1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Linaro Limited
4 */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
16
17 struct optee_call_waiter {
18 struct list_head list_node;
19 struct completion c;
20 };
21
optee_cq_wait_init(struct optee_call_queue * cq,struct optee_call_waiter * w)22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23 struct optee_call_waiter *w)
24 {
25 /*
26 * We're preparing to make a call to secure world. In case we can't
27 * allocate a thread in secure world we'll end up waiting in
28 * optee_cq_wait_for_completion().
29 *
30 * Normally if there's no contention in secure world the call will
31 * complete and we can cleanup directly with optee_cq_wait_final().
32 */
33 mutex_lock(&cq->mutex);
34
35 /*
36 * We add ourselves to the queue, but we don't wait. This
37 * guarantees that we don't lose a completion if secure world
38 * returns busy and another thread just exited and try to complete
39 * someone.
40 */
41 init_completion(&w->c);
42 list_add_tail(&w->list_node, &cq->waiters);
43
44 mutex_unlock(&cq->mutex);
45 }
46
optee_cq_wait_for_completion(struct optee_call_queue * cq,struct optee_call_waiter * w)47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48 struct optee_call_waiter *w)
49 {
50 wait_for_completion(&w->c);
51
52 mutex_lock(&cq->mutex);
53
54 /* Move to end of list to get out of the way for other waiters */
55 list_del(&w->list_node);
56 reinit_completion(&w->c);
57 list_add_tail(&w->list_node, &cq->waiters);
58
59 mutex_unlock(&cq->mutex);
60 }
61
optee_cq_complete_one(struct optee_call_queue * cq)62 static void optee_cq_complete_one(struct optee_call_queue *cq)
63 {
64 struct optee_call_waiter *w;
65
66 list_for_each_entry(w, &cq->waiters, list_node) {
67 if (!completion_done(&w->c)) {
68 complete(&w->c);
69 break;
70 }
71 }
72 }
73
optee_cq_wait_final(struct optee_call_queue * cq,struct optee_call_waiter * w)74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75 struct optee_call_waiter *w)
76 {
77 /*
78 * We're done with the call to secure world. The thread in secure
79 * world that was used for this call is now available for some
80 * other task to use.
81 */
82 mutex_lock(&cq->mutex);
83
84 /* Get out of the list */
85 list_del(&w->list_node);
86
87 /* Wake up one eventual waiting task */
88 optee_cq_complete_one(cq);
89
90 /*
91 * If we're completed we've got a completion from another task that
92 * was just done with its call to secure world. Since yet another
93 * thread now is available in secure world wake up another eventual
94 * waiting task.
95 */
96 if (completion_done(&w->c))
97 optee_cq_complete_one(cq);
98
99 mutex_unlock(&cq->mutex);
100 }
101
102 /* Requires the filpstate mutex to be held */
find_session(struct optee_context_data * ctxdata,u32 session_id)103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104 u32 session_id)
105 {
106 struct optee_session *sess;
107
108 list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109 if (sess->session_id == session_id)
110 return sess;
111
112 return NULL;
113 }
114
115 /**
116 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117 * @ctx: calling context
118 * @parg: physical address of message to pass to secure world
119 *
120 * Does and SMC to OP-TEE in secure world and handles eventual resulting
121 * Remote Procedure Calls (RPC) from OP-TEE.
122 *
123 * Returns return code from secure world, 0 is OK
124 */
optee_do_call_with_arg(struct tee_context * ctx,phys_addr_t parg)125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
126 {
127 struct optee *optee = tee_get_drvdata(ctx->teedev);
128 struct optee_call_waiter w;
129 struct optee_rpc_param param = { };
130 struct optee_call_ctx call_ctx = { };
131 u32 ret;
132
133 param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134 reg_pair_from_64(¶m.a1, ¶m.a2, parg);
135 /* Initialize waiter */
136 optee_cq_wait_init(&optee->call_queue, &w);
137 while (true) {
138 struct arm_smccc_res res;
139
140 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141 param.a4, param.a5, param.a6, param.a7,
142 &res);
143
144 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145 /*
146 * Out of threads in secure world, wait for a thread
147 * become available.
148 */
149 optee_cq_wait_for_completion(&optee->call_queue, &w);
150 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151 might_sleep();
152 param.a0 = res.a0;
153 param.a1 = res.a1;
154 param.a2 = res.a2;
155 param.a3 = res.a3;
156 optee_handle_rpc(ctx, ¶m, &call_ctx);
157 } else {
158 ret = res.a0;
159 break;
160 }
161 }
162
163 optee_rpc_finalize_call(&call_ctx);
164 /*
165 * We're done with our thread in secure world, if there's any
166 * thread waiters wake up one.
167 */
168 optee_cq_wait_final(&optee->call_queue, &w);
169
170 return ret;
171 }
172
get_msg_arg(struct tee_context * ctx,size_t num_params,struct optee_msg_arg ** msg_arg,phys_addr_t * msg_parg)173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
174 struct optee_msg_arg **msg_arg,
175 phys_addr_t *msg_parg)
176 {
177 int rc;
178 struct tee_shm *shm;
179 struct optee_msg_arg *ma;
180
181 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
182 TEE_SHM_MAPPED);
183 if (IS_ERR(shm))
184 return shm;
185
186 ma = tee_shm_get_va(shm, 0);
187 if (IS_ERR(ma)) {
188 rc = PTR_ERR(ma);
189 goto out;
190 }
191
192 rc = tee_shm_get_pa(shm, 0, msg_parg);
193 if (rc)
194 goto out;
195
196 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
197 ma->num_params = num_params;
198 *msg_arg = ma;
199 out:
200 if (rc) {
201 tee_shm_free(shm);
202 return ERR_PTR(rc);
203 }
204
205 return shm;
206 }
207
optee_open_session(struct tee_context * ctx,struct tee_ioctl_open_session_arg * arg,struct tee_param * param)208 int optee_open_session(struct tee_context *ctx,
209 struct tee_ioctl_open_session_arg *arg,
210 struct tee_param *param)
211 {
212 struct optee_context_data *ctxdata = ctx->data;
213 int rc;
214 struct tee_shm *shm;
215 struct optee_msg_arg *msg_arg;
216 phys_addr_t msg_parg;
217 struct optee_session *sess = NULL;
218
219 /* +2 for the meta parameters added below */
220 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
221 if (IS_ERR(shm))
222 return PTR_ERR(shm);
223
224 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
225 msg_arg->cancel_id = arg->cancel_id;
226
227 /*
228 * Initialize and add the meta parameters needed when opening a
229 * session.
230 */
231 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
232 OPTEE_MSG_ATTR_META;
233 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234 OPTEE_MSG_ATTR_META;
235 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
236 memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
237 msg_arg->params[1].u.value.c = arg->clnt_login;
238
239 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
240 if (rc)
241 goto out;
242
243 sess = kzalloc(sizeof(*sess), GFP_KERNEL);
244 if (!sess) {
245 rc = -ENOMEM;
246 goto out;
247 }
248
249 if (optee_do_call_with_arg(ctx, msg_parg)) {
250 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
251 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
252 }
253
254 if (msg_arg->ret == TEEC_SUCCESS) {
255 /* A new session has been created, add it to the list. */
256 sess->session_id = msg_arg->session;
257 mutex_lock(&ctxdata->mutex);
258 list_add(&sess->list_node, &ctxdata->sess_list);
259 mutex_unlock(&ctxdata->mutex);
260 } else {
261 kfree(sess);
262 }
263
264 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
265 arg->ret = TEEC_ERROR_COMMUNICATION;
266 arg->ret_origin = TEEC_ORIGIN_COMMS;
267 /* Close session again to avoid leakage */
268 optee_close_session(ctx, msg_arg->session);
269 } else {
270 arg->session = msg_arg->session;
271 arg->ret = msg_arg->ret;
272 arg->ret_origin = msg_arg->ret_origin;
273 }
274 out:
275 tee_shm_free(shm);
276
277 return rc;
278 }
279
optee_close_session(struct tee_context * ctx,u32 session)280 int optee_close_session(struct tee_context *ctx, u32 session)
281 {
282 struct optee_context_data *ctxdata = ctx->data;
283 struct tee_shm *shm;
284 struct optee_msg_arg *msg_arg;
285 phys_addr_t msg_parg;
286 struct optee_session *sess;
287
288 /* Check that the session is valid and remove it from the list */
289 mutex_lock(&ctxdata->mutex);
290 sess = find_session(ctxdata, session);
291 if (sess)
292 list_del(&sess->list_node);
293 mutex_unlock(&ctxdata->mutex);
294 if (!sess)
295 return -EINVAL;
296 kfree(sess);
297
298 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
299 if (IS_ERR(shm))
300 return PTR_ERR(shm);
301
302 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
303 msg_arg->session = session;
304 optee_do_call_with_arg(ctx, msg_parg);
305
306 tee_shm_free(shm);
307 return 0;
308 }
309
optee_invoke_func(struct tee_context * ctx,struct tee_ioctl_invoke_arg * arg,struct tee_param * param)310 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
311 struct tee_param *param)
312 {
313 struct optee_context_data *ctxdata = ctx->data;
314 struct tee_shm *shm;
315 struct optee_msg_arg *msg_arg;
316 phys_addr_t msg_parg;
317 struct optee_session *sess;
318 int rc;
319
320 /* Check that the session is valid */
321 mutex_lock(&ctxdata->mutex);
322 sess = find_session(ctxdata, arg->session);
323 mutex_unlock(&ctxdata->mutex);
324 if (!sess)
325 return -EINVAL;
326
327 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
328 if (IS_ERR(shm))
329 return PTR_ERR(shm);
330 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
331 msg_arg->func = arg->func;
332 msg_arg->session = arg->session;
333 msg_arg->cancel_id = arg->cancel_id;
334
335 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
336 if (rc)
337 goto out;
338
339 if (optee_do_call_with_arg(ctx, msg_parg)) {
340 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
341 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
342 }
343
344 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
345 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
346 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
347 }
348
349 arg->ret = msg_arg->ret;
350 arg->ret_origin = msg_arg->ret_origin;
351 out:
352 tee_shm_free(shm);
353 return rc;
354 }
355
optee_cancel_req(struct tee_context * ctx,u32 cancel_id,u32 session)356 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
357 {
358 struct optee_context_data *ctxdata = ctx->data;
359 struct tee_shm *shm;
360 struct optee_msg_arg *msg_arg;
361 phys_addr_t msg_parg;
362 struct optee_session *sess;
363
364 /* Check that the session is valid */
365 mutex_lock(&ctxdata->mutex);
366 sess = find_session(ctxdata, session);
367 mutex_unlock(&ctxdata->mutex);
368 if (!sess)
369 return -EINVAL;
370
371 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
372 if (IS_ERR(shm))
373 return PTR_ERR(shm);
374
375 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
376 msg_arg->session = session;
377 msg_arg->cancel_id = cancel_id;
378 optee_do_call_with_arg(ctx, msg_parg);
379
380 tee_shm_free(shm);
381 return 0;
382 }
383
384 /**
385 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
386 * in OP-TEE
387 * @optee: main service struct
388 */
optee_enable_shm_cache(struct optee * optee)389 void optee_enable_shm_cache(struct optee *optee)
390 {
391 struct optee_call_waiter w;
392
393 /* We need to retry until secure world isn't busy. */
394 optee_cq_wait_init(&optee->call_queue, &w);
395 while (true) {
396 struct arm_smccc_res res;
397
398 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
399 0, &res);
400 if (res.a0 == OPTEE_SMC_RETURN_OK)
401 break;
402 optee_cq_wait_for_completion(&optee->call_queue, &w);
403 }
404 optee_cq_wait_final(&optee->call_queue, &w);
405 }
406
407 /**
408 * optee_disable_shm_cache() - Disables caching of some shared memory allocation
409 * in OP-TEE
410 * @optee: main service struct
411 */
optee_disable_shm_cache(struct optee * optee)412 void optee_disable_shm_cache(struct optee *optee)
413 {
414 struct optee_call_waiter w;
415
416 /* We need to retry until secure world isn't busy. */
417 optee_cq_wait_init(&optee->call_queue, &w);
418 while (true) {
419 union {
420 struct arm_smccc_res smccc;
421 struct optee_smc_disable_shm_cache_result result;
422 } res;
423
424 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
425 0, &res.smccc);
426 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
427 break; /* All shm's freed */
428 if (res.result.status == OPTEE_SMC_RETURN_OK) {
429 struct tee_shm *shm;
430
431 shm = reg_pair_to_ptr(res.result.shm_upper32,
432 res.result.shm_lower32);
433 tee_shm_free(shm);
434 } else {
435 optee_cq_wait_for_completion(&optee->call_queue, &w);
436 }
437 }
438 optee_cq_wait_final(&optee->call_queue, &w);
439 }
440
441 #define PAGELIST_ENTRIES_PER_PAGE \
442 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
443
444 /**
445 * optee_fill_pages_list() - write list of user pages to given shared
446 * buffer.
447 *
448 * @dst: page-aligned buffer where list of pages will be stored
449 * @pages: array of pages that represents shared buffer
450 * @num_pages: number of entries in @pages
451 * @page_offset: offset of user buffer from page start
452 *
453 * @dst should be big enough to hold list of user page addresses and
454 * links to the next pages of buffer
455 */
optee_fill_pages_list(u64 * dst,struct page ** pages,int num_pages,size_t page_offset)456 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
457 size_t page_offset)
458 {
459 int n = 0;
460 phys_addr_t optee_page;
461 /*
462 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
463 * for details.
464 */
465 struct {
466 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
467 u64 next_page_data;
468 } *pages_data;
469
470 /*
471 * Currently OP-TEE uses 4k page size and it does not looks
472 * like this will change in the future. On other hand, there are
473 * no know ARM architectures with page size < 4k.
474 * Thus the next built assert looks redundant. But the following
475 * code heavily relies on this assumption, so it is better be
476 * safe than sorry.
477 */
478 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
479
480 pages_data = (void *)dst;
481 /*
482 * If linux page is bigger than 4k, and user buffer offset is
483 * larger than 4k/8k/12k/etc this will skip first 4k pages,
484 * because they bear no value data for OP-TEE.
485 */
486 optee_page = page_to_phys(*pages) +
487 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
488
489 while (true) {
490 pages_data->pages_list[n++] = optee_page;
491
492 if (n == PAGELIST_ENTRIES_PER_PAGE) {
493 pages_data->next_page_data =
494 virt_to_phys(pages_data + 1);
495 pages_data++;
496 n = 0;
497 }
498
499 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
500 if (!(optee_page & ~PAGE_MASK)) {
501 if (!--num_pages)
502 break;
503 pages++;
504 optee_page = page_to_phys(*pages);
505 }
506 }
507 }
508
509 /*
510 * The final entry in each pagelist page is a pointer to the next
511 * pagelist page.
512 */
get_pages_list_size(size_t num_entries)513 static size_t get_pages_list_size(size_t num_entries)
514 {
515 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
516
517 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
518 }
519
optee_allocate_pages_list(size_t num_entries)520 u64 *optee_allocate_pages_list(size_t num_entries)
521 {
522 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
523 }
524
optee_free_pages_list(void * list,size_t num_entries)525 void optee_free_pages_list(void *list, size_t num_entries)
526 {
527 free_pages_exact(list, get_pages_list_size(num_entries));
528 }
529
is_normal_memory(pgprot_t p)530 static bool is_normal_memory(pgprot_t p)
531 {
532 #if defined(CONFIG_ARM)
533 return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
534 #elif defined(CONFIG_ARM64)
535 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
536 #else
537 #error "Unuspported architecture"
538 #endif
539 }
540
__check_mem_type(struct vm_area_struct * vma,unsigned long end)541 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
542 {
543 while (vma && is_normal_memory(vma->vm_page_prot)) {
544 if (vma->vm_end >= end)
545 return 0;
546 vma = vma->vm_next;
547 }
548
549 return -EINVAL;
550 }
551
check_mem_type(unsigned long start,size_t num_pages)552 static int check_mem_type(unsigned long start, size_t num_pages)
553 {
554 struct mm_struct *mm = current->mm;
555 int rc;
556
557 down_read(&mm->mmap_sem);
558 rc = __check_mem_type(find_vma(mm, start),
559 start + num_pages * PAGE_SIZE);
560 up_read(&mm->mmap_sem);
561
562 return rc;
563 }
564
optee_shm_register(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)565 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
566 struct page **pages, size_t num_pages,
567 unsigned long start)
568 {
569 struct tee_shm *shm_arg = NULL;
570 struct optee_msg_arg *msg_arg;
571 u64 *pages_list;
572 phys_addr_t msg_parg;
573 int rc;
574
575 if (!num_pages)
576 return -EINVAL;
577
578 rc = check_mem_type(start, num_pages);
579 if (rc)
580 return rc;
581
582 pages_list = optee_allocate_pages_list(num_pages);
583 if (!pages_list)
584 return -ENOMEM;
585
586 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
587 if (IS_ERR(shm_arg)) {
588 rc = PTR_ERR(shm_arg);
589 goto out;
590 }
591
592 optee_fill_pages_list(pages_list, pages, num_pages,
593 tee_shm_get_page_offset(shm));
594
595 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
596 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
597 OPTEE_MSG_ATTR_NONCONTIG;
598 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
599 msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
600 /*
601 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
602 * store buffer offset from 4k page, as described in OP-TEE ABI.
603 */
604 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
605 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
606
607 if (optee_do_call_with_arg(ctx, msg_parg) ||
608 msg_arg->ret != TEEC_SUCCESS)
609 rc = -EINVAL;
610
611 tee_shm_free(shm_arg);
612 out:
613 optee_free_pages_list(pages_list, num_pages);
614 return rc;
615 }
616
optee_shm_unregister(struct tee_context * ctx,struct tee_shm * shm)617 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
618 {
619 struct tee_shm *shm_arg;
620 struct optee_msg_arg *msg_arg;
621 phys_addr_t msg_parg;
622 int rc = 0;
623
624 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
625 if (IS_ERR(shm_arg))
626 return PTR_ERR(shm_arg);
627
628 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
629
630 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
631 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
632
633 if (optee_do_call_with_arg(ctx, msg_parg) ||
634 msg_arg->ret != TEEC_SUCCESS)
635 rc = -EINVAL;
636 tee_shm_free(shm_arg);
637 return rc;
638 }
639
optee_shm_register_supp(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)640 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
641 struct page **pages, size_t num_pages,
642 unsigned long start)
643 {
644 /*
645 * We don't want to register supplicant memory in OP-TEE.
646 * Instead information about it will be passed in RPC code.
647 */
648 return check_mem_type(start, num_pages);
649 }
650
optee_shm_unregister_supp(struct tee_context * ctx,struct tee_shm * shm)651 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
652 {
653 return 0;
654 }
655