1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 */
21
22 /*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32 #define DRV_NAME "3c59x"
33
34
35
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63 #define tx_interrupt_mitigation 1
64
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <linux/uaccess.h>
96
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 #include <linux/delay.h>
103
104
105 static const char version[] =
106 DRV_NAME ": Donald Becker and others.\n";
107
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111
112
113 /* Operational parameter that usually are not changed. */
114
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126
127 #define PFX DRV_NAME ": "
128
129
130
131 /*
132 Theory of Operation
133
134 I. Board Compatibility
135
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145 II. Board-specific settings
146
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154
155 III. Driver operation
156
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193
194 IV. Notes
195
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
201
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212 };
213
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
240
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
247
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
253
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
259
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
265
266 CH_905BT4,
267 CH_920B_EMB_WNM,
268 };
269
270
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
274 */
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
291
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374 {NULL,}, /* NULL terminated list. */
375 };
376
377
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426 {0,} /* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
434
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
437 */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440
441 /* The top five bits written to EL3_CMD are a command, the lower
442 11 bits are the parameter, if applicable.
443 Note that 11 parameters bits was fine for ethernet, but the new chip
444 can handle FDDI length frames (~4500 octets) and now parameters count
445 32-bit 'Dwords' rather than octets. */
446
447 enum vortex_cmd {
448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462
463 /* Bits in the general status register. */
464 enum vortex_status {
465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 IntReq = 0x0040, StatsFull = 0x0080,
468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
471 };
472
473 /* Register window 1 offsets, the window used in normal operation.
474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
483 IntrStatus=0x0E, /* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 DriverTune=13, Checksum=15};
496
497 enum Window2 { /* Window 2. */
498 Wn2_ResetOptions=12,
499 };
500 enum Window3 { /* Window 3: MAC/config bits. */
501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503
504 #define BFEXT(value, offset, bitcount) \
505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506
507 #define BFINS(lhs, rhs, offset, bitcount) \
508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510
511 #define RAM_SIZE(v) BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
513 #define RAM_SPEED(v) BFEXT(v, 4, 2)
514 #define ROM_SIZE(v) BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
516 #define XCVR(v) BFEXT(v, 20, 4)
517 #define AUTOSELECT(v) BFEXT(v, 24, 1)
518
519 enum Window4 { /* Window 4: Xcvr/media bits. */
520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
526 Media_LnkBeat = 0x0800,
527 };
528 enum Window7 { /* Window 7: Bus Master control. */
529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537
538 /* The Rx and Tx descriptor lists.
539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
540 alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
543 struct boom_rx_desc {
544 __le32 next; /* Last entry points to 0. */
545 __le32 status;
546 __le32 addr; /* Up to 63 addr/len pairs possible. */
547 __le32 length; /* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 RxDComplete=0x00008000, RxDError=0x4000,
552 /* See boomerang_rx() for actual error bits */
553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562
563 struct boom_tx_desc {
564 __le32 next; /* Last entry points to 0. */
565 __le32 status; /* bits 0:12 length, others see below. */
566 #if DO_ZEROCOPY
567 struct {
568 __le32 addr;
569 __le32 length;
570 } frag[1+MAX_SKB_FRAGS];
571 #else
572 __le32 addr;
573 __le32 length;
574 #endif
575 };
576
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 CRCDisable=0x2000, TxDComplete=0x8000,
580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
582 };
583
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586
587 struct vortex_extra_stats {
588 unsigned long tx_deferred;
589 unsigned long tx_max_collisions;
590 unsigned long tx_multiple_collisions;
591 unsigned long tx_single_collisions;
592 unsigned long rx_bad_ssd;
593 };
594
595 struct vortex_private {
596 /* The Rx and Tx rings should be quad-word-aligned. */
597 struct boom_rx_desc* rx_ring;
598 struct boom_tx_desc* tx_ring;
599 dma_addr_t rx_ring_dma;
600 dma_addr_t tx_ring_dma;
601 /* The addresses of transmit- and receive-in-place skbuffs. */
602 struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 unsigned int cur_rx, cur_tx; /* The next free ring entry */
605 unsigned int dirty_tx; /* The ring entries to be free()ed. */
606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
609
610 /* PCI configuration space information. */
611 struct device *gendev;
612 void __iomem *ioaddr; /* IO address space */
613 void __iomem *cb_fn_base; /* CardBus function status addr space. */
614
615 /* Some values here only for performance evaluation and path-coverage */
616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 int card_idx;
618
619 /* The remainder are related to chip state, mostly media selection. */
620 struct timer_list timer; /* Media selection timer. */
621 int options; /* User-settable misc. driver options. */
622 unsigned int media_override:4, /* Passed-in media type. */
623 default_media:4, /* Read from the EEPROM/Wn3_Config. */
624 full_duplex:1, autoselect:1,
625 bus_master:1, /* Vortex can only do a fragment bus-m. */
626 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
627 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
628 partner_flow_ctrl:1, /* Partner supports flow control */
629 has_nway:1,
630 enable_wol:1, /* Wake-on-LAN is enabled */
631 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
632 open:1,
633 medialock:1,
634 large_frames:1, /* accept large frames */
635 handling_irq:1; /* private in_irq indicator */
636 /* {get|set}_wol operations are already serialized by rtnl.
637 * no additional locking is required for the enable_wol and acpi_set_WOL()
638 */
639 int drv_flags;
640 u16 status_enable;
641 u16 intr_enable;
642 u16 available_media; /* From Wn3_Options. */
643 u16 capabilities, info1, info2; /* Various, from EEPROM. */
644 u16 advertising; /* NWay media advertisement */
645 unsigned char phys[2]; /* MII device addresses. */
646 u16 deferred; /* Resend these interrupts when we
647 * bale from the ISR */
648 u16 io_size; /* Size of PCI region (for release_region) */
649
650 /* Serialises access to hardware other than MII and variables below.
651 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
652 spinlock_t lock;
653
654 spinlock_t mii_lock; /* Serialises access to MII */
655 struct mii_if_info mii; /* MII lib hooks/info */
656 spinlock_t window_lock; /* Serialises access to windowed regs */
657 int window; /* Register window */
658 };
659
window_set(struct vortex_private * vp,int window)660 static void window_set(struct vortex_private *vp, int window)
661 {
662 if (window != vp->window) {
663 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
664 vp->window = window;
665 }
666 }
667
668 #define DEFINE_WINDOW_IO(size) \
669 static u ## size \
670 window_read ## size(struct vortex_private *vp, int window, int addr) \
671 { \
672 unsigned long flags; \
673 u ## size ret; \
674 spin_lock_irqsave(&vp->window_lock, flags); \
675 window_set(vp, window); \
676 ret = ioread ## size(vp->ioaddr + addr); \
677 spin_unlock_irqrestore(&vp->window_lock, flags); \
678 return ret; \
679 } \
680 static void \
681 window_write ## size(struct vortex_private *vp, u ## size value, \
682 int window, int addr) \
683 { \
684 unsigned long flags; \
685 spin_lock_irqsave(&vp->window_lock, flags); \
686 window_set(vp, window); \
687 iowrite ## size(value, vp->ioaddr + addr); \
688 spin_unlock_irqrestore(&vp->window_lock, flags); \
689 }
690 DEFINE_WINDOW_IO(8)
691 DEFINE_WINDOW_IO(16)
692 DEFINE_WINDOW_IO(32)
693
694 #ifdef CONFIG_PCI
695 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
696 #else
697 #define DEVICE_PCI(dev) NULL
698 #endif
699
700 #define VORTEX_PCI(vp) \
701 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
702
703 #ifdef CONFIG_EISA
704 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
705 #else
706 #define DEVICE_EISA(dev) NULL
707 #endif
708
709 #define VORTEX_EISA(vp) \
710 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
711
712 /* The action to take with a media selection timer tick.
713 Note that we deviate from the 3Com order by checking 10base2 before AUI.
714 */
715 enum xcvr_types {
716 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
717 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
718 };
719
720 static const struct media_table {
721 char *name;
722 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
723 mask:8, /* The transceiver-present bit in Wn3_Config.*/
724 next:8; /* The media type to try next. */
725 int wait; /* Time before we check media status. */
726 } media_tbl[] = {
727 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
728 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
729 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
730 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
731 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
732 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
733 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
734 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
735 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
736 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
737 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
738 };
739
740 static struct {
741 const char str[ETH_GSTRING_LEN];
742 } ethtool_stats_keys[] = {
743 { "tx_deferred" },
744 { "tx_max_collisions" },
745 { "tx_multiple_collisions" },
746 { "tx_single_collisions" },
747 { "rx_bad_ssd" },
748 };
749
750 /* number of ETHTOOL_GSTATS u64's */
751 #define VORTEX_NUM_STATS 5
752
753 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
754 int chip_idx, int card_idx);
755 static int vortex_up(struct net_device *dev);
756 static void vortex_down(struct net_device *dev, int final);
757 static int vortex_open(struct net_device *dev);
758 static void mdio_sync(struct vortex_private *vp, int bits);
759 static int mdio_read(struct net_device *dev, int phy_id, int location);
760 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
761 static void vortex_timer(struct timer_list *t);
762 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
763 struct net_device *dev);
764 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
765 struct net_device *dev);
766 static int vortex_rx(struct net_device *dev);
767 static int boomerang_rx(struct net_device *dev);
768 static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
769 static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
770 static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
771 static int vortex_close(struct net_device *dev);
772 static void dump_tx_ring(struct net_device *dev);
773 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
774 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
775 static void set_rx_mode(struct net_device *dev);
776 #ifdef CONFIG_PCI
777 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
778 #endif
779 static void vortex_tx_timeout(struct net_device *dev);
780 static void acpi_set_WOL(struct net_device *dev);
781 static const struct ethtool_ops vortex_ethtool_ops;
782 static void set_8021q_mode(struct net_device *dev, int enable);
783
784 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
785 /* Option count limit only -- unlimited interfaces are supported. */
786 #define MAX_UNITS 8
787 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
788 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
789 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int global_options = -1;
794 static int global_full_duplex = -1;
795 static int global_enable_wol = -1;
796 static int global_use_mmio = -1;
797
798 /* Variables to work-around the Compaq PCI BIOS32 problem. */
799 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
800 static struct net_device *compaq_net_device;
801
802 static int vortex_cards_found;
803
804 module_param(debug, int, 0);
805 module_param(global_options, int, 0);
806 module_param_array(options, int, NULL, 0);
807 module_param(global_full_duplex, int, 0);
808 module_param_array(full_duplex, int, NULL, 0);
809 module_param_array(hw_checksums, int, NULL, 0);
810 module_param_array(flow_ctrl, int, NULL, 0);
811 module_param(global_enable_wol, int, 0);
812 module_param_array(enable_wol, int, NULL, 0);
813 module_param(rx_copybreak, int, 0);
814 module_param(max_interrupt_work, int, 0);
815 module_param_hw(compaq_ioaddr, int, ioport, 0);
816 module_param_hw(compaq_irq, int, irq, 0);
817 module_param(compaq_device_id, int, 0);
818 module_param(watchdog, int, 0);
819 module_param(global_use_mmio, int, 0);
820 module_param_array(use_mmio, int, NULL, 0);
821 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
822 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
823 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
824 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
825 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
826 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
827 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
828 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
829 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
830 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
831 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
832 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
833 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
836 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
837 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
838
839 #ifdef CONFIG_NET_POLL_CONTROLLER
poll_vortex(struct net_device * dev)840 static void poll_vortex(struct net_device *dev)
841 {
842 vortex_boomerang_interrupt(dev->irq, dev);
843 }
844 #endif
845
846 #ifdef CONFIG_PM
847
vortex_suspend(struct device * dev)848 static int vortex_suspend(struct device *dev)
849 {
850 struct pci_dev *pdev = to_pci_dev(dev);
851 struct net_device *ndev = pci_get_drvdata(pdev);
852
853 if (!ndev || !netif_running(ndev))
854 return 0;
855
856 netif_device_detach(ndev);
857 vortex_down(ndev, 1);
858
859 return 0;
860 }
861
vortex_resume(struct device * dev)862 static int vortex_resume(struct device *dev)
863 {
864 struct pci_dev *pdev = to_pci_dev(dev);
865 struct net_device *ndev = pci_get_drvdata(pdev);
866 int err;
867
868 if (!ndev || !netif_running(ndev))
869 return 0;
870
871 err = vortex_up(ndev);
872 if (err)
873 return err;
874
875 netif_device_attach(ndev);
876
877 return 0;
878 }
879
880 static const struct dev_pm_ops vortex_pm_ops = {
881 .suspend = vortex_suspend,
882 .resume = vortex_resume,
883 .freeze = vortex_suspend,
884 .thaw = vortex_resume,
885 .poweroff = vortex_suspend,
886 .restore = vortex_resume,
887 };
888
889 #define VORTEX_PM_OPS (&vortex_pm_ops)
890
891 #else /* !CONFIG_PM */
892
893 #define VORTEX_PM_OPS NULL
894
895 #endif /* !CONFIG_PM */
896
897 #ifdef CONFIG_EISA
898 static const struct eisa_device_id vortex_eisa_ids[] = {
899 { "TCM5920", CH_3C592 },
900 { "TCM5970", CH_3C597 },
901 { "" }
902 };
903 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
904
vortex_eisa_probe(struct device * device)905 static int vortex_eisa_probe(struct device *device)
906 {
907 void __iomem *ioaddr;
908 struct eisa_device *edev;
909
910 edev = to_eisa_device(device);
911
912 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
913 return -EBUSY;
914
915 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
916
917 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
918 edev->id.driver_data, vortex_cards_found)) {
919 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
920 return -ENODEV;
921 }
922
923 vortex_cards_found++;
924
925 return 0;
926 }
927
vortex_eisa_remove(struct device * device)928 static int vortex_eisa_remove(struct device *device)
929 {
930 struct eisa_device *edev;
931 struct net_device *dev;
932 struct vortex_private *vp;
933 void __iomem *ioaddr;
934
935 edev = to_eisa_device(device);
936 dev = eisa_get_drvdata(edev);
937
938 if (!dev) {
939 pr_err("vortex_eisa_remove called for Compaq device!\n");
940 BUG();
941 }
942
943 vp = netdev_priv(dev);
944 ioaddr = vp->ioaddr;
945
946 unregister_netdev(dev);
947 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
948 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
949
950 free_netdev(dev);
951 return 0;
952 }
953
954 static struct eisa_driver vortex_eisa_driver = {
955 .id_table = vortex_eisa_ids,
956 .driver = {
957 .name = "3c59x",
958 .probe = vortex_eisa_probe,
959 .remove = vortex_eisa_remove
960 }
961 };
962
963 #endif /* CONFIG_EISA */
964
965 /* returns count found (>= 0), or negative on error */
vortex_eisa_init(void)966 static int __init vortex_eisa_init(void)
967 {
968 int eisa_found = 0;
969 int orig_cards_found = vortex_cards_found;
970
971 #ifdef CONFIG_EISA
972 int err;
973
974 err = eisa_driver_register (&vortex_eisa_driver);
975 if (!err) {
976 /*
977 * Because of the way EISA bus is probed, we cannot assume
978 * any device have been found when we exit from
979 * eisa_driver_register (the bus root driver may not be
980 * initialized yet). So we blindly assume something was
981 * found, and let the sysfs magic happened...
982 */
983 eisa_found = 1;
984 }
985 #endif
986
987 /* Special code to work-around the Compaq PCI BIOS32 problem. */
988 if (compaq_ioaddr) {
989 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
990 compaq_irq, compaq_device_id, vortex_cards_found++);
991 }
992
993 return vortex_cards_found - orig_cards_found + eisa_found;
994 }
995
996 /* returns count (>= 0), or negative on error */
vortex_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)997 static int vortex_init_one(struct pci_dev *pdev,
998 const struct pci_device_id *ent)
999 {
1000 int rc, unit, pci_bar;
1001 struct vortex_chip_info *vci;
1002 void __iomem *ioaddr;
1003
1004 /* wake up and enable device */
1005 rc = pci_enable_device(pdev);
1006 if (rc < 0)
1007 goto out;
1008
1009 rc = pci_request_regions(pdev, DRV_NAME);
1010 if (rc < 0)
1011 goto out_disable;
1012
1013 unit = vortex_cards_found;
1014
1015 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1016 /* Determine the default if the user didn't override us */
1017 vci = &vortex_info_tbl[ent->driver_data];
1018 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1019 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1020 pci_bar = use_mmio[unit] ? 1 : 0;
1021 else
1022 pci_bar = global_use_mmio ? 1 : 0;
1023
1024 ioaddr = pci_iomap(pdev, pci_bar, 0);
1025 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1026 ioaddr = pci_iomap(pdev, 0, 0);
1027 if (!ioaddr) {
1028 rc = -ENOMEM;
1029 goto out_release;
1030 }
1031
1032 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1033 ent->driver_data, unit);
1034 if (rc < 0)
1035 goto out_iounmap;
1036
1037 vortex_cards_found++;
1038 goto out;
1039
1040 out_iounmap:
1041 pci_iounmap(pdev, ioaddr);
1042 out_release:
1043 pci_release_regions(pdev);
1044 out_disable:
1045 pci_disable_device(pdev);
1046 out:
1047 return rc;
1048 }
1049
1050 static const struct net_device_ops boomrang_netdev_ops = {
1051 .ndo_open = vortex_open,
1052 .ndo_stop = vortex_close,
1053 .ndo_start_xmit = boomerang_start_xmit,
1054 .ndo_tx_timeout = vortex_tx_timeout,
1055 .ndo_get_stats = vortex_get_stats,
1056 #ifdef CONFIG_PCI
1057 .ndo_do_ioctl = vortex_ioctl,
1058 #endif
1059 .ndo_set_rx_mode = set_rx_mode,
1060 .ndo_set_mac_address = eth_mac_addr,
1061 .ndo_validate_addr = eth_validate_addr,
1062 #ifdef CONFIG_NET_POLL_CONTROLLER
1063 .ndo_poll_controller = poll_vortex,
1064 #endif
1065 };
1066
1067 static const struct net_device_ops vortex_netdev_ops = {
1068 .ndo_open = vortex_open,
1069 .ndo_stop = vortex_close,
1070 .ndo_start_xmit = vortex_start_xmit,
1071 .ndo_tx_timeout = vortex_tx_timeout,
1072 .ndo_get_stats = vortex_get_stats,
1073 #ifdef CONFIG_PCI
1074 .ndo_do_ioctl = vortex_ioctl,
1075 #endif
1076 .ndo_set_rx_mode = set_rx_mode,
1077 .ndo_set_mac_address = eth_mac_addr,
1078 .ndo_validate_addr = eth_validate_addr,
1079 #ifdef CONFIG_NET_POLL_CONTROLLER
1080 .ndo_poll_controller = poll_vortex,
1081 #endif
1082 };
1083
1084 /*
1085 * Start up the PCI/EISA device which is described by *gendev.
1086 * Return 0 on success.
1087 *
1088 * NOTE: pdev can be NULL, for the case of a Compaq device
1089 */
vortex_probe1(struct device * gendev,void __iomem * ioaddr,int irq,int chip_idx,int card_idx)1090 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1091 int chip_idx, int card_idx)
1092 {
1093 struct vortex_private *vp;
1094 int option;
1095 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1096 int i, step;
1097 struct net_device *dev;
1098 static int printed_version;
1099 int retval, print_info;
1100 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1101 const char *print_name = "3c59x";
1102 struct pci_dev *pdev = NULL;
1103 struct eisa_device *edev = NULL;
1104
1105 if (!printed_version) {
1106 pr_info("%s", version);
1107 printed_version = 1;
1108 }
1109
1110 if (gendev) {
1111 if ((pdev = DEVICE_PCI(gendev))) {
1112 print_name = pci_name(pdev);
1113 }
1114
1115 if ((edev = DEVICE_EISA(gendev))) {
1116 print_name = dev_name(&edev->dev);
1117 }
1118 }
1119
1120 dev = alloc_etherdev(sizeof(*vp));
1121 retval = -ENOMEM;
1122 if (!dev)
1123 goto out;
1124
1125 SET_NETDEV_DEV(dev, gendev);
1126 vp = netdev_priv(dev);
1127
1128 option = global_options;
1129
1130 /* The lower four bits are the media type. */
1131 if (dev->mem_start) {
1132 /*
1133 * The 'options' param is passed in as the third arg to the
1134 * LILO 'ether=' argument for non-modular use
1135 */
1136 option = dev->mem_start;
1137 }
1138 else if (card_idx < MAX_UNITS) {
1139 if (options[card_idx] >= 0)
1140 option = options[card_idx];
1141 }
1142
1143 if (option > 0) {
1144 if (option & 0x8000)
1145 vortex_debug = 7;
1146 if (option & 0x4000)
1147 vortex_debug = 2;
1148 if (option & 0x0400)
1149 vp->enable_wol = 1;
1150 }
1151
1152 print_info = (vortex_debug > 1);
1153 if (print_info)
1154 pr_info("See Documentation/networking/vortex.txt\n");
1155
1156 pr_info("%s: 3Com %s %s at %p.\n",
1157 print_name,
1158 pdev ? "PCI" : "EISA",
1159 vci->name,
1160 ioaddr);
1161
1162 dev->base_addr = (unsigned long)ioaddr;
1163 dev->irq = irq;
1164 dev->mtu = mtu;
1165 vp->ioaddr = ioaddr;
1166 vp->large_frames = mtu > 1500;
1167 vp->drv_flags = vci->drv_flags;
1168 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1169 vp->io_size = vci->io_size;
1170 vp->card_idx = card_idx;
1171 vp->window = -1;
1172
1173 /* module list only for Compaq device */
1174 if (gendev == NULL) {
1175 compaq_net_device = dev;
1176 }
1177
1178 /* PCI-only startup logic */
1179 if (pdev) {
1180 /* enable bus-mastering if necessary */
1181 if (vci->flags & PCI_USES_MASTER)
1182 pci_set_master(pdev);
1183
1184 if (vci->drv_flags & IS_VORTEX) {
1185 u8 pci_latency;
1186 u8 new_latency = 248;
1187
1188 /* Check the PCI latency value. On the 3c590 series the latency timer
1189 must be set to the maximum value to avoid data corruption that occurs
1190 when the timer expires during a transfer. This bug exists the Vortex
1191 chip only. */
1192 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1193 if (pci_latency < new_latency) {
1194 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1195 print_name, pci_latency, new_latency);
1196 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1197 }
1198 }
1199 }
1200
1201 spin_lock_init(&vp->lock);
1202 spin_lock_init(&vp->mii_lock);
1203 spin_lock_init(&vp->window_lock);
1204 vp->gendev = gendev;
1205 vp->mii.dev = dev;
1206 vp->mii.mdio_read = mdio_read;
1207 vp->mii.mdio_write = mdio_write;
1208 vp->mii.phy_id_mask = 0x1f;
1209 vp->mii.reg_num_mask = 0x1f;
1210
1211 /* Makes sure rings are at least 16 byte aligned. */
1212 vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1213 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1214 &vp->rx_ring_dma, GFP_KERNEL);
1215 retval = -ENOMEM;
1216 if (!vp->rx_ring)
1217 goto free_device;
1218
1219 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1220 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1221
1222 /* if we are a PCI driver, we store info in pdev->driver_data
1223 * instead of a module list */
1224 if (pdev)
1225 pci_set_drvdata(pdev, dev);
1226 if (edev)
1227 eisa_set_drvdata(edev, dev);
1228
1229 vp->media_override = 7;
1230 if (option >= 0) {
1231 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1232 if (vp->media_override != 7)
1233 vp->medialock = 1;
1234 vp->full_duplex = (option & 0x200) ? 1 : 0;
1235 vp->bus_master = (option & 16) ? 1 : 0;
1236 }
1237
1238 if (global_full_duplex > 0)
1239 vp->full_duplex = 1;
1240 if (global_enable_wol > 0)
1241 vp->enable_wol = 1;
1242
1243 if (card_idx < MAX_UNITS) {
1244 if (full_duplex[card_idx] > 0)
1245 vp->full_duplex = 1;
1246 if (flow_ctrl[card_idx] > 0)
1247 vp->flow_ctrl = 1;
1248 if (enable_wol[card_idx] > 0)
1249 vp->enable_wol = 1;
1250 }
1251
1252 vp->mii.force_media = vp->full_duplex;
1253 vp->options = option;
1254 /* Read the station address from the EEPROM. */
1255 {
1256 int base;
1257
1258 if (vci->drv_flags & EEPROM_8BIT)
1259 base = 0x230;
1260 else if (vci->drv_flags & EEPROM_OFFSET)
1261 base = EEPROM_Read + 0x30;
1262 else
1263 base = EEPROM_Read;
1264
1265 for (i = 0; i < 0x40; i++) {
1266 int timer;
1267 window_write16(vp, base + i, 0, Wn0EepromCmd);
1268 /* Pause for at least 162 us. for the read to take place. */
1269 for (timer = 10; timer >= 0; timer--) {
1270 udelay(162);
1271 if ((window_read16(vp, 0, Wn0EepromCmd) &
1272 0x8000) == 0)
1273 break;
1274 }
1275 eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1276 }
1277 }
1278 for (i = 0; i < 0x18; i++)
1279 checksum ^= eeprom[i];
1280 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1281 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1282 while (i < 0x21)
1283 checksum ^= eeprom[i++];
1284 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1285 }
1286 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1287 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1288 for (i = 0; i < 3; i++)
1289 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1290 if (print_info)
1291 pr_cont(" %pM", dev->dev_addr);
1292 /* Unfortunately an all zero eeprom passes the checksum and this
1293 gets found in the wild in failure cases. Crypto is hard 8) */
1294 if (!is_valid_ether_addr(dev->dev_addr)) {
1295 retval = -EINVAL;
1296 pr_err("*** EEPROM MAC address is invalid.\n");
1297 goto free_ring; /* With every pack */
1298 }
1299 for (i = 0; i < 6; i++)
1300 window_write8(vp, dev->dev_addr[i], 2, i);
1301
1302 if (print_info)
1303 pr_cont(", IRQ %d\n", dev->irq);
1304 /* Tell them about an invalid IRQ. */
1305 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1306 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1307 dev->irq);
1308
1309 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1310 if (print_info) {
1311 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1312 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1313 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1314 }
1315
1316
1317 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1318 unsigned short n;
1319
1320 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1321 if (!vp->cb_fn_base) {
1322 retval = -ENOMEM;
1323 goto free_ring;
1324 }
1325
1326 if (print_info) {
1327 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1328 print_name,
1329 (unsigned long long)pci_resource_start(pdev, 2),
1330 vp->cb_fn_base);
1331 }
1332
1333 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1334 if (vp->drv_flags & INVERT_LED_PWR)
1335 n |= 0x10;
1336 if (vp->drv_flags & INVERT_MII_PWR)
1337 n |= 0x4000;
1338 window_write16(vp, n, 2, Wn2_ResetOptions);
1339 if (vp->drv_flags & WNO_XCVR_PWR) {
1340 window_write16(vp, 0x0800, 0, 0);
1341 }
1342 }
1343
1344 /* Extract our information from the EEPROM data. */
1345 vp->info1 = eeprom[13];
1346 vp->info2 = eeprom[15];
1347 vp->capabilities = eeprom[16];
1348
1349 if (vp->info1 & 0x8000) {
1350 vp->full_duplex = 1;
1351 if (print_info)
1352 pr_info("Full duplex capable\n");
1353 }
1354
1355 {
1356 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1357 unsigned int config;
1358 vp->available_media = window_read16(vp, 3, Wn3_Options);
1359 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1360 vp->available_media = 0x40;
1361 config = window_read32(vp, 3, Wn3_Config);
1362 if (print_info) {
1363 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1364 config, window_read16(vp, 3, Wn3_Options));
1365 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1366 8 << RAM_SIZE(config),
1367 RAM_WIDTH(config) ? "word" : "byte",
1368 ram_split[RAM_SPLIT(config)],
1369 AUTOSELECT(config) ? "autoselect/" : "",
1370 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1371 media_tbl[XCVR(config)].name);
1372 }
1373 vp->default_media = XCVR(config);
1374 if (vp->default_media == XCVR_NWAY)
1375 vp->has_nway = 1;
1376 vp->autoselect = AUTOSELECT(config);
1377 }
1378
1379 if (vp->media_override != 7) {
1380 pr_info("%s: Media override to transceiver type %d (%s).\n",
1381 print_name, vp->media_override,
1382 media_tbl[vp->media_override].name);
1383 dev->if_port = vp->media_override;
1384 } else
1385 dev->if_port = vp->default_media;
1386
1387 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1388 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1389 int phy, phy_idx = 0;
1390 mii_preamble_required++;
1391 if (vp->drv_flags & EXTRA_PREAMBLE)
1392 mii_preamble_required++;
1393 mdio_sync(vp, 32);
1394 mdio_read(dev, 24, MII_BMSR);
1395 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1396 int mii_status, phyx;
1397
1398 /*
1399 * For the 3c905CX we look at index 24 first, because it bogusly
1400 * reports an external PHY at all indices
1401 */
1402 if (phy == 0)
1403 phyx = 24;
1404 else if (phy <= 24)
1405 phyx = phy - 1;
1406 else
1407 phyx = phy;
1408 mii_status = mdio_read(dev, phyx, MII_BMSR);
1409 if (mii_status && mii_status != 0xffff) {
1410 vp->phys[phy_idx++] = phyx;
1411 if (print_info) {
1412 pr_info(" MII transceiver found at address %d, status %4x.\n",
1413 phyx, mii_status);
1414 }
1415 if ((mii_status & 0x0040) == 0)
1416 mii_preamble_required++;
1417 }
1418 }
1419 mii_preamble_required--;
1420 if (phy_idx == 0) {
1421 pr_warn(" ***WARNING*** No MII transceivers found!\n");
1422 vp->phys[0] = 24;
1423 } else {
1424 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1425 if (vp->full_duplex) {
1426 /* Only advertise the FD media types. */
1427 vp->advertising &= ~0x02A0;
1428 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1429 }
1430 }
1431 vp->mii.phy_id = vp->phys[0];
1432 }
1433
1434 if (vp->capabilities & CapBusMaster) {
1435 vp->full_bus_master_tx = 1;
1436 if (print_info) {
1437 pr_info(" Enabling bus-master transmits and %s receives.\n",
1438 (vp->info2 & 1) ? "early" : "whole-frame" );
1439 }
1440 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1441 vp->bus_master = 0; /* AKPM: vortex only */
1442 }
1443
1444 /* The 3c59x-specific entries in the device structure. */
1445 if (vp->full_bus_master_tx) {
1446 dev->netdev_ops = &boomrang_netdev_ops;
1447 /* Actually, it still should work with iommu. */
1448 if (card_idx < MAX_UNITS &&
1449 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1450 hw_checksums[card_idx] == 1)) {
1451 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1452 }
1453 } else
1454 dev->netdev_ops = &vortex_netdev_ops;
1455
1456 if (print_info) {
1457 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1458 print_name,
1459 (dev->features & NETIF_F_SG) ? "en":"dis",
1460 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1461 }
1462
1463 dev->ethtool_ops = &vortex_ethtool_ops;
1464 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1465
1466 if (pdev) {
1467 vp->pm_state_valid = 1;
1468 pci_save_state(pdev);
1469 acpi_set_WOL(dev);
1470 }
1471 retval = register_netdev(dev);
1472 if (retval == 0)
1473 return 0;
1474
1475 free_ring:
1476 dma_free_coherent(&pdev->dev,
1477 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1478 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1479 vp->rx_ring, vp->rx_ring_dma);
1480 free_device:
1481 free_netdev(dev);
1482 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1483 out:
1484 return retval;
1485 }
1486
1487 static void
issue_and_wait(struct net_device * dev,int cmd)1488 issue_and_wait(struct net_device *dev, int cmd)
1489 {
1490 struct vortex_private *vp = netdev_priv(dev);
1491 void __iomem *ioaddr = vp->ioaddr;
1492 int i;
1493
1494 iowrite16(cmd, ioaddr + EL3_CMD);
1495 for (i = 0; i < 2000; i++) {
1496 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1497 return;
1498 }
1499
1500 /* OK, that didn't work. Do it the slow way. One second */
1501 for (i = 0; i < 100000; i++) {
1502 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1503 if (vortex_debug > 1)
1504 pr_info("%s: command 0x%04x took %d usecs\n",
1505 dev->name, cmd, i * 10);
1506 return;
1507 }
1508 udelay(10);
1509 }
1510 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1511 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1512 }
1513
1514 static void
vortex_set_duplex(struct net_device * dev)1515 vortex_set_duplex(struct net_device *dev)
1516 {
1517 struct vortex_private *vp = netdev_priv(dev);
1518
1519 pr_info("%s: setting %s-duplex.\n",
1520 dev->name, (vp->full_duplex) ? "full" : "half");
1521
1522 /* Set the full-duplex bit. */
1523 window_write16(vp,
1524 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1525 (vp->large_frames ? 0x40 : 0) |
1526 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1527 0x100 : 0),
1528 3, Wn3_MAC_Ctrl);
1529 }
1530
vortex_check_media(struct net_device * dev,unsigned int init)1531 static void vortex_check_media(struct net_device *dev, unsigned int init)
1532 {
1533 struct vortex_private *vp = netdev_priv(dev);
1534 unsigned int ok_to_print = 0;
1535
1536 if (vortex_debug > 3)
1537 ok_to_print = 1;
1538
1539 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1540 vp->full_duplex = vp->mii.full_duplex;
1541 vortex_set_duplex(dev);
1542 } else if (init) {
1543 vortex_set_duplex(dev);
1544 }
1545 }
1546
1547 static int
vortex_up(struct net_device * dev)1548 vortex_up(struct net_device *dev)
1549 {
1550 struct vortex_private *vp = netdev_priv(dev);
1551 void __iomem *ioaddr = vp->ioaddr;
1552 unsigned int config;
1553 int i, mii_reg1, mii_reg5, err = 0;
1554
1555 if (VORTEX_PCI(vp)) {
1556 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1557 if (vp->pm_state_valid)
1558 pci_restore_state(VORTEX_PCI(vp));
1559 err = pci_enable_device(VORTEX_PCI(vp));
1560 if (err) {
1561 pr_warn("%s: Could not enable device\n", dev->name);
1562 goto err_out;
1563 }
1564 }
1565
1566 /* Before initializing select the active media port. */
1567 config = window_read32(vp, 3, Wn3_Config);
1568
1569 if (vp->media_override != 7) {
1570 pr_info("%s: Media override to transceiver %d (%s).\n",
1571 dev->name, vp->media_override,
1572 media_tbl[vp->media_override].name);
1573 dev->if_port = vp->media_override;
1574 } else if (vp->autoselect) {
1575 if (vp->has_nway) {
1576 if (vortex_debug > 1)
1577 pr_info("%s: using NWAY device table, not %d\n",
1578 dev->name, dev->if_port);
1579 dev->if_port = XCVR_NWAY;
1580 } else {
1581 /* Find first available media type, starting with 100baseTx. */
1582 dev->if_port = XCVR_100baseTx;
1583 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1584 dev->if_port = media_tbl[dev->if_port].next;
1585 if (vortex_debug > 1)
1586 pr_info("%s: first available media type: %s\n",
1587 dev->name, media_tbl[dev->if_port].name);
1588 }
1589 } else {
1590 dev->if_port = vp->default_media;
1591 if (vortex_debug > 1)
1592 pr_info("%s: using default media %s\n",
1593 dev->name, media_tbl[dev->if_port].name);
1594 }
1595
1596 timer_setup(&vp->timer, vortex_timer, 0);
1597 mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1598
1599 if (vortex_debug > 1)
1600 pr_debug("%s: Initial media type %s.\n",
1601 dev->name, media_tbl[dev->if_port].name);
1602
1603 vp->full_duplex = vp->mii.force_media;
1604 config = BFINS(config, dev->if_port, 20, 4);
1605 if (vortex_debug > 6)
1606 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1607 window_write32(vp, config, 3, Wn3_Config);
1608
1609 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1610 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1611 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1612 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1613 vp->mii.full_duplex = vp->full_duplex;
1614
1615 vortex_check_media(dev, 1);
1616 }
1617 else
1618 vortex_set_duplex(dev);
1619
1620 issue_and_wait(dev, TxReset);
1621 /*
1622 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1623 */
1624 issue_and_wait(dev, RxReset|0x04);
1625
1626
1627 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1628
1629 if (vortex_debug > 1) {
1630 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1631 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1632 }
1633
1634 /* Set the station address and mask in window 2 each time opened. */
1635 for (i = 0; i < 6; i++)
1636 window_write8(vp, dev->dev_addr[i], 2, i);
1637 for (; i < 12; i+=2)
1638 window_write16(vp, 0, 2, i);
1639
1640 if (vp->cb_fn_base) {
1641 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1642 if (vp->drv_flags & INVERT_LED_PWR)
1643 n |= 0x10;
1644 if (vp->drv_flags & INVERT_MII_PWR)
1645 n |= 0x4000;
1646 window_write16(vp, n, 2, Wn2_ResetOptions);
1647 }
1648
1649 if (dev->if_port == XCVR_10base2)
1650 /* Start the thinnet transceiver. We should really wait 50ms...*/
1651 iowrite16(StartCoax, ioaddr + EL3_CMD);
1652 if (dev->if_port != XCVR_NWAY) {
1653 window_write16(vp,
1654 (window_read16(vp, 4, Wn4_Media) &
1655 ~(Media_10TP|Media_SQE)) |
1656 media_tbl[dev->if_port].media_bits,
1657 4, Wn4_Media);
1658 }
1659
1660 /* Switch to the stats window, and clear all stats by reading. */
1661 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1662 for (i = 0; i < 10; i++)
1663 window_read8(vp, 6, i);
1664 window_read16(vp, 6, 10);
1665 window_read16(vp, 6, 12);
1666 /* New: On the Vortex we must also clear the BadSSD counter. */
1667 window_read8(vp, 4, 12);
1668 /* ..and on the Boomerang we enable the extra statistics bits. */
1669 window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1670
1671 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1672 vp->cur_rx = 0;
1673 /* Initialize the RxEarly register as recommended. */
1674 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1675 iowrite32(0x0020, ioaddr + PktStatus);
1676 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1677 }
1678 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1679 vp->cur_tx = vp->dirty_tx = 0;
1680 if (vp->drv_flags & IS_BOOMERANG)
1681 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1682 /* Clear the Rx, Tx rings. */
1683 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1684 vp->rx_ring[i].status = 0;
1685 for (i = 0; i < TX_RING_SIZE; i++)
1686 vp->tx_skbuff[i] = NULL;
1687 iowrite32(0, ioaddr + DownListPtr);
1688 }
1689 /* Set receiver mode: presumably accept b-case and phys addr only. */
1690 set_rx_mode(dev);
1691 /* enable 802.1q tagged frames */
1692 set_8021q_mode(dev, 1);
1693 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1694
1695 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1696 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1697 /* Allow status bits to be seen. */
1698 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1699 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1700 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1701 (vp->bus_master ? DMADone : 0);
1702 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1703 (vp->full_bus_master_rx ? 0 : RxComplete) |
1704 StatsFull | HostError | TxComplete | IntReq
1705 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1706 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1707 /* Ack all pending events, and set active indicator mask. */
1708 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1709 ioaddr + EL3_CMD);
1710 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1711 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1712 iowrite32(0x8000, vp->cb_fn_base + 4);
1713 netif_start_queue (dev);
1714 netdev_reset_queue(dev);
1715 err_out:
1716 return err;
1717 }
1718
1719 static int
vortex_open(struct net_device * dev)1720 vortex_open(struct net_device *dev)
1721 {
1722 struct vortex_private *vp = netdev_priv(dev);
1723 int i;
1724 int retval;
1725 dma_addr_t dma;
1726
1727 /* Use the now-standard shared IRQ implementation. */
1728 if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
1729 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1730 goto err;
1731 }
1732
1733 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1734 if (vortex_debug > 2)
1735 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1736 for (i = 0; i < RX_RING_SIZE; i++) {
1737 struct sk_buff *skb;
1738 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1739 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1740 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1741
1742 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1743 GFP_KERNEL);
1744 vp->rx_skbuff[i] = skb;
1745 if (skb == NULL)
1746 break; /* Bad news! */
1747
1748 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1749 dma = dma_map_single(vp->gendev, skb->data,
1750 PKT_BUF_SZ, DMA_FROM_DEVICE);
1751 if (dma_mapping_error(vp->gendev, dma))
1752 break;
1753 vp->rx_ring[i].addr = cpu_to_le32(dma);
1754 }
1755 if (i != RX_RING_SIZE) {
1756 pr_emerg("%s: no memory for rx ring\n", dev->name);
1757 retval = -ENOMEM;
1758 goto err_free_skb;
1759 }
1760 /* Wrap the ring. */
1761 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1762 }
1763
1764 retval = vortex_up(dev);
1765 if (!retval)
1766 goto out;
1767
1768 err_free_skb:
1769 for (i = 0; i < RX_RING_SIZE; i++) {
1770 if (vp->rx_skbuff[i]) {
1771 dev_kfree_skb(vp->rx_skbuff[i]);
1772 vp->rx_skbuff[i] = NULL;
1773 }
1774 }
1775 free_irq(dev->irq, dev);
1776 err:
1777 if (vortex_debug > 1)
1778 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1779 out:
1780 return retval;
1781 }
1782
1783 static void
vortex_timer(struct timer_list * t)1784 vortex_timer(struct timer_list *t)
1785 {
1786 struct vortex_private *vp = from_timer(vp, t, timer);
1787 struct net_device *dev = vp->mii.dev;
1788 void __iomem *ioaddr = vp->ioaddr;
1789 int next_tick = 60*HZ;
1790 int ok = 0;
1791 int media_status;
1792
1793 if (vortex_debug > 2) {
1794 pr_debug("%s: Media selection timer tick happened, %s.\n",
1795 dev->name, media_tbl[dev->if_port].name);
1796 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1797 }
1798
1799 media_status = window_read16(vp, 4, Wn4_Media);
1800 switch (dev->if_port) {
1801 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1802 if (media_status & Media_LnkBeat) {
1803 netif_carrier_on(dev);
1804 ok = 1;
1805 if (vortex_debug > 1)
1806 pr_debug("%s: Media %s has link beat, %x.\n",
1807 dev->name, media_tbl[dev->if_port].name, media_status);
1808 } else {
1809 netif_carrier_off(dev);
1810 if (vortex_debug > 1) {
1811 pr_debug("%s: Media %s has no link beat, %x.\n",
1812 dev->name, media_tbl[dev->if_port].name, media_status);
1813 }
1814 }
1815 break;
1816 case XCVR_MII: case XCVR_NWAY:
1817 {
1818 ok = 1;
1819 vortex_check_media(dev, 0);
1820 }
1821 break;
1822 default: /* Other media types handled by Tx timeouts. */
1823 if (vortex_debug > 1)
1824 pr_debug("%s: Media %s has no indication, %x.\n",
1825 dev->name, media_tbl[dev->if_port].name, media_status);
1826 ok = 1;
1827 }
1828
1829 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1830 next_tick = 5*HZ;
1831
1832 if (vp->medialock)
1833 goto leave_media_alone;
1834
1835 if (!ok) {
1836 unsigned int config;
1837
1838 spin_lock_irq(&vp->lock);
1839
1840 do {
1841 dev->if_port = media_tbl[dev->if_port].next;
1842 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1843 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1844 dev->if_port = vp->default_media;
1845 if (vortex_debug > 1)
1846 pr_debug("%s: Media selection failing, using default %s port.\n",
1847 dev->name, media_tbl[dev->if_port].name);
1848 } else {
1849 if (vortex_debug > 1)
1850 pr_debug("%s: Media selection failed, now trying %s port.\n",
1851 dev->name, media_tbl[dev->if_port].name);
1852 next_tick = media_tbl[dev->if_port].wait;
1853 }
1854 window_write16(vp,
1855 (media_status & ~(Media_10TP|Media_SQE)) |
1856 media_tbl[dev->if_port].media_bits,
1857 4, Wn4_Media);
1858
1859 config = window_read32(vp, 3, Wn3_Config);
1860 config = BFINS(config, dev->if_port, 20, 4);
1861 window_write32(vp, config, 3, Wn3_Config);
1862
1863 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1864 ioaddr + EL3_CMD);
1865 if (vortex_debug > 1)
1866 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1867 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1868
1869 spin_unlock_irq(&vp->lock);
1870 }
1871
1872 leave_media_alone:
1873 if (vortex_debug > 2)
1874 pr_debug("%s: Media selection timer finished, %s.\n",
1875 dev->name, media_tbl[dev->if_port].name);
1876
1877 mod_timer(&vp->timer, RUN_AT(next_tick));
1878 if (vp->deferred)
1879 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1880 }
1881
vortex_tx_timeout(struct net_device * dev)1882 static void vortex_tx_timeout(struct net_device *dev)
1883 {
1884 struct vortex_private *vp = netdev_priv(dev);
1885 void __iomem *ioaddr = vp->ioaddr;
1886
1887 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1888 dev->name, ioread8(ioaddr + TxStatus),
1889 ioread16(ioaddr + EL3_STATUS));
1890 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1891 window_read16(vp, 4, Wn4_NetDiag),
1892 window_read16(vp, 4, Wn4_Media),
1893 ioread32(ioaddr + PktStatus),
1894 window_read16(vp, 4, Wn4_FIFODiag));
1895 /* Slight code bloat to be user friendly. */
1896 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1897 pr_err("%s: Transmitter encountered 16 collisions --"
1898 " network cable problem?\n", dev->name);
1899 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1900 pr_err("%s: Interrupt posted but not delivered --"
1901 " IRQ blocked by another device?\n", dev->name);
1902 /* Bad idea here.. but we might as well handle a few events. */
1903 vortex_boomerang_interrupt(dev->irq, dev);
1904 }
1905
1906 if (vortex_debug > 0)
1907 dump_tx_ring(dev);
1908
1909 issue_and_wait(dev, TxReset);
1910
1911 dev->stats.tx_errors++;
1912 if (vp->full_bus_master_tx) {
1913 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1914 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1915 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1916 ioaddr + DownListPtr);
1917 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1918 netif_wake_queue (dev);
1919 netdev_reset_queue (dev);
1920 }
1921 if (vp->drv_flags & IS_BOOMERANG)
1922 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1923 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1924 } else {
1925 dev->stats.tx_dropped++;
1926 netif_wake_queue(dev);
1927 netdev_reset_queue(dev);
1928 }
1929 /* Issue Tx Enable */
1930 iowrite16(TxEnable, ioaddr + EL3_CMD);
1931 netif_trans_update(dev); /* prevent tx timeout */
1932 }
1933
1934 /*
1935 * Handle uncommon interrupt sources. This is a separate routine to minimize
1936 * the cache impact.
1937 */
1938 static void
vortex_error(struct net_device * dev,int status)1939 vortex_error(struct net_device *dev, int status)
1940 {
1941 struct vortex_private *vp = netdev_priv(dev);
1942 void __iomem *ioaddr = vp->ioaddr;
1943 int do_tx_reset = 0, reset_mask = 0;
1944 unsigned char tx_status = 0;
1945
1946 if (vortex_debug > 2) {
1947 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1948 }
1949
1950 if (status & TxComplete) { /* Really "TxError" for us. */
1951 tx_status = ioread8(ioaddr + TxStatus);
1952 /* Presumably a tx-timeout. We must merely re-enable. */
1953 if (vortex_debug > 2 ||
1954 (tx_status != 0x88 && vortex_debug > 0)) {
1955 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1956 dev->name, tx_status);
1957 if (tx_status == 0x82) {
1958 pr_err("Probably a duplex mismatch. See "
1959 "Documentation/networking/vortex.txt\n");
1960 }
1961 dump_tx_ring(dev);
1962 }
1963 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1964 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1965 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1966 iowrite8(0, ioaddr + TxStatus);
1967 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1968 do_tx_reset = 1;
1969 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1970 do_tx_reset = 1;
1971 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1972 } else { /* Merely re-enable the transmitter. */
1973 iowrite16(TxEnable, ioaddr + EL3_CMD);
1974 }
1975 }
1976
1977 if (status & RxEarly) /* Rx early is unused. */
1978 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1979
1980 if (status & StatsFull) { /* Empty statistics. */
1981 static int DoneDidThat;
1982 if (vortex_debug > 4)
1983 pr_debug("%s: Updating stats.\n", dev->name);
1984 update_stats(ioaddr, dev);
1985 /* HACK: Disable statistics as an interrupt source. */
1986 /* This occurs when we have the wrong media type! */
1987 if (DoneDidThat == 0 &&
1988 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1989 pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1990 dev->name);
1991 iowrite16(SetIntrEnb |
1992 (window_read16(vp, 5, 10) & ~StatsFull),
1993 ioaddr + EL3_CMD);
1994 vp->intr_enable &= ~StatsFull;
1995 DoneDidThat++;
1996 }
1997 }
1998 if (status & IntReq) { /* Restore all interrupt sources. */
1999 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2000 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2001 }
2002 if (status & HostError) {
2003 u16 fifo_diag;
2004 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2005 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2006 dev->name, fifo_diag);
2007 /* Adapter failure requires Tx/Rx reset and reinit. */
2008 if (vp->full_bus_master_tx) {
2009 int bus_status = ioread32(ioaddr + PktStatus);
2010 /* 0x80000000 PCI master abort. */
2011 /* 0x40000000 PCI target abort. */
2012 if (vortex_debug)
2013 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2014
2015 /* In this case, blow the card away */
2016 /* Must not enter D3 or we can't legally issue the reset! */
2017 vortex_down(dev, 0);
2018 issue_and_wait(dev, TotalReset | 0xff);
2019 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2020 } else if (fifo_diag & 0x0400)
2021 do_tx_reset = 1;
2022 if (fifo_diag & 0x3000) {
2023 /* Reset Rx fifo and upload logic */
2024 issue_and_wait(dev, RxReset|0x07);
2025 /* Set the Rx filter to the current state. */
2026 set_rx_mode(dev);
2027 /* enable 802.1q VLAN tagged frames */
2028 set_8021q_mode(dev, 1);
2029 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2030 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2031 }
2032 }
2033
2034 if (do_tx_reset) {
2035 issue_and_wait(dev, TxReset|reset_mask);
2036 iowrite16(TxEnable, ioaddr + EL3_CMD);
2037 if (!vp->full_bus_master_tx)
2038 netif_wake_queue(dev);
2039 }
2040 }
2041
2042 static netdev_tx_t
vortex_start_xmit(struct sk_buff * skb,struct net_device * dev)2043 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2044 {
2045 struct vortex_private *vp = netdev_priv(dev);
2046 void __iomem *ioaddr = vp->ioaddr;
2047 int skblen = skb->len;
2048
2049 /* Put out the doubleword header... */
2050 iowrite32(skb->len, ioaddr + TX_FIFO);
2051 if (vp->bus_master) {
2052 /* Set the bus-master controller to transfer the packet. */
2053 int len = (skb->len + 3) & ~3;
2054 vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2055 DMA_TO_DEVICE);
2056 if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2057 dev_kfree_skb_any(skb);
2058 dev->stats.tx_dropped++;
2059 return NETDEV_TX_OK;
2060 }
2061
2062 spin_lock_irq(&vp->window_lock);
2063 window_set(vp, 7);
2064 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2065 iowrite16(len, ioaddr + Wn7_MasterLen);
2066 spin_unlock_irq(&vp->window_lock);
2067 vp->tx_skb = skb;
2068 skb_tx_timestamp(skb);
2069 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2070 /* netif_wake_queue() will be called at the DMADone interrupt. */
2071 } else {
2072 /* ... and the packet rounded to a doubleword. */
2073 skb_tx_timestamp(skb);
2074 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2075 dev_consume_skb_any (skb);
2076 if (ioread16(ioaddr + TxFree) > 1536) {
2077 netif_start_queue (dev); /* AKPM: redundant? */
2078 } else {
2079 /* Interrupt us when the FIFO has room for max-sized packet. */
2080 netif_stop_queue(dev);
2081 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2082 }
2083 }
2084
2085 netdev_sent_queue(dev, skblen);
2086
2087 /* Clear the Tx status stack. */
2088 {
2089 int tx_status;
2090 int i = 32;
2091
2092 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2093 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2094 if (vortex_debug > 2)
2095 pr_debug("%s: Tx error, status %2.2x.\n",
2096 dev->name, tx_status);
2097 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2098 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2099 if (tx_status & 0x30) {
2100 issue_and_wait(dev, TxReset);
2101 }
2102 iowrite16(TxEnable, ioaddr + EL3_CMD);
2103 }
2104 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2105 }
2106 }
2107 return NETDEV_TX_OK;
2108 }
2109
2110 static netdev_tx_t
boomerang_start_xmit(struct sk_buff * skb,struct net_device * dev)2111 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2112 {
2113 struct vortex_private *vp = netdev_priv(dev);
2114 void __iomem *ioaddr = vp->ioaddr;
2115 /* Calculate the next Tx descriptor entry. */
2116 int entry = vp->cur_tx % TX_RING_SIZE;
2117 int skblen = skb->len;
2118 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2119 unsigned long flags;
2120 dma_addr_t dma_addr;
2121
2122 if (vortex_debug > 6) {
2123 pr_debug("boomerang_start_xmit()\n");
2124 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2125 dev->name, vp->cur_tx);
2126 }
2127
2128 /*
2129 * We can't allow a recursion from our interrupt handler back into the
2130 * tx routine, as they take the same spin lock, and that causes
2131 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in
2132 * a bit
2133 */
2134 if (vp->handling_irq)
2135 return NETDEV_TX_BUSY;
2136
2137 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2138 if (vortex_debug > 0)
2139 pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2140 dev->name);
2141 netif_stop_queue(dev);
2142 return NETDEV_TX_BUSY;
2143 }
2144
2145 vp->tx_skbuff[entry] = skb;
2146
2147 vp->tx_ring[entry].next = 0;
2148 #if DO_ZEROCOPY
2149 if (skb->ip_summed != CHECKSUM_PARTIAL)
2150 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2151 else
2152 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2153
2154 if (!skb_shinfo(skb)->nr_frags) {
2155 dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2156 DMA_TO_DEVICE);
2157 if (dma_mapping_error(vp->gendev, dma_addr))
2158 goto out_dma_err;
2159
2160 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2161 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2162 } else {
2163 int i;
2164
2165 dma_addr = dma_map_single(vp->gendev, skb->data,
2166 skb_headlen(skb), DMA_TO_DEVICE);
2167 if (dma_mapping_error(vp->gendev, dma_addr))
2168 goto out_dma_err;
2169
2170 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2172
2173 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2174 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2175
2176 dma_addr = skb_frag_dma_map(vp->gendev, frag,
2177 0,
2178 frag->size,
2179 DMA_TO_DEVICE);
2180 if (dma_mapping_error(vp->gendev, dma_addr)) {
2181 for(i = i-1; i >= 0; i--)
2182 dma_unmap_page(vp->gendev,
2183 le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2184 le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2185 DMA_TO_DEVICE);
2186
2187 dma_unmap_single(vp->gendev,
2188 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2189 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2190 DMA_TO_DEVICE);
2191
2192 goto out_dma_err;
2193 }
2194
2195 vp->tx_ring[entry].frag[i+1].addr =
2196 cpu_to_le32(dma_addr);
2197
2198 if (i == skb_shinfo(skb)->nr_frags-1)
2199 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2200 else
2201 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2202 }
2203 }
2204 #else
2205 dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2206 if (dma_mapping_error(vp->gendev, dma_addr))
2207 goto out_dma_err;
2208 vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2209 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2210 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2211 #endif
2212
2213 spin_lock_irqsave(&vp->lock, flags);
2214 /* Wait for the stall to complete. */
2215 issue_and_wait(dev, DownStall);
2216 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2217 if (ioread32(ioaddr + DownListPtr) == 0) {
2218 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2219 vp->queued_packet++;
2220 }
2221
2222 vp->cur_tx++;
2223 netdev_sent_queue(dev, skblen);
2224
2225 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2226 netif_stop_queue (dev);
2227 } else { /* Clear previous interrupt enable. */
2228 #if defined(tx_interrupt_mitigation)
2229 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2230 * were selected, this would corrupt DN_COMPLETE. No?
2231 */
2232 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2233 #endif
2234 }
2235 skb_tx_timestamp(skb);
2236 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2237 spin_unlock_irqrestore(&vp->lock, flags);
2238 out:
2239 return NETDEV_TX_OK;
2240 out_dma_err:
2241 dev_err(vp->gendev, "Error mapping dma buffer\n");
2242 goto out;
2243 }
2244
2245 /* The interrupt handler does all of the Rx thread work and cleans up
2246 after the Tx thread. */
2247
2248 /*
2249 * This is the ISR for the vortex series chips.
2250 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2251 */
2252
2253 static irqreturn_t
_vortex_interrupt(int irq,struct net_device * dev)2254 _vortex_interrupt(int irq, struct net_device *dev)
2255 {
2256 struct vortex_private *vp = netdev_priv(dev);
2257 void __iomem *ioaddr;
2258 int status;
2259 int work_done = max_interrupt_work;
2260 int handled = 0;
2261 unsigned int bytes_compl = 0, pkts_compl = 0;
2262
2263 ioaddr = vp->ioaddr;
2264
2265 status = ioread16(ioaddr + EL3_STATUS);
2266
2267 if (vortex_debug > 6)
2268 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2269
2270 if ((status & IntLatch) == 0)
2271 goto handler_exit; /* No interrupt: shared IRQs cause this */
2272 handled = 1;
2273
2274 if (status & IntReq) {
2275 status |= vp->deferred;
2276 vp->deferred = 0;
2277 }
2278
2279 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2280 goto handler_exit;
2281
2282 if (vortex_debug > 4)
2283 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2284 dev->name, status, ioread8(ioaddr + Timer));
2285
2286 spin_lock(&vp->window_lock);
2287 window_set(vp, 7);
2288
2289 do {
2290 if (vortex_debug > 5)
2291 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2292 dev->name, status);
2293 if (status & RxComplete)
2294 vortex_rx(dev);
2295
2296 if (status & TxAvailable) {
2297 if (vortex_debug > 5)
2298 pr_debug(" TX room bit was handled.\n");
2299 /* There's room in the FIFO for a full-sized packet. */
2300 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2301 netif_wake_queue (dev);
2302 }
2303
2304 if (status & DMADone) {
2305 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2306 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2307 dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2308 pkts_compl++;
2309 bytes_compl += vp->tx_skb->len;
2310 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2311 if (ioread16(ioaddr + TxFree) > 1536) {
2312 /*
2313 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2314 * insufficient FIFO room, the TxAvailable test will succeed and call
2315 * netif_wake_queue()
2316 */
2317 netif_wake_queue(dev);
2318 } else { /* Interrupt when FIFO has room for max-sized packet. */
2319 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2320 netif_stop_queue(dev);
2321 }
2322 }
2323 }
2324 /* Check for all uncommon interrupts at once. */
2325 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2326 if (status == 0xffff)
2327 break;
2328 if (status & RxEarly)
2329 vortex_rx(dev);
2330 spin_unlock(&vp->window_lock);
2331 vortex_error(dev, status);
2332 spin_lock(&vp->window_lock);
2333 window_set(vp, 7);
2334 }
2335
2336 if (--work_done < 0) {
2337 pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2338 dev->name, status);
2339 /* Disable all pending interrupts. */
2340 do {
2341 vp->deferred |= status;
2342 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2343 ioaddr + EL3_CMD);
2344 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2345 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2346 /* The timer will reenable interrupts. */
2347 mod_timer(&vp->timer, jiffies + 1*HZ);
2348 break;
2349 }
2350 /* Acknowledge the IRQ. */
2351 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2352 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2353
2354 netdev_completed_queue(dev, pkts_compl, bytes_compl);
2355 spin_unlock(&vp->window_lock);
2356
2357 if (vortex_debug > 4)
2358 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2359 dev->name, status);
2360 handler_exit:
2361 return IRQ_RETVAL(handled);
2362 }
2363
2364 /*
2365 * This is the ISR for the boomerang series chips.
2366 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2367 */
2368
2369 static irqreturn_t
_boomerang_interrupt(int irq,struct net_device * dev)2370 _boomerang_interrupt(int irq, struct net_device *dev)
2371 {
2372 struct vortex_private *vp = netdev_priv(dev);
2373 void __iomem *ioaddr;
2374 int status;
2375 int work_done = max_interrupt_work;
2376 int handled = 0;
2377 unsigned int bytes_compl = 0, pkts_compl = 0;
2378
2379 ioaddr = vp->ioaddr;
2380
2381 vp->handling_irq = 1;
2382
2383 status = ioread16(ioaddr + EL3_STATUS);
2384
2385 if (vortex_debug > 6)
2386 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2387
2388 if ((status & IntLatch) == 0)
2389 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2390 handled = 1;
2391
2392 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2393 if (vortex_debug > 1)
2394 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2395 goto handler_exit;
2396 }
2397
2398 if (status & IntReq) {
2399 status |= vp->deferred;
2400 vp->deferred = 0;
2401 }
2402
2403 if (vortex_debug > 4)
2404 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2405 dev->name, status, ioread8(ioaddr + Timer));
2406 do {
2407 if (vortex_debug > 5)
2408 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2409 dev->name, status);
2410 if (status & UpComplete) {
2411 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2412 if (vortex_debug > 5)
2413 pr_debug("boomerang_interrupt->boomerang_rx\n");
2414 boomerang_rx(dev);
2415 }
2416
2417 if (status & DownComplete) {
2418 unsigned int dirty_tx = vp->dirty_tx;
2419
2420 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2421 while (vp->cur_tx - dirty_tx > 0) {
2422 int entry = dirty_tx % TX_RING_SIZE;
2423 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2424 if (ioread32(ioaddr + DownListPtr) ==
2425 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2426 break; /* It still hasn't been processed. */
2427 #else
2428 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2429 break; /* It still hasn't been processed. */
2430 #endif
2431
2432 if (vp->tx_skbuff[entry]) {
2433 struct sk_buff *skb = vp->tx_skbuff[entry];
2434 #if DO_ZEROCOPY
2435 int i;
2436 dma_unmap_single(vp->gendev,
2437 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2438 le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2439 DMA_TO_DEVICE);
2440
2441 for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2442 dma_unmap_page(vp->gendev,
2443 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2444 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2445 DMA_TO_DEVICE);
2446 #else
2447 dma_unmap_single(vp->gendev,
2448 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2449 #endif
2450 pkts_compl++;
2451 bytes_compl += skb->len;
2452 dev_kfree_skb_irq(skb);
2453 vp->tx_skbuff[entry] = NULL;
2454 } else {
2455 pr_debug("boomerang_interrupt: no skb!\n");
2456 }
2457 /* dev->stats.tx_packets++; Counted below. */
2458 dirty_tx++;
2459 }
2460 vp->dirty_tx = dirty_tx;
2461 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2462 if (vortex_debug > 6)
2463 pr_debug("boomerang_interrupt: wake queue\n");
2464 netif_wake_queue (dev);
2465 }
2466 }
2467
2468 /* Check for all uncommon interrupts at once. */
2469 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2470 vortex_error(dev, status);
2471
2472 if (--work_done < 0) {
2473 pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2474 dev->name, status);
2475 /* Disable all pending interrupts. */
2476 do {
2477 vp->deferred |= status;
2478 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2479 ioaddr + EL3_CMD);
2480 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2481 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2482 /* The timer will reenable interrupts. */
2483 mod_timer(&vp->timer, jiffies + 1*HZ);
2484 break;
2485 }
2486 /* Acknowledge the IRQ. */
2487 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2488 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2489 iowrite32(0x8000, vp->cb_fn_base + 4);
2490
2491 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2492 netdev_completed_queue(dev, pkts_compl, bytes_compl);
2493
2494 if (vortex_debug > 4)
2495 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2496 dev->name, status);
2497 handler_exit:
2498 vp->handling_irq = 0;
2499 return IRQ_RETVAL(handled);
2500 }
2501
2502 static irqreturn_t
vortex_boomerang_interrupt(int irq,void * dev_id)2503 vortex_boomerang_interrupt(int irq, void *dev_id)
2504 {
2505 struct net_device *dev = dev_id;
2506 struct vortex_private *vp = netdev_priv(dev);
2507 unsigned long flags;
2508 irqreturn_t ret;
2509
2510 spin_lock_irqsave(&vp->lock, flags);
2511
2512 if (vp->full_bus_master_rx)
2513 ret = _boomerang_interrupt(dev->irq, dev);
2514 else
2515 ret = _vortex_interrupt(dev->irq, dev);
2516
2517 spin_unlock_irqrestore(&vp->lock, flags);
2518
2519 return ret;
2520 }
2521
vortex_rx(struct net_device * dev)2522 static int vortex_rx(struct net_device *dev)
2523 {
2524 struct vortex_private *vp = netdev_priv(dev);
2525 void __iomem *ioaddr = vp->ioaddr;
2526 int i;
2527 short rx_status;
2528
2529 if (vortex_debug > 5)
2530 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2531 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2532 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2533 if (rx_status & 0x4000) { /* Error, update stats. */
2534 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2535 if (vortex_debug > 2)
2536 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2537 dev->stats.rx_errors++;
2538 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2539 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2540 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2541 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2542 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2543 } else {
2544 /* The packet length: up to 4.5K!. */
2545 int pkt_len = rx_status & 0x1fff;
2546 struct sk_buff *skb;
2547
2548 skb = netdev_alloc_skb(dev, pkt_len + 5);
2549 if (vortex_debug > 4)
2550 pr_debug("Receiving packet size %d status %4.4x.\n",
2551 pkt_len, rx_status);
2552 if (skb != NULL) {
2553 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2554 /* 'skb_put()' points to the start of sk_buff data area. */
2555 if (vp->bus_master &&
2556 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2557 dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2558 pkt_len, DMA_FROM_DEVICE);
2559 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2560 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2561 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2562 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2563 ;
2564 dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2565 } else {
2566 ioread32_rep(ioaddr + RX_FIFO,
2567 skb_put(skb, pkt_len),
2568 (pkt_len + 3) >> 2);
2569 }
2570 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2571 skb->protocol = eth_type_trans(skb, dev);
2572 netif_rx(skb);
2573 dev->stats.rx_packets++;
2574 /* Wait a limited time to go to next packet. */
2575 for (i = 200; i >= 0; i--)
2576 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2577 break;
2578 continue;
2579 } else if (vortex_debug > 0)
2580 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2581 dev->name, pkt_len);
2582 dev->stats.rx_dropped++;
2583 }
2584 issue_and_wait(dev, RxDiscard);
2585 }
2586
2587 return 0;
2588 }
2589
2590 static int
boomerang_rx(struct net_device * dev)2591 boomerang_rx(struct net_device *dev)
2592 {
2593 struct vortex_private *vp = netdev_priv(dev);
2594 int entry = vp->cur_rx % RX_RING_SIZE;
2595 void __iomem *ioaddr = vp->ioaddr;
2596 int rx_status;
2597 int rx_work_limit = RX_RING_SIZE;
2598
2599 if (vortex_debug > 5)
2600 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2601
2602 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2603 if (--rx_work_limit < 0)
2604 break;
2605 if (rx_status & RxDError) { /* Error, update stats. */
2606 unsigned char rx_error = rx_status >> 16;
2607 if (vortex_debug > 2)
2608 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2609 dev->stats.rx_errors++;
2610 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2611 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2612 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2613 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2614 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2615 } else {
2616 /* The packet length: up to 4.5K!. */
2617 int pkt_len = rx_status & 0x1fff;
2618 struct sk_buff *skb, *newskb;
2619 dma_addr_t newdma;
2620 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621
2622 if (vortex_debug > 4)
2623 pr_debug("Receiving packet size %d status %4.4x.\n",
2624 pkt_len, rx_status);
2625
2626 /* Check if the packet is long enough to just accept without
2627 copying to a properly sized skbuff. */
2628 if (pkt_len < rx_copybreak &&
2629 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2631 dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2632 /* 'skb_put()' points to the start of sk_buff data area. */
2633 skb_put_data(skb, vp->rx_skbuff[entry]->data,
2634 pkt_len);
2635 dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2636 vp->rx_copy++;
2637 } else {
2638 /* Pre-allocate the replacement skb. If it or its
2639 * mapping fails then recycle the buffer thats already
2640 * in place
2641 */
2642 newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2643 if (!newskb) {
2644 dev->stats.rx_dropped++;
2645 goto clear_complete;
2646 }
2647 newdma = dma_map_single(vp->gendev, newskb->data,
2648 PKT_BUF_SZ, DMA_FROM_DEVICE);
2649 if (dma_mapping_error(vp->gendev, newdma)) {
2650 dev->stats.rx_dropped++;
2651 consume_skb(newskb);
2652 goto clear_complete;
2653 }
2654
2655 /* Pass up the skbuff already on the Rx ring. */
2656 skb = vp->rx_skbuff[entry];
2657 vp->rx_skbuff[entry] = newskb;
2658 vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2659 skb_put(skb, pkt_len);
2660 dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2661 vp->rx_nocopy++;
2662 }
2663 skb->protocol = eth_type_trans(skb, dev);
2664 { /* Use hardware checksum info. */
2665 int csum_bits = rx_status & 0xee000000;
2666 if (csum_bits &&
2667 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2668 csum_bits == (IPChksumValid | UDPChksumValid))) {
2669 skb->ip_summed = CHECKSUM_UNNECESSARY;
2670 vp->rx_csumhits++;
2671 }
2672 }
2673 netif_rx(skb);
2674 dev->stats.rx_packets++;
2675 }
2676
2677 clear_complete:
2678 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2679 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2680 entry = (++vp->cur_rx) % RX_RING_SIZE;
2681 }
2682 return 0;
2683 }
2684
2685 static void
vortex_down(struct net_device * dev,int final_down)2686 vortex_down(struct net_device *dev, int final_down)
2687 {
2688 struct vortex_private *vp = netdev_priv(dev);
2689 void __iomem *ioaddr = vp->ioaddr;
2690
2691 netdev_reset_queue(dev);
2692 netif_stop_queue(dev);
2693
2694 del_timer_sync(&vp->timer);
2695
2696 /* Turn off statistics ASAP. We update dev->stats below. */
2697 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2698
2699 /* Disable the receiver and transmitter. */
2700 iowrite16(RxDisable, ioaddr + EL3_CMD);
2701 iowrite16(TxDisable, ioaddr + EL3_CMD);
2702
2703 /* Disable receiving 802.1q tagged frames */
2704 set_8021q_mode(dev, 0);
2705
2706 if (dev->if_port == XCVR_10base2)
2707 /* Turn off thinnet power. Green! */
2708 iowrite16(StopCoax, ioaddr + EL3_CMD);
2709
2710 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2711
2712 update_stats(ioaddr, dev);
2713 if (vp->full_bus_master_rx)
2714 iowrite32(0, ioaddr + UpListPtr);
2715 if (vp->full_bus_master_tx)
2716 iowrite32(0, ioaddr + DownListPtr);
2717
2718 if (final_down && VORTEX_PCI(vp)) {
2719 vp->pm_state_valid = 1;
2720 pci_save_state(VORTEX_PCI(vp));
2721 acpi_set_WOL(dev);
2722 }
2723 }
2724
2725 static int
vortex_close(struct net_device * dev)2726 vortex_close(struct net_device *dev)
2727 {
2728 struct vortex_private *vp = netdev_priv(dev);
2729 void __iomem *ioaddr = vp->ioaddr;
2730 int i;
2731
2732 if (netif_device_present(dev))
2733 vortex_down(dev, 1);
2734
2735 if (vortex_debug > 1) {
2736 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2737 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2738 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2739 " tx_queued %d Rx pre-checksummed %d.\n",
2740 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2741 }
2742
2743 #if DO_ZEROCOPY
2744 if (vp->rx_csumhits &&
2745 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2746 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2747 pr_warn("%s supports hardware checksums, and we're not using them!\n",
2748 dev->name);
2749 }
2750 #endif
2751
2752 free_irq(dev->irq, dev);
2753
2754 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2755 for (i = 0; i < RX_RING_SIZE; i++)
2756 if (vp->rx_skbuff[i]) {
2757 dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2758 PKT_BUF_SZ, DMA_FROM_DEVICE);
2759 dev_kfree_skb(vp->rx_skbuff[i]);
2760 vp->rx_skbuff[i] = NULL;
2761 }
2762 }
2763 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2764 for (i = 0; i < TX_RING_SIZE; i++) {
2765 if (vp->tx_skbuff[i]) {
2766 struct sk_buff *skb = vp->tx_skbuff[i];
2767 #if DO_ZEROCOPY
2768 int k;
2769
2770 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2771 dma_unmap_single(vp->gendev,
2772 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2773 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2774 DMA_TO_DEVICE);
2775 #else
2776 dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2777 #endif
2778 dev_kfree_skb(skb);
2779 vp->tx_skbuff[i] = NULL;
2780 }
2781 }
2782 }
2783
2784 return 0;
2785 }
2786
2787 static void
dump_tx_ring(struct net_device * dev)2788 dump_tx_ring(struct net_device *dev)
2789 {
2790 if (vortex_debug > 0) {
2791 struct vortex_private *vp = netdev_priv(dev);
2792 void __iomem *ioaddr = vp->ioaddr;
2793
2794 if (vp->full_bus_master_tx) {
2795 int i;
2796 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2797
2798 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2799 vp->full_bus_master_tx,
2800 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2801 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2802 pr_err(" Transmit list %8.8x vs. %p.\n",
2803 ioread32(ioaddr + DownListPtr),
2804 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2805 issue_and_wait(dev, DownStall);
2806 for (i = 0; i < TX_RING_SIZE; i++) {
2807 unsigned int length;
2808
2809 #if DO_ZEROCOPY
2810 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2811 #else
2812 length = le32_to_cpu(vp->tx_ring[i].length);
2813 #endif
2814 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2815 i, &vp->tx_ring[i], length,
2816 le32_to_cpu(vp->tx_ring[i].status));
2817 }
2818 if (!stalled)
2819 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2820 }
2821 }
2822 }
2823
vortex_get_stats(struct net_device * dev)2824 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2825 {
2826 struct vortex_private *vp = netdev_priv(dev);
2827 void __iomem *ioaddr = vp->ioaddr;
2828 unsigned long flags;
2829
2830 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2831 spin_lock_irqsave (&vp->lock, flags);
2832 update_stats(ioaddr, dev);
2833 spin_unlock_irqrestore (&vp->lock, flags);
2834 }
2835 return &dev->stats;
2836 }
2837
2838 /* Update statistics.
2839 Unlike with the EL3 we need not worry about interrupts changing
2840 the window setting from underneath us, but we must still guard
2841 against a race condition with a StatsUpdate interrupt updating the
2842 table. This is done by checking that the ASM (!) code generated uses
2843 atomic updates with '+='.
2844 */
update_stats(void __iomem * ioaddr,struct net_device * dev)2845 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2846 {
2847 struct vortex_private *vp = netdev_priv(dev);
2848
2849 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2850 /* Switch to the stats window, and read everything. */
2851 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0);
2852 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1);
2853 dev->stats.tx_window_errors += window_read8(vp, 6, 4);
2854 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5);
2855 dev->stats.tx_packets += window_read8(vp, 6, 6);
2856 dev->stats.tx_packets += (window_read8(vp, 6, 9) &
2857 0x30) << 4;
2858 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */
2859 /* Don't bother with register 9, an extension of registers 6&7.
2860 If we do use the 6&7 values the atomic update assumption above
2861 is invalid. */
2862 dev->stats.rx_bytes += window_read16(vp, 6, 10);
2863 dev->stats.tx_bytes += window_read16(vp, 6, 12);
2864 /* Extra stats for get_ethtool_stats() */
2865 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2);
2866 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3);
2867 vp->xstats.tx_deferred += window_read8(vp, 6, 8);
2868 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12);
2869
2870 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2871 + vp->xstats.tx_single_collisions
2872 + vp->xstats.tx_max_collisions;
2873
2874 {
2875 u8 up = window_read8(vp, 4, 13);
2876 dev->stats.rx_bytes += (up & 0x0f) << 16;
2877 dev->stats.tx_bytes += (up & 0xf0) << 12;
2878 }
2879 }
2880
vortex_nway_reset(struct net_device * dev)2881 static int vortex_nway_reset(struct net_device *dev)
2882 {
2883 struct vortex_private *vp = netdev_priv(dev);
2884
2885 return mii_nway_restart(&vp->mii);
2886 }
2887
vortex_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)2888 static int vortex_get_link_ksettings(struct net_device *dev,
2889 struct ethtool_link_ksettings *cmd)
2890 {
2891 struct vortex_private *vp = netdev_priv(dev);
2892
2893 mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2894
2895 return 0;
2896 }
2897
vortex_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)2898 static int vortex_set_link_ksettings(struct net_device *dev,
2899 const struct ethtool_link_ksettings *cmd)
2900 {
2901 struct vortex_private *vp = netdev_priv(dev);
2902
2903 return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2904 }
2905
vortex_get_msglevel(struct net_device * dev)2906 static u32 vortex_get_msglevel(struct net_device *dev)
2907 {
2908 return vortex_debug;
2909 }
2910
vortex_set_msglevel(struct net_device * dev,u32 dbg)2911 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2912 {
2913 vortex_debug = dbg;
2914 }
2915
vortex_get_sset_count(struct net_device * dev,int sset)2916 static int vortex_get_sset_count(struct net_device *dev, int sset)
2917 {
2918 switch (sset) {
2919 case ETH_SS_STATS:
2920 return VORTEX_NUM_STATS;
2921 default:
2922 return -EOPNOTSUPP;
2923 }
2924 }
2925
vortex_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2926 static void vortex_get_ethtool_stats(struct net_device *dev,
2927 struct ethtool_stats *stats, u64 *data)
2928 {
2929 struct vortex_private *vp = netdev_priv(dev);
2930 void __iomem *ioaddr = vp->ioaddr;
2931 unsigned long flags;
2932
2933 spin_lock_irqsave(&vp->lock, flags);
2934 update_stats(ioaddr, dev);
2935 spin_unlock_irqrestore(&vp->lock, flags);
2936
2937 data[0] = vp->xstats.tx_deferred;
2938 data[1] = vp->xstats.tx_max_collisions;
2939 data[2] = vp->xstats.tx_multiple_collisions;
2940 data[3] = vp->xstats.tx_single_collisions;
2941 data[4] = vp->xstats.rx_bad_ssd;
2942 }
2943
2944
vortex_get_strings(struct net_device * dev,u32 stringset,u8 * data)2945 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2946 {
2947 switch (stringset) {
2948 case ETH_SS_STATS:
2949 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys));
2950 break;
2951 default:
2952 WARN_ON(1);
2953 break;
2954 }
2955 }
2956
vortex_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2957 static void vortex_get_drvinfo(struct net_device *dev,
2958 struct ethtool_drvinfo *info)
2959 {
2960 struct vortex_private *vp = netdev_priv(dev);
2961
2962 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2963 if (VORTEX_PCI(vp)) {
2964 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2965 sizeof(info->bus_info));
2966 } else {
2967 if (VORTEX_EISA(vp))
2968 strlcpy(info->bus_info, dev_name(vp->gendev),
2969 sizeof(info->bus_info));
2970 else
2971 snprintf(info->bus_info, sizeof(info->bus_info),
2972 "EISA 0x%lx %d", dev->base_addr, dev->irq);
2973 }
2974 }
2975
vortex_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2976 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2977 {
2978 struct vortex_private *vp = netdev_priv(dev);
2979
2980 if (!VORTEX_PCI(vp))
2981 return;
2982
2983 wol->supported = WAKE_MAGIC;
2984
2985 wol->wolopts = 0;
2986 if (vp->enable_wol)
2987 wol->wolopts |= WAKE_MAGIC;
2988 }
2989
vortex_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2990 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2991 {
2992 struct vortex_private *vp = netdev_priv(dev);
2993
2994 if (!VORTEX_PCI(vp))
2995 return -EOPNOTSUPP;
2996
2997 if (wol->wolopts & ~WAKE_MAGIC)
2998 return -EINVAL;
2999
3000 if (wol->wolopts & WAKE_MAGIC)
3001 vp->enable_wol = 1;
3002 else
3003 vp->enable_wol = 0;
3004 acpi_set_WOL(dev);
3005
3006 return 0;
3007 }
3008
3009 static const struct ethtool_ops vortex_ethtool_ops = {
3010 .get_drvinfo = vortex_get_drvinfo,
3011 .get_strings = vortex_get_strings,
3012 .get_msglevel = vortex_get_msglevel,
3013 .set_msglevel = vortex_set_msglevel,
3014 .get_ethtool_stats = vortex_get_ethtool_stats,
3015 .get_sset_count = vortex_get_sset_count,
3016 .get_link = ethtool_op_get_link,
3017 .nway_reset = vortex_nway_reset,
3018 .get_wol = vortex_get_wol,
3019 .set_wol = vortex_set_wol,
3020 .get_ts_info = ethtool_op_get_ts_info,
3021 .get_link_ksettings = vortex_get_link_ksettings,
3022 .set_link_ksettings = vortex_set_link_ksettings,
3023 };
3024
3025 #ifdef CONFIG_PCI
3026 /*
3027 * Must power the device up to do MDIO operations
3028 */
vortex_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3029 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3030 {
3031 int err;
3032 struct vortex_private *vp = netdev_priv(dev);
3033 pci_power_t state = 0;
3034
3035 if(VORTEX_PCI(vp))
3036 state = VORTEX_PCI(vp)->current_state;
3037
3038 /* The kernel core really should have pci_get_power_state() */
3039
3040 if(state != 0)
3041 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3042 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3043 if(state != 0)
3044 pci_set_power_state(VORTEX_PCI(vp), state);
3045
3046 return err;
3047 }
3048 #endif
3049
3050
3051 /* Pre-Cyclone chips have no documented multicast filter, so the only
3052 multicast setting is to receive all multicast frames. At least
3053 the chip has a very clean way to set the mode, unlike many others. */
set_rx_mode(struct net_device * dev)3054 static void set_rx_mode(struct net_device *dev)
3055 {
3056 struct vortex_private *vp = netdev_priv(dev);
3057 void __iomem *ioaddr = vp->ioaddr;
3058 int new_mode;
3059
3060 if (dev->flags & IFF_PROMISC) {
3061 if (vortex_debug > 3)
3062 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3063 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3064 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3065 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3066 } else
3067 new_mode = SetRxFilter | RxStation | RxBroadcast;
3068
3069 iowrite16(new_mode, ioaddr + EL3_CMD);
3070 }
3071
3072 #if IS_ENABLED(CONFIG_VLAN_8021Q)
3073 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3074 Note that this must be done after each RxReset due to some backwards
3075 compatibility logic in the Cyclone and Tornado ASICs */
3076
3077 /* The Ethernet Type used for 802.1q tagged frames */
3078 #define VLAN_ETHER_TYPE 0x8100
3079
set_8021q_mode(struct net_device * dev,int enable)3080 static void set_8021q_mode(struct net_device *dev, int enable)
3081 {
3082 struct vortex_private *vp = netdev_priv(dev);
3083 int mac_ctrl;
3084
3085 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3086 /* cyclone and tornado chipsets can recognize 802.1q
3087 * tagged frames and treat them correctly */
3088
3089 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3090 if (enable)
3091 max_pkt_size += 4; /* 802.1Q VLAN tag */
3092
3093 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3094
3095 /* set VlanEtherType to let the hardware checksumming
3096 treat tagged frames correctly */
3097 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3098 } else {
3099 /* on older cards we have to enable large frames */
3100
3101 vp->large_frames = dev->mtu > 1500 || enable;
3102
3103 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3104 if (vp->large_frames)
3105 mac_ctrl |= 0x40;
3106 else
3107 mac_ctrl &= ~0x40;
3108 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3109 }
3110 }
3111 #else
3112
set_8021q_mode(struct net_device * dev,int enable)3113 static void set_8021q_mode(struct net_device *dev, int enable)
3114 {
3115 }
3116
3117
3118 #endif
3119
3120 /* MII transceiver control section.
3121 Read and write the MII registers using software-generated serial
3122 MDIO protocol. See the MII specifications or DP83840A data sheet
3123 for details. */
3124
3125 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3126 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3127 "overclocking" issues. */
mdio_delay(struct vortex_private * vp)3128 static void mdio_delay(struct vortex_private *vp)
3129 {
3130 window_read32(vp, 4, Wn4_PhysicalMgmt);
3131 }
3132
3133 #define MDIO_SHIFT_CLK 0x01
3134 #define MDIO_DIR_WRITE 0x04
3135 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3136 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3137 #define MDIO_DATA_READ 0x02
3138 #define MDIO_ENB_IN 0x00
3139
3140 /* Generate the preamble required for initial synchronization and
3141 a few older transceivers. */
mdio_sync(struct vortex_private * vp,int bits)3142 static void mdio_sync(struct vortex_private *vp, int bits)
3143 {
3144 /* Establish sync by sending at least 32 logic ones. */
3145 while (-- bits >= 0) {
3146 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3147 mdio_delay(vp);
3148 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3149 4, Wn4_PhysicalMgmt);
3150 mdio_delay(vp);
3151 }
3152 }
3153
mdio_read(struct net_device * dev,int phy_id,int location)3154 static int mdio_read(struct net_device *dev, int phy_id, int location)
3155 {
3156 int i;
3157 struct vortex_private *vp = netdev_priv(dev);
3158 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3159 unsigned int retval = 0;
3160
3161 spin_lock_bh(&vp->mii_lock);
3162
3163 if (mii_preamble_required)
3164 mdio_sync(vp, 32);
3165
3166 /* Shift the read command bits out. */
3167 for (i = 14; i >= 0; i--) {
3168 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3169 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3170 mdio_delay(vp);
3171 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3172 4, Wn4_PhysicalMgmt);
3173 mdio_delay(vp);
3174 }
3175 /* Read the two transition, 16 data, and wire-idle bits. */
3176 for (i = 19; i > 0; i--) {
3177 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3178 mdio_delay(vp);
3179 retval = (retval << 1) |
3180 ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3181 MDIO_DATA_READ) ? 1 : 0);
3182 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183 4, Wn4_PhysicalMgmt);
3184 mdio_delay(vp);
3185 }
3186
3187 spin_unlock_bh(&vp->mii_lock);
3188
3189 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3190 }
3191
mdio_write(struct net_device * dev,int phy_id,int location,int value)3192 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3193 {
3194 struct vortex_private *vp = netdev_priv(dev);
3195 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3196 int i;
3197
3198 spin_lock_bh(&vp->mii_lock);
3199
3200 if (mii_preamble_required)
3201 mdio_sync(vp, 32);
3202
3203 /* Shift the command bits out. */
3204 for (i = 31; i >= 0; i--) {
3205 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3206 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3207 mdio_delay(vp);
3208 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3209 4, Wn4_PhysicalMgmt);
3210 mdio_delay(vp);
3211 }
3212 /* Leave the interface idle. */
3213 for (i = 1; i >= 0; i--) {
3214 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3215 mdio_delay(vp);
3216 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3217 4, Wn4_PhysicalMgmt);
3218 mdio_delay(vp);
3219 }
3220
3221 spin_unlock_bh(&vp->mii_lock);
3222 }
3223
3224 /* ACPI: Advanced Configuration and Power Interface. */
3225 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
acpi_set_WOL(struct net_device * dev)3226 static void acpi_set_WOL(struct net_device *dev)
3227 {
3228 struct vortex_private *vp = netdev_priv(dev);
3229 void __iomem *ioaddr = vp->ioaddr;
3230
3231 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3232
3233 if (vp->enable_wol) {
3234 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3235 window_write16(vp, 2, 7, 0x0c);
3236 /* The RxFilter must accept the WOL frames. */
3237 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3238 iowrite16(RxEnable, ioaddr + EL3_CMD);
3239
3240 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3241 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3242
3243 vp->enable_wol = 0;
3244 return;
3245 }
3246
3247 if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3248 return;
3249
3250 /* Change the power state to D3; RxEnable doesn't take effect. */
3251 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3252 }
3253 }
3254
3255
vortex_remove_one(struct pci_dev * pdev)3256 static void vortex_remove_one(struct pci_dev *pdev)
3257 {
3258 struct net_device *dev = pci_get_drvdata(pdev);
3259 struct vortex_private *vp;
3260
3261 if (!dev) {
3262 pr_err("vortex_remove_one called for Compaq device!\n");
3263 BUG();
3264 }
3265
3266 vp = netdev_priv(dev);
3267
3268 if (vp->cb_fn_base)
3269 pci_iounmap(pdev, vp->cb_fn_base);
3270
3271 unregister_netdev(dev);
3272
3273 pci_set_power_state(pdev, PCI_D0); /* Go active */
3274 if (vp->pm_state_valid)
3275 pci_restore_state(pdev);
3276 pci_disable_device(pdev);
3277
3278 /* Should really use issue_and_wait() here */
3279 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3280 vp->ioaddr + EL3_CMD);
3281
3282 pci_iounmap(pdev, vp->ioaddr);
3283
3284 dma_free_coherent(&pdev->dev,
3285 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3286 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3287 vp->rx_ring, vp->rx_ring_dma);
3288
3289 pci_release_regions(pdev);
3290
3291 free_netdev(dev);
3292 }
3293
3294
3295 static struct pci_driver vortex_driver = {
3296 .name = "3c59x",
3297 .probe = vortex_init_one,
3298 .remove = vortex_remove_one,
3299 .id_table = vortex_pci_tbl,
3300 .driver.pm = VORTEX_PM_OPS,
3301 };
3302
3303
3304 static int vortex_have_pci;
3305 static int vortex_have_eisa;
3306
3307
vortex_init(void)3308 static int __init vortex_init(void)
3309 {
3310 int pci_rc, eisa_rc;
3311
3312 pci_rc = pci_register_driver(&vortex_driver);
3313 eisa_rc = vortex_eisa_init();
3314
3315 if (pci_rc == 0)
3316 vortex_have_pci = 1;
3317 if (eisa_rc > 0)
3318 vortex_have_eisa = 1;
3319
3320 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3321 }
3322
3323
vortex_eisa_cleanup(void)3324 static void __exit vortex_eisa_cleanup(void)
3325 {
3326 void __iomem *ioaddr;
3327
3328 #ifdef CONFIG_EISA
3329 /* Take care of the EISA devices */
3330 eisa_driver_unregister(&vortex_eisa_driver);
3331 #endif
3332
3333 if (compaq_net_device) {
3334 ioaddr = ioport_map(compaq_net_device->base_addr,
3335 VORTEX_TOTAL_SIZE);
3336
3337 unregister_netdev(compaq_net_device);
3338 iowrite16(TotalReset, ioaddr + EL3_CMD);
3339 release_region(compaq_net_device->base_addr,
3340 VORTEX_TOTAL_SIZE);
3341
3342 free_netdev(compaq_net_device);
3343 }
3344 }
3345
3346
vortex_cleanup(void)3347 static void __exit vortex_cleanup(void)
3348 {
3349 if (vortex_have_pci)
3350 pci_unregister_driver(&vortex_driver);
3351 if (vortex_have_eisa)
3352 vortex_eisa_cleanup();
3353 }
3354
3355
3356 module_init(vortex_init);
3357 module_exit(vortex_cleanup);
3358