1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14
15 static enum {FLOATING, DIRECTED} irq_delivery;
16
17 #define SIC_IRQ_MODE_ALL 0
18 #define SIC_IRQ_MODE_SINGLE 1
19 #define SIC_IRQ_MODE_DIRECT 4
20 #define SIC_IRQ_MODE_D_ALL 16
21 #define SIC_IRQ_MODE_D_SINGLE 17
22 #define SIC_IRQ_MODE_SET_CPU 18
23
24 /*
25 * summary bit vector
26 * FLOATING - summary bit per function
27 * DIRECTED - summary bit per cpu (only used in fallback path)
28 */
29 static struct airq_iv *zpci_sbv;
30
31 /*
32 * interrupt bit vectors
33 * FLOATING - interrupt bit vector per function
34 * DIRECTED - interrupt bit vector per cpu
35 */
36 static struct airq_iv **zpci_ibv;
37
38 /* Modify PCI: Register adapter interruptions */
zpci_set_airq(struct zpci_dev * zdev)39 static int zpci_set_airq(struct zpci_dev *zdev)
40 {
41 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
42 struct zpci_fib fib = {0};
43 u8 status;
44
45 fib.fmt0.isc = PCI_ISC;
46 fib.fmt0.sum = 1; /* enable summary notifications */
47 fib.fmt0.noi = airq_iv_end(zdev->aibv);
48 fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
49 fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */
50 fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
51 fib.fmt0.aisbo = zdev->aisb & 63;
52
53 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
54 }
55
56 /* Modify PCI: Unregister adapter interruptions */
zpci_clear_airq(struct zpci_dev * zdev)57 static int zpci_clear_airq(struct zpci_dev *zdev)
58 {
59 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
60 struct zpci_fib fib = {0};
61 u8 cc, status;
62
63 cc = zpci_mod_fc(req, &fib, &status);
64 if (cc == 3 || (cc == 1 && status == 24))
65 /* Function already gone or IRQs already deregistered. */
66 cc = 0;
67
68 return cc ? -EIO : 0;
69 }
70
71 /* Modify PCI: Register CPU directed interruptions */
zpci_set_directed_irq(struct zpci_dev * zdev)72 static int zpci_set_directed_irq(struct zpci_dev *zdev)
73 {
74 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
75 struct zpci_fib fib = {0};
76 u8 status;
77
78 fib.fmt = 1;
79 fib.fmt1.noi = zdev->msi_nr_irqs;
80 fib.fmt1.dibvo = zdev->msi_first_bit;
81
82 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
83 }
84
85 /* Modify PCI: Unregister CPU directed interruptions */
zpci_clear_directed_irq(struct zpci_dev * zdev)86 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
87 {
88 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
89 struct zpci_fib fib = {0};
90 u8 cc, status;
91
92 fib.fmt = 1;
93 cc = zpci_mod_fc(req, &fib, &status);
94 if (cc == 3 || (cc == 1 && status == 24))
95 /* Function already gone or IRQs already deregistered. */
96 cc = 0;
97
98 return cc ? -EIO : 0;
99 }
100
zpci_set_irq_affinity(struct irq_data * data,const struct cpumask * dest,bool force)101 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
102 bool force)
103 {
104 struct msi_desc *entry = irq_get_msi_desc(data->irq);
105 struct msi_msg msg = entry->msg;
106
107 msg.address_lo &= 0xff0000ff;
108 msg.address_lo |= (cpumask_first(dest) << 8);
109 pci_write_msi_msg(data->irq, &msg);
110
111 return IRQ_SET_MASK_OK;
112 }
113
114 static struct irq_chip zpci_irq_chip = {
115 .name = "PCI-MSI",
116 .irq_unmask = pci_msi_unmask_irq,
117 .irq_mask = pci_msi_mask_irq,
118 .irq_set_affinity = zpci_set_irq_affinity,
119 };
120
zpci_handle_cpu_local_irq(bool rescan)121 static void zpci_handle_cpu_local_irq(bool rescan)
122 {
123 struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
124 unsigned long bit;
125 int irqs_on = 0;
126
127 for (bit = 0;;) {
128 /* Scan the directed IRQ bit vector */
129 bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
130 if (bit == -1UL) {
131 if (!rescan || irqs_on++)
132 /* End of second scan with interrupts on. */
133 break;
134 /* First scan complete, reenable interrupts. */
135 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
136 break;
137 bit = 0;
138 continue;
139 }
140 inc_irq_stat(IRQIO_MSI);
141 generic_handle_irq(airq_iv_get_data(dibv, bit));
142 }
143 }
144
145 struct cpu_irq_data {
146 call_single_data_t csd;
147 atomic_t scheduled;
148 };
149 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
150
zpci_handle_remote_irq(void * data)151 static void zpci_handle_remote_irq(void *data)
152 {
153 atomic_t *scheduled = data;
154
155 do {
156 zpci_handle_cpu_local_irq(false);
157 } while (atomic_dec_return(scheduled));
158 }
159
zpci_handle_fallback_irq(void)160 static void zpci_handle_fallback_irq(void)
161 {
162 struct cpu_irq_data *cpu_data;
163 unsigned long cpu;
164 int irqs_on = 0;
165
166 for (cpu = 0;;) {
167 cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
168 if (cpu == -1UL) {
169 if (irqs_on++)
170 /* End of second scan with interrupts on. */
171 break;
172 /* First scan complete, reenable interrupts. */
173 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
174 break;
175 cpu = 0;
176 continue;
177 }
178 cpu_data = &per_cpu(irq_data, cpu);
179 if (atomic_inc_return(&cpu_data->scheduled) > 1)
180 continue;
181
182 cpu_data->csd.func = zpci_handle_remote_irq;
183 cpu_data->csd.info = &cpu_data->scheduled;
184 cpu_data->csd.flags = 0;
185 smp_call_function_single_async(cpu, &cpu_data->csd);
186 }
187 }
188
zpci_directed_irq_handler(struct airq_struct * airq,bool floating)189 static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
190 {
191 if (floating) {
192 inc_irq_stat(IRQIO_PCF);
193 zpci_handle_fallback_irq();
194 } else {
195 inc_irq_stat(IRQIO_PCD);
196 zpci_handle_cpu_local_irq(true);
197 }
198 }
199
zpci_floating_irq_handler(struct airq_struct * airq,bool floating)200 static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
201 {
202 unsigned long si, ai;
203 struct airq_iv *aibv;
204 int irqs_on = 0;
205
206 inc_irq_stat(IRQIO_PCF);
207 for (si = 0;;) {
208 /* Scan adapter summary indicator bit vector */
209 si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
210 if (si == -1UL) {
211 if (irqs_on++)
212 /* End of second scan with interrupts on. */
213 break;
214 /* First scan complete, reenable interrupts. */
215 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
216 break;
217 si = 0;
218 continue;
219 }
220
221 /* Scan the adapter interrupt vector for this device. */
222 aibv = zpci_ibv[si];
223 for (ai = 0;;) {
224 ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
225 if (ai == -1UL)
226 break;
227 inc_irq_stat(IRQIO_MSI);
228 airq_iv_lock(aibv, ai);
229 generic_handle_irq(airq_iv_get_data(aibv, ai));
230 airq_iv_unlock(aibv, ai);
231 }
232 }
233 }
234
arch_setup_msi_irqs(struct pci_dev * pdev,int nvec,int type)235 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
236 {
237 struct zpci_dev *zdev = to_zpci(pdev);
238 unsigned int hwirq, msi_vecs, cpu;
239 unsigned long bit;
240 struct msi_desc *msi;
241 struct msi_msg msg;
242 int rc, irq;
243
244 zdev->aisb = -1UL;
245 zdev->msi_first_bit = -1U;
246 if (type == PCI_CAP_ID_MSI && nvec > 1)
247 return 1;
248 msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
249
250 if (irq_delivery == DIRECTED) {
251 /* Allocate cpu vector bits */
252 bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
253 if (bit == -1UL)
254 return -EIO;
255 } else {
256 /* Allocate adapter summary indicator bit */
257 bit = airq_iv_alloc_bit(zpci_sbv);
258 if (bit == -1UL)
259 return -EIO;
260 zdev->aisb = bit;
261
262 /* Create adapter interrupt vector */
263 zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
264 if (!zdev->aibv)
265 return -ENOMEM;
266
267 /* Wire up shortcut pointer */
268 zpci_ibv[bit] = zdev->aibv;
269 /* Each function has its own interrupt vector */
270 bit = 0;
271 }
272
273 /* Request MSI interrupts */
274 hwirq = bit;
275 for_each_pci_msi_entry(msi, pdev) {
276 rc = -EIO;
277 if (hwirq - bit >= msi_vecs)
278 break;
279 irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE, msi->affinity);
280 if (irq < 0)
281 return -ENOMEM;
282 rc = irq_set_msi_desc(irq, msi);
283 if (rc)
284 return rc;
285 irq_set_chip_and_handler(irq, &zpci_irq_chip,
286 handle_percpu_irq);
287 msg.data = hwirq - bit;
288 if (irq_delivery == DIRECTED) {
289 msg.address_lo = zdev->msi_addr & 0xff0000ff;
290 msg.address_lo |= msi->affinity ?
291 (cpumask_first(&msi->affinity->mask) << 8) : 0;
292 for_each_possible_cpu(cpu) {
293 airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
294 }
295 } else {
296 msg.address_lo = zdev->msi_addr & 0xffffffff;
297 airq_iv_set_data(zdev->aibv, hwirq, irq);
298 }
299 msg.address_hi = zdev->msi_addr >> 32;
300 pci_write_msi_msg(irq, &msg);
301 hwirq++;
302 }
303
304 zdev->msi_first_bit = bit;
305 zdev->msi_nr_irqs = msi_vecs;
306
307 if (irq_delivery == DIRECTED)
308 rc = zpci_set_directed_irq(zdev);
309 else
310 rc = zpci_set_airq(zdev);
311 if (rc)
312 return rc;
313
314 return (msi_vecs == nvec) ? 0 : msi_vecs;
315 }
316
arch_teardown_msi_irqs(struct pci_dev * pdev)317 void arch_teardown_msi_irqs(struct pci_dev *pdev)
318 {
319 struct zpci_dev *zdev = to_zpci(pdev);
320 struct msi_desc *msi;
321 int rc;
322
323 /* Disable interrupts */
324 if (irq_delivery == DIRECTED)
325 rc = zpci_clear_directed_irq(zdev);
326 else
327 rc = zpci_clear_airq(zdev);
328 if (rc)
329 return;
330
331 /* Release MSI interrupts */
332 for_each_pci_msi_entry(msi, pdev) {
333 if (!msi->irq)
334 continue;
335 if (msi->msi_attrib.is_msix)
336 __pci_msix_desc_mask_irq(msi, 1);
337 else
338 __pci_msi_desc_mask_irq(msi, 1, 1);
339 irq_set_msi_desc(msi->irq, NULL);
340 irq_free_desc(msi->irq);
341 msi->msg.address_lo = 0;
342 msi->msg.address_hi = 0;
343 msi->msg.data = 0;
344 msi->irq = 0;
345 }
346
347 if (zdev->aisb != -1UL) {
348 zpci_ibv[zdev->aisb] = NULL;
349 airq_iv_free_bit(zpci_sbv, zdev->aisb);
350 zdev->aisb = -1UL;
351 }
352 if (zdev->aibv) {
353 airq_iv_release(zdev->aibv);
354 zdev->aibv = NULL;
355 }
356
357 if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
358 airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
359 }
360
361 static struct airq_struct zpci_airq = {
362 .handler = zpci_floating_irq_handler,
363 .isc = PCI_ISC,
364 };
365
cpu_enable_directed_irq(void * unused)366 static void __init cpu_enable_directed_irq(void *unused)
367 {
368 union zpci_sic_iib iib = {{0}};
369
370 iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
371
372 __zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
373 zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
374 }
375
zpci_directed_irq_init(void)376 static int __init zpci_directed_irq_init(void)
377 {
378 union zpci_sic_iib iib = {{0}};
379 unsigned int cpu;
380
381 zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
382 if (!zpci_sbv)
383 return -ENOMEM;
384
385 iib.diib.isc = PCI_ISC;
386 iib.diib.nr_cpus = num_possible_cpus();
387 iib.diib.disb_addr = (u64) zpci_sbv->vector;
388 __zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
389
390 zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
391 GFP_KERNEL);
392 if (!zpci_ibv)
393 return -ENOMEM;
394
395 for_each_possible_cpu(cpu) {
396 /*
397 * Per CPU IRQ vectors look the same but bit-allocation
398 * is only done on the first vector.
399 */
400 zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
401 AIRQ_IV_DATA |
402 AIRQ_IV_CACHELINE |
403 (!cpu ? AIRQ_IV_ALLOC : 0));
404 if (!zpci_ibv[cpu])
405 return -ENOMEM;
406 }
407 on_each_cpu(cpu_enable_directed_irq, NULL, 1);
408
409 zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
410
411 return 0;
412 }
413
zpci_floating_irq_init(void)414 static int __init zpci_floating_irq_init(void)
415 {
416 zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
417 if (!zpci_ibv)
418 return -ENOMEM;
419
420 zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
421 if (!zpci_sbv)
422 goto out_free;
423
424 return 0;
425
426 out_free:
427 kfree(zpci_ibv);
428 return -ENOMEM;
429 }
430
zpci_irq_init(void)431 int __init zpci_irq_init(void)
432 {
433 int rc;
434
435 irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
436 if (s390_pci_force_floating)
437 irq_delivery = FLOATING;
438
439 if (irq_delivery == DIRECTED)
440 zpci_airq.handler = zpci_directed_irq_handler;
441
442 rc = register_adapter_interrupt(&zpci_airq);
443 if (rc)
444 goto out;
445 /* Set summary to 1 to be called every time for the ISC. */
446 *zpci_airq.lsi_ptr = 1;
447
448 switch (irq_delivery) {
449 case FLOATING:
450 rc = zpci_floating_irq_init();
451 break;
452 case DIRECTED:
453 rc = zpci_directed_irq_init();
454 break;
455 }
456
457 if (rc)
458 goto out_airq;
459
460 /*
461 * Enable floating IRQs (with suppression after one IRQ). When using
462 * directed IRQs this enables the fallback path.
463 */
464 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
465
466 return 0;
467 out_airq:
468 unregister_adapter_interrupt(&zpci_airq);
469 out:
470 return rc;
471 }
472
zpci_irq_exit(void)473 void __init zpci_irq_exit(void)
474 {
475 unsigned int cpu;
476
477 if (irq_delivery == DIRECTED) {
478 for_each_possible_cpu(cpu) {
479 airq_iv_release(zpci_ibv[cpu]);
480 }
481 }
482 kfree(zpci_ibv);
483 if (zpci_sbv)
484 airq_iv_release(zpci_sbv);
485 unregister_adapter_interrupt(&zpci_airq);
486 }
487