1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 */
9
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <linux/usb.h>
14 #include <linux/jiffies.h>
15 #include <net/ieee80211_radiotap.h>
16
17 #include "zd_def.h"
18 #include "zd_chip.h"
19 #include "zd_mac.h"
20 #include "zd_rf.h"
21
22 struct zd_reg_alpha2_map {
23 u32 reg;
24 char alpha2[2];
25 };
26
27 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
28 { ZD_REGDOMAIN_FCC, "US" },
29 { ZD_REGDOMAIN_IC, "CA" },
30 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
31 { ZD_REGDOMAIN_JAPAN, "JP" },
32 { ZD_REGDOMAIN_JAPAN_2, "JP" },
33 { ZD_REGDOMAIN_JAPAN_3, "JP" },
34 { ZD_REGDOMAIN_SPAIN, "ES" },
35 { ZD_REGDOMAIN_FRANCE, "FR" },
36 };
37
38 /* This table contains the hardware specific values for the modulation rates. */
39 static const struct ieee80211_rate zd_rates[] = {
40 { .bitrate = 10,
41 .hw_value = ZD_CCK_RATE_1M, },
42 { .bitrate = 20,
43 .hw_value = ZD_CCK_RATE_2M,
44 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
45 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
46 { .bitrate = 55,
47 .hw_value = ZD_CCK_RATE_5_5M,
48 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
49 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
50 { .bitrate = 110,
51 .hw_value = ZD_CCK_RATE_11M,
52 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
53 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
54 { .bitrate = 60,
55 .hw_value = ZD_OFDM_RATE_6M,
56 .flags = 0 },
57 { .bitrate = 90,
58 .hw_value = ZD_OFDM_RATE_9M,
59 .flags = 0 },
60 { .bitrate = 120,
61 .hw_value = ZD_OFDM_RATE_12M,
62 .flags = 0 },
63 { .bitrate = 180,
64 .hw_value = ZD_OFDM_RATE_18M,
65 .flags = 0 },
66 { .bitrate = 240,
67 .hw_value = ZD_OFDM_RATE_24M,
68 .flags = 0 },
69 { .bitrate = 360,
70 .hw_value = ZD_OFDM_RATE_36M,
71 .flags = 0 },
72 { .bitrate = 480,
73 .hw_value = ZD_OFDM_RATE_48M,
74 .flags = 0 },
75 { .bitrate = 540,
76 .hw_value = ZD_OFDM_RATE_54M,
77 .flags = 0 },
78 };
79
80 /*
81 * Zydas retry rates table. Each line is listed in the same order as
82 * in zd_rates[] and contains all the rate used when a packet is sent
83 * starting with a given rates. Let's consider an example :
84 *
85 * "11 Mbits : 4, 3, 2, 1, 0" means :
86 * - packet is sent using 4 different rates
87 * - 1st rate is index 3 (ie 11 Mbits)
88 * - 2nd rate is index 2 (ie 5.5 Mbits)
89 * - 3rd rate is index 1 (ie 2 Mbits)
90 * - 4th rate is index 0 (ie 1 Mbits)
91 */
92
93 static const struct tx_retry_rate zd_retry_rates[] = {
94 { /* 1 Mbits */ 1, { 0 }},
95 { /* 2 Mbits */ 2, { 1, 0 }},
96 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
97 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
98 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
99 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
100 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
101 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
102 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
103 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
104 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
105 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
106 };
107
108 static const struct ieee80211_channel zd_channels[] = {
109 { .center_freq = 2412, .hw_value = 1 },
110 { .center_freq = 2417, .hw_value = 2 },
111 { .center_freq = 2422, .hw_value = 3 },
112 { .center_freq = 2427, .hw_value = 4 },
113 { .center_freq = 2432, .hw_value = 5 },
114 { .center_freq = 2437, .hw_value = 6 },
115 { .center_freq = 2442, .hw_value = 7 },
116 { .center_freq = 2447, .hw_value = 8 },
117 { .center_freq = 2452, .hw_value = 9 },
118 { .center_freq = 2457, .hw_value = 10 },
119 { .center_freq = 2462, .hw_value = 11 },
120 { .center_freq = 2467, .hw_value = 12 },
121 { .center_freq = 2472, .hw_value = 13 },
122 { .center_freq = 2484, .hw_value = 14 },
123 };
124
125 static void housekeeping_init(struct zd_mac *mac);
126 static void housekeeping_enable(struct zd_mac *mac);
127 static void housekeeping_disable(struct zd_mac *mac);
128 static void beacon_init(struct zd_mac *mac);
129 static void beacon_enable(struct zd_mac *mac);
130 static void beacon_disable(struct zd_mac *mac);
131 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
132 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
133 struct sk_buff *beacon, bool in_intr);
134
zd_reg2alpha2(u8 regdomain,char * alpha2)135 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
136 {
137 unsigned int i;
138 struct zd_reg_alpha2_map *reg_map;
139 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
140 reg_map = ®_alpha2_map[i];
141 if (regdomain == reg_map->reg) {
142 alpha2[0] = reg_map->alpha2[0];
143 alpha2[1] = reg_map->alpha2[1];
144 return 0;
145 }
146 }
147 return 1;
148 }
149
zd_check_signal(struct ieee80211_hw * hw,int signal)150 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
151 {
152 struct zd_mac *mac = zd_hw_mac(hw);
153
154 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
155 "%s: signal value from device not in range 0..100, "
156 "but %d.\n", __func__, signal);
157
158 if (signal < 0)
159 signal = 0;
160 else if (signal > 100)
161 signal = 100;
162
163 return signal;
164 }
165
zd_mac_preinit_hw(struct ieee80211_hw * hw)166 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
167 {
168 int r;
169 u8 addr[ETH_ALEN];
170 struct zd_mac *mac = zd_hw_mac(hw);
171
172 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
173 if (r)
174 return r;
175
176 SET_IEEE80211_PERM_ADDR(hw, addr);
177
178 return 0;
179 }
180
zd_mac_init_hw(struct ieee80211_hw * hw)181 int zd_mac_init_hw(struct ieee80211_hw *hw)
182 {
183 int r;
184 struct zd_mac *mac = zd_hw_mac(hw);
185 struct zd_chip *chip = &mac->chip;
186 char alpha2[2];
187 u8 default_regdomain;
188
189 r = zd_chip_enable_int(chip);
190 if (r)
191 goto out;
192 r = zd_chip_init_hw(chip);
193 if (r)
194 goto disable_int;
195
196 ZD_ASSERT(!irqs_disabled());
197
198 r = zd_read_regdomain(chip, &default_regdomain);
199 if (r)
200 goto disable_int;
201 spin_lock_irq(&mac->lock);
202 mac->regdomain = mac->default_regdomain = default_regdomain;
203 spin_unlock_irq(&mac->lock);
204
205 /* We must inform the device that we are doing encryption/decryption in
206 * software at the moment. */
207 r = zd_set_encryption_type(chip, ENC_SNIFFER);
208 if (r)
209 goto disable_int;
210
211 r = zd_reg2alpha2(mac->regdomain, alpha2);
212 if (r)
213 goto disable_int;
214
215 r = regulatory_hint(hw->wiphy, alpha2);
216 disable_int:
217 zd_chip_disable_int(chip);
218 out:
219 return r;
220 }
221
zd_mac_clear(struct zd_mac * mac)222 void zd_mac_clear(struct zd_mac *mac)
223 {
224 flush_workqueue(zd_workqueue);
225 zd_chip_clear(&mac->chip);
226 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
227 }
228
set_rx_filter(struct zd_mac * mac)229 static int set_rx_filter(struct zd_mac *mac)
230 {
231 unsigned long flags;
232 u32 filter = STA_RX_FILTER;
233
234 spin_lock_irqsave(&mac->lock, flags);
235 if (mac->pass_ctrl)
236 filter |= RX_FILTER_CTRL;
237 spin_unlock_irqrestore(&mac->lock, flags);
238
239 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
240 }
241
set_mac_and_bssid(struct zd_mac * mac)242 static int set_mac_and_bssid(struct zd_mac *mac)
243 {
244 int r;
245
246 if (!mac->vif)
247 return -1;
248
249 r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
250 if (r)
251 return r;
252
253 /* Vendor driver after setting MAC either sets BSSID for AP or
254 * filter for other modes.
255 */
256 if (mac->type != NL80211_IFTYPE_AP)
257 return set_rx_filter(mac);
258 else
259 return zd_write_bssid(&mac->chip, mac->vif->addr);
260 }
261
set_mc_hash(struct zd_mac * mac)262 static int set_mc_hash(struct zd_mac *mac)
263 {
264 struct zd_mc_hash hash;
265 zd_mc_clear(&hash);
266 return zd_chip_set_multicast_hash(&mac->chip, &hash);
267 }
268
zd_op_start(struct ieee80211_hw * hw)269 int zd_op_start(struct ieee80211_hw *hw)
270 {
271 struct zd_mac *mac = zd_hw_mac(hw);
272 struct zd_chip *chip = &mac->chip;
273 struct zd_usb *usb = &chip->usb;
274 int r;
275
276 if (!usb->initialized) {
277 r = zd_usb_init_hw(usb);
278 if (r)
279 goto out;
280 }
281
282 r = zd_chip_enable_int(chip);
283 if (r < 0)
284 goto out;
285
286 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
287 if (r < 0)
288 goto disable_int;
289 r = set_rx_filter(mac);
290 if (r)
291 goto disable_int;
292 r = set_mc_hash(mac);
293 if (r)
294 goto disable_int;
295
296 /* Wait after setting the multicast hash table and powering on
297 * the radio otherwise interface bring up will fail. This matches
298 * what the vendor driver did.
299 */
300 msleep(10);
301
302 r = zd_chip_switch_radio_on(chip);
303 if (r < 0) {
304 dev_err(zd_chip_dev(chip),
305 "%s: failed to set radio on\n", __func__);
306 goto disable_int;
307 }
308 r = zd_chip_enable_rxtx(chip);
309 if (r < 0)
310 goto disable_radio;
311 r = zd_chip_enable_hwint(chip);
312 if (r < 0)
313 goto disable_rxtx;
314
315 housekeeping_enable(mac);
316 beacon_enable(mac);
317 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
318 return 0;
319 disable_rxtx:
320 zd_chip_disable_rxtx(chip);
321 disable_radio:
322 zd_chip_switch_radio_off(chip);
323 disable_int:
324 zd_chip_disable_int(chip);
325 out:
326 return r;
327 }
328
zd_op_stop(struct ieee80211_hw * hw)329 void zd_op_stop(struct ieee80211_hw *hw)
330 {
331 struct zd_mac *mac = zd_hw_mac(hw);
332 struct zd_chip *chip = &mac->chip;
333 struct sk_buff *skb;
334 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
335
336 clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
337
338 /* The order here deliberately is a little different from the open()
339 * method, since we need to make sure there is no opportunity for RX
340 * frames to be processed by mac80211 after we have stopped it.
341 */
342
343 zd_chip_disable_rxtx(chip);
344 beacon_disable(mac);
345 housekeeping_disable(mac);
346 flush_workqueue(zd_workqueue);
347
348 zd_chip_disable_hwint(chip);
349 zd_chip_switch_radio_off(chip);
350 zd_chip_disable_int(chip);
351
352
353 while ((skb = skb_dequeue(ack_wait_queue)))
354 dev_kfree_skb_any(skb);
355 }
356
zd_restore_settings(struct zd_mac * mac)357 int zd_restore_settings(struct zd_mac *mac)
358 {
359 struct sk_buff *beacon;
360 struct zd_mc_hash multicast_hash;
361 unsigned int short_preamble;
362 int r, beacon_interval, beacon_period;
363 u8 channel;
364
365 dev_dbg_f(zd_mac_dev(mac), "\n");
366
367 spin_lock_irq(&mac->lock);
368 multicast_hash = mac->multicast_hash;
369 short_preamble = mac->short_preamble;
370 beacon_interval = mac->beacon.interval;
371 beacon_period = mac->beacon.period;
372 channel = mac->channel;
373 spin_unlock_irq(&mac->lock);
374
375 r = set_mac_and_bssid(mac);
376 if (r < 0) {
377 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
378 return r;
379 }
380
381 r = zd_chip_set_channel(&mac->chip, channel);
382 if (r < 0) {
383 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
384 r);
385 return r;
386 }
387
388 set_rts_cts(mac, short_preamble);
389
390 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
391 if (r < 0) {
392 dev_dbg_f(zd_mac_dev(mac),
393 "zd_chip_set_multicast_hash failed, %d\n", r);
394 return r;
395 }
396
397 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
398 mac->type == NL80211_IFTYPE_ADHOC ||
399 mac->type == NL80211_IFTYPE_AP) {
400 if (mac->vif != NULL) {
401 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
402 if (beacon)
403 zd_mac_config_beacon(mac->hw, beacon, false);
404 }
405
406 zd_set_beacon_interval(&mac->chip, beacon_interval,
407 beacon_period, mac->type);
408
409 spin_lock_irq(&mac->lock);
410 mac->beacon.last_update = jiffies;
411 spin_unlock_irq(&mac->lock);
412 }
413
414 return 0;
415 }
416
417 /**
418 * zd_mac_tx_status - reports tx status of a packet if required
419 * @hw: a &struct ieee80211_hw pointer
420 * @skb: a sk-buffer
421 * @ackssi: ACK signal strength
422 * @tx_status: success and/or retry
423 *
424 * This information calls ieee80211_tx_status_irqsafe() if required by the
425 * control information. It copies the control information into the status
426 * information.
427 *
428 * If no status information has been requested, the skb is freed.
429 */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)430 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
431 int ackssi, struct tx_status *tx_status)
432 {
433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
434 int i;
435 int success = 1, retry = 1;
436 int first_idx;
437 const struct tx_retry_rate *retries;
438
439 ieee80211_tx_info_clear_status(info);
440
441 if (tx_status) {
442 success = !tx_status->failure;
443 retry = tx_status->retry + success;
444 }
445
446 if (success) {
447 /* success */
448 info->flags |= IEEE80211_TX_STAT_ACK;
449 } else {
450 /* failure */
451 info->flags &= ~IEEE80211_TX_STAT_ACK;
452 }
453
454 first_idx = info->status.rates[0].idx;
455 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
456 retries = &zd_retry_rates[first_idx];
457 ZD_ASSERT(1 <= retry && retry <= retries->count);
458
459 info->status.rates[0].idx = retries->rate[0];
460 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
461
462 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
463 info->status.rates[i].idx = retries->rate[i];
464 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
465 }
466 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
467 info->status.rates[i].idx = retries->rate[retry - 1];
468 info->status.rates[i].count = 1; // (success ? 1:2);
469 }
470 if (i<IEEE80211_TX_MAX_RATES)
471 info->status.rates[i].idx = -1; /* terminate */
472
473 info->status.ack_signal = zd_check_signal(hw, ackssi);
474 ieee80211_tx_status_irqsafe(hw, skb);
475 }
476
477 /**
478 * zd_mac_tx_failed - callback for failed frames
479 * @urb: pointer to the urb structure
480 *
481 * This function is called if a frame couldn't be successfully
482 * transferred. The first frame from the tx queue, will be selected and
483 * reported as error to the upper layers.
484 */
zd_mac_tx_failed(struct urb * urb)485 void zd_mac_tx_failed(struct urb *urb)
486 {
487 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
488 struct zd_mac *mac = zd_hw_mac(hw);
489 struct sk_buff_head *q = &mac->ack_wait_queue;
490 struct sk_buff *skb;
491 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
492 unsigned long flags;
493 int success = !tx_status->failure;
494 int retry = tx_status->retry + success;
495 int found = 0;
496 int i, position = 0;
497
498 spin_lock_irqsave(&q->lock, flags);
499
500 skb_queue_walk(q, skb) {
501 struct ieee80211_hdr *tx_hdr;
502 struct ieee80211_tx_info *info;
503 int first_idx, final_idx;
504 const struct tx_retry_rate *retries;
505 u8 final_rate;
506
507 position ++;
508
509 /* if the hardware reports a failure and we had a 802.11 ACK
510 * pending, then we skip the first skb when searching for a
511 * matching frame */
512 if (tx_status->failure && mac->ack_pending &&
513 skb_queue_is_first(q, skb)) {
514 continue;
515 }
516
517 tx_hdr = (struct ieee80211_hdr *)skb->data;
518
519 /* we skip all frames not matching the reported destination */
520 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
521 continue;
522
523 /* we skip all frames not matching the reported final rate */
524
525 info = IEEE80211_SKB_CB(skb);
526 first_idx = info->status.rates[0].idx;
527 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
528 retries = &zd_retry_rates[first_idx];
529 if (retry <= 0 || retry > retries->count)
530 continue;
531
532 final_idx = retries->rate[retry - 1];
533 final_rate = zd_rates[final_idx].hw_value;
534
535 if (final_rate != tx_status->rate) {
536 continue;
537 }
538
539 found = 1;
540 break;
541 }
542
543 if (found) {
544 for (i=1; i<=position; i++) {
545 skb = __skb_dequeue(q);
546 zd_mac_tx_status(hw, skb,
547 mac->ack_pending ? mac->ack_signal : 0,
548 i == position ? tx_status : NULL);
549 mac->ack_pending = 0;
550 }
551 }
552
553 spin_unlock_irqrestore(&q->lock, flags);
554 }
555
556 /**
557 * zd_mac_tx_to_dev - callback for USB layer
558 * @skb: a &sk_buff pointer
559 * @error: error value, 0 if transmission successful
560 *
561 * Informs the MAC layer that the frame has successfully transferred to the
562 * device. If an ACK is required and the transfer to the device has been
563 * successful, the packets are put on the @ack_wait_queue with
564 * the control set removed.
565 */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)566 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
567 {
568 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
569 struct ieee80211_hw *hw = info->rate_driver_data[0];
570 struct zd_mac *mac = zd_hw_mac(hw);
571
572 ieee80211_tx_info_clear_status(info);
573
574 skb_pull(skb, sizeof(struct zd_ctrlset));
575 if (unlikely(error ||
576 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
577 /*
578 * FIXME : do we need to fill in anything ?
579 */
580 ieee80211_tx_status_irqsafe(hw, skb);
581 } else {
582 struct sk_buff_head *q = &mac->ack_wait_queue;
583
584 skb_queue_tail(q, skb);
585 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
586 zd_mac_tx_status(hw, skb_dequeue(q),
587 mac->ack_pending ? mac->ack_signal : 0,
588 NULL);
589 mac->ack_pending = 0;
590 }
591 }
592 }
593
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)594 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
595 {
596 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
597 * the zd-rate values.
598 */
599 static const u8 rate_divisor[] = {
600 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
601 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
602 /* Bits must be doubled. */
603 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
604 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
605 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
606 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
607 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
608 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
609 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
610 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
611 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
612 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
613 };
614
615 u32 bits = (u32)tx_length * 8;
616 u32 divisor;
617
618 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
619 if (divisor == 0)
620 return -EINVAL;
621
622 switch (zd_rate) {
623 case ZD_CCK_RATE_5_5M:
624 bits = (2*bits) + 10; /* round up to the next integer */
625 break;
626 case ZD_CCK_RATE_11M:
627 if (service) {
628 u32 t = bits % 11;
629 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
630 if (0 < t && t <= 3) {
631 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
632 }
633 }
634 bits += 10; /* round up to the next integer */
635 break;
636 }
637
638 return bits/divisor;
639 }
640
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)641 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
642 struct ieee80211_hdr *header,
643 struct ieee80211_tx_info *info)
644 {
645 /*
646 * CONTROL TODO:
647 * - if backoff needed, enable bit 0
648 * - if burst (backoff not needed) disable bit 0
649 */
650
651 cs->control = 0;
652
653 /* First fragment */
654 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
655 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
656
657 /* No ACK expected (multicast, etc.) */
658 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
659 cs->control |= ZD_CS_NO_ACK;
660
661 /* PS-POLL */
662 if (ieee80211_is_pspoll(header->frame_control))
663 cs->control |= ZD_CS_PS_POLL_FRAME;
664
665 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
666 cs->control |= ZD_CS_RTS;
667
668 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
669 cs->control |= ZD_CS_SELF_CTS;
670
671 /* FIXME: Management frame? */
672 }
673
zd_mac_match_cur_beacon(struct zd_mac * mac,struct sk_buff * beacon)674 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
675 {
676 if (!mac->beacon.cur_beacon)
677 return false;
678
679 if (mac->beacon.cur_beacon->len != beacon->len)
680 return false;
681
682 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
683 }
684
zd_mac_free_cur_beacon_locked(struct zd_mac * mac)685 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
686 {
687 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
688
689 kfree_skb(mac->beacon.cur_beacon);
690 mac->beacon.cur_beacon = NULL;
691 }
692
zd_mac_free_cur_beacon(struct zd_mac * mac)693 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
694 {
695 mutex_lock(&mac->chip.mutex);
696 zd_mac_free_cur_beacon_locked(mac);
697 mutex_unlock(&mac->chip.mutex);
698 }
699
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon,bool in_intr)700 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
701 bool in_intr)
702 {
703 struct zd_mac *mac = zd_hw_mac(hw);
704 int r, ret, num_cmds, req_pos = 0;
705 u32 tmp, j = 0;
706 /* 4 more bytes for tail CRC */
707 u32 full_len = beacon->len + 4;
708 unsigned long end_jiffies, message_jiffies;
709 struct zd_ioreq32 *ioreqs;
710
711 mutex_lock(&mac->chip.mutex);
712
713 /* Check if hw already has this beacon. */
714 if (zd_mac_match_cur_beacon(mac, beacon)) {
715 r = 0;
716 goto out_nofree;
717 }
718
719 /* Alloc memory for full beacon write at once. */
720 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
721 ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
722 GFP_KERNEL);
723 if (!ioreqs) {
724 r = -ENOMEM;
725 goto out_nofree;
726 }
727
728 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
729 if (r < 0)
730 goto out;
731 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
732 if (r < 0)
733 goto release_sema;
734 if (in_intr && tmp & 0x2) {
735 r = -EBUSY;
736 goto release_sema;
737 }
738
739 end_jiffies = jiffies + HZ / 2; /*~500ms*/
740 message_jiffies = jiffies + HZ / 10; /*~100ms*/
741 while (tmp & 0x2) {
742 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
743 if (r < 0)
744 goto release_sema;
745 if (time_is_before_eq_jiffies(message_jiffies)) {
746 message_jiffies = jiffies + HZ / 10;
747 dev_err(zd_mac_dev(mac),
748 "CR_BCN_FIFO_SEMAPHORE not ready\n");
749 if (time_is_before_eq_jiffies(end_jiffies)) {
750 dev_err(zd_mac_dev(mac),
751 "Giving up beacon config.\n");
752 r = -ETIMEDOUT;
753 goto reset_device;
754 }
755 }
756 msleep(20);
757 }
758
759 ioreqs[req_pos].addr = CR_BCN_FIFO;
760 ioreqs[req_pos].value = full_len - 1;
761 req_pos++;
762 if (zd_chip_is_zd1211b(&mac->chip)) {
763 ioreqs[req_pos].addr = CR_BCN_LENGTH;
764 ioreqs[req_pos].value = full_len - 1;
765 req_pos++;
766 }
767
768 for (j = 0 ; j < beacon->len; j++) {
769 ioreqs[req_pos].addr = CR_BCN_FIFO;
770 ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
771 req_pos++;
772 }
773
774 for (j = 0; j < 4; j++) {
775 ioreqs[req_pos].addr = CR_BCN_FIFO;
776 ioreqs[req_pos].value = 0x0;
777 req_pos++;
778 }
779
780 BUG_ON(req_pos != num_cmds);
781
782 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
783
784 release_sema:
785 /*
786 * Try very hard to release device beacon semaphore, as otherwise
787 * device/driver can be left in unusable state.
788 */
789 end_jiffies = jiffies + HZ / 2; /*~500ms*/
790 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
791 while (ret < 0) {
792 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
793 ret = -ETIMEDOUT;
794 break;
795 }
796
797 msleep(20);
798 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
799 }
800
801 if (ret < 0)
802 dev_err(zd_mac_dev(mac), "Could not release "
803 "CR_BCN_FIFO_SEMAPHORE!\n");
804 if (r < 0 || ret < 0) {
805 if (r >= 0)
806 r = ret;
807
808 /* We don't know if beacon was written successfully or not,
809 * so clear current. */
810 zd_mac_free_cur_beacon_locked(mac);
811
812 goto out;
813 }
814
815 /* Beacon has now been written successfully, update current. */
816 zd_mac_free_cur_beacon_locked(mac);
817 mac->beacon.cur_beacon = beacon;
818 beacon = NULL;
819
820 /* 802.11b/g 2.4G CCK 1Mb
821 * 802.11a, not yet implemented, uses different values (see GPL vendor
822 * driver)
823 */
824 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
825 CR_BCN_PLCP_CFG);
826 out:
827 kfree(ioreqs);
828 out_nofree:
829 kfree_skb(beacon);
830 mutex_unlock(&mac->chip.mutex);
831
832 return r;
833
834 reset_device:
835 zd_mac_free_cur_beacon_locked(mac);
836 kfree_skb(beacon);
837
838 mutex_unlock(&mac->chip.mutex);
839 kfree(ioreqs);
840
841 /* semaphore stuck, reset device to avoid fw freeze later */
842 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
843 "resetting device...");
844 usb_queue_reset_device(mac->chip.usb.intf);
845
846 return r;
847 }
848
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)849 static int fill_ctrlset(struct zd_mac *mac,
850 struct sk_buff *skb)
851 {
852 int r;
853 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
854 unsigned int frag_len = skb->len + FCS_LEN;
855 unsigned int packet_length;
856 struct ieee80211_rate *txrate;
857 struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
858 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
859
860 ZD_ASSERT(frag_len <= 0xffff);
861
862 /*
863 * Firmware computes the duration itself (for all frames except PSPoll)
864 * and needs the field set to 0 at input, otherwise firmware messes up
865 * duration_id and sets bits 14 and 15 on.
866 */
867 if (!ieee80211_is_pspoll(hdr->frame_control))
868 hdr->duration_id = 0;
869
870 txrate = ieee80211_get_tx_rate(mac->hw, info);
871
872 cs->modulation = txrate->hw_value;
873 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
874 cs->modulation = txrate->hw_value_short;
875
876 cs->tx_length = cpu_to_le16(frag_len);
877
878 cs_set_control(mac, cs, hdr, info);
879
880 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
881 ZD_ASSERT(packet_length <= 0xffff);
882 /* ZD1211B: Computing the length difference this way, gives us
883 * flexibility to compute the packet length.
884 */
885 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
886 packet_length - frag_len : packet_length);
887
888 /*
889 * CURRENT LENGTH:
890 * - transmit frame length in microseconds
891 * - seems to be derived from frame length
892 * - see Cal_Us_Service() in zdinlinef.h
893 * - if macp->bTxBurstEnable is enabled, then multiply by 4
894 * - bTxBurstEnable is never set in the vendor driver
895 *
896 * SERVICE:
897 * - "for PLCP configuration"
898 * - always 0 except in some situations at 802.11b 11M
899 * - see line 53 of zdinlinef.h
900 */
901 cs->service = 0;
902 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
903 le16_to_cpu(cs->tx_length));
904 if (r < 0)
905 return r;
906 cs->current_length = cpu_to_le16(r);
907 cs->next_frame_length = 0;
908
909 return 0;
910 }
911
912 /**
913 * zd_op_tx - transmits a network frame to the device
914 *
915 * @hw: a &struct ieee80211_hw pointer
916 * @control: the control structure
917 * @skb: socket buffer
918 *
919 * This function transmit an IEEE 802.11 network frame to the device. The
920 * control block of the skbuff will be initialized. If necessary the incoming
921 * mac80211 queues will be stopped.
922 */
zd_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)923 static void zd_op_tx(struct ieee80211_hw *hw,
924 struct ieee80211_tx_control *control,
925 struct sk_buff *skb)
926 {
927 struct zd_mac *mac = zd_hw_mac(hw);
928 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
929 int r;
930
931 r = fill_ctrlset(mac, skb);
932 if (r)
933 goto fail;
934
935 info->rate_driver_data[0] = hw;
936
937 r = zd_usb_tx(&mac->chip.usb, skb);
938 if (r)
939 goto fail;
940 return;
941
942 fail:
943 dev_kfree_skb(skb);
944 }
945
946 /**
947 * filter_ack - filters incoming packets for acknowledgements
948 * @hw: a &struct ieee80211_hw pointer
949 * @rx_hdr: received header
950 * @stats: the status for the received packet
951 *
952 * This functions looks for ACK packets and tries to match them with the
953 * frames in the tx queue. If a match is found the frame will be dequeued and
954 * the upper layers is informed about the successful transmission. If
955 * mac80211 queues have been stopped and the number of frames still to be
956 * transmitted is low the queues will be opened again.
957 *
958 * Returns 1 if the frame was an ACK, 0 if it was ignored.
959 */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)960 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
961 struct ieee80211_rx_status *stats)
962 {
963 struct zd_mac *mac = zd_hw_mac(hw);
964 struct sk_buff *skb;
965 struct sk_buff_head *q;
966 unsigned long flags;
967 int found = 0;
968 int i, position = 0;
969
970 if (!ieee80211_is_ack(rx_hdr->frame_control))
971 return 0;
972
973 q = &mac->ack_wait_queue;
974 spin_lock_irqsave(&q->lock, flags);
975 skb_queue_walk(q, skb) {
976 struct ieee80211_hdr *tx_hdr;
977
978 position ++;
979
980 if (mac->ack_pending && skb_queue_is_first(q, skb))
981 continue;
982
983 tx_hdr = (struct ieee80211_hdr *)skb->data;
984 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
985 {
986 found = 1;
987 break;
988 }
989 }
990
991 if (found) {
992 for (i=1; i<position; i++) {
993 skb = __skb_dequeue(q);
994 zd_mac_tx_status(hw, skb,
995 mac->ack_pending ? mac->ack_signal : 0,
996 NULL);
997 mac->ack_pending = 0;
998 }
999
1000 mac->ack_pending = 1;
1001 mac->ack_signal = stats->signal;
1002
1003 /* Prevent pending tx-packet on AP-mode */
1004 if (mac->type == NL80211_IFTYPE_AP) {
1005 skb = __skb_dequeue(q);
1006 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1007 mac->ack_pending = 0;
1008 }
1009 }
1010
1011 spin_unlock_irqrestore(&q->lock, flags);
1012 return 1;
1013 }
1014
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)1015 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1016 {
1017 struct zd_mac *mac = zd_hw_mac(hw);
1018 struct ieee80211_rx_status stats;
1019 const struct rx_status *status;
1020 struct sk_buff *skb;
1021 int bad_frame = 0;
1022 __le16 fc;
1023 int need_padding;
1024 int i;
1025 u8 rate;
1026
1027 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1028 FCS_LEN + sizeof(struct rx_status))
1029 return -EINVAL;
1030
1031 memset(&stats, 0, sizeof(stats));
1032
1033 /* Note about pass_failed_fcs and pass_ctrl access below:
1034 * mac locking intentionally omitted here, as this is the only unlocked
1035 * reader and the only writer is configure_filter. Plus, if there were
1036 * any races accessing these variables, it wouldn't really matter.
1037 * If mac80211 ever provides a way for us to access filter flags
1038 * from outside configure_filter, we could improve on this. Also, this
1039 * situation may change once we implement some kind of DMA-into-skb
1040 * RX path. */
1041
1042 /* Caller has to ensure that length >= sizeof(struct rx_status). */
1043 status = (struct rx_status *)
1044 (buffer + (length - sizeof(struct rx_status)));
1045 if (status->frame_status & ZD_RX_ERROR) {
1046 if (mac->pass_failed_fcs &&
1047 (status->frame_status & ZD_RX_CRC32_ERROR)) {
1048 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1049 bad_frame = 1;
1050 } else {
1051 return -EINVAL;
1052 }
1053 }
1054
1055 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1056 stats.band = NL80211_BAND_2GHZ;
1057 stats.signal = zd_check_signal(hw, status->signal_strength);
1058
1059 rate = zd_rx_rate(buffer, status);
1060
1061 /* todo: return index in the big switches in zd_rx_rate instead */
1062 for (i = 0; i < mac->band.n_bitrates; i++)
1063 if (rate == mac->band.bitrates[i].hw_value)
1064 stats.rate_idx = i;
1065
1066 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1067 buffer += ZD_PLCP_HEADER_SIZE;
1068
1069 /* Except for bad frames, filter each frame to see if it is an ACK, in
1070 * which case our internal TX tracking is updated. Normally we then
1071 * bail here as there's no need to pass ACKs on up to the stack, but
1072 * there is also the case where the stack has requested us to pass
1073 * control frames on up (pass_ctrl) which we must consider. */
1074 if (!bad_frame &&
1075 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1076 && !mac->pass_ctrl)
1077 return 0;
1078
1079 fc = get_unaligned((__le16*)buffer);
1080 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1081
1082 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1083 if (skb == NULL)
1084 return -ENOMEM;
1085 if (need_padding) {
1086 /* Make sure the payload data is 4 byte aligned. */
1087 skb_reserve(skb, 2);
1088 }
1089
1090 /* FIXME : could we avoid this big memcpy ? */
1091 skb_put_data(skb, buffer, length);
1092
1093 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1094 ieee80211_rx_irqsafe(hw, skb);
1095 return 0;
1096 }
1097
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1098 static int zd_op_add_interface(struct ieee80211_hw *hw,
1099 struct ieee80211_vif *vif)
1100 {
1101 struct zd_mac *mac = zd_hw_mac(hw);
1102
1103 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1104 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1105 return -EOPNOTSUPP;
1106
1107 switch (vif->type) {
1108 case NL80211_IFTYPE_MONITOR:
1109 case NL80211_IFTYPE_MESH_POINT:
1110 case NL80211_IFTYPE_STATION:
1111 case NL80211_IFTYPE_ADHOC:
1112 case NL80211_IFTYPE_AP:
1113 mac->type = vif->type;
1114 break;
1115 default:
1116 return -EOPNOTSUPP;
1117 }
1118
1119 mac->vif = vif;
1120
1121 return set_mac_and_bssid(mac);
1122 }
1123
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1124 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1125 struct ieee80211_vif *vif)
1126 {
1127 struct zd_mac *mac = zd_hw_mac(hw);
1128 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1129 mac->vif = NULL;
1130 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1131 zd_write_mac_addr(&mac->chip, NULL);
1132
1133 zd_mac_free_cur_beacon(mac);
1134 }
1135
zd_op_config(struct ieee80211_hw * hw,u32 changed)1136 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1137 {
1138 struct zd_mac *mac = zd_hw_mac(hw);
1139 struct ieee80211_conf *conf = &hw->conf;
1140
1141 spin_lock_irq(&mac->lock);
1142 mac->channel = conf->chandef.chan->hw_value;
1143 spin_unlock_irq(&mac->lock);
1144
1145 return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1146 }
1147
zd_beacon_done(struct zd_mac * mac)1148 static void zd_beacon_done(struct zd_mac *mac)
1149 {
1150 struct sk_buff *skb, *beacon;
1151
1152 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1153 return;
1154 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1155 return;
1156
1157 /*
1158 * Send out buffered broad- and multicast frames.
1159 */
1160 while (!ieee80211_queue_stopped(mac->hw, 0)) {
1161 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1162 if (!skb)
1163 break;
1164 zd_op_tx(mac->hw, NULL, skb);
1165 }
1166
1167 /*
1168 * Fetch next beacon so that tim_count is updated.
1169 */
1170 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1171 if (beacon)
1172 zd_mac_config_beacon(mac->hw, beacon, true);
1173
1174 spin_lock_irq(&mac->lock);
1175 mac->beacon.last_update = jiffies;
1176 spin_unlock_irq(&mac->lock);
1177 }
1178
zd_process_intr(struct work_struct * work)1179 static void zd_process_intr(struct work_struct *work)
1180 {
1181 u16 int_status;
1182 unsigned long flags;
1183 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1184
1185 spin_lock_irqsave(&mac->lock, flags);
1186 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1187 spin_unlock_irqrestore(&mac->lock, flags);
1188
1189 if (int_status & INT_CFG_NEXT_BCN) {
1190 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1191 zd_beacon_done(mac);
1192 } else {
1193 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1194 }
1195
1196 zd_chip_enable_hwint(&mac->chip);
1197 }
1198
1199
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1200 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1201 struct netdev_hw_addr_list *mc_list)
1202 {
1203 struct zd_mac *mac = zd_hw_mac(hw);
1204 struct zd_mc_hash hash;
1205 struct netdev_hw_addr *ha;
1206
1207 zd_mc_clear(&hash);
1208
1209 netdev_hw_addr_list_for_each(ha, mc_list) {
1210 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1211 zd_mc_add_addr(&hash, ha->addr);
1212 }
1213
1214 return hash.low | ((u64)hash.high << 32);
1215 }
1216
1217 #define SUPPORTED_FIF_FLAGS \
1218 (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1219 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1220 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1221 unsigned int changed_flags,
1222 unsigned int *new_flags,
1223 u64 multicast)
1224 {
1225 struct zd_mc_hash hash = {
1226 .low = multicast,
1227 .high = multicast >> 32,
1228 };
1229 struct zd_mac *mac = zd_hw_mac(hw);
1230 unsigned long flags;
1231 int r;
1232
1233 /* Only deal with supported flags */
1234 changed_flags &= SUPPORTED_FIF_FLAGS;
1235 *new_flags &= SUPPORTED_FIF_FLAGS;
1236
1237 /*
1238 * If multicast parameter (as returned by zd_op_prepare_multicast)
1239 * has changed, no bit in changed_flags is set. To handle this
1240 * situation, we do not return if changed_flags is 0. If we do so,
1241 * we will have some issue with IPv6 which uses multicast for link
1242 * layer address resolution.
1243 */
1244 if (*new_flags & FIF_ALLMULTI)
1245 zd_mc_add_all(&hash);
1246
1247 spin_lock_irqsave(&mac->lock, flags);
1248 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1249 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1250 mac->multicast_hash = hash;
1251 spin_unlock_irqrestore(&mac->lock, flags);
1252
1253 zd_chip_set_multicast_hash(&mac->chip, &hash);
1254
1255 if (changed_flags & FIF_CONTROL) {
1256 r = set_rx_filter(mac);
1257 if (r)
1258 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1259 }
1260
1261 /* no handling required for FIF_OTHER_BSS as we don't currently
1262 * do BSSID filtering */
1263 /* FIXME: in future it would be nice to enable the probe response
1264 * filter (so that the driver doesn't see them) until
1265 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1266 * have to schedule work to enable prbresp reception, which might
1267 * happen too late. For now we'll just listen and forward them all the
1268 * time. */
1269 }
1270
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1271 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1272 {
1273 mutex_lock(&mac->chip.mutex);
1274 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1275 mutex_unlock(&mac->chip.mutex);
1276 }
1277
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1278 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1279 struct ieee80211_vif *vif,
1280 struct ieee80211_bss_conf *bss_conf,
1281 u32 changes)
1282 {
1283 struct zd_mac *mac = zd_hw_mac(hw);
1284 int associated;
1285
1286 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1287
1288 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1289 mac->type == NL80211_IFTYPE_ADHOC ||
1290 mac->type == NL80211_IFTYPE_AP) {
1291 associated = true;
1292 if (changes & BSS_CHANGED_BEACON) {
1293 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1294
1295 if (beacon) {
1296 zd_chip_disable_hwint(&mac->chip);
1297 zd_mac_config_beacon(hw, beacon, false);
1298 zd_chip_enable_hwint(&mac->chip);
1299 }
1300 }
1301
1302 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1303 u16 interval = 0;
1304 u8 period = 0;
1305
1306 if (bss_conf->enable_beacon) {
1307 period = bss_conf->dtim_period;
1308 interval = bss_conf->beacon_int;
1309 }
1310
1311 spin_lock_irq(&mac->lock);
1312 mac->beacon.period = period;
1313 mac->beacon.interval = interval;
1314 mac->beacon.last_update = jiffies;
1315 spin_unlock_irq(&mac->lock);
1316
1317 zd_set_beacon_interval(&mac->chip, interval, period,
1318 mac->type);
1319 }
1320 } else
1321 associated = is_valid_ether_addr(bss_conf->bssid);
1322
1323 spin_lock_irq(&mac->lock);
1324 mac->associated = associated;
1325 spin_unlock_irq(&mac->lock);
1326
1327 /* TODO: do hardware bssid filtering */
1328
1329 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1330 spin_lock_irq(&mac->lock);
1331 mac->short_preamble = bss_conf->use_short_preamble;
1332 spin_unlock_irq(&mac->lock);
1333
1334 set_rts_cts(mac, bss_conf->use_short_preamble);
1335 }
1336 }
1337
zd_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1338 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1339 {
1340 struct zd_mac *mac = zd_hw_mac(hw);
1341 return zd_chip_get_tsf(&mac->chip);
1342 }
1343
1344 static const struct ieee80211_ops zd_ops = {
1345 .tx = zd_op_tx,
1346 .start = zd_op_start,
1347 .stop = zd_op_stop,
1348 .add_interface = zd_op_add_interface,
1349 .remove_interface = zd_op_remove_interface,
1350 .config = zd_op_config,
1351 .prepare_multicast = zd_op_prepare_multicast,
1352 .configure_filter = zd_op_configure_filter,
1353 .bss_info_changed = zd_op_bss_info_changed,
1354 .get_tsf = zd_op_get_tsf,
1355 };
1356
zd_mac_alloc_hw(struct usb_interface * intf)1357 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1358 {
1359 struct zd_mac *mac;
1360 struct ieee80211_hw *hw;
1361
1362 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1363 if (!hw) {
1364 dev_dbg_f(&intf->dev, "out of memory\n");
1365 return NULL;
1366 }
1367
1368 mac = zd_hw_mac(hw);
1369
1370 memset(mac, 0, sizeof(*mac));
1371 spin_lock_init(&mac->lock);
1372 mac->hw = hw;
1373
1374 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1375
1376 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1377 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1378 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1379 mac->band.bitrates = mac->rates;
1380 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1381 mac->band.channels = mac->channels;
1382
1383 hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1384
1385 ieee80211_hw_set(hw, MFP_CAPABLE);
1386 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1387 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1388 ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1389
1390 hw->wiphy->interface_modes =
1391 BIT(NL80211_IFTYPE_MESH_POINT) |
1392 BIT(NL80211_IFTYPE_STATION) |
1393 BIT(NL80211_IFTYPE_ADHOC) |
1394 BIT(NL80211_IFTYPE_AP);
1395
1396 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1397
1398 hw->max_signal = 100;
1399 hw->queues = 1;
1400 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1401
1402 /*
1403 * Tell mac80211 that we support multi rate retries
1404 */
1405 hw->max_rates = IEEE80211_TX_MAX_RATES;
1406 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1407
1408 skb_queue_head_init(&mac->ack_wait_queue);
1409 mac->ack_pending = 0;
1410
1411 zd_chip_init(&mac->chip, hw, intf);
1412 housekeeping_init(mac);
1413 beacon_init(mac);
1414 INIT_WORK(&mac->process_intr, zd_process_intr);
1415
1416 SET_IEEE80211_DEV(hw, &intf->dev);
1417 return hw;
1418 }
1419
1420 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1421
beacon_watchdog_handler(struct work_struct * work)1422 static void beacon_watchdog_handler(struct work_struct *work)
1423 {
1424 struct zd_mac *mac =
1425 container_of(work, struct zd_mac, beacon.watchdog_work.work);
1426 struct sk_buff *beacon;
1427 unsigned long timeout;
1428 int interval, period;
1429
1430 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1431 goto rearm;
1432 if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1433 goto rearm;
1434
1435 spin_lock_irq(&mac->lock);
1436 interval = mac->beacon.interval;
1437 period = mac->beacon.period;
1438 timeout = mac->beacon.last_update +
1439 msecs_to_jiffies(interval * 1024 / 1000) * 3;
1440 spin_unlock_irq(&mac->lock);
1441
1442 if (interval > 0 && time_is_before_jiffies(timeout)) {
1443 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1444 "restarting. "
1445 "(interval: %d, dtim: %d)\n",
1446 interval, period);
1447
1448 zd_chip_disable_hwint(&mac->chip);
1449
1450 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1451 if (beacon) {
1452 zd_mac_free_cur_beacon(mac);
1453
1454 zd_mac_config_beacon(mac->hw, beacon, false);
1455 }
1456
1457 zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1458
1459 zd_chip_enable_hwint(&mac->chip);
1460
1461 spin_lock_irq(&mac->lock);
1462 mac->beacon.last_update = jiffies;
1463 spin_unlock_irq(&mac->lock);
1464 }
1465
1466 rearm:
1467 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1468 BEACON_WATCHDOG_DELAY);
1469 }
1470
beacon_init(struct zd_mac * mac)1471 static void beacon_init(struct zd_mac *mac)
1472 {
1473 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1474 }
1475
beacon_enable(struct zd_mac * mac)1476 static void beacon_enable(struct zd_mac *mac)
1477 {
1478 dev_dbg_f(zd_mac_dev(mac), "\n");
1479
1480 mac->beacon.last_update = jiffies;
1481 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1482 BEACON_WATCHDOG_DELAY);
1483 }
1484
beacon_disable(struct zd_mac * mac)1485 static void beacon_disable(struct zd_mac *mac)
1486 {
1487 dev_dbg_f(zd_mac_dev(mac), "\n");
1488 cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1489
1490 zd_mac_free_cur_beacon(mac);
1491 }
1492
1493 #define LINK_LED_WORK_DELAY HZ
1494
link_led_handler(struct work_struct * work)1495 static void link_led_handler(struct work_struct *work)
1496 {
1497 struct zd_mac *mac =
1498 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1499 struct zd_chip *chip = &mac->chip;
1500 int is_associated;
1501 int r;
1502
1503 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1504 goto requeue;
1505
1506 spin_lock_irq(&mac->lock);
1507 is_associated = mac->associated;
1508 spin_unlock_irq(&mac->lock);
1509
1510 r = zd_chip_control_leds(chip,
1511 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1512 if (r)
1513 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1514
1515 requeue:
1516 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1517 LINK_LED_WORK_DELAY);
1518 }
1519
housekeeping_init(struct zd_mac * mac)1520 static void housekeeping_init(struct zd_mac *mac)
1521 {
1522 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1523 }
1524
housekeeping_enable(struct zd_mac * mac)1525 static void housekeeping_enable(struct zd_mac *mac)
1526 {
1527 dev_dbg_f(zd_mac_dev(mac), "\n");
1528 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1529 0);
1530 }
1531
housekeeping_disable(struct zd_mac * mac)1532 static void housekeeping_disable(struct zd_mac *mac)
1533 {
1534 dev_dbg_f(zd_mac_dev(mac), "\n");
1535 cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1536 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1537 }
1538