/Linux-v5.15/security/landlock/ |
D | ruleset.c | 71 const struct landlock_layer (*const layers)[], in create_rule() argument 87 new_rule = kzalloc(struct_size(new_rule, layers, new_num_layers), in create_rule() 96 memcpy(new_rule->layers, layers, in create_rule() 97 flex_array_size(new_rule, layers, num_layers)); in create_rule() 100 new_rule->layers[new_rule->num_layers - 1] = *new_layer; in create_rule() 132 * @layers: One or multiple layers to be copied into the new rule. 133 * @num_layers: The number of @layers entries. 135 * When user space requests to add a new rule to a ruleset, @layers only 140 * When merging a ruleset in a domain, or copying a domain, @layers will be 146 const struct landlock_layer (*const layers)[], in insert_rule() argument [all …]
|
D | ruleset.h | 50 * @num_layers: Number of entries in @layers. 54 * @layers: Stack of layers, from the latest to the newest, implemented 57 struct landlock_layer layers[]; member 120 * @num_layers: Number of layers that are used in this 121 * ruleset. This enables to check that all the layers 129 * saves all layers of merged rulesets in a stack 131 * one. These layers are used when merging rulesets, 135 * layers are set once and never changed for the
|
/Linux-v5.15/drivers/edac/ |
D | pasemi_edac.c | 183 struct edac_mc_layer layers[2]; in pasemi_edac_probe() local 200 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in pasemi_edac_probe() 201 layers[0].size = PASEMI_EDAC_NR_CSROWS; in pasemi_edac_probe() 202 layers[0].is_virt_csrow = true; in pasemi_edac_probe() 203 layers[1].type = EDAC_MC_LAYER_CHANNEL; in pasemi_edac_probe() 204 layers[1].size = PASEMI_EDAC_NR_CHANS; in pasemi_edac_probe() 205 layers[1].is_virt_csrow = false; in pasemi_edac_probe() 206 mci = edac_mc_alloc(system_mmc_id++, ARRAY_SIZE(layers), layers, in pasemi_edac_probe()
|
D | highbank_mc_edac.c | 148 struct edac_mc_layer layers[2]; in highbank_mc_probe() local 162 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in highbank_mc_probe() 163 layers[0].size = 1; in highbank_mc_probe() 164 layers[0].is_virt_csrow = true; in highbank_mc_probe() 165 layers[1].type = EDAC_MC_LAYER_CHANNEL; in highbank_mc_probe() 166 layers[1].size = 1; in highbank_mc_probe() 167 layers[1].is_virt_csrow = false; in highbank_mc_probe() 168 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, in highbank_mc_probe()
|
D | cell_edac.c | 172 struct edac_mc_layer layers[2]; in cell_edac_probe() local 202 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in cell_edac_probe() 203 layers[0].size = 1; in cell_edac_probe() 204 layers[0].is_virt_csrow = true; in cell_edac_probe() 205 layers[1].type = EDAC_MC_LAYER_CHANNEL; in cell_edac_probe() 206 layers[1].size = num_chans; in cell_edac_probe() 207 layers[1].is_virt_csrow = false; in cell_edac_probe() 208 mci = edac_mc_alloc(pdev->id, ARRAY_SIZE(layers), layers, in cell_edac_probe()
|
D | aspeed_edac.c | 282 struct edac_mc_layer layers[2]; in aspeed_probe() local 307 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in aspeed_probe() 308 layers[0].size = 1; in aspeed_probe() 309 layers[0].is_virt_csrow = true; in aspeed_probe() 310 layers[1].type = EDAC_MC_LAYER_CHANNEL; in aspeed_probe() 311 layers[1].size = 1; in aspeed_probe() 312 layers[1].is_virt_csrow = false; in aspeed_probe() 314 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); in aspeed_probe()
|
D | amd76x_edac.c | 237 struct edac_mc_layer layers[2]; in amd76x_probe1() local 246 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in amd76x_probe1() 247 layers[0].size = AMD76X_NR_CSROWS; in amd76x_probe1() 248 layers[0].is_virt_csrow = true; in amd76x_probe1() 249 layers[1].type = EDAC_MC_LAYER_CHANNEL; in amd76x_probe1() 250 layers[1].size = 1; in amd76x_probe1() 251 layers[1].is_virt_csrow = false; in amd76x_probe1() 252 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); in amd76x_probe1()
|
D | i82860_edac.c | 187 struct edac_mc_layer layers[2]; in i82860_probe1() local 200 layers[0].type = EDAC_MC_LAYER_CHANNEL; in i82860_probe1() 201 layers[0].size = 2; in i82860_probe1() 202 layers[0].is_virt_csrow = true; in i82860_probe1() 203 layers[1].type = EDAC_MC_LAYER_SLOT; in i82860_probe1() 204 layers[1].size = 8; in i82860_probe1() 205 layers[1].is_virt_csrow = true; in i82860_probe1() 206 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); in i82860_probe1()
|
D | octeon_edac-lmc.c | 228 struct edac_mc_layer layers[1]; in octeon_lmc_edac_probe() local 233 layers[0].type = EDAC_MC_LAYER_CHANNEL; in octeon_lmc_edac_probe() 234 layers[0].size = 1; in octeon_lmc_edac_probe() 235 layers[0].is_virt_csrow = false; in octeon_lmc_edac_probe() 246 mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, sizeof(struct octeon_lmc_pvt)); in octeon_lmc_edac_probe() 278 mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, sizeof(struct octeon_lmc_pvt)); in octeon_lmc_edac_probe()
|
D | r82600_edac.c | 271 struct edac_mc_layer layers[2]; in r82600_probe1() local 285 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in r82600_probe1() 286 layers[0].size = R82600_NR_CSROWS; in r82600_probe1() 287 layers[0].is_virt_csrow = true; in r82600_probe1() 288 layers[1].type = EDAC_MC_LAYER_CHANNEL; in r82600_probe1() 289 layers[1].size = R82600_NR_CHANS; in r82600_probe1() 290 layers[1].is_virt_csrow = false; in r82600_probe1() 291 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); in r82600_probe1()
|
D | x38_edac.c | 322 struct edac_mc_layer layers[2]; in x38_probe1() local 338 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in x38_probe1() 339 layers[0].size = X38_RANKS; in x38_probe1() 340 layers[0].is_virt_csrow = true; in x38_probe1() 341 layers[1].type = EDAC_MC_LAYER_CHANNEL; in x38_probe1() 342 layers[1].size = x38_channel_num; in x38_probe1() 343 layers[1].is_virt_csrow = false; in x38_probe1() 344 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); in x38_probe1()
|
D | i3200_edac.c | 340 struct edac_mc_layer layers[2]; in i3200_probe1() local 355 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in i3200_probe1() 356 layers[0].size = I3200_DIMMS; in i3200_probe1() 357 layers[0].is_virt_csrow = true; in i3200_probe1() 358 layers[1].type = EDAC_MC_LAYER_CHANNEL; in i3200_probe1() 359 layers[1].size = nr_channels; in i3200_probe1() 360 layers[1].is_virt_csrow = false; in i3200_probe1() 361 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, in i3200_probe1()
|
D | i82443bxgx_edac.c | 234 struct edac_mc_layer layers[2]; in i82443bxgx_edacmc_probe1() local 248 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in i82443bxgx_edacmc_probe1() 249 layers[0].size = I82443BXGX_NR_CSROWS; in i82443bxgx_edacmc_probe1() 250 layers[0].is_virt_csrow = true; in i82443bxgx_edacmc_probe1() 251 layers[1].type = EDAC_MC_LAYER_CHANNEL; in i82443bxgx_edacmc_probe1() 252 layers[1].size = I82443BXGX_NR_CHANS; in i82443bxgx_edacmc_probe1() 253 layers[1].is_virt_csrow = false; in i82443bxgx_edacmc_probe1() 254 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); in i82443bxgx_edacmc_probe1()
|
D | i3000_edac.c | 313 struct edac_mc_layer layers[2]; in i3000_probe1() local 356 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; in i3000_probe1() 357 layers[0].size = I3000_RANKS / nr_channels; in i3000_probe1() 358 layers[0].is_virt_csrow = true; in i3000_probe1() 359 layers[1].type = EDAC_MC_LAYER_CHANNEL; in i3000_probe1() 360 layers[1].size = nr_channels; in i3000_probe1() 361 layers[1].is_virt_csrow = false; in i3000_probe1() 362 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); in i3000_probe1()
|
D | bluefield_edac.c | 246 struct edac_mc_layer layers[1]; in bluefield_edac_mc_probe() local 273 layers[0].type = EDAC_MC_LAYER_SLOT; in bluefield_edac_mc_probe() 274 layers[0].size = dimm_count; in bluefield_edac_mc_probe() 275 layers[0].is_virt_csrow = true; in bluefield_edac_mc_probe() 277 mci = edac_mc_alloc(mc_idx, ARRAY_SIZE(layers), layers, sizeof(*priv)); in bluefield_edac_mc_probe()
|
/Linux-v5.15/drivers/media/dvb-frontends/ |
D | tc90522.c | 201 int layers; in tc90522s_get_frontend() local 209 layers = 0; in tc90522s_get_frontend() 236 layers = (v > 0) ? 2 : 1; in tc90522s_get_frontend() 284 stats->len = layers; in tc90522s_get_frontend() 287 for (i = 0; i < layers; i++) in tc90522s_get_frontend() 290 for (i = 0; i < layers; i++) { in tc90522s_get_frontend() 298 stats->len = layers; in tc90522s_get_frontend() 300 for (i = 0; i < layers; i++) in tc90522s_get_frontend() 303 for (i = 0; i < layers; i++) { in tc90522s_get_frontend() 336 int layers; in tc90522t_get_frontend() local [all …]
|
/Linux-v5.15/Documentation/userspace-api/ |
D | landlock.rst | 15 LSM, it makes possible to create safe security sandboxes as new security layers 128 Layers of file path access rights 139 a file path if all its enforced policy layers grant the access as well as all 158 An OverlayFS mount point consists of upper and lower layers. These layers are 160 may include files from the upper and lower layers, but modifications performed 162 policy point of view, each OverlayFS layers and merge hierarchies are 236 Properly handling multiple layers of ruleset, each one of them able to restrict 267 Ruleset layers 270 There is a limit of 64 layers of stacked rulesets. This can be an issue for a
|
/Linux-v5.15/Documentation/block/ |
D | inline-encryption.rst | 44 - We need a way for upper layers like filesystems to specify an encryption 49 capabilities in a unified way to the upper layers. 57 encryption context from the upper layers (like the fs layer) to the 67 upper layers. The generic mode of operation is: each device driver that wants 69 Upper layers that want to use IE on this device can then use this KSM in 93 We introduce ``block/blk-crypto-fallback.c``, which allows upper layers to remain 149 ``blk_crypto_init_key`` allows upper layers to initialize such a 158 ``blk_crypto_config_supported`` allows upper layers to query whether or not the 166 ``blk_crypto_start_using_key`` - Upper layers must call this function on 174 ``blk_crypto_evict_key`` *must* be called by upper layers before a
|
/Linux-v5.15/Documentation/scsi/ |
D | scsi_eh.rst | 151 Note that this does not mean lower layers are quiescent. If a LLDD 152 completed a scmd with error status, the LLDD and lower layers are 154 has timed out, unless hostt->eh_timed_out() made lower layers forget 156 active as long as lower layers are concerned and completion could 205 lower layers and lower layers are ready to process or fail the scmd 388 that lower layers have forgotten about the scmd and we can 397 and STU doesn't make lower layers forget about those 399 if STU succeeds leaving lower layers in an inconsistent 452 On completion, the handler should have made lower layers forget about 495 - Know that timed out scmds are still active on lower layers. Make [all …]
|
D | ufs.rst | 56 UFS communication architecture consists of following layers, 77 layers. Device level configurations involve handling of query 85 the higher layers through Service Access Points. UTP defines 3 86 service access points for higher layers. 107 * UIO_SAP: To issue commands to Unipro layers.
|
/Linux-v5.15/fs/overlayfs/ |
D | super.c | 232 /* Hack! Reuse ofs->layers as a vfsmount array before freeing it */ in ovl_free_fs() 233 mounts = (struct vfsmount **) ofs->layers; in ovl_free_fs() 235 iput(ofs->layers[i].trap); in ovl_free_fs() 236 mounts[i] = ofs->layers[i].mnt; in ovl_free_fs() 239 kfree(ofs->layers); in ovl_free_fs() 873 pr_err("idmapped layers are currently not supported\n"); in ovl_mount_dir_noesc() 940 * file handles, so they require that all layers support them. in ovl_lower_dir() 1199 pr_err("upper fs is r/o, try multi-lower layers mount\n"); in ovl_get_upper() 1609 * as all lower layers with null uuid are on the same fs. in ovl_lower_uuid_ok() 1671 struct ovl_layer *layers) in ovl_get_layers() argument [all …]
|
/Linux-v5.15/Documentation/driver-api/fpga/ |
D | intro.rst | 9 * The FPGA subsystem separates upper layers (userspace interfaces and 10 enumeration) from lower layers that know how to program a specific 13 * Code should not be shared between upper and lower layers. This
|
/Linux-v5.15/include/net/caif/ |
D | caif_layer.h | 129 * It defines CAIF layering structure, used by all CAIF Layers and the 130 * layers interfacing CAIF. 136 * Principles for layering of protocol layers: 137 * - All layers must use this structure. If embedding it, then place this 169 * - If parsing succeeds (and above layers return OK) then 253 * logical CAIF connection. Used by service layers to
|
/Linux-v5.15/drivers/staging/most/Documentation/ |
D | driver_usage.txt | 8 MOST defines the protocol, hardware and software layers necessary to allow 19 consumer devices via optical or electrical physical layers directly to one 27 three layers. From bottom up these layers are: the adapter layer, the core 31 routing through all three layers, the configuration of the driver, the 35 For each of the other two layers a set of modules is provided. Those can be
|
/Linux-v5.15/drivers/gpu/drm/atmel-hlcdc/ |
D | atmel_hlcdc_dc.h | 135 * can be placed differently on 2 different layers depending on its 307 * @layers: a layer description table describing available layers 320 const struct atmel_hlcdc_layer_desc *layers; member 333 * @layers: active HLCDC layers 341 struct atmel_hlcdc_layer *layers[ATMEL_HLCDC_MAX_LAYERS]; member
|