/Linux-v5.15/Documentation/devicetree/bindings/edac/ |
D | socfpga-eccmgr.txt | 1 Altera SoCFPGA ECC Manager 2 This driver uses the EDAC framework to implement the SOCFPGA ECC Manager. 3 The ECC Manager counts and corrects single bit errors and counts/handles 6 Cyclone5 and Arria5 ECC Manager 8 - compatible : Should be "altr,socfpga-ecc-manager" 15 L2 Cache ECC 17 - compatible : Should be "altr,socfpga-l2-ecc" 18 - reg : Address and size for ECC error interrupt clear registers. 22 On Chip RAM ECC 24 - compatible : Should be "altr,socfpga-ocram-ecc" [all …]
|
/Linux-v5.15/drivers/mtd/nand/raw/ |
D | mtk_ecc.c | 3 * MTK ECC controller driver. 67 /* ecc strength that each IP supports */ 118 static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc, in mtk_ecc_wait_idle() argument 121 struct device *dev = ecc->dev; in mtk_ecc_wait_idle() 125 ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val, in mtk_ecc_wait_idle() 135 struct mtk_ecc *ecc = id; in mtk_ecc_irq() local 138 dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]) in mtk_ecc_irq() 141 dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); in mtk_ecc_irq() 142 if (dec & ecc->sectors) { in mtk_ecc_irq() 147 readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]); in mtk_ecc_irq() [all …]
|
D | nand_micron.c | 15 * corrected by on-die ECC and should be rewritten. 20 * On chips with 8-bit ECC and additional bit can be used to distinguish 66 struct micron_on_die_ecc ecc; member 127 .ecc = micron_nand_on_die_4_ooblayout_ecc, 140 oobregion->offset = mtd->oobsize - chip->ecc.total; in micron_nand_on_die_8_ooblayout_ecc() 141 oobregion->length = chip->ecc.total; in micron_nand_on_die_8_ooblayout_ecc() 156 oobregion->length = mtd->oobsize - chip->ecc.total - 2; in micron_nand_on_die_8_ooblayout_free() 162 .ecc = micron_nand_on_die_8_ooblayout_ecc, 172 if (micron->ecc.forced) in micron_nand_on_die_ecc_setup() 175 if (micron->ecc.enabled == enable) in micron_nand_on_die_ecc_setup() [all …]
|
D | nand_base.c | 22 * if we have HW ECC support. 38 #include <linux/mtd/nand-ecc-sw-hamming.h> 39 #include <linux/mtd/nand-ecc-sw-bch.h> 263 res = chip->ecc.read_oob(chip, first_page + page_offset); in nand_block_bad() 472 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); in nand_do_write_oob() 474 status = chip->ecc.write_oob(chip, page & chip->pagemask); in nand_do_write_oob() 2709 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2713 * @ecc: ECC buffer 2714 * @ecclen: ECC length 2719 * Check if a data buffer and its associated ECC and OOB data contains only [all …]
|
D | omap2.c | 18 #include <linux/mtd/nand-ecc-sw-bch.h> 122 /* GPMC ecc engine settings for read */ 129 /* GPMC ecc engine settings for write */ 170 /* fields specific for BCHx_HW ECC scheme */ 723 * gen_true_ecc - This function will generate true ECC value 724 * @ecc_buf: buffer to store ecc code 726 * This generated true ECC value can be used when correcting 744 * @ecc_data1: ecc code from nand spare area 745 * @ecc_data2: ecc code from hardware register obtained from hardware ecc 748 * This function compares two ECC's and indicates if there is an error. [all …]
|
D | sunxi_nand.c | 173 * struct sunxi_nand_hw_ecc - stores information related to HW ECC support 175 * @mode: the sunxi ECC mode field deduced from ECC requirements 186 * @ecc: ECC controller structure 196 struct sunxi_nand_hw_ecc *ecc; member 604 bool ecc) in sunxi_nfc_randomizer_state() argument 613 if (ecc) { in sunxi_nfc_randomizer_state() 624 bool ecc) in sunxi_nfc_randomizer_config() argument 634 state = sunxi_nfc_randomizer_state(nand, page, ecc); in sunxi_nfc_randomizer_config() 671 bool ecc, int page) in sunxi_nfc_randomizer_write_buf() argument 673 sunxi_nfc_randomizer_config(nand, page, ecc); in sunxi_nfc_randomizer_write_buf() [all …]
|
D | davinci_nand.c | 33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC 85 * 1-bit hardware ECC ... context maintained for each core chipselect 104 /* Reset ECC hardware */ in nand_davinci_hwctl_1bit() 109 /* Restart ECC hardware */ in nand_davinci_hwctl_1bit() 118 * Read hardware ECC value and pack into three bytes 126 /* invert so that erased block ecc is correct */ in nand_davinci_calculate_1bit() 147 if ((diff >> (12 + 3)) < chip->ecc.size) { in nand_davinci_correct_1bit() 154 /* Single bit ECC error in the ECC itself, in nand_davinci_correct_1bit() 169 * 4-bit hardware ECC ... context maintained over entire AEMIF 174 * Also, and specific to this hardware, it ECC-protects the "prepad" [all …]
|
D | qcom_nandc.c | 168 * the NAND controller performs reads/writes with ECC in 516 byte chunks. 182 /* ECC modes supported by the controller */ 430 * of a page, consisting of all data, ecc, spare 433 * by ECC 434 * @use_ecc: request the controller to use ECC for the 436 * @bch_enabled: flag to tell whether BCH ECC mode is used 437 * @ecc_bytes_hw: ECC bytes used by controller hardware for this 445 * ecc/non-ecc mode for the current nand flash 474 * @ecc_modes - ecc mode for NAND 687 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) in qcom_nandc_is_last_cw() argument [all …]
|
D | fsmc_nand.c | 28 #include <linux/mtd/nand-ecc-sw-hamming.h> 163 if (section >= chip->ecc.steps) in fsmc_ecc1_ooblayout_ecc() 177 if (section >= chip->ecc.steps) in fsmc_ecc1_ooblayout_free() 182 if (section < chip->ecc.steps - 1) in fsmc_ecc1_ooblayout_free() 191 .ecc = fsmc_ecc1_ooblayout_ecc, 196 * ECC placement definitions in oobfree type format. 197 * There are 13 bytes of ecc for every 512 byte block and it has to be read 206 if (section >= chip->ecc.steps) in fsmc_ecc4_ooblayout_ecc() 209 oobregion->length = chip->ecc.bytes; in fsmc_ecc4_ooblayout_ecc() 224 if (section >= chip->ecc.steps) in fsmc_ecc4_ooblayout_free() [all …]
|
D | rockchip-nand-controller.c | 24 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 25 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 32 * 4Bytes sys data + .... + 4Bytes sys data + ECC data. 94 * struct rk_ecc_cnt_status: represent a ecc status data. 96 * @low: ECC count low bit index at register. 98 * @low_bn: ECC count low bit number. 99 * @high: ECC count high bit index at register. 113 * @ecc_strengths: ECC strengths 114 * @ecc_cfgs: ECC config values 198 return (u8 *)p + i * chip->ecc.size; in rk_nfc_buf_to_data_ptr() [all …]
|
/Linux-v5.15/drivers/mtd/nand/raw/ingenic/ |
D | ingenic_ecc.c | 3 * JZ47xx ECC common code 18 * ingenic_ecc_calculate() - calculate ECC for a data buffer 19 * @ecc: ECC device. 20 * @params: ECC parameters. 22 * @ecc_code: output buffer with ECC. 24 * Return: 0 on success, -ETIMEDOUT if timed out while waiting for ECC 27 int ingenic_ecc_calculate(struct ingenic_ecc *ecc, in ingenic_ecc_calculate() argument 31 return ecc->ops->calculate(ecc, params, buf, ecc_code); in ingenic_ecc_calculate() 36 * @ecc: ECC device. 37 * @params: ECC parameters. [all …]
|
D | ingenic_nand_drv.c | 44 struct ingenic_ecc *ecc; member 75 struct nand_ecc_ctrl *ecc = &chip->ecc; in qi_lb60_ooblayout_ecc() local 77 if (section || !ecc->total) in qi_lb60_ooblayout_ecc() 80 oobregion->length = ecc->total; in qi_lb60_ooblayout_ecc() 90 struct nand_ecc_ctrl *ecc = &chip->ecc; in qi_lb60_ooblayout_free() local 95 oobregion->length = mtd->oobsize - ecc->total - 12; in qi_lb60_ooblayout_free() 96 oobregion->offset = 12 + ecc->total; in qi_lb60_ooblayout_free() 102 .ecc = qi_lb60_ooblayout_ecc, 110 struct nand_ecc_ctrl *ecc = &chip->ecc; in jz4725b_ooblayout_ecc() local 112 if (section || !ecc->total) in jz4725b_ooblayout_ecc() [all …]
|
D | jz4740_ecc.c | 3 * JZ4740 ECC controller driver 45 static void jz4740_ecc_reset(struct ingenic_ecc *ecc, bool calc_ecc) in jz4740_ecc_reset() argument 50 writel(0, ecc->base + JZ_REG_NAND_IRQ_STAT); in jz4740_ecc_reset() 52 /* Initialize and enable ECC hardware */ in jz4740_ecc_reset() 53 reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL); in jz4740_ecc_reset() 57 if (calc_ecc) /* calculate ECC from data */ in jz4740_ecc_reset() 59 else /* correct data from ECC */ in jz4740_ecc_reset() 62 writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL); in jz4740_ecc_reset() 65 static int jz4740_ecc_calculate(struct ingenic_ecc *ecc, in jz4740_ecc_calculate() argument 73 jz4740_ecc_reset(ecc, true); in jz4740_ecc_calculate() [all …]
|
D | ingenic_ecc.h | 17 * struct ingenic_ecc_params - ECC parameters 18 * @size: data bytes per ECC step. 19 * @bytes: ECC bytes per step. 20 * @strength: number of correctable bits per ECC step. 29 int ingenic_ecc_calculate(struct ingenic_ecc *ecc, 32 int ingenic_ecc_correct(struct ingenic_ecc *ecc, 36 void ingenic_ecc_release(struct ingenic_ecc *ecc); 39 int ingenic_ecc_calculate(struct ingenic_ecc *ecc, in ingenic_ecc_calculate() argument 46 int ingenic_ecc_correct(struct ingenic_ecc *ecc, in ingenic_ecc_correct() argument 53 void ingenic_ecc_release(struct ingenic_ecc *ecc) in ingenic_ecc_release() argument [all …]
|
/Linux-v5.15/drivers/dma/ti/ |
D | edma.c | 228 struct edma_cc *ecc; member 309 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) in edma_read() argument 311 return (unsigned int)__raw_readl(ecc->base + offset); in edma_read() 314 static inline void edma_write(struct edma_cc *ecc, int offset, int val) in edma_write() argument 316 __raw_writel(val, ecc->base + offset); in edma_write() 319 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, in edma_modify() argument 322 unsigned val = edma_read(ecc, offset); in edma_modify() 326 edma_write(ecc, offset, val); in edma_modify() 329 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) in edma_and() argument 331 unsigned val = edma_read(ecc, offset); in edma_and() [all …]
|
/Linux-v5.15/drivers/mtd/nand/ |
D | ecc.c | 3 * Generic Error-Correcting Code (ECC) engine 10 * This file describes the abstraction of any NAND ECC engine. It has been 13 * There are three main situations where instantiating this ECC engine makes 15 * - external: The ECC engine is outside the NAND pipeline, typically this 16 * is a software ECC engine, or an hardware engine that is 18 * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the 20 * controllers. In the pipeline case, the ECC bytes are 23 * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side. 28 * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on 30 * engine, this step may involve to derive the ECC bytes and place [all …]
|
D | ecc-sw-bch.c | 3 * This file provides ECC correction for more than 1 bit per block of data, 15 #include <linux/mtd/nand-ecc-sw-bch.h> 18 * nand_ecc_sw_bch_calculate - Calculate the ECC corresponding to a data block 21 * @code: Output buffer with ECC 26 struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; in nand_ecc_sw_bch_calculate() 30 bch_encode(engine_conf->bch, buf, nand->ecc.ctx.conf.step_size, code); in nand_ecc_sw_bch_calculate() 44 * @read_ecc: ECC bytes from the chip 45 * @calc_ecc: ECC calculated from the raw data 52 struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv; in nand_ecc_sw_bch_correct() 53 unsigned int step_size = nand->ecc.ctx.conf.step_size; in nand_ecc_sw_bch_correct() [all …]
|
/Linux-v5.15/Documentation/devicetree/bindings/mtd/ |
D | gpmc-nand.txt | 10 For NAND specific properties such as ECC modes or bus width, please refer to 27 - ti,nand-ecc-opt: A string setting the ECC layout to use. One of: 28 "sw" 1-bit Hamming ecc code via software 31 "ham1" 1-bit Hamming ecc code 32 "bch4" 4-bit BCH ecc code 33 "bch8" 8-bit BCH ecc code 34 "bch16" 16-bit BCH ECC code 35 Refer below "How to select correct ECC scheme for your device ?" 47 locating ECC errors for BCHx algorithms. SoC devices which have 49 Using ELM for ECC error correction frees some CPU cycles. [all …]
|
D | nand-controller.yaml | 19 The ECC strength and ECC step size properties define the user 21 they request the ECC engine to correct {strength} bit errors per 60 nand-ecc-engine: 64 A phandle on the hardware ECC engine if any. There are 66 1/ The ECC engine is part of the NAND controller, in this 68 2/ The ECC engine is part of the NAND part (on-die), in this 70 3/ The ECC engine is external, in this case the phandle should 71 reference the specific ECC engine node. 73 nand-use-soft-ecc-engine: 75 description: Use a software ECC engine. [all …]
|
D | mtk-nand.txt | 5 the nand controller interface driver and the ECC engine driver. 23 - ecc-engine: Required ECC Engine node. 36 ecc-engine = <&bch>; 49 - nand-ecc-mode: the NAND ecc mode (check driver for supported modes) 50 - nand-ecc-step-size: Number of data bytes covered by a single ECC step. 55 - nand-ecc-strength: Number of bits to correct per ECC step. 65 E : nand-ecc-strength. 71 Q : nand-ecc-step-size. 75 this number depends on max ecc step size 77 If max ecc step size supported is 1024, [all …]
|
D | rockchip,nand-controller.yaml | 63 nand-ecc-mode: 66 nand-ecc-step-size: 69 nand-ecc-strength: 72 The ECC configurations that can be supported are as follows. 73 NFC v600 ECC 16, 24, 40, 60 76 NFC v622 ECC 16, 24, 40, 60 79 NFC v800 ECC 16 82 NFC v900 ECC 16, 40, 60, 70 93 The NFC driver need this information to select ECC 97 rockchip,boot-ecc-strength: [all …]
|
D | hisi504-nand.txt | 11 - nand-ecc-mode: Support none and hw ecc mode. 17 - nand-ecc-strength: Number of bits to correct per ECC step. 18 - nand-ecc-step-size: Number of data bytes covered by a single ECC step. 20 The following ECC strength and step size are currently supported: 22 - nand-ecc-strength = <16>, nand-ecc-step-size = <1024> 34 nand-ecc-mode = "hw"; 35 nand-ecc-strength = <16>; 36 nand-ecc-step-size = <1024>;
|
/Linux-v5.15/tools/perf/pmu-events/arch/s390/cf_z15/ |
D | crypto6.json | 6 "BriefDescription": "ECC Function Count", 7 … "This counter counts the total number of the elliptic-curve cryptography (ECC) functions issued b… 13 "BriefDescription": "ECC Cycles Count", 14 … the total number of CPU cycles when the ECC coprocessor is busy performing the elliptic-curve cry… 20 "BriefDescription": "Ecc Blocked Function Count", 21 …ber of the elliptic-curve cryptography (ECC) functions that are issued by the CPU and are blocked … 27 "BriefDescription": "ECC Blocked Cycles Count", 28 …cycles blocked for the elliptic-curve cryptography (ECC) functions issued by the CPU because the E…
|
/Linux-v5.15/arch/arm/mach-socfpga/ |
D | ocram.c | 23 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); in socfpga_init_ocram_ecc() 25 pr_err("Unable to find socfpga-ocram-ecc\n"); in socfpga_init_ocram_ecc() 32 pr_err("Unable to map OCRAM ecc regs.\n"); in socfpga_init_ocram_ecc() 36 /* Clear any pending OCRAM ECC interrupts, then enable ECC */ in socfpga_init_ocram_ecc() 60 /* ECC Manager Defines */ 91 * This function uses the memory initialization block in the Arria10 ECC 92 * controller to initialize/clear the entire memory data and ECC data. 108 /* Clear any pending ECC interrupts */ in altr_init_memory_port() 127 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-a10-ocram-ecc"); in socfpga_init_arria10_ocram_ecc() 129 pr_err("Unable to find socfpga-a10-ocram-ecc\n"); in socfpga_init_arria10_ocram_ecc() [all …]
|
/Linux-v5.15/Documentation/driver-api/ |
D | mtdnand.rst | 357 Hardware ECC support 363 The nand driver supports three different types of hardware ECC. 367 Hardware ECC generator providing 3 bytes ECC per 256 byte. 371 Hardware ECC generator providing 3 bytes ECC per 512 byte. 375 Hardware ECC generator providing 6 bytes ECC per 512 byte. 379 Hardware ECC generator providing 8 bytes ECC per 512 byte. 396 Transfer the ECC from the hardware to the buffer. If the option 402 In case of an ECC error this function is called for error detection 409 Hardware ECC with syndrome calculation 412 Many hardware ECC implementations provide Reed-Solomon codes and [all …]
|