE_MS;
2467     int linkBad;
2468 
2469     switch (lp->local_state) {
2470     case 0:
2471 	reset_init_sia(dev, csr13, csr14, csr15);
2472 	lp->local_state++;
2473 	next_tick = 500;
2474 	break;
2475 
2476     case 1:
2477 	if (!lp->tx_enable) {
2478 	    linkBad = fn(dev, timeout);
2479 	    if (linkBad < 0) {
2480 		next_tick = linkBad & ~TIMER_CB;
2481 	    } else {
2482 		if (linkBad && (lp->autosense == AUTO)) {
2483 		    lp->local_state = 0;
2484 		    lp->media = next_state;
2485 		} else {
2486 		    de4x5_init_connection(dev);
2487 		}
2488 	    }
2489 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2490 	    lp->media = suspect_state;
2491 	    next_tick = 3000;
2492 	}
2493 	break;
2494     }
2495 
2496     return next_tick;
2497 }
2498 
2499 static int
de4x5_suspect_state(struct net_device * dev,int timeout,int prev_state,int (* fn)(struct net_device *,int),int (* asfn)(struct net_device *))2500 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2501 		      int (*fn)(struct net_device *, int),
2502 		      int (*asfn)(struct net_device *))
2503 {
2504     struct de4x5_private *lp = netdev_priv(dev);
2505     int next_tick = DE4X5_AUTOSENSE_MS;
2506     int linkBad;
2507 
2508     switch (lp->local_state) {
2509     case 1:
2510 	if (lp->linkOK) {
2511 	    lp->media = prev_state;
2512 	} else {
2513 	    lp->local_state++;
2514 	    next_tick = asfn(dev);
2515 	}
2516 	break;
2517 
2518     case 2:
2519 	linkBad = fn(dev, timeout);
2520 	if (linkBad < 0) {
2521 	    next_tick = linkBad & ~TIMER_CB;
2522 	} else if (!linkBad) {
2523 	    lp->local_state--;
2524 	    lp->media = prev_state;
2525 	} else {
2526 	    lp->media = INIT;
2527 	    lp->tcount++;
2528 	}
2529     }
2530 
2531     return next_tick;
2532 }
2533 
2534 /*
2535 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2536 ** before BNC, because the BNC port will indicate activity if it's not
2537 ** terminated correctly. The only way to test for that is to place a loopback
2538 ** packet onto the network and watch for errors. Since we're messing with
2539 ** the interrupt mask register, disable the board interrupts and do not allow
2540 ** any more packets to be queued to the hardware. Re-enable everything only
2541 ** when the media is found.
2542 */
2543 static int
dc21041_autoconf(struct net_device * dev)2544 dc21041_autoconf(struct net_device *dev)
2545 {
2546     struct de4x5_private *lp = netdev_priv(dev);
2547     u_long iobase = dev->base_addr;
2548     s32 sts, irqs, irq_mask, imr, omr;
2549     int next_tick = DE4X5_AUTOSENSE_MS;
2550 
2551     switch (lp->media) {
2552     case INIT:
2553 	DISABLE_IRQs;
2554 	lp->tx_enable = false;
2555 	lp->timeout = -1;
2556 	de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2557 	if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2558 	    lp->media = TP;            /* On chip auto negotiation is broken */
2559 	} else if (lp->autosense == TP) {
2560 	    lp->media = TP;
2561 	} else if (lp->autosense == BNC) {
2562 	    lp->media = BNC;
2563 	} else if (lp->autosense == AUI) {
2564 	    lp->media = AUI;
2565 	} else {
2566 	    lp->media = NC;
2567 	}
2568 	lp->local_state = 0;
2569 	next_tick = dc21041_autoconf(dev);
2570 	break;
2571 
2572     case TP_NW:
2573 	if (lp->timeout < 0) {
2574 	    omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2575 	    outl(omr | OMR_FDX, DE4X5_OMR);
2576 	}
2577 	irqs = STS_LNF | STS_LNP;
2578 	irq_mask = IMR_LFM | IMR_LPM;
2579 	sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2580 	if (sts < 0) {
2581 	    next_tick = sts & ~TIMER_CB;
2582 	} else {
2583 	    if (sts & STS_LNP) {
2584 		lp->media = ANS;
2585 	    } else {
2586 		lp->media = AUI;
2587 	    }
2588 	    next_tick = dc21041_autoconf(dev);
2589 	}
2590 	break;
2591 
2592     case ANS:
2593 	if (!lp->tx_enable) {
2594 	    irqs = STS_LNP;
2595 	    irq_mask = IMR_LPM;
2596 	    sts = test_ans(dev, irqs, irq_mask, 3000);
2597 	    if (sts < 0) {
2598 		next_tick = sts & ~TIMER_CB;
2599 	    } else {
2600 		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2601 		    lp->media = TP;
2602 		    next_tick = dc21041_autoconf(dev);
2603 		} else {
2604 		    lp->local_state = 1;
2605 		    de4x5_init_connection(dev);
2606 		}
2607 	    }
2608 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2609 	    lp->media = ANS_SUSPECT;
2610 	    next_tick = 3000;
2611 	}
2612 	break;
2613 
2614     case ANS_SUSPECT:
2615 	next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2616 	break;
2617 
2618     case TP:
2619 	if (!lp->tx_enable) {
2620 	    if (lp->timeout < 0) {
2621 		omr = inl(DE4X5_OMR);          /* Set up half duplex for TP */
2622 		outl(omr & ~OMR_FDX, DE4X5_OMR);
2623 	    }
2624 	    irqs = STS_LNF | STS_LNP;
2625 	    irq_mask = IMR_LFM | IMR_LPM;
2626 	    sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2627 	    if (sts < 0) {
2628 		next_tick = sts & ~TIMER_CB;
2629 	    } else {
2630 		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2631 		    if (inl(DE4X5_SISR) & SISR_NRA) {
2632 			lp->media = AUI;       /* Non selected port activity */
2633 		    } else {
2634 			lp->media = BNC;
2635 		    }
2636 		    next_tick = dc21041_autoconf(dev);
2637 		} else {
2638 		    lp->local_state = 1;
2639 		    de4x5_init_connection(dev);
2640 		}
2641 	    }
2642 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2643 	    lp->media = TP_SUSPECT;
2644 	    next_tick = 3000;
2645 	}
2646 	break;
2647 
2648     case TP_SUSPECT:
2649 	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2650 	break;
2651 
2652     case AUI:
2653 	if (!lp->tx_enable) {
2654 	    if (lp->timeout < 0) {
2655 		omr = inl(DE4X5_OMR);          /* Set up half duplex for AUI */
2656 		outl(omr & ~OMR_FDX, DE4X5_OMR);
2657 	    }
2658 	    irqs = 0;
2659 	    irq_mask = 0;
2660 	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2661 	    if (sts < 0) {
2662 		next_tick = sts & ~TIMER_CB;
2663 	    } else {
2664 		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2665 		    lp->media = BNC;
2666 		    next_tick = dc21041_autoconf(dev);
2667 		} else {
2668 		    lp->local_state = 1;
2669 		    de4x5_init_connection(dev);
2670 		}
2671 	    }
2672 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2673 	    lp->media = AUI_SUSPECT;
2674 	    next_tick = 3000;
2675 	}
2676 	break;
2677 
2678     case AUI_SUSPECT:
2679 	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2680 	break;
2681 
2682     case BNC:
2683 	switch (lp->local_state) {
2684 	case 0:
2685 	    if (lp->timeout < 0) {
2686 		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
2687 		outl(omr & ~OMR_FDX, DE4X5_OMR);
2688 	    }
2689 	    irqs = 0;
2690 	    irq_mask = 0;
2691 	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2692 	    if (sts < 0) {
2693 		next_tick = sts & ~TIMER_CB;
2694 	    } else {
2695 		lp->local_state++;             /* Ensure media connected */
2696 		next_tick = dc21041_autoconf(dev);
2697 	    }
2698 	    break;
2699 
2700 	case 1:
2701 	    if (!lp->tx_enable) {
2702 		if ((sts = ping_media(dev, 3000)) < 0) {
2703 		    next_tick = sts & ~TIMER_CB;
2704 		} else {
2705 		    if (sts) {
2706 			lp->local_state = 0;
2707 			lp->media = NC;
2708 		    } else {
2709 			de4x5_init_connection(dev);
2710 		    }
2711 		}
2712 	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2713 		lp->media = BNC_SUSPECT;
2714 		next_tick = 3000;
2715 	    }
2716 	    break;
2717 	}
2718 	break;
2719 
2720     case BNC_SUSPECT:
2721 	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2722 	break;
2723 
2724     case NC:
2725 	omr = inl(DE4X5_OMR);    /* Set up full duplex for the autonegotiate */
2726 	outl(omr | OMR_FDX, DE4X5_OMR);
2727 	reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2728 	if (lp->media != lp->c_media) {
2729 	    de4x5_dbg_media(dev);
2730 	    lp->c_media = lp->media;
2731 	}
2732 	lp->media = INIT;
2733 	lp->tx_enable = false;
2734 	break;
2735     }
2736 
2737     return next_tick;
2738 }
2739 
2740 /*
2741 ** Some autonegotiation chips are broken in that they do not return the
2742 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2743 ** register, except at the first power up negotiation.
2744 */
2745 static int
dc21140m_autoconf(struct net_device * dev)2746 dc21140m_autoconf(struct net_device *dev)
2747 {
2748     struct de4x5_private *lp = netdev_priv(dev);
2749     int ana, anlpa, cap, cr, slnk, sr;
2750     int next_tick = DE4X5_AUTOSENSE_MS;
2751     u_long imr, omr, iobase = dev->base_addr;
2752 
2753     switch(lp->media) {
2754     case INIT:
2755         if (lp->timeout < 0) {
2756 	    DISABLE_IRQs;
2757 	    lp->tx_enable = false;
2758 	    lp->linkOK = 0;
2759 	    de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2760 	}
2761 	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2762 	    next_tick &= ~TIMER_CB;
2763 	} else {
2764 	    if (lp->useSROM) {
2765 		if (srom_map_media(dev) < 0) {
2766 		    lp->tcount++;
2767 		    return next_tick;
2768 		}
2769 		srom_exec(dev, lp->phy[lp->active].gep);
2770 		if (lp->infoblock_media == ANS) {
2771 		    ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2772 		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2773 		}
2774 	    } else {
2775 		lp->tmp = MII_SR_ASSC;     /* Fake out the MII speed set */
2776 		SET_10Mb;
2777 		if (lp->autosense == _100Mb) {
2778 		    lp->media = _100Mb;
2779 		} else if (lp->autosense == _10Mb) {
2780 		    lp->media = _10Mb;
2781 		} else if ((lp->autosense == AUTO) &&
2782 			            ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2783 		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2784 		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2785 		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2786 		    lp->media = ANS;
2787 		} else if (lp->autosense == AUTO) {
2788 		    lp->media = SPD_DET;
2789 		} else if (is_spd_100(dev) && is_100_up(dev)) {
2790 		    lp->media = _100Mb;
2791 		} else {
2792 		    lp->media = NC;
2793 		}
2794 	    }
2795 	    lp->local_state = 0;
2796 	    next_tick = dc21140m_autoconf(dev);
2797 	}
2798 	break;
2799 
2800     case ANS:
2801 	switch (lp->local_state) {
2802 	case 0:
2803 	    if (lp->timeout < 0) {
2804 		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2805 	    }
2806 	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2807 	    if (cr < 0) {
2808 		next_tick = cr & ~TIMER_CB;
2809 	    } else {
2810 		if (cr) {
2811 		    lp->local_state = 0;
2812 		    lp->media = SPD_DET;
2813 		} else {
2814 		    lp->local_state++;
2815 		}
2816 		next_tick = dc21140m_autoconf(dev);
2817 	    }
2818 	    break;
2819 
2820 	case 1:
2821 	    if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2822 		next_tick = sr & ~TIMER_CB;
2823 	    } else {
2824 		lp->media = SPD_DET;
2825 		lp->local_state = 0;
2826 		if (sr) {                         /* Success! */
2827 		    lp->tmp = MII_SR_ASSC;
2828 		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2829 		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2830 		    if (!(anlpa & MII_ANLPA_RF) &&
2831 			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2832 			if (cap & MII_ANA_100M) {
2833 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2834 			    lp->media = _100Mb;
2835 			} else if (cap & MII_ANA_10M) {
2836 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2837 
2838 			    lp->media = _10Mb;
2839 			}
2840 		    }
2841 		}                       /* Auto Negotiation failed to finish */
2842 		next_tick = dc21140m_autoconf(dev);
2843 	    }                           /* Auto Negotiation failed to start */
2844 	    break;
2845 	}
2846 	break;
2847 
2848     case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
2849         if (lp->timeout < 0) {
2850 	    lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2851 		                                  (~gep_rd(dev) & GEP_LNP));
2852 	    SET_100Mb_PDET;
2853 	}
2854         if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2855 	    next_tick = slnk & ~TIMER_CB;
2856 	} else {
2857 	    if (is_spd_100(dev) && is_100_up(dev)) {
2858 		lp->media = _100Mb;
2859 	    } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2860 		lp->media = _10Mb;
2861 	    } else {
2862 		lp->media = NC;
2863 	    }
2864 	    next_tick = dc21140m_autoconf(dev);
2865 	}
2866 	break;
2867 
2868     case _100Mb:                               /* Set 100Mb/s */
2869         next_tick = 3000;
2870 	if (!lp->tx_enable) {
2871 	    SET_100Mb;
2872 	    de4x5_init_connection(dev);
2873 	} else {
2874 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2875 		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2876 		    lp->media = INIT;
2877 		    lp->tcount++;
2878 		    next_tick = DE4X5_AUTOSENSE_MS;
2879 		}
2880 	    }
2881 	}
2882 	break;
2883 
2884     case BNC:
2885     case AUI:
2886     case _10Mb:                                /* Set 10Mb/s */
2887         next_tick = 3000;
2888 	if (!lp->tx_enable) {
2889 	    SET_10Mb;
2890 	    de4x5_init_connection(dev);
2891 	} else {
2892 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2893 		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2894 		    lp->media = INIT;
2895 		    lp->tcount++;
2896 		    next_tick = DE4X5_AUTOSENSE_MS;
2897 		}
2898 	    }
2899 	}
2900 	break;
2901 
2902     case NC:
2903         if (lp->media != lp->c_media) {
2904 	    de4x5_dbg_media(dev);
2905 	    lp->c_media = lp->media;
2906 	}
2907 	lp->media = INIT;
2908 	lp->tx_enable = false;
2909 	break;
2910     }
2911 
2912     return next_tick;
2913 }
2914 
2915 /*
2916 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2917 ** changing how I figure out the media - but trying to keep it backwards
2918 ** compatible with the de500-xa and de500-aa.
2919 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2920 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2921 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2922 ** active.
2923 ** When autonegotiation is working, the ANS part searches the SROM for
2924 ** the highest common speed (TP) link that both can run and if that can
2925 ** be full duplex. That infoblock is executed and then the link speed set.
2926 **
2927 ** Only _10Mb and _100Mb are tested here.
2928 */
2929 static int
dc2114x_autoconf(struct net_device * dev)2930 dc2114x_autoconf(struct net_device *dev)
2931 {
2932     struct de4x5_private *lp = netdev_priv(dev);
2933     u_long iobase = dev->base_addr;
2934     s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2935     int next_tick = DE4X5_AUTOSENSE_MS;
2936 
2937     switch (lp->media) {
2938     case INIT:
2939         if (lp->timeout < 0) {
2940 	    DISABLE_IRQs;
2941 	    lp->tx_enable = false;
2942 	    lp->linkOK = 0;
2943             lp->timeout = -1;
2944 	    de4x5_save_skbs(dev);            /* Save non transmitted skb's */
2945 	    if (lp->params.autosense & ~AUTO) {
2946 		srom_map_media(dev);         /* Fixed media requested      */
2947 		if (lp->media != lp->params.autosense) {
2948 		    lp->tcount++;
2949 		    lp->media = INIT;
2950 		    return next_tick;
2951 		}
2952 		lp->media = INIT;
2953 	    }
2954 	}
2955 	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2956 	    next_tick &= ~TIMER_CB;
2957 	} else {
2958 	    if (lp->autosense == _100Mb) {
2959 		lp->media = _100Mb;
2960 	    } else if (lp->autosense == _10Mb) {
2961 		lp->media = _10Mb;
2962 	    } else if (lp->autosense == TP) {
2963 		lp->media = TP;
2964 	    } else if (lp->autosense == BNC) {
2965 		lp->media = BNC;
2966 	    } else if (lp->autosense == AUI) {
2967 		lp->media = AUI;
2968 	    } else {
2969 		lp->media = SPD_DET;
2970 		if ((lp->infoblock_media == ANS) &&
2971 		                    ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2972 		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2973 		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2974 		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2975 		    lp->media = ANS;
2976 		}
2977 	    }
2978 	    lp->local_state = 0;
2979 	    next_tick = dc2114x_autoconf(dev);
2980         }
2981 	break;
2982 
2983     case ANS:
2984 	switch (lp->local_state) {
2985 	case 0:
2986 	    if (lp->timeout < 0) {
2987 		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2988 	    }
2989 	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2990 	    if (cr < 0) {
2991 		next_tick = cr & ~TIMER_CB;
2992 	    } else {
2993 		if (cr) {
2994 		    lp->local_state = 0;
2995 		    lp->media = SPD_DET;
2996 		} else {
2997 		    lp->local_state++;
2998 		}
2999 		next_tick = dc2114x_autoconf(dev);
3000 	    }
3001 	    break;
3002 
3003 	case 1:
3004 	    sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3005 	    if (sr < 0) {
3006 		next_tick = sr & ~TIMER_CB;
3007 	    } else {
3008 		lp->media = SPD_DET;
3009 		lp->local_state = 0;
3010 		if (sr) {                         /* Success! */
3011 		    lp->tmp = MII_SR_ASSC;
3012 		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3013 		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3014 		    if (!(anlpa & MII_ANLPA_RF) &&
3015 			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3016 			if (cap & MII_ANA_100M) {
3017 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3018 			    lp->media = _100Mb;
3019 			} else if (cap & MII_ANA_10M) {
3020 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3021 			    lp->media = _10Mb;
3022 			}
3023 		    }
3024 		}                       /* Auto Negotiation failed to finish */
3025 		next_tick = dc2114x_autoconf(dev);
3026 	    }                           /* Auto Negotiation failed to start  */
3027 	    break;
3028 	}
3029 	break;
3030 
3031     case AUI:
3032 	if (!lp->tx_enable) {
3033 	    if (lp->timeout < 0) {
3034 		omr = inl(DE4X5_OMR);   /* Set up half duplex for AUI        */
3035 		outl(omr & ~OMR_FDX, DE4X5_OMR);
3036 	    }
3037 	    irqs = 0;
3038 	    irq_mask = 0;
3039 	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3040 	    if (sts < 0) {
3041 		next_tick = sts & ~TIMER_CB;
3042 	    } else {
3043 		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3044 		    lp->media = BNC;
3045 		    next_tick = dc2114x_autoconf(dev);
3046 		} else {
3047 		    lp->local_state = 1;
3048 		    de4x5_init_connection(dev);
3049 		}
3050 	    }
3051 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
3052 	    lp->media = AUI_SUSPECT;
3053 	    next_tick = 3000;
3054 	}
3055 	break;
3056 
3057     case AUI_SUSPECT:
3058 	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3059 	break;
3060 
3061     case BNC:
3062 	switch (lp->local_state) {
3063 	case 0:
3064 	    if (lp->timeout < 0) {
3065 		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
3066 		outl(omr & ~OMR_FDX, DE4X5_OMR);
3067 	    }
3068 	    irqs = 0;
3069 	    irq_mask = 0;
3070 	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3071 	    if (sts < 0) {
3072 		next_tick = sts & ~TIMER_CB;
3073 	    } else {
3074 		lp->local_state++;             /* Ensure media connected */
3075 		next_tick = dc2114x_autoconf(dev);
3076 	    }
3077 	    break;
3078 
3079 	case 1:
3080 	    if (!lp->tx_enable) {
3081 		if ((sts = ping_media(dev, 3000)) < 0) {
3082 		    next_tick = sts & ~TIMER_CB;
3083 		} else {
3084 		    if (sts) {
3085 			lp->local_state = 0;
3086 			lp->tcount++;
3087 			lp->media = INIT;
3088 		    } else {
3089 			de4x5_init_connection(dev);
3090 		    }
3091 		}
3092 	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3093 		lp->media = BNC_SUSPECT;
3094 		next_tick = 3000;
3095 	    }
3096 	    break;
3097 	}
3098 	break;
3099 
3100     case BNC_SUSPECT:
3101 	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3102 	break;
3103 
3104     case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
3105 	  if (srom_map_media(dev) < 0) {
3106 	      lp->tcount++;
3107 	      lp->media = INIT;
3108 	      return next_tick;
3109 	  }
3110 	  if (lp->media == _100Mb) {
3111 	      if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3112 		  lp->media = SPD_DET;
3113 		  return slnk & ~TIMER_CB;
3114 	      }
3115 	  } else {
3116 	      if (wait_for_link(dev) < 0) {
3117 		  lp->media = SPD_DET;
3118 		  return PDET_LINK_WAIT;
3119 	      }
3120 	  }
3121 	  if (lp->media == ANS) {           /* Do MII parallel detection */
3122 	      if (is_spd_100(dev)) {
3123 		  lp->media = _100Mb;
3124 	      } else {
3125 		  lp->media = _10Mb;
3126 	      }
3127 	      next_tick = dc2114x_autoconf(dev);
3128 	  } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3129 		     (((lp->media == _10Mb) || (lp->media == TP) ||
3130 		       (lp->media == BNC)   || (lp->media == AUI)) &&
3131 		      is_10_up(dev))) {
3132 	      next_tick = dc2114x_autoconf(dev);
3133 	  } else {
3134 	      lp->tcount++;
3135 	      lp->media = INIT;
3136 	  }
3137 	  break;
3138 
3139     case _10Mb:
3140         next_tick = 3000;
3141 	if (!lp->tx_enable) {
3142 	    SET_10Mb;
3143 	    de4x5_init_connection(dev);
3144 	} else {
3145 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3146 		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3147 		    lp->media = INIT;
3148 		    lp->tcount++;
3149 		    next_tick = DE4X5_AUTOSENSE_MS;
3150 		}
3151 	    }
3152 	}
3153 	break;
3154 
3155     case _100Mb:
3156         next_tick = 3000;
3157 	if (!lp->tx_enable) {
3158 	    SET_100Mb;
3159 	    de4x5_init_connection(dev);
3160 	} else {
3161 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3162 		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3163 		    lp->media = INIT;
3164 		    lp->tcount++;
3165 		    next_tick = DE4X5_AUTOSENSE_MS;
3166 		}
3167 	    }
3168 	}
3169 	break;
3170 
3171     default:
3172 	lp->tcount++;
3173 printk("Huh?: media:%02x\n", lp->media);
3174 	lp->media = INIT;
3175 	break;
3176     }
3177 
3178     return next_tick;
3179 }
3180 
3181 static int
srom_autoconf(struct net_device * dev)3182 srom_autoconf(struct net_device *dev)
3183 {
3184     struct de4x5_private *lp = netdev_priv(dev);
3185 
3186     return lp->infoleaf_fn(dev);
3187 }
3188 
3189 /*
3190 ** This mapping keeps the original media codes and FDX flag unchanged.
3191 ** While it isn't strictly necessary, it helps me for the moment...
3192 ** The early return avoids a media state / SROM media space clash.
3193 */
3194 static int
srom_map_media(struct net_device * dev)3195 srom_map_media(struct net_device *dev)
3196 {
3197     struct de4x5_private *lp = netdev_priv(dev);
3198 
3199     lp->fdx = false;
3200     if (lp->infoblock_media == lp->media)
3201       return 0;
3202 
3203     switch(lp->infoblock_media) {
3204       case SROM_10BASETF:
3205 	if (!lp->params.fdx) return -1;
3206 	lp->fdx = true;
3207 	/* fall through */
3208 
3209       case SROM_10BASET:
3210 	if (lp->params.fdx && !lp->fdx) return -1;
3211 	if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3212 	    lp->media = _10Mb;
3213 	} else {
3214 	    lp->media = TP;
3215 	}
3216 	break;
3217 
3218       case SROM_10BASE2:
3219 	lp->media = BNC;
3220 	break;
3221 
3222       case SROM_10BASE5:
3223 	lp->media = AUI;
3224 	break;
3225 
3226       case SROM_100BASETF:
3227         if (!lp->params.fdx) return -1;
3228 	lp->fdx = true;
3229 	/* fall through */
3230 
3231       case SROM_100BASET:
3232 	if (lp->params.fdx && !lp->fdx) return -1;
3233 	lp->media = _100Mb;
3234 	break;
3235 
3236       case SROM_100BASET4:
3237 	lp->media = _100Mb;
3238 	break;
3239 
3240       case SROM_100BASEFF:
3241 	if (!lp->params.fdx) return -1;
3242 	lp->fdx = true;
3243 	/* fall through */
3244 
3245       case SROM_100BASEF:
3246 	if (lp->params.fdx && !lp->fdx) return -1;
3247 	lp->media = _100Mb;
3248 	break;
3249 
3250       case ANS:
3251 	lp->media = ANS;
3252 	lp->fdx = lp->params.fdx;
3253 	break;
3254 
3255       default:
3256 	printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3257 	                                                  lp->infoblock_media);
3258 	return -1;
3259     }
3260 
3261     return 0;
3262 }
3263 
3264 static void
de4x5_init_connection(struct net_device * dev)3265 de4x5_init_connection(struct net_device *dev)
3266 {
3267     struct de4x5_private *lp = netdev_priv(dev);
3268     u_long iobase = dev->base_addr;
3269     u_long flags = 0;
3270 
3271     if (lp->media != lp->c_media) {
3272         de4x5_dbg_media(dev);
3273 	lp->c_media = lp->media;          /* Stop scrolling media messages */
3274     }
3275 
3276     spin_lock_irqsave(&lp->lock, flags);
3277     de4x5_rst_desc_ring(dev);
3278     de4x5_setup_intr(dev);
3279     lp->tx_enable = true;
3280     spin_unlock_irqrestore(&lp->lock, flags);
3281     outl(POLL_DEMAND, DE4X5_TPD);
3282 
3283     netif_wake_queue(dev);
3284 }
3285 
3286 /*
3287 ** General PHY reset function. Some MII devices don't reset correctly
3288 ** since their MII address pins can float at voltages that are dependent
3289 ** on the signal pin use. Do a double reset to ensure a reset.
3290 */
3291 static int
de4x5_reset_phy(struct net_device * dev)3292 de4x5_reset_phy(struct net_device *dev)
3293 {
3294     struct de4x5_private *lp = netdev_priv(dev);
3295     u_long iobase = dev->base_addr;
3296     int next_tick = 0;
3297 
3298     if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3299 	if (lp->timeout < 0) {
3300 	    if (lp->useSROM) {
3301 		if (lp->phy[lp->active].rst) {
3302 		    srom_exec(dev, lp->phy[lp->active].rst);
3303 		    srom_exec(dev, lp->phy[lp->active].rst);
3304 		} else if (lp->rst) {          /* Type 5 infoblock reset */
3305 		    srom_exec(dev, lp->rst);
3306 		    srom_exec(dev, lp->rst);
3307 		}
3308 	    } else {
3309 		PHY_HARD_RESET;
3310 	    }
3311 	    if (lp->useMII) {
3312 	        mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3313             }
3314         }
3315 	if (lp->useMII) {
3316 	    next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3317 	}
3318     } else if (lp->chipset == DC21140) {
3319 	PHY_HARD_RESET;
3320     }
3321 
3322     return next_tick;
3323 }
3324 
3325 static int
test_media(struct net_device * dev,s32 irqs,s32 irq_mask,s32 csr13,s32 csr14,s32 csr15,s32 msec)3326 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3327 {
3328     struct de4x5_private *lp = netdev_priv(dev);
3329     u_long iobase = dev->base_addr;
3330     s32 sts, csr12;
3331 
3332     if (lp->timeout < 0) {
3333 	lp->timeout = msec/100;
3334 	if (!lp->useSROM) {      /* Already done if by SROM, else dc2104[01] */
3335 	    reset_init_sia(dev, csr13, csr14, csr15);
3336 	}
3337 
3338 	/* set up the interrupt mask */
3339 	outl(irq_mask, DE4X5_IMR);
3340 
3341 	/* clear all pending interrupts */
3342 	sts = inl(DE4X5_STS);
3343 	outl(sts, DE4X5_STS);
3344 
3345 	/* clear csr12 NRA and SRA bits */
3346 	if ((lp->chipset == DC21041) || lp->useSROM) {
3347 	    csr12 = inl(DE4X5_SISR);
3348 	    outl(csr12, DE4X5_SISR);
3349 	}
3350     }
3351 
3352     sts = inl(DE4X5_STS) & ~TIMER_CB;
3353 
3354     if (!(sts & irqs) && --lp->timeout) {
3355 	sts = 100 | TIMER_CB;
3356     } else {
3357 	lp->timeout = -1;
3358     }
3359 
3360     return sts;
3361 }
3362 
3363 static int
test_tp(struct net_device * dev,s32 msec)3364 test_tp(struct net_device *dev, s32 msec)
3365 {
3366     struct de4x5_private *lp = netdev_priv(dev);
3367     u_long iobase = dev->base_addr;
3368     int sisr;
3369 
3370     if (lp->timeout < 0) {
3371 	lp->timeout = msec/100;
3372     }
3373 
3374     sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3375 
3376     if (sisr && --lp->timeout) {
3377 	sisr = 100 | TIMER_CB;
3378     } else {
3379 	lp->timeout = -1;
3380     }
3381 
3382     return sisr;
3383 }
3384 
3385 /*
3386 ** Samples the 100Mb Link State Signal. The sample interval is important
3387 ** because too fast a rate can give erroneous results and confuse the
3388 ** speed sense algorithm.
3389 */
3390 #define SAMPLE_INTERVAL 500  /* ms */
3391 #define SAMPLE_DELAY    2000 /* ms */
3392 static int
test_for_100Mb(struct net_device * dev,int msec)3393 test_for_100Mb(struct net_device *dev, int msec)
3394 {
3395     struct de4x5_private *lp = netdev_priv(dev);
3396     int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3397 
3398     if (lp->timeout < 0) {
3399 	if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3400 	if (msec > SAMPLE_DELAY) {
3401 	    lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3402 	    gep = SAMPLE_DELAY | TIMER_CB;
3403 	    return gep;
3404 	} else {
3405 	    lp->timeout = msec/SAMPLE_INTERVAL;
3406 	}
3407     }
3408 
3409     if (lp->phy[lp->active].id || lp->useSROM) {
3410 	gep = is_100_up(dev) | is_spd_100(dev);
3411     } else {
3412 	gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3413     }
3414     if (!(gep & ret) && --lp->timeout) {
3415 	gep = SAMPLE_INTERVAL | TIMER_CB;
3416     } else {
3417 	lp->timeout = -1;
3418     }
3419 
3420     return gep;
3421 }
3422 
3423 static int
wait_for_link(struct net_device * dev)3424 wait_for_link(struct net_device *dev)
3425 {
3426     struct de4x5_private *lp = netdev_priv(dev);
3427 
3428     if (lp->timeout < 0) {
3429 	lp->timeout = 1;
3430     }
3431 
3432     if (lp->timeout--) {
3433 	return TIMER_CB;
3434     } else {
3435 	lp->timeout = -1;
3436     }
3437 
3438     return 0;
3439 }
3440 
3441 /*
3442 **
3443 **
3444 */
3445 static int
test_mii_reg(struct net_device * dev,int reg,int mask,bool pol,long msec)3446 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3447 {
3448     struct de4x5_private *lp = netdev_priv(dev);
3449     int test;
3450     u_long iobase = dev->base_addr;
3451 
3452     if (lp->timeout < 0) {
3453 	lp->timeout = msec/100;
3454     }
3455 
3456     reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3457     test = (reg ^ (pol ? ~0 : 0)) & mask;
3458 
3459     if (test && --lp->timeout) {
3460 	reg = 100 | TIMER_CB;
3461     } else {
3462 	lp->timeout = -1;
3463     }
3464 
3465     return reg;
3466 }
3467 
3468 static int
is_spd_100(struct net_device * dev)3469 is_spd_100(struct net_device *dev)
3470 {
3471     struct de4x5_private *lp = netdev_priv(dev);
3472     u_long iobase = dev->base_addr;
3473     int spd;
3474 
3475     if (lp->useMII) {
3476 	spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3477 	spd = ~(spd ^ lp->phy[lp->active].spd.value);
3478 	spd &= lp->phy[lp->active].spd.mask;
3479     } else if (!lp->useSROM) {                      /* de500-xa */
3480 	spd = ((~gep_rd(dev)) & GEP_SLNK);
3481     } else {
3482 	if ((lp->ibn == 2) || !lp->asBitValid)
3483 	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3484 
3485 	spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3486 	          (lp->linkOK & ~lp->asBitValid);
3487     }
3488 
3489     return spd;
3490 }
3491 
3492 static int
is_100_up(struct net_device * dev)3493 is_100_up(struct net_device *dev)
3494 {
3495     struct de4x5_private *lp = netdev_priv(dev);
3496     u_long iobase = dev->base_addr;
3497 
3498     if (lp->useMII) {
3499 	/* Double read for sticky bits & temporary drops */
3500 	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3501 	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3502     } else if (!lp->useSROM) {                       /* de500-xa */
3503 	return (~gep_rd(dev)) & GEP_SLNK;
3504     } else {
3505 	if ((lp->ibn == 2) || !lp->asBitValid)
3506 	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3507 
3508         return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3509 		(lp->linkOK & ~lp->asBitValid);
3510     }
3511 }
3512 
3513 static int
is_10_up(struct net_device * dev)3514 is_10_up(struct net_device *dev)
3515 {
3516     struct de4x5_private *lp = netdev_priv(dev);
3517     u_long iobase = dev->base_addr;
3518 
3519     if (lp->useMII) {
3520 	/* Double read for sticky bits & temporary drops */
3521 	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3522 	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3523     } else if (!lp->useSROM) {                       /* de500-xa */
3524 	return (~gep_rd(dev)) & GEP_LNP;
3525     } else {
3526 	if ((lp->ibn == 2) || !lp->asBitValid)
3527 	    return ((lp->chipset & ~0x00ff) == DC2114x) ?
3528 		    (~inl(DE4X5_SISR)&SISR_LS10):
3529 		    0;
3530 
3531 	return	(lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3532 		(lp->linkOK & ~lp->asBitValid);
3533     }
3534 }
3535 
3536 static int
is_anc_capable(struct net_device * dev)3537 is_anc_capable(struct net_device *dev)
3538 {
3539     struct de4x5_private *lp = netdev_priv(dev);
3540     u_long iobase = dev->base_addr;
3541 
3542     if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3543 	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3544     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3545 	return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3546     } else {
3547 	return 0;
3548     }
3549 }
3550 
3551 /*
3552 ** Send a packet onto the media and watch for send errors that indicate the
3553 ** media is bad or unconnected.
3554 */
3555 static int
ping_media(struct net_device * dev,int msec)3556 ping_media(struct net_device *dev, int msec)
3557 {
3558     struct de4x5_private *lp = netdev_priv(dev);
3559     u_long iobase = dev->base_addr;
3560     int sisr;
3561 
3562     if (lp->timeout < 0) {
3563 	lp->timeout = msec/100;
3564 
3565 	lp->tmp = lp->tx_new;                /* Remember the ring position */
3566 	load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3567 	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3568 	outl(POLL_DEMAND, DE4X5_TPD);
3569     }
3570 
3571     sisr = inl(DE4X5_SISR);
3572 
3573     if ((!(sisr & SISR_NCR)) &&
3574 	((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3575 	 (--lp->timeout)) {
3576 	sisr = 100 | TIMER_CB;
3577     } else {
3578 	if ((!(sisr & SISR_NCR)) &&
3579 	    !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3580 	    lp->timeout) {
3581 	    sisr = 0;
3582 	} else {
3583 	    sisr = 1;
3584 	}
3585 	lp->timeout = -1;
3586     }
3587 
3588     return sisr;
3589 }
3590 
3591 /*
3592 ** This function does 2 things: on Intels it kmalloc's another buffer to
3593 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3594 ** into which the packet is copied.
3595 */
3596 static struct sk_buff *
de4x5_alloc_rx_buff(struct net_device * dev,int index,int len)3597 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3598 {
3599     struct de4x5_private *lp = netdev_priv(dev);
3600     struct sk_buff *p;
3601 
3602 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3603     struct sk_buff *ret;
3604     u_long i=0, tmp;
3605 
3606     p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3607     if (!p) return NULL;
3608 
3609     tmp = virt_to_bus(p->data);
3610     i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3611     skb_reserve(p, i);
3612     lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3613 
3614     ret = lp->rx_skb[index];
3615     lp->rx_skb[index] = p;
3616 
3617     if ((u_long) ret > 1) {
3618 	skb_put(ret, len);
3619     }
3620 
3621     return ret;
3622 
3623 #else
3624     if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3625 
3626     p = netdev_alloc_skb(dev, len + 2);
3627     if (!p) return NULL;
3628 
3629     skb_reserve(p, 2);	                               /* Align */
3630     if (index < lp->rx_old) {                          /* Wrapped buffer */
3631 	short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3632 	skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, tlen);
3633 	skb_put_data(p, lp->rx_bufs, len - tlen);
3634     } else {                                           /* Linear buffer */
3635 	skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, len);
3636     }
3637 
3638     return p;
3639 #endif
3640 }
3641 
3642 static void
de4x5_free_rx_buffs(struct net_device * dev)3643 de4x5_free_rx_buffs(struct net_device *dev)
3644 {
3645     struct de4x5_private *lp = netdev_priv(dev);
3646     int i;
3647 
3648     for (i=0; i<lp->rxRingSize; i++) {
3649 	if ((u_long) lp->rx_skb[i] > 1) {
3650 	    dev_kfree_skb(lp->rx_skb[i]);
3651 	}
3652 	lp->rx_ring[i].status = 0;
3653 	lp->rx_skb[i] = (struct sk_buff *)1;    /* Dummy entry */
3654     }
3655 }
3656 
3657 static void
de4x5_free_tx_buffs(struct net_device * dev)3658 de4x5_free_tx_buffs(struct net_device *dev)
3659 {
3660     struct de4x5_private *lp = netdev_priv(dev);
3661     int i;
3662 
3663     for (i=0; i<lp->txRingSize; i++) {
3664 	if (lp->tx_skb[i])
3665 	    de4x5_free_tx_buff(lp, i);
3666 	lp->tx_ring[i].status = 0;
3667     }
3668 
3669     /* Unload the locally queued packets */
3670     __skb_queue_purge(&lp->cache.queue);
3671 }
3672 
3673 /*
3674 ** When a user pulls a connection, the DECchip can end up in a
3675 ** 'running - waiting for end of transmission' state. This means that we
3676 ** have to perform a chip soft reset to ensure that we can synchronize
3677 ** the hardware and software and make any media probes using a loopback
3678 ** packet meaningful.
3679 */
3680 static void
de4x5_save_skbs(struct net_device * dev)3681 de4x5_save_skbs(struct net_device *dev)
3682 {
3683     struct de4x5_private *lp = netdev_priv(dev);
3684     u_long iobase = dev->base_addr;
3685     s32 omr;
3686 
3687     if (!lp->cache.save_cnt) {
3688 	STOP_DE4X5;
3689 	de4x5_tx(dev);                          /* Flush any sent skb's */
3690 	de4x5_free_tx_buffs(dev);
3691 	de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3692 	de4x5_sw_reset(dev);
3693 	de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3694 	lp->cache.save_cnt++;
3695 	START_DE4X5;
3696     }
3697 }
3698 
3699 static void
de4x5_rst_desc_ring(struct net_device * dev)3700 de4x5_rst_desc_ring(struct net_device *dev)
3701 {
3702     struct de4x5_private *lp = netdev_priv(dev);
3703     u_long iobase = dev->base_addr;
3704     int i;
3705     s32 omr;
3706 
3707     if (lp->cache.save_cnt) {
3708 	STOP_DE4X5;
3709 	outl(lp->dma_rings, DE4X5_RRBA);
3710 	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3711 	     DE4X5_TRBA);
3712 
3713 	lp->rx_new = lp->rx_old = 0;
3714 	lp->tx_new = lp->tx_old = 0;
3715 
3716 	for (i = 0; i < lp->rxRingSize; i++) {
3717 	    lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3718 	}
3719 
3720 	for (i = 0; i < lp->txRingSize; i++) {
3721 	    lp->tx_ring[i].status = cpu_to_le32(0);
3722 	}
3723 
3724 	barrier();
3725 	lp->cache.save_cnt--;
3726 	START_DE4X5;
3727     }
3728 }
3729 
3730 static void
de4x5_cache_state(struct net_device * dev,int flag)3731 de4x5_cache_state(struct net_device *dev, int flag)
3732 {
3733     struct de4x5_private *lp = netdev_priv(dev);
3734     u_long iobase = dev->base_addr;
3735 
3736     switch(flag) {
3737       case DE4X5_SAVE_STATE:
3738 	lp->cache.csr0 = inl(DE4X5_BMR);
3739 	lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3740 	lp->cache.csr7 = inl(DE4X5_IMR);
3741 	break;
3742 
3743       case DE4X5_RESTORE_STATE:
3744 	outl(lp->cache.csr0, DE4X5_BMR);
3745 	outl(lp->cache.csr6, DE4X5_OMR);
3746 	outl(lp->cache.csr7, DE4X5_IMR);
3747 	if (lp->chipset == DC21140) {
3748 	    gep_wr(lp->cache.gepc, dev);
3749 	    gep_wr(lp->cache.gep, dev);
3750 	} else {
3751 	    reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3752 			                                      lp->cache.csr15);
3753 	}
3754 	break;
3755     }
3756 }
3757 
3758 static void
de4x5_put_cache(struct net_device * dev,struct sk_buff * skb)3759 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3760 {
3761     struct de4x5_private *lp = netdev_priv(dev);
3762 
3763     __skb_queue_tail(&lp->cache.queue, skb);
3764 }
3765 
3766 static void
de4x5_putb_cache(struct net_device * dev,struct sk_buff * skb)3767 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3768 {
3769     struct de4x5_private *lp = netdev_priv(dev);
3770 
3771     __skb_queue_head(&lp->cache.queue, skb);
3772 }
3773 
3774 static struct sk_buff *
de4x5_get_cache(struct net_device * dev)3775 de4x5_get_cache(struct net_device *dev)
3776 {
3777     struct de4x5_private *lp = netdev_priv(dev);
3778 
3779     return __skb_dequeue(&lp->cache.queue);
3780 }
3781 
3782 /*
3783 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3784 ** is received and the auto-negotiation status is NWAY OK.
3785 */
3786 static int
test_ans(struct net_device * dev,s32 irqs,s32 irq_mask,s32 msec)3787 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3788 {
3789     struct de4x5_private *lp = netdev_priv(dev);
3790     u_long iobase = dev->base_addr;
3791     s32 sts, ans;
3792 
3793     if (lp->timeout < 0) {
3794 	lp->timeout = msec/100;
3795 	outl(irq_mask, DE4X5_IMR);
3796 
3797 	/* clear all pending interrupts */
3798 	sts = inl(DE4X5_STS);
3799 	outl(sts, DE4X5_STS);
3800     }
3801 
3802     ans = inl(DE4X5_SISR) & SISR_ANS;
3803     sts = inl(DE4X5_STS) & ~TIMER_CB;
3804 
3805     if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3806 	sts = 100 | TIMER_CB;
3807     } else {
3808 	lp->timeout = -1;
3809     }
3810 
3811     return sts;
3812 }
3813 
3814 static void
de4x5_setup_intr(struct net_device * dev)3815 de4x5_setup_intr(struct net_device *dev)
3816 {
3817     struct de4x5_private *lp = netdev_priv(dev);
3818     u_long iobase = dev->base_addr;
3819     s32 imr, sts;
3820 
3821     if (inl(DE4X5_OMR) & OMR_SR) {   /* Only unmask if TX/RX is enabled */
3822 	imr = 0;
3823 	UNMASK_IRQs;
3824 	sts = inl(DE4X5_STS);        /* Reset any pending (stale) interrupts */
3825 	outl(sts, DE4X5_STS);
3826 	ENABLE_IRQs;
3827     }
3828 }
3829 
3830 /*
3831 **
3832 */
3833 static void
reset_init_sia(struct net_device * dev,s32 csr13,s32 csr14,s32 csr15)3834 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3835 {
3836     struct de4x5_private *lp = netdev_priv(dev);
3837     u_long iobase = dev->base_addr;
3838 
3839     RESET_SIA;
3840     if (lp->useSROM) {
3841 	if (lp->ibn == 3) {
3842 	    srom_exec(dev, lp->phy[lp->active].rst);
3843 	    srom_exec(dev, lp->phy[lp->active].gep);
3844 	    outl(1, DE4X5_SICR);
3845 	    return;
3846 	} else {
3847 	    csr15 = lp->cache.csr15;
3848 	    csr14 = lp->cache.csr14;
3849 	    csr13 = lp->cache.csr13;
3850 	    outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3851 	    outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3852 	}
3853     } else {
3854 	outl(csr15, DE4X5_SIGR);
3855     }
3856     outl(csr14, DE4X5_STRR);
3857     outl(csr13, DE4X5_SICR);
3858 
3859     mdelay(10);
3860 }
3861 
3862 /*
3863 ** Create a loopback ethernet packet
3864 */
3865 static void
create_packet(struct net_device * dev,char * frame,int len)3866 create_packet(struct net_device *dev, char *frame, int len)
3867 {
3868     int i;
3869     char *buf = frame;
3870 
3871     for (i=0; i<ETH_ALEN; i++) {             /* Use this source address */
3872 	*buf++ = dev->dev_addr[i];
3873     }
3874     for (i=0; i<ETH_ALEN; i++) {             /* Use this destination address */
3875 	*buf++ = dev->dev_addr[i];
3876     }
3877 
3878     *buf++ = 0;                              /* Packet length (2 bytes) */
3879     *buf++ = 1;
3880 }
3881 
3882 /*
3883 ** Look for a particular board name in the EISA configuration space
3884 */
3885 static int
EISA_signature(char * name,struct device * device)3886 EISA_signature(char *name, struct device *device)
3887 {
3888     int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3889     struct eisa_device *edev;
3890 
3891     *name = '\0';
3892     edev = to_eisa_device (device);
3893     i = edev->id.driver_data;
3894 
3895     if (i >= 0 && i < siglen) {
3896 	    strcpy (name, de4x5_signatures[i]);
3897 	    status = 1;
3898     }
3899 
3900     return status;                         /* return the device name string */
3901 }
3902 
3903 /*
3904 ** Look for a particular board name in the PCI configuration space
3905 */
3906 static int
PCI_signature(char * name,struct de4x5_private * lp)3907 PCI_signature(char *name, struct de4x5_private *lp)
3908 {
3909     int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3910 
3911     if (lp->chipset == DC21040) {
3912 	strcpy(name, "DE434/5");
3913 	return status;
3914     } else {                           /* Search for a DEC name in the SROM */
3915 	int tmp = *((char *)&lp->srom + 19) * 3;
3916 	strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3917     }
3918     name[8] = '\0';
3919     for (i=0; i<siglen; i++) {
3920 	if (strstr(name,de4x5_signatures[i])!=NULL) break;
3921     }
3922     if (i == siglen) {
3923 	if (dec_only) {
3924 	    *name = '\0';
3925 	} else {                        /* Use chip name to avoid confusion */
3926 	    strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3927 			   ((lp->chipset == DC21041) ? "DC21041" :
3928 			    ((lp->chipset == DC21140) ? "DC21140" :
3929 			     ((lp->chipset == DC21142) ? "DC21142" :
3930 			      ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3931 			     )))))));
3932 	}
3933 	if (lp->chipset != DC21041) {
3934 	    lp->useSROM = true;             /* card is not recognisably DEC */
3935 	}
3936     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3937 	lp->useSROM = true;
3938     }
3939 
3940     return status;
3941 }
3942 
3943 /*
3944 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3945 ** the DC21040, else  read the SROM for the other chips.
3946 ** The SROM may not be present in a multi-MAC card, so first read the
3947 ** MAC address and check for a bad address. If there is a bad one then exit
3948 ** immediately with the prior srom contents intact (the h/w address will
3949 ** be fixed up later).
3950 */
3951 static void
DevicePresent(struct net_device * dev,u_long aprom_addr)3952 DevicePresent(struct net_device *dev, u_long aprom_addr)
3953 {
3954     int i, j=0;
3955     struct de4x5_private *lp = netdev_priv(dev);
3956 
3957     if (lp->chipset == DC21040) {
3958 	if (lp->bus == EISA) {
3959 	    enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3960 	} else {
3961 	    outl(0, aprom_addr);       /* Reset Ethernet Address ROM Pointer */
3962 	}
3963     } else {                           /* Read new srom */
3964 	u_short tmp;
3965 	__le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3966 	for (i=0; i<(ETH_ALEN>>1); i++) {
3967 	    tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3968 	    j += tmp;	/* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3969 	    *p = cpu_to_le16(tmp);
3970 	}
3971 	if (j == 0 || j == 3 * 0xffff) {
3972 		/* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3973 		return;
3974 	}
3975 
3976 	p = (__le16 *)&lp->srom;
3977 	for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3978 	    tmp = srom_rd(aprom_addr, i);
3979 	    *p++ = cpu_to_le16(tmp);
3980 	}
3981 	de4x5_dbg_srom(&lp->srom);
3982     }
3983 }
3984 
3985 /*
3986 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3987 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3988 ** it...from depca.c.
3989 */
3990 static void
enet_addr_rst(u_long aprom_addr)3991 enet_addr_rst(u_long aprom_addr)
3992 {
3993     union {
3994 	struct {
3995 	    u32 a;
3996 	    u32 b;
3997 	} llsig;
3998 	char Sig[sizeof(u32) << 1];
3999     } dev;
4000     short sigLength=0;
4001     s8 data;
4002     int i, j;
4003 
4004     dev.llsig.a = ETH_PROM_SIG;
4005     dev.llsig.b = ETH_PROM_SIG;
4006     sigLength = sizeof(u32) << 1;
4007 
4008     for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4009 	data = inb(aprom_addr);
4010 	if (dev.Sig[j] == data) {    /* track signature */
4011 	    j++;
4012 	} else {                     /* lost signature; begin search again */
4013 	    if (data == dev.Sig[0]) {  /* rare case.... */
4014 		j=1;
4015 	    } else {
4016 		j=0;
4017 	    }
4018 	}
4019     }
4020 }
4021 
4022 /*
4023 ** For the bad status case and no SROM, then add one to the previous
4024 ** address. However, need to add one backwards in case we have 0xff
4025 ** as one or more of the bytes. Only the last 3 bytes should be checked
4026 ** as the first three are invariant - assigned to an organisation.
4027 */
4028 static int
get_hw_addr(struct net_device * dev)4029 get_hw_addr(struct net_device *dev)
4030 {
4031     u_long iobase = dev->base_addr;
4032     int broken, i, k, tmp, status = 0;
4033     u_short j,chksum;
4034     struct de4x5_private *lp = netdev_priv(dev);
4035 
4036     broken = de4x5_bad_srom(lp);
4037 
4038     for (i=0,k=0,j=0;j<3;j++) {
4039 	k <<= 1;
4040 	if (k > 0xffff) k-=0xffff;
4041 
4042 	if (lp->bus == PCI) {
4043 	    if (lp->chipset == DC21040) {
4044 		while ((tmp = inl(DE4X5_APROM)) < 0);
4045 		k += (u_char) tmp;
4046 		dev->dev_addr[i++] = (u_char) tmp;
4047 		while ((tmp = inl(DE4X5_APROM)) < 0);
4048 		k += (u_short) (tmp << 8);
4049 		dev->dev_addr[i++] = (u_char) tmp;
4050 	    } else if (!broken) {
4051 		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4052 		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4053 	    } else if ((broken == SMC) || (broken == ACCTON)) {
4054 		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4055 		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4056 	    }
4057 	} else {
4058 	    k += (u_char) (tmp = inb(EISA_APROM));
4059 	    dev->dev_addr[i++] = (u_char) tmp;
4060 	    k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4061 	    dev->dev_addr[i++] = (u_char) tmp;
4062 	}
4063 
4064 	if (k > 0xffff) k-=0xffff;
4065     }
4066     if (k == 0xffff) k=0;
4067 
4068     if (lp->bus == PCI) {
4069 	if (lp->chipset == DC21040) {
4070 	    while ((tmp = inl(DE4X5_APROM)) < 0);
4071 	    chksum = (u_char) tmp;
4072 	    while ((tmp = inl(DE4X5_APROM)) < 0);
4073 	    chksum |= (u_short) (tmp << 8);
4074 	    if ((k != chksum) && (dec_only)) status = -1;
4075 	}
4076     } else {
4077 	chksum = (u_char) inb(EISA_APROM);
4078 	chksum |= (u_short) (inb(EISA_APROM) << 8);
4079 	if ((k != chksum) && (dec_only)) status = -1;
4080     }
4081 
4082     /* If possible, try to fix a broken card - SMC only so far */
4083     srom_repair(dev, broken);
4084 
4085 #ifdef CONFIG_PPC_PMAC
4086     /*
4087     ** If the address starts with 00 a0, we have to bit-reverse
4088     ** each byte of the address.
4089     */
4090     if ( machine_is(powermac) &&
4091 	 (dev->dev_addr[0] == 0) &&
4092 	 (dev->dev_addr[1] == 0xa0) )
4093     {
4094 	    for (i = 0; i < ETH_ALEN; ++i)
4095 	    {
4096 		    int x = dev->dev_addr[i];
4097 		    x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4098 		    x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4099 		    dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4100 	    }
4101     }
4102 #endif /* CONFIG_PPC_PMAC */
4103 
4104     /* Test for a bad enet address */
4105     status = test_bad_enet(dev, status);
4106 
4107     return status;
4108 }
4109 
4110 /*
4111 ** Test for enet addresses in the first 32 bytes.
4112 */
4113 static int
de4x5_bad_srom(struct de4x5_private * lp)4114 de4x5_bad_srom(struct de4x5_private *lp)
4115 {
4116     int i, status = 0;
4117 
4118     for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4119 	if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4120 	    !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4121 	    if (i == 0) {
4122 		status = SMC;
4123 	    } else if (i == 1) {
4124 		status = ACCTON;
4125 	    }
4126 	    break;
4127 	}
4128     }
4129 
4130     return status;
4131 }
4132 
4133 static void
srom_repair(struct net_device * dev,int card)4134 srom_repair(struct net_device *dev, int card)
4135 {
4136     struct de4x5_private *lp = netdev_priv(dev);
4137 
4138     switch(card) {
4139       case SMC:
4140 	memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4141 	memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4142 	memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4143 	lp->useSROM = true;
4144 	break;
4145     }
4146 }
4147 
4148 /*
4149 ** Assume that the irq's do not follow the PCI spec - this is seems
4150 ** to be true so far (2 for 2).
4151 */
4152 static int
test_bad_enet(struct net_device * dev,int status)4153 test_bad_enet(struct net_device *dev, int status)
4154 {
4155     struct de4x5_private *lp = netdev_priv(dev);
4156     int i, tmp;
4157 
4158     for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4159     if ((tmp == 0) || (tmp == 0x5fa)) {
4160 	if ((lp->chipset == last.chipset) &&
4161 	    (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4162 	    for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4163 	    for (i=ETH_ALEN-1; i>2; --i) {
4164 		dev->dev_addr[i] += 1;
4165 		if (dev->dev_addr[i] != 0) break;
4166 	    }
4167 	    for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4168 	    if (!an_exception(lp)) {
4169 		dev->irq = last.irq;
4170 	    }
4171 
4172 	    status = 0;
4173 	}
4174     } else if (!status) {
4175 	last.chipset = lp->chipset;
4176 	last.bus = lp->bus_num;
4177 	last.irq = dev->irq;
4178 	for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4179     }
4180 
4181     return status;
4182 }
4183 
4184 /*
4185 ** List of board exceptions with correctly wired IRQs
4186 */
4187 static int
an_exception(struct de4x5_private * lp)4188 an_exception(struct de4x5_private *lp)
4189 {
4190     if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4191 	(*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4192 	return -1;
4193     }
4194 
4195     return 0;
4196 }
4197 
4198 /*
4199 ** SROM Read
4200 */
4201 static short
srom_rd(u_long addr,u_char offset)4202 srom_rd(u_long addr, u_char offset)
4203 {
4204     sendto_srom(SROM_RD | SROM_SR, addr);
4205 
4206     srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4207     srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4208     srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4209 
4210     return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4211 }
4212 
4213 static void
srom_latch(u_int command,u_long addr)4214 srom_latch(u_int command, u_long addr)
4215 {
4216     sendto_srom(command, addr);
4217     sendto_srom(command | DT_CLK, addr);
4218     sendto_srom(command, addr);
4219 }
4220 
4221 static void
srom_command(u_int command,u_long addr)4222 srom_command(u_int command, u_long addr)
4223 {
4224     srom_latch(command, addr);
4225     srom_latch(command, addr);
4226     srom_latch((command & 0x0000ff00) | DT_CS, addr);
4227 }
4228 
4229 static void
srom_address(u_int command,u_long addr,u_char offset)4230 srom_address(u_int command, u_long addr, u_char offset)
4231 {
4232     int i, a;
4233 
4234     a = offset << 2;
4235     for (i=0; i<6; i++, a <<= 1) {
4236 	srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4237     }
4238     udelay(1);
4239 
4240     i = (getfrom_srom(addr) >> 3) & 0x01;
4241 }
4242 
4243 static short
srom_data(u_int command,u_long addr)4244 srom_data(u_int command, u_long addr)
4245 {
4246     int i;
4247     short word = 0;
4248     s32 tmp;
4249 
4250     for (i=0; i<16; i++) {
4251 	sendto_srom(command  | DT_CLK, addr);
4252 	tmp = getfrom_srom(addr);
4253 	sendto_srom(command, addr);
4254 
4255 	word = (word << 1) | ((tmp >> 3) & 0x01);
4256     }
4257 
4258     sendto_srom(command & 0x0000ff00, addr);
4259 
4260     return word;
4261 }
4262 
4263 /*
4264 static void
4265 srom_busy(u_int command, u_long addr)
4266 {
4267    sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4268 
4269    while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4270        mdelay(1);
4271    }
4272 
4273    sendto_srom(command & 0x0000ff00, addr);
4274 }
4275 */
4276 
4277 static void
sendto_srom(u_int command,u_long addr)4278 sendto_srom(u_int command, u_long addr)
4279 {
4280     outl(command, addr);
4281     udelay(1);
4282 }
4283 
4284 static int
getfrom_srom(u_long addr)4285 getfrom_srom(u_long addr)
4286 {
4287     s32 tmp;
4288 
4289     tmp = inl(addr);
4290     udelay(1);
4291 
4292     return tmp;
4293 }
4294 
4295 static int
srom_infoleaf_info(struct net_device * dev)4296 srom_infoleaf_info(struct net_device *dev)
4297 {
4298     struct de4x5_private *lp = netdev_priv(dev);
4299     int i, count;
4300     u_char *p;
4301 
4302     /* Find the infoleaf decoder function that matches this chipset */
4303     for (i=0; i<INFOLEAF_SIZE; i++) {
4304 	if (lp->chipset == infoleaf_array[i].chipset) break;
4305     }
4306     if (i == INFOLEAF_SIZE) {
4307 	lp->useSROM = false;
4308 	printk("%s: Cannot find correct chipset for SROM decoding!\n",
4309 	                                                          dev->name);
4310 	return -ENXIO;
4311     }
4312 
4313     lp->infoleaf_fn = infoleaf_array[i].fn;
4314 
4315     /* Find the information offset that this function should use */
4316     count = *((u_char *)&lp->srom + 19);
4317     p  = (u_char *)&lp->srom + 26;
4318 
4319     if (count > 1) {
4320 	for (i=count; i; --i, p+=3) {
4321 	    if (lp->device == *p) break;
4322 	}
4323 	if (i == 0) {
4324 	    lp->useSROM = false;
4325 	    printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4326 	                                               dev->name, lp->device);
4327 	    return -ENXIO;
4328 	}
4329     }
4330 
4331 	lp->infoleaf_offset = get_unaligned_le16(p + 1);
4332 
4333     return 0;
4334 }
4335 
4336 /*
4337 ** This routine loads any type 1 or 3 MII info into the mii device
4338 ** struct and executes any type 5 code to reset PHY devices for this
4339 ** controller.
4340 ** The info for the MII devices will be valid since the index used
4341 ** will follow the discovery process from MII address 1-31 then 0.
4342 */
4343 static void
srom_init(struct net_device * dev)4344 srom_init(struct net_device *dev)
4345 {
4346     struct de4x5_private *lp = netdev_priv(dev);
4347     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4348     u_char count;
4349 
4350     p+=2;
4351     if (lp->chipset == DC21140) {
4352 	lp->cache.gepc = (*p++ | GEP_CTRL);
4353 	gep_wr(lp->cache.gepc, dev);
4354     }
4355 
4356     /* Block count */
4357     count = *p++;
4358 
4359     /* Jump the infoblocks to find types */
4360     for (;count; --count) {
4361 	if (*p < 128) {
4362 	    p += COMPACT_LEN;
4363 	} else if (*(p+1) == 5) {
4364 	    type5_infoblock(dev, 1, p);
4365 	    p += ((*p & BLOCK_LEN) + 1);
4366 	} else if (*(p+1) == 4) {
4367 	    p += ((*p & BLOCK_LEN) + 1);
4368 	} else if (*(p+1) == 3) {
4369 	    type3_infoblock(dev, 1, p);
4370 	    p += ((*p & BLOCK_LEN) + 1);
4371 	} else if (*(p+1) == 2) {
4372 	    p += ((*p & BLOCK_LEN) + 1);
4373 	} else if (*(p+1) == 1) {
4374 	    type1_infoblock(dev, 1, p);
4375 	    p += ((*p & BLOCK_LEN) + 1);
4376 	} else {
4377 	    p += ((*p & BLOCK_LEN) + 1);
4378 	}
4379     }
4380 }
4381 
4382 /*
4383 ** A generic routine that writes GEP control, data and reset information
4384 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4385 */
4386 static void
srom_exec(struct net_device * dev,u_char * p)4387 srom_exec(struct net_device *dev, u_char *p)
4388 {
4389     struct de4x5_private *lp = netdev_priv(dev);
4390     u_long iobase = dev->base_addr;
4391     u_char count = (p ? *p++ : 0);
4392     u_short *w = (u_short *)p;
4393 
4394     if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4395 
4396     if (lp->chipset != DC21140) RESET_SIA;
4397 
4398     while (count--) {
4399 	gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4400 		                                   *p++ : get_unaligned_le16(w++)), dev);
4401 	mdelay(2);                          /* 2ms per action */
4402     }
4403 
4404     if (lp->chipset != DC21140) {
4405 	outl(lp->cache.csr14, DE4X5_STRR);
4406 	outl(lp->cache.csr13, DE4X5_SICR);
4407     }
4408 }
4409 
4410 /*
4411 ** Basically this function is a NOP since it will never be called,
4412 ** unless I implement the DC21041 SROM functions. There's no need
4413 ** since the existing code will be satisfactory for all boards.
4414 */
4415 static int
dc21041_infoleaf(struct net_device * dev)4416 dc21041_infoleaf(struct net_device *dev)
4417 {
4418     return DE4X5_AUTOSENSE_MS;
4419 }
4420 
4421 static int
dc21140_infoleaf(struct net_device * dev)4422 dc21140_infoleaf(struct net_device *dev)
4423 {
4424     struct de4x5_private *lp = netdev_priv(dev);
4425     u_char count = 0;
4426     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4427     int next_tick = DE4X5_AUTOSENSE_MS;
4428 
4429     /* Read the connection type */
4430     p+=2;
4431 
4432     /* GEP control */
4433     lp->cache.gepc = (*p++ | GEP_CTRL);
4434 
4435     /* Block count */
4436     count = *p++;
4437 
4438     /* Recursively figure out the info blocks */
4439     if (*p < 128) {
4440 	next_tick = dc_infoblock[COMPACT](dev, count, p);
4441     } else {
4442 	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4443     }
4444 
4445     if (lp->tcount == count) {
4446 	lp->media = NC;
4447         if (lp->media != lp->c_media) {
4448 	    de4x5_dbg_media(dev);
4449 	    lp->c_media = lp->media;
4450 	}
4451 	lp->media = INIT;
4452 	lp->tcount = 0;
4453 	lp->tx_enable = false;
4454     }
4455 
4456     return next_tick & ~TIMER_CB;
4457 }
4458 
4459 static int
dc21142_infoleaf(struct net_device * dev)4460 dc21142_infoleaf(struct net_device *dev)
4461 {
4462     struct de4x5_private *lp = netdev_priv(dev);
4463     u_char count = 0;
4464     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4465     int next_tick = DE4X5_AUTOSENSE_MS;
4466 
4467     /* Read the connection type */
4468     p+=2;
4469 
4470     /* Block count */
4471     count = *p++;
4472 
4473     /* Recursively figure out the info blocks */
4474     if (*p < 128) {
4475 	next_tick = dc_infoblock[COMPACT](dev, count, p);
4476     } else {
4477 	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4478     }
4479 
4480     if (lp->tcount == count) {
4481 	lp->media = NC;
4482         if (lp->media != lp->c_media) {
4483 	    de4x5_dbg_media(dev);
4484 	    lp->c_media = lp->media;
4485 	}
4486 	lp->media = INIT;
4487 	lp->tcount = 0;
4488 	lp->tx_enable = false;
4489     }
4490 
4491     return next_tick & ~TIMER_CB;
4492 }
4493 
4494 static int
dc21143_infoleaf(struct net_device * dev)4495 dc21143_infoleaf(struct net_device *dev)
4496 {
4497     struct de4x5_private *lp = netdev_priv(dev);
4498     u_char count = 0;
4499     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4500     int next_tick = DE4X5_AUTOSENSE_MS;
4501 
4502     /* Read the connection type */
4503     p+=2;
4504 
4505     /* Block count */
4506     count = *p++;
4507 
4508     /* Recursively figure out the info blocks */
4509     if (*p < 128) {
4510 	next_tick = dc_infoblock[COMPACT](dev, count, p);
4511     } else {
4512 	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4513     }
4514     if (lp->tcount == count) {
4515 	lp->media = NC;
4516         if (lp->media != lp->c_media) {
4517 	    de4x5_dbg_media(dev);
4518 	    lp->c_media = lp->media;
4519 	}
4520 	lp->media = INIT;
4521 	lp->tcount = 0;
4522 	lp->tx_enable = false;
4523     }
4524 
4525     return next_tick & ~TIMER_CB;
4526 }
4527 
4528 /*
4529 ** The compact infoblock is only designed for DC21140[A] chips, so
4530 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4531 */
4532 static int
compact_infoblock(struct net_device * dev,u_char count,u_char * p)4533 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4534 {
4535     struct de4x5_private *lp = netdev_priv(dev);
4536     u_char flags, csr6;
4537 
4538     /* Recursively figure out the info blocks */
4539     if (--count > lp->tcount) {
4540 	if (*(p+COMPACT_LEN) < 128) {
4541 	    return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4542 	} else {
4543 	    return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4544 	}
4545     }
4546 
4547     if ((lp->media == INIT) && (lp->timeout < 0)) {
4548         lp->ibn = COMPACT;
4549         lp->active = 0;
4550 	gep_wr(lp->cache.gepc, dev);
4551 	lp->infoblock_media = (*p++) & COMPACT_MC;
4552 	lp->cache.gep = *p++;
4553 	csr6 = *p++;
4554 	flags = *p++;
4555 
4556 	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4557 	lp->defMedium = (flags & 0x40) ? -1 : 0;
4558 	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4559 	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4560 	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4561 	lp->useMII = false;
4562 
4563 	de4x5_switch_mac_port(dev);
4564     }
4565 
4566     return dc21140m_autoconf(dev);
4567 }
4568 
4569 /*
4570 ** This block describes non MII media for the DC21140[A] only.
4571 */
4572 static int
type0_infoblock(struct net_device * dev,u_char count,u_char * p)4573 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4574 {
4575     struct de4x5_private *lp = netdev_priv(dev);
4576     u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4577 
4578     /* Recursively figure out the info blocks */
4579     if (--count > lp->tcount) {
4580 	if (*(p+len) < 128) {
4581 	    return dc_infoblock[COMPACT](dev, count, p+len);
4582 	} else {
4583 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4584 	}
4585     }
4586 
4587     if ((lp->media == INIT) && (lp->timeout < 0)) {
4588         lp->ibn = 0;
4589         lp->active = 0;
4590         gep_wr(lp->cache.gepc, dev);
4591 	p+=2;
4592 	lp->infoblock_media = (*p++) & BLOCK0_MC;
4593 	lp->cache.gep = *p++;
4594 	csr6 = *p++;
4595 	flags = *p++;
4596 
4597 	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4598 	lp->defMedium = (flags & 0x40) ? -1 : 0;
4599 	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4600 	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4601 	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4602 	lp->useMII = false;
4603 
4604 	de4x5_switch_mac_port(dev);
4605     }
4606 
4607     return dc21140m_autoconf(dev);
4608 }
4609 
4610 /* These functions are under construction! */
4611 
4612 static int
type1_infoblock(struct net_device * dev,u_char count,u_char * p)4613 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4614 {
4615     struct de4x5_private *lp = netdev_priv(dev);
4616     u_char len = (*p & BLOCK_LEN)+1;
4617 
4618     /* Recursively figure out the info blocks */
4619     if (--count > lp->tcount) {
4620 	if (*(p+len) < 128) {
4621 	    return dc_infoblock[COMPACT](dev, count, p+len);
4622 	} else {
4623 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4624 	}
4625     }
4626 
4627     p += 2;
4628     if (lp->state == INITIALISED) {
4629         lp->ibn = 1;
4630 	lp->active = *p++;
4631 	lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4632 	lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4633 	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4634 	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4635 	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4636 	lp->phy[lp->active].ttm = get_unaligned_le16(p);
4637 	return 0;
4638     } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4639         lp->ibn = 1;
4640         lp->active = *p;
4641 	lp->infoblock_csr6 = OMR_MII_100;
4642 	lp->useMII = true;
4643 	lp->infoblock_media = ANS;
4644 
4645 	de4x5_switch_mac_port(dev);
4646     }
4647 
4648     return dc21140m_autoconf(dev);
4649 }
4650 
4651 static int
type2_infoblock(struct net_device * dev,u_char count,u_char * p)4652 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4653 {
4654     struct de4x5_private *lp = netdev_priv(dev);
4655     u_char len = (*p & BLOCK_LEN)+1;
4656 
4657     /* Recursively figure out the info blocks */
4658     if (--count > lp->tcount) {
4659 	if (*(p+len) < 128) {
4660 	    return dc_infoblock[COMPACT](dev, count, p+len);
4661 	} else {
4662 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4663 	}
4664     }
4665 
4666     if ((lp->media == INIT) && (lp->timeout < 0)) {
4667         lp->ibn = 2;
4668         lp->active = 0;
4669 	p += 2;
4670 	lp->infoblock_media = (*p) & MEDIA_CODE;
4671 
4672         if ((*p++) & EXT_FIELD) {
4673 	    lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4674 	    lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4675 	    lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4676 	} else {
4677 	    lp->cache.csr13 = CSR13;
4678 	    lp->cache.csr14 = CSR14;
4679 	    lp->cache.csr15 = CSR15;
4680 	}
4681         lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4682         lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16);
4683 	lp->infoblock_csr6 = OMR_SIA;
4684 	lp->useMII = false;
4685 
4686 	de4x5_switch_mac_port(dev);
4687     }
4688 
4689     return dc2114x_autoconf(dev);
4690 }
4691 
4692 static int
type3_infoblock(struct net_device * dev,u_char count,u_char * p)4693 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4694 {
4695     struct de4x5_private *lp = netdev_priv(dev);
4696     u_char len = (*p & BLOCK_LEN)+1;
4697 
4698     /* Recursively figure out the info blocks */
4699     if (--count > lp->tcount) {
4700 	if (*(p+len) < 128) {
4701 	    return dc_infoblock[COMPACT](dev, count, p+len);
4702 	} else {
4703 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4704 	}
4705     }
4706 
4707     p += 2;
4708     if (lp->state == INITIALISED) {
4709         lp->ibn = 3;
4710         lp->active = *p++;
4711 	if (MOTO_SROM_BUG) lp->active = 0;
4712 	lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4713 	lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4714 	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4715 	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4716 	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4717 	lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4718 	lp->phy[lp->active].mci = *p;
4719 	return 0;
4720     } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4721         lp->ibn = 3;
4722 	lp->active = *p;
4723 	if (MOTO_SROM_BUG) lp->active = 0;
4724 	lp->infoblock_csr6 = OMR_MII_100;
4725 	lp->useMII = true;
4726 	lp->infoblock_media = ANS;
4727 
4728 	de4x5_switch_mac_port(dev);
4729     }
4730 
4731     return dc2114x_autoconf(dev);
4732 }
4733 
4734 static int
type4_infoblock(struct net_device * dev,u_char count,u_char * p)4735 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4736 {
4737     struct de4x5_private *lp = netdev_priv(dev);
4738     u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4739 
4740     /* Recursively figure out the info blocks */
4741     if (--count > lp->tcount) {
4742 	if (*(p+len) < 128) {
4743 	    return dc_infoblock[COMPACT](dev, count, p+len);
4744 	} else {
4745 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4746 	}
4747     }
4748 
4749     if ((lp->media == INIT) && (lp->timeout < 0)) {
4750         lp->ibn = 4;
4751         lp->active = 0;
4752 	p+=2;
4753 	lp->infoblock_media = (*p++) & MEDIA_CODE;
4754         lp->cache.csr13 = CSR13;              /* Hard coded defaults */
4755 	lp->cache.csr14 = CSR14;
4756 	lp->cache.csr15 = CSR15;
4757         lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4758         lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4759 	csr6 = *p++;
4760 	flags = *p++;
4761 
4762 	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4763 	lp->defMedium = (flags & 0x40) ? -1 : 0;
4764 	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4765 	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4766 	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4767 	lp->useMII = false;
4768 
4769 	de4x5_switch_mac_port(dev);
4770     }
4771 
4772     return dc2114x_autoconf(dev);
4773 }
4774 
4775 /*
4776 ** This block type provides information for resetting external devices
4777 ** (chips) through the General Purpose Register.
4778 */
4779 static int
type5_infoblock(struct net_device * dev,u_char count,u_char * p)4780 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4781 {
4782     struct de4x5_private *lp = netdev_priv(dev);
4783     u_char len = (*p & BLOCK_LEN)+1;
4784 
4785     /* Recursively figure out the info blocks */
4786     if (--count > lp->tcount) {
4787 	if (*(p+len) < 128) {
4788 	    return dc_infoblock[COMPACT](dev, count, p+len);
4789 	} else {
4790 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4791 	}
4792     }
4793 
4794     /* Must be initializing to run this code */
4795     if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4796 	p+=2;
4797         lp->rst = p;
4798         srom_exec(dev, lp->rst);
4799     }
4800 
4801     return DE4X5_AUTOSENSE_MS;
4802 }
4803 
4804 /*
4805 ** MII Read/Write
4806 */
4807 
4808 static int
mii_rd(u_char phyreg,u_char phyaddr,u_long ioaddr)4809 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4810 {
4811     mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4812     mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4813     mii_wdata(MII_STRD, 4, ioaddr);        /* SFD and Read operation         */
4814     mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4815     mii_address(phyreg, ioaddr);           /* PHY Register to read           */
4816     mii_ta(MII_STRD, ioaddr);              /* Turn around time - 2 MDC       */
4817 
4818     return mii_rdata(ioaddr);              /* Read data                      */
4819 }
4820 
4821 static void
mii_wr(int data,u_char phyreg,u_char phyaddr,u_long ioaddr)4822 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4823 {
4824     mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4825     mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4826     mii_wdata(MII_STWR, 4, ioaddr);        /* SFD and Write operation        */
4827     mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4828     mii_address(phyreg, ioaddr);           /* PHY Register to write          */
4829     mii_ta(MII_STWR, ioaddr);              /* Turn around time - 2 MDC       */
4830     data = mii_swap(data, 16);             /* Swap data bit ordering         */
4831     mii_wdata(data, 16, ioaddr);           /* Write data                     */
4832 }
4833 
4834 static int
mii_rdata(u_long ioaddr)4835 mii_rdata(u_long ioaddr)
4836 {
4837     int i;
4838     s32 tmp = 0;
4839 
4840     for (i=0; i<16; i++) {
4841 	tmp <<= 1;
4842 	tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4843     }
4844 
4845     return tmp;
4846 }
4847 
4848 static void
mii_wdata(int data,int len,u_long ioaddr)4849 mii_wdata(int data, int len, u_long ioaddr)
4850 {
4851     int i;
4852 
4853     for (i=0; i<len; i++) {
4854 	sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4855 	data >>= 1;
4856     }
4857 }
4858 
4859 static void
mii_address(u_char addr,u_long ioaddr)4860 mii_address(u_char addr, u_long ioaddr)
4861 {
4862     int i;
4863 
4864     addr = mii_swap(addr, 5);
4865     for (i=0; i<5; i++) {
4866 	sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4867 	addr >>= 1;
4868     }
4869 }
4870 
4871 static void
mii_ta(u_long rw,u_long ioaddr)4872 mii_ta(u_long rw, u_long ioaddr)
4873 {
4874     if (rw == MII_STWR) {
4875 	sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4876 	sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4877     } else {
4878 	getfrom_mii(MII_MRD | MII_RD, ioaddr);        /* Tri-state MDIO */
4879     }
4880 }
4881 
4882 static int
mii_swap(int data,int len)4883 mii_swap(int data, int len)
4884 {
4885     int i, tmp = 0;
4886 
4887     for (i=0; i<len; i++) {
4888 	tmp <<= 1;
4889 	tmp |= (data & 1);
4890 	data >>= 1;
4891     }
4892 
4893     return tmp;
4894 }
4895 
4896 static void
sendto_mii(u32 command,int data,u_long ioaddr)4897 sendto_mii(u32 command, int data, u_long ioaddr)
4898 {
4899     u32 j;
4900 
4901     j = (data & 1) << 17;
4902     outl(command | j, ioaddr);
4903     udelay(1);
4904     outl(command | MII_MDC | j, ioaddr);
4905     udelay(1);
4906 }
4907 
4908 static int
getfrom_mii(u32 command,u_long ioaddr)4909 getfrom_mii(u32 command, u_long ioaddr)
4910 {
4911     outl(command, ioaddr);
4912     udelay(1);
4913     outl(command | MII_MDC, ioaddr);
4914     udelay(1);
4915 
4916     return (inl(ioaddr) >> 19) & 1;
4917 }
4918 
4919 /*
4920 ** Here's 3 ways to calculate the OUI from the ID registers.
4921 */
4922 static int
mii_get_oui(u_char phyaddr,u_long ioaddr)4923 mii_get_oui(u_char phyaddr, u_long ioaddr)
4924 {
4925 /*
4926     union {
4927 	u_short reg;
4928 	u_char breg[2];
4929     } a;
4930     int i, r2, r3, ret=0;*/
4931     int r2, r3;
4932 
4933     /* Read r2 and r3 */
4934     r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4935     r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4936                                                 /* SEEQ and Cypress way * /
4937     / * Shuffle r2 and r3 * /
4938     a.reg=0;
4939     r3 = ((r3>>10)|(r2<<6))&0x0ff;
4940     r2 = ((r2>>2)&0x3fff);
4941 
4942     / * Bit reverse r3 * /
4943     for (i=0;i<8;i++) {
4944 	ret<<=1;
4945 	ret |= (r3&1);
4946 	r3>>=1;
4947     }
4948 
4949     / * Bit reverse r2 * /
4950     for (i=0;i<16;i++) {
4951 	a.reg<<=1;
4952 	a.reg |= (r2&1);
4953 	r2>>=1;
4954     }
4955 
4956     / * Swap r2 bytes * /
4957     i=a.breg[0];
4958     a.breg[0]=a.breg[1];
4959     a.breg[1]=i;
4960 
4961     return (a.reg<<8)|ret; */                 /* SEEQ and Cypress way */
4962 /*    return (r2<<6)|(u_int)(r3>>10); */      /* NATIONAL and BROADCOM way */
4963     return r2;                                  /* (I did it) My way */
4964 }
4965 
4966 /*
4967 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4968 */
4969 static int
mii_get_phy(struct net_device * dev)4970 mii_get_phy(struct net_device *dev)
4971 {
4972     struct de4x5_private *lp = netdev_priv(dev);
4973     u_long iobase = dev->base_addr;
4974     int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4975     int id;
4976 
4977     lp->active = 0;
4978     lp->useMII = true;
4979 
4980     /* Search the MII address space for possible PHY devices */
4981     for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4982 	lp->phy[lp->active].addr = i;
4983 	if (i==0) n++;                             /* Count cycles */
4984 	while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4985 	id = mii_get_oui(i, DE4X5_MII);
4986 	if ((id == 0) || (id == 65535)) continue;  /* Valid ID? */
4987 	for (j=0; j<limit; j++) {                  /* Search PHY table */
4988 	    if (id != phy_info[j].id) continue;    /* ID match? */
4989 	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4990 	    if (k < DE4X5_MAX_PHY) {
4991 		memcpy((char *)&lp->phy[k],
4992 		       (char *)&phy_info[j], sizeof(struct phy_table));
4993 		lp->phy[k].addr = i;
4994 		lp->mii_cnt++;
4995 		lp->active++;
4996 	    } else {
4997 		goto purgatory;                    /* Stop the search */
4998 	    }
4999 	    break;
5000 	}
5001 	if ((j == limit) && (i < DE4X5_MAX_MII)) {
5002 	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5003 	    lp->phy[k].addr = i;
5004 	    lp->phy[k].id = id;
5005 	    lp->phy[k].spd.reg = GENERIC_REG;      /* ANLPA register         */
5006 	    lp->phy[k].spd.mask = GENERIC_MASK;    /* 100Mb/s technologies   */
5007 	    lp->phy[k].spd.value = GENERIC_VALUE;  /* TX & T4, H/F Duplex    */
5008 	    lp->mii_cnt++;
5009 	    lp->active++;
5010 	    printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5011 	    j = de4x5_debug;
5012 	    de4x5_debug |= DEBUG_MII;
5013 	    de4x5_dbg_mii(dev, k);
5014 	    de4x5_debug = j;
5015 	    printk("\n");
5016 	}
5017     }
5018   purgatory:
5019     lp->active = 0;
5020     if (lp->phy[0].id) {                           /* Reset the PHY devices */
5021 	for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5022 	    mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5023 	    while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5024 
5025 	    de4x5_dbg_mii(dev, k);
5026 	}
5027     }
5028     if (!lp->mii_cnt) lp->useMII = false;
5029 
5030     return lp->mii_cnt;
5031 }
5032 
5033 static char *
build_setup_frame(struct net_device * dev,int mode)5034 build_setup_frame(struct net_device *dev, int mode)
5035 {
5036     struct de4x5_private *lp = netdev_priv(dev);
5037     int i;
5038     char *pa = lp->setup_frame;
5039 
5040     /* Initialise the setup frame */
5041     if (mode == ALL) {
5042 	memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5043     }
5044 
5045     if (lp->setup_f == HASH_PERF) {
5046 	for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5047 	    *(pa + i) = dev->dev_addr[i];                 /* Host address */
5048 	    if (i & 0x01) pa += 2;
5049 	}
5050 	*(lp->setup_frame + (DE4X5_HASH_TABLE_LEN >> 3) - 3) = 0x80;
5051     } else {
5052 	for (i=0; i<ETH_ALEN; i++) { /* Host address */
5053 	    *(pa + (i&1)) = dev->dev_addr[i];
5054 	    if (i & 0x01) pa += 4;
5055 	}
5056 	for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5057 	    *(pa + (i&1)) = (char) 0xff;
5058 	    if (i & 0x01) pa += 4;
5059 	}
5060     }
5061 
5062     return pa;                     /* Points to the next entry */
5063 }
5064 
5065 static void
disable_ast(struct net_device * dev)5066 disable_ast(struct net_device *dev)
5067 {
5068 	struct de4x5_private *lp = netdev_priv(dev);
5069 	del_timer_sync(&lp->timer);
5070 }
5071 
5072 static long
de4x5_switch_mac_port(struct net_device * dev)5073 de4x5_switch_mac_port(struct net_device *dev)
5074 {
5075     struct de4x5_private *lp = netdev_priv(dev);
5076     u_long iobase = dev->base_addr;
5077     s32 omr;
5078 
5079     STOP_DE4X5;
5080 
5081     /* Assert the OMR_PS bit in CSR6 */
5082     omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5083 			                                             OMR_FDX));
5084     omr |= lp->infoblock_csr6;
5085     if (omr & OMR_PS) omr |= OMR_HBD;
5086     outl(omr, DE4X5_OMR);
5087 
5088     /* Soft Reset */
5089     RESET_DE4X5;
5090 
5091     /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5092     if (lp->chipset == DC21140) {
5093 	gep_wr(lp->cache.gepc, dev);
5094 	gep_wr(lp->cache.gep, dev);
5095     } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5096 	reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5097     }
5098 
5099     /* Restore CSR6 */
5100     outl(omr, DE4X5_OMR);
5101 
5102     /* Reset CSR8 */
5103     inl(DE4X5_MFC);
5104 
5105     return omr;
5106 }
5107 
5108 static void
gep_wr(s32 data,struct net_device * dev)5109 gep_wr(s32 data, struct net_device *dev)
5110 {
5111     struct de4x5_private *lp = netdev_priv(dev);
5112     u_long iobase = dev->base_addr;
5113 
5114     if (lp->chipset == DC21140) {
5115 	outl(data, DE4X5_GEP);
5116     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5117 	outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5118     }
5119 }
5120 
5121 static int
gep_rd(struct net_device * dev)5122 gep_rd(struct net_device *dev)
5123 {
5124     struct de4x5_private *lp = netdev_priv(dev);
5125     u_long iobase = dev->base_addr;
5126 
5127     if (lp->chipset == DC21140) {
5128 	return inl(DE4X5_GEP);
5129     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5130 	return inl(DE4X5_SIGR) & 0x000fffff;
5131     }
5132 
5133     return 0;
5134 }
5135 
5136 static void
yawn(struct net_device * dev,int state)5137 yawn(struct net_device *dev, int state)
5138 {
5139     struct de4x5_private *lp = netdev_priv(dev);
5140     u_long iobase = dev->base_addr;
5141 
5142     if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5143 
5144     if(lp->bus == EISA) {
5145 	switch(state) {
5146 	  case WAKEUP:
5147 	    outb(WAKEUP, PCI_CFPM);
5148 	    mdelay(10);
5149 	    break;
5150 
5151 	  case SNOOZE:
5152 	    outb(SNOOZE, PCI_CFPM);
5153 	    break;
5154 
5155 	  case SLEEP:
5156 	    outl(0, DE4X5_SICR);
5157 	    outb(SLEEP, PCI_CFPM);
5158 	    break;
5159 	}
5160     } else {
5161 	struct pci_dev *pdev = to_pci_dev (lp->gendev);
5162 	switch(state) {
5163 	  case WAKEUP:
5164 	    pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5165 	    mdelay(10);
5166 	    break;
5167 
5168 	  case SNOOZE:
5169 	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5170 	    break;
5171 
5172 	  case SLEEP:
5173 	    outl(0, DE4X5_SICR);
5174 	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5175 	    break;
5176 	}
5177     }
5178 }
5179 
5180 static void
de4x5_parse_params(struct net_device * dev)5181 de4x5_parse_params(struct net_device *dev)
5182 {
5183     struct de4x5_private *lp = netdev_priv(dev);
5184     char *p, *q, t;
5185 
5186     lp->params.fdx = false;
5187     lp->params.autosense = AUTO;
5188 
5189     if (args == NULL) return;
5190 
5191     if ((p = strstr(args, dev->name))) {
5192 	if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5193 	t = *q;
5194 	*q = '\0';
5195 
5196 	if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5197 
5198 	if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5199 	    if (strstr(p, "TP_NW")) {
5200 		lp->params.autosense = TP_NW;
5201 	    } else if (strstr(p, "TP")) {
5202 		lp->params.autosense = TP;
5203 	    } else if (strstr(p, "BNC_AUI")) {
5204 		lp->params.autosense = BNC;
5205 	    } else if (strstr(p, "BNC")) {
5206 		lp->params.autosense = BNC;
5207 	    } else if (strstr(p, "AUI")) {
5208 		lp->params.autosense = AUI;
5209 	    } else if (strstr(p, "10Mb")) {
5210 		lp->params.autosense = _10Mb;
5211 	    } else if (strstr(p, "100Mb")) {
5212 		lp->params.autosense = _100Mb;
5213 	    } else if (strstr(p, "AUTO")) {
5214 		lp->params.autosense = AUTO;
5215 	    }
5216 	}
5217 	*q = t;
5218     }
5219 }
5220 
5221 static void
de4x5_dbg_open(struct net_device * dev)5222 de4x5_dbg_open(struct net_device *dev)
5223 {
5224     struct de4x5_private *lp = netdev_priv(dev);
5225     int i;
5226 
5227     if (de4x5_debug & DEBUG_OPEN) {
5228 	printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5229 	printk("\tphysical address: %pM\n", dev->dev_addr);
5230 	printk("Descriptor head addresses:\n");
5231 	printk("\t0x%8.8lx  0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5232 	printk("Descriptor addresses:\nRX: ");
5233 	for (i=0;i<lp->rxRingSize-1;i++){
5234 	    if (i < 3) {
5235 		printk("0x%8.8lx  ",(u_long)&lp->rx_ring[i].status);
5236 	    }
5237 	}
5238 	printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5239 	printk("TX: ");
5240 	for (i=0;i<lp->txRingSize-1;i++){
5241 	    if (i < 3) {
5242 		printk("0x%8.8lx  ", (u_long)&lp->tx_ring[i].status);
5243 	    }
5244 	}
5245 	printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5246 	printk("Descriptor buffers:\nRX: ");
5247 	for (i=0;i<lp->rxRingSize-1;i++){
5248 	    if (i < 3) {
5249 		printk("0x%8.8x  ",le32_to_cpu(lp->rx_ring[i].buf));
5250 	    }
5251 	}
5252 	printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5253 	printk("TX: ");
5254 	for (i=0;i<lp->txRingSize-1;i++){
5255 	    if (i < 3) {
5256 		printk("0x%8.8x  ", le32_to_cpu(lp->tx_ring[i].buf));
5257 	    }
5258 	}
5259 	printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5260 	printk("Ring size:\nRX: %d\nTX: %d\n",
5261 	       (short)lp->rxRingSize,
5262 	       (short)lp->txRingSize);
5263     }
5264 }
5265 
5266 static void
de4x5_dbg_mii(struct net_device * dev,int k)5267 de4x5_dbg_mii(struct net_device *dev, int k)
5268 {
5269     struct de4x5_private *lp = netdev_priv(dev);
5270     u_long iobase = dev->base_addr;
5271 
5272     if (de4x5_debug & DEBUG_MII) {
5273 	printk("\nMII device address: %d\n", lp->phy[k].addr);
5274 	printk("MII CR:  %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5275 	printk("MII SR:  %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5276 	printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5277 	printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5278 	if (lp->phy[k].id != BROADCOM_T4) {
5279 	    printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5280 	    printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5281 	}
5282 	printk("MII 16:  %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5283 	if (lp->phy[k].id != BROADCOM_T4) {
5284 	    printk("MII 17:  %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5285 	    printk("MII 18:  %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5286 	} else {
5287 	    printk("MII 20:  %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5288 	}
5289     }
5290 }
5291 
5292 static void
de4x5_dbg_media(struct net_device * dev)5293 de4x5_dbg_media(struct net_device *dev)
5294 {
5295     struct de4x5_private *lp = netdev_priv(dev);
5296 
5297     if (lp->media != lp->c_media) {
5298 	if (de4x5_debug & DEBUG_MEDIA) {
5299 	    printk("%s: media is %s%s\n", dev->name,
5300 		   (lp->media == NC  ? "unconnected, link down or incompatible connection" :
5301 		    (lp->media == TP  ? "TP" :
5302 		     (lp->media == ANS ? "TP/Nway" :
5303 		      (lp->media == BNC ? "BNC" :
5304 		       (lp->media == AUI ? "AUI" :
5305 			(lp->media == BNC_AUI ? "BNC/AUI" :
5306 			 (lp->media == EXT_SIA ? "EXT SIA" :
5307 			  (lp->media == _100Mb  ? "100Mb/s" :
5308 			   (lp->media == _10Mb   ? "10Mb/s" :
5309 			    "???"
5310 			    ))))))))), (lp->fdx?" full duplex.":"."));
5311 	}
5312 	lp->c_media = lp->media;
5313     }
5314 }
5315 
5316 static void
de4x5_dbg_srom(struct de4x5_srom * p)5317 de4x5_dbg_srom(struct de4x5_srom *p)
5318 {
5319     int i;
5320 
5321     if (de4x5_debug & DEBUG_SROM) {
5322 	printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5323 	printk("Sub-system ID:        %04x\n", *((u_short *)p->sub_system_id));
5324 	printk("ID Block CRC:         %02x\n", (u_char)(p->id_block_crc));
5325 	printk("SROM version:         %02x\n", (u_char)(p->version));
5326 	printk("# controllers:        %02x\n", (u_char)(p->num_controllers));
5327 
5328 	printk("Hardware Address:     %pM\n", p->ieee_addr);
5329 	printk("CRC checksum:         %04x\n", (u_short)(p->chksum));
5330 	for (i=0; i<64; i++) {
5331 	    printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5332 	}
5333     }
5334 }
5335 
5336 static void
de4x5_dbg_rx(struct sk_buff * skb,int len)5337 de4x5_dbg_rx(struct sk_buff *skb, int len)
5338 {
5339     int i, j;
5340 
5341     if (de4x5_debug & DEBUG_RX) {
5342 	printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5343 	       skb->data, &skb->data[6],
5344 	       (u_char)skb->data[12],
5345 	       (u_char)skb->data[13],
5346 	       len);
5347 	for (j=0; len>0;j+=16, len-=16) {
5348 	  printk("    %03x: ",j);
5349 	  for (i=0; i<16 && i<len; i++) {
5350 	    printk("%02x ",(u_char)skb->data[i+j]);
5351 	  }
5352 	  printk("\n");
5353 	}
5354     }
5355 }
5356 
5357 /*
5358 ** Perform IOCTL call functions here. Some are privileged operations and the
5359 ** effective uid is checked in those cases. In the normal course of events
5360 ** this function is only used for my testing.
5361 */
5362 static int
de4x5_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5363 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5364 {
5365     struct de4x5_private *lp = netdev_priv(dev);
5366     struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5367     u_long iobase = dev->base_addr;
5368     int i, j, status = 0;
5369     s32 omr;
5370     union {
5371 	u8  addr[144];
5372 	u16 sval[72];
5373 	u32 lval[36];
5374     } tmp;
5375     u_long flags = 0;
5376 
5377     switch(ioc->cmd) {
5378     case DE4X5_GET_HWADDR:           /* Get the hardware address */
5379 	ioc->len = ETH_ALEN;
5380 	for (i=0; i<ETH_ALEN; i++) {
5381 	    tmp.addr[i] = dev->dev_addr[i];
5382 	}
5383 	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5384 	break;
5385 
5386     case DE4X5_SET_HWADDR:           /* Set the hardware address */
5387 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5388 	if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5389 	if (netif_queue_stopped(dev))
5390 		return -EBUSY;
5391 	netif_stop_queue(dev);
5392 	for (i=0; i<ETH_ALEN; i++) {
5393 	    dev->dev_addr[i] = tmp.addr[i];
5394 	}
5395 	build_setup_frame(dev, PHYS_ADDR_ONLY);
5396 	/* Set up the descriptor and give ownership to the card */
5397 	load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5398 		                                       SETUP_FRAME_LEN, (struct sk_buff *)1);
5399 	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5400 	outl(POLL_DEMAND, DE4X5_TPD);                /* Start the TX */
5401 	netif_wake_queue(dev);                      /* Unlock the TX ring */
5402 	break;
5403 
5404     case DE4X5_SAY_BOO:              /* Say "Boo!" to the kernel log file */
5405 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5406 	printk("%s: Boo!\n", dev->name);
5407 	break;
5408 
5409     case DE4X5_MCA_EN:               /* Enable pass all multicast addressing */
5410 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5411 	omr = inl(DE4X5_OMR);
5412 	omr |= OMR_PM;
5413 	outl(omr, DE4X5_OMR);
5414 	break;
5415 
5416     case DE4X5_GET_STATS:            /* Get the driver statistics */
5417     {
5418         struct pkt_stats statbuf;
5419 	ioc->len = sizeof(statbuf);
5420 	spin_lock_irqsave(&lp->lock, flags);
5421 	memcpy(&statbuf, &lp->pktStats, ioc->len);
5422 	spin_unlock_irqrestore(&lp->lock, flags);
5423 	if (copy_to_user(ioc->data, &statbuf, ioc->len))
5424 		return -EFAULT;
5425 	break;
5426     }
5427     case DE4X5_CLR_STATS:            /* Zero out the driver statistics */
5428 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5429 	spin_lock_irqsave(&lp->lock, flags);
5430 	memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5431 	spin_unlock_irqrestore(&lp->lock, flags);
5432 	break;
5433 
5434     case DE4X5_GET_OMR:              /* Get the OMR Register contents */
5435 	tmp.addr[0] = inl(DE4X5_OMR);
5436 	if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5437 	break;
5438 
5439     case DE4X5_SET_OMR:              /* Set the OMR Register contents */
5440 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5441 	if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5442 	outl(tmp.addr[0], DE4X5_OMR);
5443 	break;
5444 
5445     case DE4X5_GET_REG:              /* Get the DE4X5 Registers */
5446 	j = 0;
5447 	tmp.lval[0] = inl(DE4X5_STS); j+=4;
5448 	tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5449 	tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5450 	tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5451 	tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5452 	tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5453 	tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5454 	tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5455 	ioc->len = j;
5456 	if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5457 		return -EFAULT;
5458 	break;
5459 
5460 #define DE4X5_DUMP              0x0f /* Dump the DE4X5 Status */
5461 /*
5462       case DE4X5_DUMP:
5463 	j = 0;
5464 	tmp.addr[j++] = dev->irq;
5465 	for (i=0; i<ETH_ALEN; i++) {
5466 	    tmp.addr[j++] = dev->dev_addr[i];
5467 	}
5468 	tmp.addr[j++] = lp->rxRingSize;
5469 	tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5470 	tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5471 
5472 	for (i=0;i<lp->rxRingSize-1;i++){
5473 	    if (i < 3) {
5474 		tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5475 	    }
5476 	}
5477 	tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5478 	for (i=0;i<lp->txRingSize-1;i++){
5479 	    if (i < 3) {
5480 		tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5481 	    }
5482 	}
5483 	tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5484 
5485 	for (i=0;i<lp->rxRingSize-1;i++){
5486 	    if (i < 3) {
5487 		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5488 	    }
5489 	}
5490 	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5491 	for (i=0;i<lp->txRingSize-1;i++){
5492 	    if (i < 3) {
5493 		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5494 	    }
5495 	}
5496 	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5497 
5498 	for (i=0;i<lp->rxRingSize;i++){
5499 	    tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5500 	}
5501 	for (i=0;i<lp->txRingSize;i++){
5502 	    tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5503 	}
5504 
5505 	tmp.lval[j>>2] = inl(DE4X5_BMR);  j+=4;
5506 	tmp.lval[j>>2] = inl(DE4X5_TPD);  j+=4;
5507 	tmp.lval[j>>2] = inl(DE4X5_RPD);  j+=4;
5508 	tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5509 	tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5510 	tmp.lval[j>>2] = inl(DE4X5_STS);  j+=4;
5511 	tmp.lval[j>>2] = inl(DE4X5_OMR);  j+=4;
5512 	tmp.lval[j>>2] = inl(DE4X5_IMR);  j+=4;
5513 	tmp.lval[j>>2] = lp->chipset; j+=4;
5514 	if (lp->chipset == DC21140) {
5515 	    tmp.lval[j>>2] = gep_rd(dev);  j+=4;
5516 	} else {
5517 	    tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5518 	    tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5519 	    tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5520 	    tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5521 	}
5522 	tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5523 	if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5524 	    tmp.lval[j>>2] = lp->active; j+=4;
5525 	    tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5526 	    tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527 	    tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5528 	    tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5529 	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5530 		tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5531 		tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5532 	    }
5533 	    tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5534 	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5535 		tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5536 		tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5537 	    } else {
5538 		tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5539 	    }
5540 	}
5541 
5542 	tmp.addr[j++] = lp->txRingSize;
5543 	tmp.addr[j++] = netif_queue_stopped(dev);
5544 
5545 	ioc->len = j;
5546 	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5547 	break;
5548 
5549 */
5550     default:
5551 	return -EOPNOTSUPP;
5552     }
5553 
5554     return status;
5555 }
5556 
de4x5_module_init(void)5557 static int __init de4x5_module_init (void)
5558 {
5559 	int err = 0;
5560 
5561 #ifdef CONFIG_PCI
5562 	err = pci_register_driver(&de4x5_pci_driver);
5563 #endif
5564 #ifdef CONFIG_EISA
5565 	err |= eisa_driver_register (&de4x5_eisa_driver);
5566 #endif
5567 
5568 	return err;
5569 }
5570 
de4x5_module_exit(void)5571 static void __exit de4x5_module_exit (void)
5572 {
5573 #ifdef CONFIG_PCI
5574 	pci_unregister_driver (&de4x5_pci_driver);
5575 #endif
5576 #ifdef CONFIG_EISA
5577 	eisa_driver_unregister (&de4x5_eisa_driver);
5578 #endif
5579 }
5580 
5581 module_init (de4x5_module_init);
5582 module_exit (de4x5_module_exit);
5583