1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
transparent_hugepage_enabled(struct vm_area_struct * vma)65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
76
77 return false;
78 }
79
get_huge_zero_page(void)80 static struct page *get_huge_zero_page(void)
81 {
82 struct page *zero_page;
83 retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 HPAGE_PMD_ORDER);
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 return NULL;
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 preempt_disable();
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 preempt_enable();
97 __free_pages(zero_page, compound_order(zero_page));
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
104 return READ_ONCE(huge_zero_page);
105 }
106
put_huge_zero_page(void)107 static void put_huge_zero_page(void)
108 {
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
mm_get_huge_zero_page(struct mm_struct * mm)116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128 }
129
mm_put_huge_zero_page(struct mm_struct * mm)130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134 }
135
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
138 {
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145 {
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
150 return HPAGE_PMD_NR;
151 }
152
153 return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165 {
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
172 }
173
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177 {
178 ssize_t ret = count;
179
180 if (sysfs_streq(buf, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (sysfs_streq(buf, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
191
192 if (ret > 0) {
193 int err = start_stop_khugepaged();
194 if (err)
195 ret = err;
196 }
197 return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205 {
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214 {
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
225 set_bit(flag, &transparent_hugepage_flags);
226 else
227 clear_bit(flag, &transparent_hugepage_flags);
228
229 return count;
230 }
231
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)232 static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234 {
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)246 static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249 {
250 if (sysfs_streq(buf, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (sysfs_streq(buf, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (sysfs_streq(buf, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285 {
286 return single_hugepage_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 return single_hugepage_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 &hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312 &shmem_enabled_attr.attr,
313 #endif
314 NULL,
315 };
316
317 static const struct attribute_group hugepage_attr_group = {
318 .attrs = hugepage_attr,
319 };
320
hugepage_init_sysfs(struct kobject ** hugepage_kobj)321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323 int err;
324
325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 if (unlikely(!*hugepage_kobj)) {
327 pr_err("failed to create transparent hugepage kobject\n");
328 return -ENOMEM;
329 }
330
331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332 if (err) {
333 pr_err("failed to register transparent hugepage group\n");
334 goto delete_obj;
335 }
336
337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338 if (err) {
339 pr_err("failed to register transparent hugepage group\n");
340 goto remove_hp_group;
341 }
342
343 return 0;
344
345 remove_hp_group:
346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348 kobject_put(*hugepage_kobj);
349 return err;
350 }
351
hugepage_exit_sysfs(struct kobject * hugepage_kobj)352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 kobject_put(hugepage_kobj);
357 }
358 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361 return 0;
362 }
363
hugepage_exit_sysfs(struct kobject * hugepage_kobj)364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368
hugepage_init(void)369 static int __init hugepage_init(void)
370 {
371 int err;
372 struct kobject *hugepage_kobj;
373
374 if (!has_transparent_hugepage()) {
375 transparent_hugepage_flags = 0;
376 return -EINVAL;
377 }
378
379 /*
380 * hugepages can't be allocated by the buddy allocator
381 */
382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 /*
384 * we use page->mapping and page->index in second tail page
385 * as list_head: assuming THP order >= 2
386 */
387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
389 err = hugepage_init_sysfs(&hugepage_kobj);
390 if (err)
391 goto err_sysfs;
392
393 err = khugepaged_init();
394 if (err)
395 goto err_slab;
396
397 err = register_shrinker(&huge_zero_page_shrinker);
398 if (err)
399 goto err_hzp_shrinker;
400 err = register_shrinker(&deferred_split_shrinker);
401 if (err)
402 goto err_split_shrinker;
403
404 /*
405 * By default disable transparent hugepages on smaller systems,
406 * where the extra memory used could hurt more than TLB overhead
407 * is likely to save. The admin can still enable it through /sys.
408 */
409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410 transparent_hugepage_flags = 0;
411 return 0;
412 }
413
414 err = start_stop_khugepaged();
415 if (err)
416 goto err_khugepaged;
417
418 return 0;
419 err_khugepaged:
420 unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422 unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424 khugepaged_destroy();
425 err_slab:
426 hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428 return err;
429 }
430 subsys_initcall(hugepage_init);
431
setup_transparent_hugepage(char * str)432 static int __init setup_transparent_hugepage(char *str)
433 {
434 int ret = 0;
435 if (!str)
436 goto out;
437 if (!strcmp(str, "always")) {
438 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 &transparent_hugepage_flags);
440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 &transparent_hugepage_flags);
442 ret = 1;
443 } else if (!strcmp(str, "madvise")) {
444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 &transparent_hugepage_flags);
446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 &transparent_hugepage_flags);
448 ret = 1;
449 } else if (!strcmp(str, "never")) {
450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 }
456 out:
457 if (!ret)
458 pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465 if (likely(vma->vm_flags & VM_WRITE))
466 pmd = pmd_mkwrite(pmd);
467 return pmd;
468 }
469
470 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476 if (memcg)
477 return &memcg->deferred_split_queue;
478 else
479 return &pgdat->deferred_split_queue;
480 }
481 #else
get_deferred_split_queue(struct page * page)482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486 return &pgdat->deferred_split_queue;
487 }
488 #endif
489
prep_transhuge_page(struct page * page)490 void prep_transhuge_page(struct page *page)
491 {
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
is_transparent_hugepage(struct page * page)501 bool is_transparent_hugepage(struct page *page)
502 {
503 if (!PageCompound(page))
504 return false;
505
506 page = compound_head(page);
507 return is_huge_zero_page(page) ||
508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513 unsigned long addr, unsigned long len,
514 loff_t off, unsigned long flags, unsigned long size)
515 {
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad, ret;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528 off >> PAGE_SHIFT, flags);
529
530 /*
531 * The failure might be due to length padding. The caller will retry
532 * without the padding.
533 */
534 if (IS_ERR_VALUE(ret))
535 return 0;
536
537 /*
538 * Do not try to align to THP boundary if allocation at the address
539 * hint succeeds.
540 */
541 if (ret == addr)
542 return addr;
543
544 ret += (off - ret) & (size - 1);
545 return ret;
546 }
547
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551 unsigned long ret;
552 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 goto out;
556
557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 if (ret)
559 return ret;
560 out:
561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 struct page *page, gfp_t gfp)
567 {
568 struct vm_area_struct *vma = vmf->vma;
569 pgtable_t pgtable;
570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571 vm_fault_t ret = 0;
572
573 VM_BUG_ON_PAGE(!PageCompound(page), page);
574
575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 put_page(page);
577 count_vm_event(THP_FAULT_FALLBACK);
578 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 return VM_FAULT_FALLBACK;
580 }
581 cgroup_throttle_swaprate(page, gfp);
582
583 pgtable = pte_alloc_one(vma->vm_mm);
584 if (unlikely(!pgtable)) {
585 ret = VM_FAULT_OOM;
586 goto release;
587 }
588
589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 /*
591 * The memory barrier inside __SetPageUptodate makes sure that
592 * clear_huge_page writes become visible before the set_pmd_at()
593 * write.
594 */
595 __SetPageUptodate(page);
596
597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 if (unlikely(!pmd_none(*vmf->pmd))) {
599 goto unlock_release;
600 } else {
601 pmd_t entry;
602
603 ret = check_stable_address_space(vma->vm_mm);
604 if (ret)
605 goto unlock_release;
606
607 /* Deliver the page fault to userland */
608 if (userfaultfd_missing(vma)) {
609 vm_fault_t ret2;
610
611 spin_unlock(vmf->ptl);
612 put_page(page);
613 pte_free(vma->vm_mm, pgtable);
614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 return ret2;
617 }
618
619 entry = mk_huge_pmd(page, vma->vm_page_prot);
620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621 page_add_new_anon_rmap(page, vma, haddr, true);
622 lru_cache_add_inactive_or_unevictable(page, vma);
623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626 mm_inc_nr_ptes(vma->vm_mm);
627 spin_unlock(vmf->ptl);
628 count_vm_event(THP_FAULT_ALLOC);
629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 }
631
632 return 0;
633 unlock_release:
634 spin_unlock(vmf->ptl);
635 release:
636 if (pgtable)
637 pte_free(vma->vm_mm, pgtable);
638 put_page(page);
639 return ret;
640
641 }
642
643 /*
644 * always: directly stall for all thp allocations
645 * defer: wake kswapd and fail if not immediately available
646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647 * fail if not immediately available
648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649 * available
650 * never: never stall for any thp allocation
651 */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655
656 /* Always do synchronous compaction */
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659
660 /* Kick kcompactd and fail quickly */
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663
664 /* Synchronous compaction if madvised, otherwise kick kcompactd */
665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 return GFP_TRANSHUGE_LIGHT |
667 (vma_madvised ? __GFP_DIRECT_RECLAIM :
668 __GFP_KSWAPD_RECLAIM);
669
670 /* Only do synchronous compaction if madvised */
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 return GFP_TRANSHUGE_LIGHT |
673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674
675 return GFP_TRANSHUGE_LIGHT;
676 }
677
678 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681 struct page *zero_page)
682 {
683 pmd_t entry;
684 if (!pmd_none(*pmd))
685 return false;
686 entry = mk_pmd(zero_page, vma->vm_page_prot);
687 entry = pmd_mkhuge(entry);
688 if (pgtable)
689 pgtable_trans_huge_deposit(mm, pmd, pgtable);
690 set_pmd_at(mm, haddr, pmd, entry);
691 mm_inc_nr_ptes(mm);
692 return true;
693 }
694
do_huge_pmd_anonymous_page(struct vm_fault * vmf)695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697 struct vm_area_struct *vma = vmf->vma;
698 gfp_t gfp;
699 struct page *page;
700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701
702 if (!transhuge_vma_suitable(vma, haddr))
703 return VM_FAULT_FALLBACK;
704 if (unlikely(anon_vma_prepare(vma)))
705 return VM_FAULT_OOM;
706 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707 return VM_FAULT_OOM;
708 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709 !mm_forbids_zeropage(vma->vm_mm) &&
710 transparent_hugepage_use_zero_page()) {
711 pgtable_t pgtable;
712 struct page *zero_page;
713 vm_fault_t ret;
714 pgtable = pte_alloc_one(vma->vm_mm);
715 if (unlikely(!pgtable))
716 return VM_FAULT_OOM;
717 zero_page = mm_get_huge_zero_page(vma->vm_mm);
718 if (unlikely(!zero_page)) {
719 pte_free(vma->vm_mm, pgtable);
720 count_vm_event(THP_FAULT_FALLBACK);
721 return VM_FAULT_FALLBACK;
722 }
723 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
724 ret = 0;
725 if (pmd_none(*vmf->pmd)) {
726 ret = check_stable_address_space(vma->vm_mm);
727 if (ret) {
728 spin_unlock(vmf->ptl);
729 pte_free(vma->vm_mm, pgtable);
730 } else if (userfaultfd_missing(vma)) {
731 spin_unlock(vmf->ptl);
732 pte_free(vma->vm_mm, pgtable);
733 ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 } else {
736 set_huge_zero_page(pgtable, vma->vm_mm, vma,
737 haddr, vmf->pmd, zero_page);
738 spin_unlock(vmf->ptl);
739 }
740 } else {
741 spin_unlock(vmf->ptl);
742 pte_free(vma->vm_mm, pgtable);
743 }
744 return ret;
745 }
746 gfp = alloc_hugepage_direct_gfpmask(vma);
747 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
748 if (unlikely(!page)) {
749 count_vm_event(THP_FAULT_FALLBACK);
750 return VM_FAULT_FALLBACK;
751 }
752 prep_transhuge_page(page);
753 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
754 }
755
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)756 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
757 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
758 pgtable_t pgtable)
759 {
760 struct mm_struct *mm = vma->vm_mm;
761 pmd_t entry;
762 spinlock_t *ptl;
763
764 ptl = pmd_lock(mm, pmd);
765 if (!pmd_none(*pmd)) {
766 if (write) {
767 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
768 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
769 goto out_unlock;
770 }
771 entry = pmd_mkyoung(*pmd);
772 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
774 update_mmu_cache_pmd(vma, addr, pmd);
775 }
776
777 goto out_unlock;
778 }
779
780 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
781 if (pfn_t_devmap(pfn))
782 entry = pmd_mkdevmap(entry);
783 if (write) {
784 entry = pmd_mkyoung(pmd_mkdirty(entry));
785 entry = maybe_pmd_mkwrite(entry, vma);
786 }
787
788 if (pgtable) {
789 pgtable_trans_huge_deposit(mm, pmd, pgtable);
790 mm_inc_nr_ptes(mm);
791 pgtable = NULL;
792 }
793
794 set_pmd_at(mm, addr, pmd, entry);
795 update_mmu_cache_pmd(vma, addr, pmd);
796
797 out_unlock:
798 spin_unlock(ptl);
799 if (pgtable)
800 pte_free(mm, pgtable);
801 }
802
803 /**
804 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
805 * @vmf: Structure describing the fault
806 * @pfn: pfn to insert
807 * @pgprot: page protection to use
808 * @write: whether it's a write fault
809 *
810 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
811 * also consult the vmf_insert_mixed_prot() documentation when
812 * @pgprot != @vmf->vma->vm_page_prot.
813 *
814 * Return: vm_fault_t value.
815 */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)816 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
817 pgprot_t pgprot, bool write)
818 {
819 unsigned long addr = vmf->address & PMD_MASK;
820 struct vm_area_struct *vma = vmf->vma;
821 pgtable_t pgtable = NULL;
822
823 /*
824 * If we had pmd_special, we could avoid all these restrictions,
825 * but we need to be consistent with PTEs and architectures that
826 * can't support a 'special' bit.
827 */
828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
829 !pfn_t_devmap(pfn));
830 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
831 (VM_PFNMAP|VM_MIXEDMAP));
832 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
833
834 if (addr < vma->vm_start || addr >= vma->vm_end)
835 return VM_FAULT_SIGBUS;
836
837 if (arch_needs_pgtable_deposit()) {
838 pgtable = pte_alloc_one(vma->vm_mm);
839 if (!pgtable)
840 return VM_FAULT_OOM;
841 }
842
843 track_pfn_insert(vma, &pgprot, pfn);
844
845 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
846 return VM_FAULT_NOPAGE;
847 }
848 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
849
850 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)851 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
852 {
853 if (likely(vma->vm_flags & VM_WRITE))
854 pud = pud_mkwrite(pud);
855 return pud;
856 }
857
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)858 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
859 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
860 {
861 struct mm_struct *mm = vma->vm_mm;
862 pud_t entry;
863 spinlock_t *ptl;
864
865 ptl = pud_lock(mm, pud);
866 if (!pud_none(*pud)) {
867 if (write) {
868 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
869 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
870 goto out_unlock;
871 }
872 entry = pud_mkyoung(*pud);
873 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
874 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
875 update_mmu_cache_pud(vma, addr, pud);
876 }
877 goto out_unlock;
878 }
879
880 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
881 if (pfn_t_devmap(pfn))
882 entry = pud_mkdevmap(entry);
883 if (write) {
884 entry = pud_mkyoung(pud_mkdirty(entry));
885 entry = maybe_pud_mkwrite(entry, vma);
886 }
887 set_pud_at(mm, addr, pud, entry);
888 update_mmu_cache_pud(vma, addr, pud);
889
890 out_unlock:
891 spin_unlock(ptl);
892 }
893
894 /**
895 * vmf_insert_pfn_pud_prot - insert a pud size pfn
896 * @vmf: Structure describing the fault
897 * @pfn: pfn to insert
898 * @pgprot: page protection to use
899 * @write: whether it's a write fault
900 *
901 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
902 * also consult the vmf_insert_mixed_prot() documentation when
903 * @pgprot != @vmf->vma->vm_page_prot.
904 *
905 * Return: vm_fault_t value.
906 */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)907 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
908 pgprot_t pgprot, bool write)
909 {
910 unsigned long addr = vmf->address & PUD_MASK;
911 struct vm_area_struct *vma = vmf->vma;
912
913 /*
914 * If we had pud_special, we could avoid all these restrictions,
915 * but we need to be consistent with PTEs and architectures that
916 * can't support a 'special' bit.
917 */
918 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
919 !pfn_t_devmap(pfn));
920 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
921 (VM_PFNMAP|VM_MIXEDMAP));
922 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
923
924 if (addr < vma->vm_start || addr >= vma->vm_end)
925 return VM_FAULT_SIGBUS;
926
927 track_pfn_insert(vma, &pgprot, pfn);
928
929 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
930 return VM_FAULT_NOPAGE;
931 }
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
933 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
934
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)935 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
936 pmd_t *pmd, int flags)
937 {
938 pmd_t _pmd;
939
940 _pmd = pmd_mkyoung(*pmd);
941 if (flags & FOLL_WRITE)
942 _pmd = pmd_mkdirty(_pmd);
943 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
944 pmd, _pmd, flags & FOLL_WRITE))
945 update_mmu_cache_pmd(vma, addr, pmd);
946 }
947
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)948 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
949 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
950 {
951 unsigned long pfn = pmd_pfn(*pmd);
952 struct mm_struct *mm = vma->vm_mm;
953 struct page *page;
954
955 assert_spin_locked(pmd_lockptr(mm, pmd));
956
957 /*
958 * When we COW a devmap PMD entry, we split it into PTEs, so we should
959 * not be in this function with `flags & FOLL_COW` set.
960 */
961 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
962
963 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
964 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
965 (FOLL_PIN | FOLL_GET)))
966 return NULL;
967
968 if (flags & FOLL_WRITE && !pmd_write(*pmd))
969 return NULL;
970
971 if (pmd_present(*pmd) && pmd_devmap(*pmd))
972 /* pass */;
973 else
974 return NULL;
975
976 if (flags & FOLL_TOUCH)
977 touch_pmd(vma, addr, pmd, flags);
978
979 /*
980 * device mapped pages can only be returned if the
981 * caller will manage the page reference count.
982 */
983 if (!(flags & (FOLL_GET | FOLL_PIN)))
984 return ERR_PTR(-EEXIST);
985
986 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
987 *pgmap = get_dev_pagemap(pfn, *pgmap);
988 if (!*pgmap)
989 return ERR_PTR(-EFAULT);
990 page = pfn_to_page(pfn);
991 if (!try_grab_page(page, flags))
992 page = ERR_PTR(-ENOMEM);
993
994 return page;
995 }
996
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)997 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999 struct vm_area_struct *vma)
1000 {
1001 spinlock_t *dst_ptl, *src_ptl;
1002 struct page *src_page;
1003 pmd_t pmd;
1004 pgtable_t pgtable = NULL;
1005 int ret = -ENOMEM;
1006
1007 /* Skip if can be re-fill on fault */
1008 if (!vma_is_anonymous(vma))
1009 return 0;
1010
1011 pgtable = pte_alloc_one(dst_mm);
1012 if (unlikely(!pgtable))
1013 goto out;
1014
1015 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1016 src_ptl = pmd_lockptr(src_mm, src_pmd);
1017 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1018
1019 ret = -EAGAIN;
1020 pmd = *src_pmd;
1021
1022 /*
1023 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1024 * does not have the VM_UFFD_WP, which means that the uffd
1025 * fork event is not enabled.
1026 */
1027 if (!(vma->vm_flags & VM_UFFD_WP))
1028 pmd = pmd_clear_uffd_wp(pmd);
1029
1030 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1031 if (unlikely(is_swap_pmd(pmd))) {
1032 swp_entry_t entry = pmd_to_swp_entry(pmd);
1033
1034 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1035 if (is_write_migration_entry(entry)) {
1036 make_migration_entry_read(&entry);
1037 pmd = swp_entry_to_pmd(entry);
1038 if (pmd_swp_soft_dirty(*src_pmd))
1039 pmd = pmd_swp_mksoft_dirty(pmd);
1040 set_pmd_at(src_mm, addr, src_pmd, pmd);
1041 }
1042 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1043 mm_inc_nr_ptes(dst_mm);
1044 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1045 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1046 ret = 0;
1047 goto out_unlock;
1048 }
1049 #endif
1050
1051 if (unlikely(!pmd_trans_huge(pmd))) {
1052 pte_free(dst_mm, pgtable);
1053 goto out_unlock;
1054 }
1055 /*
1056 * When page table lock is held, the huge zero pmd should not be
1057 * under splitting since we don't split the page itself, only pmd to
1058 * a page table.
1059 */
1060 if (is_huge_zero_pmd(pmd)) {
1061 struct page *zero_page;
1062 /*
1063 * get_huge_zero_page() will never allocate a new page here,
1064 * since we already have a zero page to copy. It just takes a
1065 * reference.
1066 */
1067 zero_page = mm_get_huge_zero_page(dst_mm);
1068 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1069 zero_page);
1070 ret = 0;
1071 goto out_unlock;
1072 }
1073
1074 src_page = pmd_page(pmd);
1075 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1076
1077 /*
1078 * If this page is a potentially pinned page, split and retry the fault
1079 * with smaller page size. Normally this should not happen because the
1080 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1081 * best effort that the pinned pages won't be replaced by another
1082 * random page during the coming copy-on-write.
1083 */
1084 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1085 atomic_read(&src_mm->has_pinned) &&
1086 page_maybe_dma_pinned(src_page))) {
1087 pte_free(dst_mm, pgtable);
1088 spin_unlock(src_ptl);
1089 spin_unlock(dst_ptl);
1090 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1091 return -EAGAIN;
1092 }
1093
1094 get_page(src_page);
1095 page_dup_rmap(src_page, true);
1096 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1097 mm_inc_nr_ptes(dst_mm);
1098 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1099
1100 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1101 pmd = pmd_mkold(pmd_wrprotect(pmd));
1102 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1103
1104 ret = 0;
1105 out_unlock:
1106 spin_unlock(src_ptl);
1107 spin_unlock(dst_ptl);
1108 out:
1109 return ret;
1110 }
1111
1112 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1113 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1114 pud_t *pud, int flags)
1115 {
1116 pud_t _pud;
1117
1118 _pud = pud_mkyoung(*pud);
1119 if (flags & FOLL_WRITE)
1120 _pud = pud_mkdirty(_pud);
1121 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1122 pud, _pud, flags & FOLL_WRITE))
1123 update_mmu_cache_pud(vma, addr, pud);
1124 }
1125
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1126 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1127 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1128 {
1129 unsigned long pfn = pud_pfn(*pud);
1130 struct mm_struct *mm = vma->vm_mm;
1131 struct page *page;
1132
1133 assert_spin_locked(pud_lockptr(mm, pud));
1134
1135 if (flags & FOLL_WRITE && !pud_write(*pud))
1136 return NULL;
1137
1138 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1139 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1140 (FOLL_PIN | FOLL_GET)))
1141 return NULL;
1142
1143 if (pud_present(*pud) && pud_devmap(*pud))
1144 /* pass */;
1145 else
1146 return NULL;
1147
1148 if (flags & FOLL_TOUCH)
1149 touch_pud(vma, addr, pud, flags);
1150
1151 /*
1152 * device mapped pages can only be returned if the
1153 * caller will manage the page reference count.
1154 *
1155 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1156 */
1157 if (!(flags & (FOLL_GET | FOLL_PIN)))
1158 return ERR_PTR(-EEXIST);
1159
1160 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1161 *pgmap = get_dev_pagemap(pfn, *pgmap);
1162 if (!*pgmap)
1163 return ERR_PTR(-EFAULT);
1164 page = pfn_to_page(pfn);
1165 if (!try_grab_page(page, flags))
1166 page = ERR_PTR(-ENOMEM);
1167
1168 return page;
1169 }
1170
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1171 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1172 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1173 struct vm_area_struct *vma)
1174 {
1175 spinlock_t *dst_ptl, *src_ptl;
1176 pud_t pud;
1177 int ret;
1178
1179 dst_ptl = pud_lock(dst_mm, dst_pud);
1180 src_ptl = pud_lockptr(src_mm, src_pud);
1181 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1182
1183 ret = -EAGAIN;
1184 pud = *src_pud;
1185 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1186 goto out_unlock;
1187
1188 /*
1189 * When page table lock is held, the huge zero pud should not be
1190 * under splitting since we don't split the page itself, only pud to
1191 * a page table.
1192 */
1193 if (is_huge_zero_pud(pud)) {
1194 /* No huge zero pud yet */
1195 }
1196
1197 /* Please refer to comments in copy_huge_pmd() */
1198 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1199 atomic_read(&src_mm->has_pinned) &&
1200 page_maybe_dma_pinned(pud_page(pud)))) {
1201 spin_unlock(src_ptl);
1202 spin_unlock(dst_ptl);
1203 __split_huge_pud(vma, src_pud, addr);
1204 return -EAGAIN;
1205 }
1206
1207 pudp_set_wrprotect(src_mm, addr, src_pud);
1208 pud = pud_mkold(pud_wrprotect(pud));
1209 set_pud_at(dst_mm, addr, dst_pud, pud);
1210
1211 ret = 0;
1212 out_unlock:
1213 spin_unlock(src_ptl);
1214 spin_unlock(dst_ptl);
1215 return ret;
1216 }
1217
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1218 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1219 {
1220 pud_t entry;
1221 unsigned long haddr;
1222 bool write = vmf->flags & FAULT_FLAG_WRITE;
1223
1224 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1225 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1226 goto unlock;
1227
1228 entry = pud_mkyoung(orig_pud);
1229 if (write)
1230 entry = pud_mkdirty(entry);
1231 haddr = vmf->address & HPAGE_PUD_MASK;
1232 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1233 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1234
1235 unlock:
1236 spin_unlock(vmf->ptl);
1237 }
1238 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1239
huge_pmd_set_accessed(struct vm_fault * vmf,pmd_t orig_pmd)1240 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1241 {
1242 pmd_t entry;
1243 unsigned long haddr;
1244 bool write = vmf->flags & FAULT_FLAG_WRITE;
1245
1246 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1247 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1248 goto unlock;
1249
1250 entry = pmd_mkyoung(orig_pmd);
1251 if (write)
1252 entry = pmd_mkdirty(entry);
1253 haddr = vmf->address & HPAGE_PMD_MASK;
1254 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1255 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1256
1257 unlock:
1258 spin_unlock(vmf->ptl);
1259 }
1260
do_huge_pmd_wp_page(struct vm_fault * vmf,pmd_t orig_pmd)1261 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1262 {
1263 struct vm_area_struct *vma = vmf->vma;
1264 struct page *page;
1265 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1266
1267 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1268 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1269
1270 if (is_huge_zero_pmd(orig_pmd))
1271 goto fallback;
1272
1273 spin_lock(vmf->ptl);
1274
1275 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1276 spin_unlock(vmf->ptl);
1277 return 0;
1278 }
1279
1280 page = pmd_page(orig_pmd);
1281 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1282
1283 /* Lock page for reuse_swap_page() */
1284 if (!trylock_page(page)) {
1285 get_page(page);
1286 spin_unlock(vmf->ptl);
1287 lock_page(page);
1288 spin_lock(vmf->ptl);
1289 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290 spin_unlock(vmf->ptl);
1291 unlock_page(page);
1292 put_page(page);
1293 return 0;
1294 }
1295 put_page(page);
1296 }
1297
1298 /*
1299 * We can only reuse the page if nobody else maps the huge page or it's
1300 * part.
1301 */
1302 if (reuse_swap_page(page, NULL)) {
1303 pmd_t entry;
1304 entry = pmd_mkyoung(orig_pmd);
1305 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1306 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1307 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1308 unlock_page(page);
1309 spin_unlock(vmf->ptl);
1310 return VM_FAULT_WRITE;
1311 }
1312
1313 unlock_page(page);
1314 spin_unlock(vmf->ptl);
1315 fallback:
1316 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1317 return VM_FAULT_FALLBACK;
1318 }
1319
1320 /*
1321 * FOLL_FORCE can write to even unwritable pmd's, but only
1322 * after we've gone through a COW cycle and they are dirty.
1323 */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1324 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1325 {
1326 return pmd_write(pmd) ||
1327 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1328 }
1329
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1330 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1331 unsigned long addr,
1332 pmd_t *pmd,
1333 unsigned int flags)
1334 {
1335 struct mm_struct *mm = vma->vm_mm;
1336 struct page *page = NULL;
1337
1338 assert_spin_locked(pmd_lockptr(mm, pmd));
1339
1340 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1341 goto out;
1342
1343 /* Avoid dumping huge zero page */
1344 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1345 return ERR_PTR(-EFAULT);
1346
1347 /* Full NUMA hinting faults to serialise migration in fault paths */
1348 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1349 goto out;
1350
1351 page = pmd_page(*pmd);
1352 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1353
1354 if (!try_grab_page(page, flags))
1355 return ERR_PTR(-ENOMEM);
1356
1357 if (flags & FOLL_TOUCH)
1358 touch_pmd(vma, addr, pmd, flags);
1359
1360 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1361 /*
1362 * We don't mlock() pte-mapped THPs. This way we can avoid
1363 * leaking mlocked pages into non-VM_LOCKED VMAs.
1364 *
1365 * For anon THP:
1366 *
1367 * In most cases the pmd is the only mapping of the page as we
1368 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1369 * writable private mappings in populate_vma_page_range().
1370 *
1371 * The only scenario when we have the page shared here is if we
1372 * mlocking read-only mapping shared over fork(). We skip
1373 * mlocking such pages.
1374 *
1375 * For file THP:
1376 *
1377 * We can expect PageDoubleMap() to be stable under page lock:
1378 * for file pages we set it in page_add_file_rmap(), which
1379 * requires page to be locked.
1380 */
1381
1382 if (PageAnon(page) && compound_mapcount(page) != 1)
1383 goto skip_mlock;
1384 if (PageDoubleMap(page) || !page->mapping)
1385 goto skip_mlock;
1386 if (!trylock_page(page))
1387 goto skip_mlock;
1388 if (page->mapping && !PageDoubleMap(page))
1389 mlock_vma_page(page);
1390 unlock_page(page);
1391 }
1392 skip_mlock:
1393 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1394 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1395
1396 out:
1397 return page;
1398 }
1399
1400 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf,pmd_t pmd)1401 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1402 {
1403 struct vm_area_struct *vma = vmf->vma;
1404 struct anon_vma *anon_vma = NULL;
1405 struct page *page;
1406 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1407 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1408 int target_nid, last_cpupid = -1;
1409 bool page_locked;
1410 bool migrated = false;
1411 bool was_writable;
1412 int flags = 0;
1413
1414 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1415 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1416 goto out_unlock;
1417
1418 /*
1419 * If there are potential migrations, wait for completion and retry
1420 * without disrupting NUMA hinting information. Do not relock and
1421 * check_same as the page may no longer be mapped.
1422 */
1423 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1424 page = pmd_page(*vmf->pmd);
1425 if (!get_page_unless_zero(page))
1426 goto out_unlock;
1427 spin_unlock(vmf->ptl);
1428 put_and_wait_on_page_locked(page);
1429 goto out;
1430 }
1431
1432 page = pmd_page(pmd);
1433 BUG_ON(is_huge_zero_page(page));
1434 page_nid = page_to_nid(page);
1435 last_cpupid = page_cpupid_last(page);
1436 count_vm_numa_event(NUMA_HINT_FAULTS);
1437 if (page_nid == this_nid) {
1438 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1439 flags |= TNF_FAULT_LOCAL;
1440 }
1441
1442 /* See similar comment in do_numa_page for explanation */
1443 if (!pmd_savedwrite(pmd))
1444 flags |= TNF_NO_GROUP;
1445
1446 /*
1447 * Acquire the page lock to serialise THP migrations but avoid dropping
1448 * page_table_lock if at all possible
1449 */
1450 page_locked = trylock_page(page);
1451 target_nid = mpol_misplaced(page, vma, haddr);
1452 if (target_nid == NUMA_NO_NODE) {
1453 /* If the page was locked, there are no parallel migrations */
1454 if (page_locked)
1455 goto clear_pmdnuma;
1456 }
1457
1458 /* Migration could have started since the pmd_trans_migrating check */
1459 if (!page_locked) {
1460 page_nid = NUMA_NO_NODE;
1461 if (!get_page_unless_zero(page))
1462 goto out_unlock;
1463 spin_unlock(vmf->ptl);
1464 put_and_wait_on_page_locked(page);
1465 goto out;
1466 }
1467
1468 /*
1469 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1470 * to serialises splits
1471 */
1472 get_page(page);
1473 spin_unlock(vmf->ptl);
1474 anon_vma = page_lock_anon_vma_read(page);
1475
1476 /* Confirm the PMD did not change while page_table_lock was released */
1477 spin_lock(vmf->ptl);
1478 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1479 unlock_page(page);
1480 put_page(page);
1481 page_nid = NUMA_NO_NODE;
1482 goto out_unlock;
1483 }
1484
1485 /* Bail if we fail to protect against THP splits for any reason */
1486 if (unlikely(!anon_vma)) {
1487 put_page(page);
1488 page_nid = NUMA_NO_NODE;
1489 goto clear_pmdnuma;
1490 }
1491
1492 /*
1493 * Since we took the NUMA fault, we must have observed the !accessible
1494 * bit. Make sure all other CPUs agree with that, to avoid them
1495 * modifying the page we're about to migrate.
1496 *
1497 * Must be done under PTL such that we'll observe the relevant
1498 * inc_tlb_flush_pending().
1499 *
1500 * We are not sure a pending tlb flush here is for a huge page
1501 * mapping or not. Hence use the tlb range variant
1502 */
1503 if (mm_tlb_flush_pending(vma->vm_mm)) {
1504 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1505 /*
1506 * change_huge_pmd() released the pmd lock before
1507 * invalidating the secondary MMUs sharing the primary
1508 * MMU pagetables (with ->invalidate_range()). The
1509 * mmu_notifier_invalidate_range_end() (which
1510 * internally calls ->invalidate_range()) in
1511 * change_pmd_range() will run after us, so we can't
1512 * rely on it here and we need an explicit invalidate.
1513 */
1514 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1515 haddr + HPAGE_PMD_SIZE);
1516 }
1517
1518 /*
1519 * Migrate the THP to the requested node, returns with page unlocked
1520 * and access rights restored.
1521 */
1522 spin_unlock(vmf->ptl);
1523
1524 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1525 vmf->pmd, pmd, vmf->address, page, target_nid);
1526 if (migrated) {
1527 flags |= TNF_MIGRATED;
1528 page_nid = target_nid;
1529 } else
1530 flags |= TNF_MIGRATE_FAIL;
1531
1532 goto out;
1533 clear_pmdnuma:
1534 BUG_ON(!PageLocked(page));
1535 was_writable = pmd_savedwrite(pmd);
1536 pmd = pmd_modify(pmd, vma->vm_page_prot);
1537 pmd = pmd_mkyoung(pmd);
1538 if (was_writable)
1539 pmd = pmd_mkwrite(pmd);
1540 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1541 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1542 unlock_page(page);
1543 out_unlock:
1544 spin_unlock(vmf->ptl);
1545
1546 out:
1547 if (anon_vma)
1548 page_unlock_anon_vma_read(anon_vma);
1549
1550 if (page_nid != NUMA_NO_NODE)
1551 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1552 flags);
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * Return true if we do MADV_FREE successfully on entire pmd page.
1559 * Otherwise, return false.
1560 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1561 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1562 pmd_t *pmd, unsigned long addr, unsigned long next)
1563 {
1564 spinlock_t *ptl;
1565 pmd_t orig_pmd;
1566 struct page *page;
1567 struct mm_struct *mm = tlb->mm;
1568 bool ret = false;
1569
1570 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1571
1572 ptl = pmd_trans_huge_lock(pmd, vma);
1573 if (!ptl)
1574 goto out_unlocked;
1575
1576 orig_pmd = *pmd;
1577 if (is_huge_zero_pmd(orig_pmd))
1578 goto out;
1579
1580 if (unlikely(!pmd_present(orig_pmd))) {
1581 VM_BUG_ON(thp_migration_supported() &&
1582 !is_pmd_migration_entry(orig_pmd));
1583 goto out;
1584 }
1585
1586 page = pmd_page(orig_pmd);
1587 /*
1588 * If other processes are mapping this page, we couldn't discard
1589 * the page unless they all do MADV_FREE so let's skip the page.
1590 */
1591 if (page_mapcount(page) != 1)
1592 goto out;
1593
1594 if (!trylock_page(page))
1595 goto out;
1596
1597 /*
1598 * If user want to discard part-pages of THP, split it so MADV_FREE
1599 * will deactivate only them.
1600 */
1601 if (next - addr != HPAGE_PMD_SIZE) {
1602 get_page(page);
1603 spin_unlock(ptl);
1604 split_huge_page(page);
1605 unlock_page(page);
1606 put_page(page);
1607 goto out_unlocked;
1608 }
1609
1610 if (PageDirty(page))
1611 ClearPageDirty(page);
1612 unlock_page(page);
1613
1614 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1615 pmdp_invalidate(vma, addr, pmd);
1616 orig_pmd = pmd_mkold(orig_pmd);
1617 orig_pmd = pmd_mkclean(orig_pmd);
1618
1619 set_pmd_at(mm, addr, pmd, orig_pmd);
1620 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1621 }
1622
1623 mark_page_lazyfree(page);
1624 ret = true;
1625 out:
1626 spin_unlock(ptl);
1627 out_unlocked:
1628 return ret;
1629 }
1630
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1631 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1632 {
1633 pgtable_t pgtable;
1634
1635 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1636 pte_free(mm, pgtable);
1637 mm_dec_nr_ptes(mm);
1638 }
1639
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1640 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1641 pmd_t *pmd, unsigned long addr)
1642 {
1643 pmd_t orig_pmd;
1644 spinlock_t *ptl;
1645
1646 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1647
1648 ptl = __pmd_trans_huge_lock(pmd, vma);
1649 if (!ptl)
1650 return 0;
1651 /*
1652 * For architectures like ppc64 we look at deposited pgtable
1653 * when calling pmdp_huge_get_and_clear. So do the
1654 * pgtable_trans_huge_withdraw after finishing pmdp related
1655 * operations.
1656 */
1657 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1658 tlb->fullmm);
1659 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1660 if (vma_is_special_huge(vma)) {
1661 if (arch_needs_pgtable_deposit())
1662 zap_deposited_table(tlb->mm, pmd);
1663 spin_unlock(ptl);
1664 if (is_huge_zero_pmd(orig_pmd))
1665 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1666 } else if (is_huge_zero_pmd(orig_pmd)) {
1667 zap_deposited_table(tlb->mm, pmd);
1668 spin_unlock(ptl);
1669 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1670 } else {
1671 struct page *page = NULL;
1672 int flush_needed = 1;
1673
1674 if (pmd_present(orig_pmd)) {
1675 page = pmd_page(orig_pmd);
1676 page_remove_rmap(page, true);
1677 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1678 VM_BUG_ON_PAGE(!PageHead(page), page);
1679 } else if (thp_migration_supported()) {
1680 swp_entry_t entry;
1681
1682 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1683 entry = pmd_to_swp_entry(orig_pmd);
1684 page = pfn_to_page(swp_offset(entry));
1685 flush_needed = 0;
1686 } else
1687 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1688
1689 if (PageAnon(page)) {
1690 zap_deposited_table(tlb->mm, pmd);
1691 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692 } else {
1693 if (arch_needs_pgtable_deposit())
1694 zap_deposited_table(tlb->mm, pmd);
1695 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1696 }
1697
1698 spin_unlock(ptl);
1699 if (flush_needed)
1700 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1701 }
1702 return 1;
1703 }
1704
1705 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1706 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1707 spinlock_t *old_pmd_ptl,
1708 struct vm_area_struct *vma)
1709 {
1710 /*
1711 * With split pmd lock we also need to move preallocated
1712 * PTE page table if new_pmd is on different PMD page table.
1713 *
1714 * We also don't deposit and withdraw tables for file pages.
1715 */
1716 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1717 }
1718 #endif
1719
move_soft_dirty_pmd(pmd_t pmd)1720 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1721 {
1722 #ifdef CONFIG_MEM_SOFT_DIRTY
1723 if (unlikely(is_pmd_migration_entry(pmd)))
1724 pmd = pmd_swp_mksoft_dirty(pmd);
1725 else if (pmd_present(pmd))
1726 pmd = pmd_mksoft_dirty(pmd);
1727 #endif
1728 return pmd;
1729 }
1730
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1731 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1732 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1733 {
1734 spinlock_t *old_ptl, *new_ptl;
1735 pmd_t pmd;
1736 struct mm_struct *mm = vma->vm_mm;
1737 bool force_flush = false;
1738
1739 /*
1740 * The destination pmd shouldn't be established, free_pgtables()
1741 * should have release it.
1742 */
1743 if (WARN_ON(!pmd_none(*new_pmd))) {
1744 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1745 return false;
1746 }
1747
1748 /*
1749 * We don't have to worry about the ordering of src and dst
1750 * ptlocks because exclusive mmap_lock prevents deadlock.
1751 */
1752 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1753 if (old_ptl) {
1754 new_ptl = pmd_lockptr(mm, new_pmd);
1755 if (new_ptl != old_ptl)
1756 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1757 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1758 if (pmd_present(pmd))
1759 force_flush = true;
1760 VM_BUG_ON(!pmd_none(*new_pmd));
1761
1762 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1763 pgtable_t pgtable;
1764 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1765 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1766 }
1767 pmd = move_soft_dirty_pmd(pmd);
1768 set_pmd_at(mm, new_addr, new_pmd, pmd);
1769 if (force_flush)
1770 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1771 if (new_ptl != old_ptl)
1772 spin_unlock(new_ptl);
1773 spin_unlock(old_ptl);
1774 return true;
1775 }
1776 return false;
1777 }
1778
1779 /*
1780 * Returns
1781 * - 0 if PMD could not be locked
1782 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1783 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1784 */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1785 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1786 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1787 {
1788 struct mm_struct *mm = vma->vm_mm;
1789 spinlock_t *ptl;
1790 pmd_t entry;
1791 bool preserve_write;
1792 int ret;
1793 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1794 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1795 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1796
1797 ptl = __pmd_trans_huge_lock(pmd, vma);
1798 if (!ptl)
1799 return 0;
1800
1801 preserve_write = prot_numa && pmd_write(*pmd);
1802 ret = 1;
1803
1804 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1805 if (is_swap_pmd(*pmd)) {
1806 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1807
1808 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1809 if (is_write_migration_entry(entry)) {
1810 pmd_t newpmd;
1811 /*
1812 * A protection check is difficult so
1813 * just be safe and disable write
1814 */
1815 make_migration_entry_read(&entry);
1816 newpmd = swp_entry_to_pmd(entry);
1817 if (pmd_swp_soft_dirty(*pmd))
1818 newpmd = pmd_swp_mksoft_dirty(newpmd);
1819 set_pmd_at(mm, addr, pmd, newpmd);
1820 }
1821 goto unlock;
1822 }
1823 #endif
1824
1825 /*
1826 * Avoid trapping faults against the zero page. The read-only
1827 * data is likely to be read-cached on the local CPU and
1828 * local/remote hits to the zero page are not interesting.
1829 */
1830 if (prot_numa && is_huge_zero_pmd(*pmd))
1831 goto unlock;
1832
1833 if (prot_numa && pmd_protnone(*pmd))
1834 goto unlock;
1835
1836 /*
1837 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1838 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1839 * which is also under mmap_read_lock(mm):
1840 *
1841 * CPU0: CPU1:
1842 * change_huge_pmd(prot_numa=1)
1843 * pmdp_huge_get_and_clear_notify()
1844 * madvise_dontneed()
1845 * zap_pmd_range()
1846 * pmd_trans_huge(*pmd) == 0 (without ptl)
1847 * // skip the pmd
1848 * set_pmd_at();
1849 * // pmd is re-established
1850 *
1851 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1852 * which may break userspace.
1853 *
1854 * pmdp_invalidate() is required to make sure we don't miss
1855 * dirty/young flags set by hardware.
1856 */
1857 entry = pmdp_invalidate(vma, addr, pmd);
1858
1859 entry = pmd_modify(entry, newprot);
1860 if (preserve_write)
1861 entry = pmd_mk_savedwrite(entry);
1862 if (uffd_wp) {
1863 entry = pmd_wrprotect(entry);
1864 entry = pmd_mkuffd_wp(entry);
1865 } else if (uffd_wp_resolve) {
1866 /*
1867 * Leave the write bit to be handled by PF interrupt
1868 * handler, then things like COW could be properly
1869 * handled.
1870 */
1871 entry = pmd_clear_uffd_wp(entry);
1872 }
1873 ret = HPAGE_PMD_NR;
1874 set_pmd_at(mm, addr, pmd, entry);
1875 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1876 unlock:
1877 spin_unlock(ptl);
1878 return ret;
1879 }
1880
1881 /*
1882 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1883 *
1884 * Note that if it returns page table lock pointer, this routine returns without
1885 * unlocking page table lock. So callers must unlock it.
1886 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1887 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1888 {
1889 spinlock_t *ptl;
1890 ptl = pmd_lock(vma->vm_mm, pmd);
1891 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1892 pmd_devmap(*pmd)))
1893 return ptl;
1894 spin_unlock(ptl);
1895 return NULL;
1896 }
1897
1898 /*
1899 * Returns true if a given pud maps a thp, false otherwise.
1900 *
1901 * Note that if it returns true, this routine returns without unlocking page
1902 * table lock. So callers must unlock it.
1903 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1904 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1905 {
1906 spinlock_t *ptl;
1907
1908 ptl = pud_lock(vma->vm_mm, pud);
1909 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1910 return ptl;
1911 spin_unlock(ptl);
1912 return NULL;
1913 }
1914
1915 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1916 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1917 pud_t *pud, unsigned long addr)
1918 {
1919 spinlock_t *ptl;
1920
1921 ptl = __pud_trans_huge_lock(pud, vma);
1922 if (!ptl)
1923 return 0;
1924 /*
1925 * For architectures like ppc64 we look at deposited pgtable
1926 * when calling pudp_huge_get_and_clear. So do the
1927 * pgtable_trans_huge_withdraw after finishing pudp related
1928 * operations.
1929 */
1930 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1931 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1932 if (vma_is_special_huge(vma)) {
1933 spin_unlock(ptl);
1934 /* No zero page support yet */
1935 } else {
1936 /* No support for anonymous PUD pages yet */
1937 BUG();
1938 }
1939 return 1;
1940 }
1941
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1942 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1943 unsigned long haddr)
1944 {
1945 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1946 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1947 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1948 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1949
1950 count_vm_event(THP_SPLIT_PUD);
1951
1952 pudp_huge_clear_flush_notify(vma, haddr, pud);
1953 }
1954
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1955 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1956 unsigned long address)
1957 {
1958 spinlock_t *ptl;
1959 struct mmu_notifier_range range;
1960
1961 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1962 address & HPAGE_PUD_MASK,
1963 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1964 mmu_notifier_invalidate_range_start(&range);
1965 ptl = pud_lock(vma->vm_mm, pud);
1966 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1967 goto out;
1968 __split_huge_pud_locked(vma, pud, range.start);
1969
1970 out:
1971 spin_unlock(ptl);
1972 /*
1973 * No need to double call mmu_notifier->invalidate_range() callback as
1974 * the above pudp_huge_clear_flush_notify() did already call it.
1975 */
1976 mmu_notifier_invalidate_range_only_end(&range);
1977 }
1978 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1979
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)1980 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1981 unsigned long haddr, pmd_t *pmd)
1982 {
1983 struct mm_struct *mm = vma->vm_mm;
1984 pgtable_t pgtable;
1985 pmd_t _pmd;
1986 int i;
1987
1988 /*
1989 * Leave pmd empty until pte is filled note that it is fine to delay
1990 * notification until mmu_notifier_invalidate_range_end() as we are
1991 * replacing a zero pmd write protected page with a zero pte write
1992 * protected page.
1993 *
1994 * See Documentation/vm/mmu_notifier.rst
1995 */
1996 pmdp_huge_clear_flush(vma, haddr, pmd);
1997
1998 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1999 pmd_populate(mm, &_pmd, pgtable);
2000
2001 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2002 pte_t *pte, entry;
2003 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2004 entry = pte_mkspecial(entry);
2005 pte = pte_offset_map(&_pmd, haddr);
2006 VM_BUG_ON(!pte_none(*pte));
2007 set_pte_at(mm, haddr, pte, entry);
2008 pte_unmap(pte);
2009 }
2010 smp_wmb(); /* make pte visible before pmd */
2011 pmd_populate(mm, pmd, pgtable);
2012 }
2013
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2014 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2015 unsigned long haddr, bool freeze)
2016 {
2017 struct mm_struct *mm = vma->vm_mm;
2018 struct page *page;
2019 pgtable_t pgtable;
2020 pmd_t old_pmd, _pmd;
2021 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2022 unsigned long addr;
2023 int i;
2024
2025 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2026 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2027 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2028 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2029 && !pmd_devmap(*pmd));
2030
2031 count_vm_event(THP_SPLIT_PMD);
2032
2033 if (!vma_is_anonymous(vma)) {
2034 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2035 /*
2036 * We are going to unmap this huge page. So
2037 * just go ahead and zap it
2038 */
2039 if (arch_needs_pgtable_deposit())
2040 zap_deposited_table(mm, pmd);
2041 if (vma_is_special_huge(vma))
2042 return;
2043 page = pmd_page(_pmd);
2044 if (!PageDirty(page) && pmd_dirty(_pmd))
2045 set_page_dirty(page);
2046 if (!PageReferenced(page) && pmd_young(_pmd))
2047 SetPageReferenced(page);
2048 page_remove_rmap(page, true);
2049 put_page(page);
2050 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2051 return;
2052 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2053 /*
2054 * FIXME: Do we want to invalidate secondary mmu by calling
2055 * mmu_notifier_invalidate_range() see comments below inside
2056 * __split_huge_pmd() ?
2057 *
2058 * We are going from a zero huge page write protected to zero
2059 * small page also write protected so it does not seems useful
2060 * to invalidate secondary mmu at this time.
2061 */
2062 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2063 }
2064
2065 /*
2066 * Up to this point the pmd is present and huge and userland has the
2067 * whole access to the hugepage during the split (which happens in
2068 * place). If we overwrite the pmd with the not-huge version pointing
2069 * to the pte here (which of course we could if all CPUs were bug
2070 * free), userland could trigger a small page size TLB miss on the
2071 * small sized TLB while the hugepage TLB entry is still established in
2072 * the huge TLB. Some CPU doesn't like that.
2073 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2074 * 383 on page 105. Intel should be safe but is also warns that it's
2075 * only safe if the permission and cache attributes of the two entries
2076 * loaded in the two TLB is identical (which should be the case here).
2077 * But it is generally safer to never allow small and huge TLB entries
2078 * for the same virtual address to be loaded simultaneously. So instead
2079 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2080 * current pmd notpresent (atomically because here the pmd_trans_huge
2081 * must remain set at all times on the pmd until the split is complete
2082 * for this pmd), then we flush the SMP TLB and finally we write the
2083 * non-huge version of the pmd entry with pmd_populate.
2084 */
2085 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2086
2087 pmd_migration = is_pmd_migration_entry(old_pmd);
2088 if (unlikely(pmd_migration)) {
2089 swp_entry_t entry;
2090
2091 entry = pmd_to_swp_entry(old_pmd);
2092 page = pfn_to_page(swp_offset(entry));
2093 write = is_write_migration_entry(entry);
2094 young = false;
2095 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2096 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2097 } else {
2098 page = pmd_page(old_pmd);
2099 if (pmd_dirty(old_pmd))
2100 SetPageDirty(page);
2101 write = pmd_write(old_pmd);
2102 young = pmd_young(old_pmd);
2103 soft_dirty = pmd_soft_dirty(old_pmd);
2104 uffd_wp = pmd_uffd_wp(old_pmd);
2105 }
2106 VM_BUG_ON_PAGE(!page_count(page), page);
2107 page_ref_add(page, HPAGE_PMD_NR - 1);
2108
2109 /*
2110 * Withdraw the table only after we mark the pmd entry invalid.
2111 * This's critical for some architectures (Power).
2112 */
2113 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2114 pmd_populate(mm, &_pmd, pgtable);
2115
2116 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2117 pte_t entry, *pte;
2118 /*
2119 * Note that NUMA hinting access restrictions are not
2120 * transferred to avoid any possibility of altering
2121 * permissions across VMAs.
2122 */
2123 if (freeze || pmd_migration) {
2124 swp_entry_t swp_entry;
2125 swp_entry = make_migration_entry(page + i, write);
2126 entry = swp_entry_to_pte(swp_entry);
2127 if (soft_dirty)
2128 entry = pte_swp_mksoft_dirty(entry);
2129 if (uffd_wp)
2130 entry = pte_swp_mkuffd_wp(entry);
2131 } else {
2132 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2133 entry = maybe_mkwrite(entry, vma);
2134 if (!write)
2135 entry = pte_wrprotect(entry);
2136 if (!young)
2137 entry = pte_mkold(entry);
2138 if (soft_dirty)
2139 entry = pte_mksoft_dirty(entry);
2140 if (uffd_wp)
2141 entry = pte_mkuffd_wp(entry);
2142 }
2143 pte = pte_offset_map(&_pmd, addr);
2144 BUG_ON(!pte_none(*pte));
2145 set_pte_at(mm, addr, pte, entry);
2146 if (!pmd_migration)
2147 atomic_inc(&page[i]._mapcount);
2148 pte_unmap(pte);
2149 }
2150
2151 if (!pmd_migration) {
2152 /*
2153 * Set PG_double_map before dropping compound_mapcount to avoid
2154 * false-negative page_mapped().
2155 */
2156 if (compound_mapcount(page) > 1 &&
2157 !TestSetPageDoubleMap(page)) {
2158 for (i = 0; i < HPAGE_PMD_NR; i++)
2159 atomic_inc(&page[i]._mapcount);
2160 }
2161
2162 lock_page_memcg(page);
2163 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2164 /* Last compound_mapcount is gone. */
2165 __dec_lruvec_page_state(page, NR_ANON_THPS);
2166 if (TestClearPageDoubleMap(page)) {
2167 /* No need in mapcount reference anymore */
2168 for (i = 0; i < HPAGE_PMD_NR; i++)
2169 atomic_dec(&page[i]._mapcount);
2170 }
2171 }
2172 unlock_page_memcg(page);
2173 }
2174
2175 smp_wmb(); /* make pte visible before pmd */
2176 pmd_populate(mm, pmd, pgtable);
2177
2178 if (freeze) {
2179 for (i = 0; i < HPAGE_PMD_NR; i++) {
2180 page_remove_rmap(page + i, false);
2181 put_page(page + i);
2182 }
2183 }
2184 }
2185
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2186 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2187 unsigned long address, bool freeze, struct page *page)
2188 {
2189 spinlock_t *ptl;
2190 struct mmu_notifier_range range;
2191 bool was_locked = false;
2192 pmd_t _pmd;
2193
2194 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2195 address & HPAGE_PMD_MASK,
2196 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2197 mmu_notifier_invalidate_range_start(&range);
2198 ptl = pmd_lock(vma->vm_mm, pmd);
2199
2200 /*
2201 * If caller asks to setup a migration entries, we need a page to check
2202 * pmd against. Otherwise we can end up replacing wrong page.
2203 */
2204 VM_BUG_ON(freeze && !page);
2205 if (page) {
2206 VM_WARN_ON_ONCE(!PageLocked(page));
2207 was_locked = true;
2208 if (page != pmd_page(*pmd))
2209 goto out;
2210 }
2211
2212 repeat:
2213 if (pmd_trans_huge(*pmd)) {
2214 if (!page) {
2215 page = pmd_page(*pmd);
2216 if (unlikely(!trylock_page(page))) {
2217 get_page(page);
2218 _pmd = *pmd;
2219 spin_unlock(ptl);
2220 lock_page(page);
2221 spin_lock(ptl);
2222 if (unlikely(!pmd_same(*pmd, _pmd))) {
2223 unlock_page(page);
2224 put_page(page);
2225 page = NULL;
2226 goto repeat;
2227 }
2228 put_page(page);
2229 }
2230 }
2231 if (PageMlocked(page))
2232 clear_page_mlock(page);
2233 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2234 goto out;
2235 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2236 out:
2237 spin_unlock(ptl);
2238 if (!was_locked && page)
2239 unlock_page(page);
2240 /*
2241 * No need to double call mmu_notifier->invalidate_range() callback.
2242 * They are 3 cases to consider inside __split_huge_pmd_locked():
2243 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2244 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2245 * fault will trigger a flush_notify before pointing to a new page
2246 * (it is fine if the secondary mmu keeps pointing to the old zero
2247 * page in the meantime)
2248 * 3) Split a huge pmd into pte pointing to the same page. No need
2249 * to invalidate secondary tlb entry they are all still valid.
2250 * any further changes to individual pte will notify. So no need
2251 * to call mmu_notifier->invalidate_range()
2252 */
2253 mmu_notifier_invalidate_range_only_end(&range);
2254 }
2255
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2256 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2257 bool freeze, struct page *page)
2258 {
2259 pgd_t *pgd;
2260 p4d_t *p4d;
2261 pud_t *pud;
2262 pmd_t *pmd;
2263
2264 pgd = pgd_offset(vma->vm_mm, address);
2265 if (!pgd_present(*pgd))
2266 return;
2267
2268 p4d = p4d_offset(pgd, address);
2269 if (!p4d_present(*p4d))
2270 return;
2271
2272 pud = pud_offset(p4d, address);
2273 if (!pud_present(*pud))
2274 return;
2275
2276 pmd = pmd_offset(pud, address);
2277
2278 __split_huge_pmd(vma, pmd, address, freeze, page);
2279 }
2280
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2281 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2282 unsigned long start,
2283 unsigned long end,
2284 long adjust_next)
2285 {
2286 /*
2287 * If the new start address isn't hpage aligned and it could
2288 * previously contain an hugepage: check if we need to split
2289 * an huge pmd.
2290 */
2291 if (start & ~HPAGE_PMD_MASK &&
2292 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2293 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2294 split_huge_pmd_address(vma, start, false, NULL);
2295
2296 /*
2297 * If the new end address isn't hpage aligned and it could
2298 * previously contain an hugepage: check if we need to split
2299 * an huge pmd.
2300 */
2301 if (end & ~HPAGE_PMD_MASK &&
2302 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2303 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2304 split_huge_pmd_address(vma, end, false, NULL);
2305
2306 /*
2307 * If we're also updating the vma->vm_next->vm_start, if the new
2308 * vm_next->vm_start isn't hpage aligned and it could previously
2309 * contain an hugepage: check if we need to split an huge pmd.
2310 */
2311 if (adjust_next > 0) {
2312 struct vm_area_struct *next = vma->vm_next;
2313 unsigned long nstart = next->vm_start;
2314 nstart += adjust_next;
2315 if (nstart & ~HPAGE_PMD_MASK &&
2316 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2317 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2318 split_huge_pmd_address(next, nstart, false, NULL);
2319 }
2320 }
2321
unmap_page(struct page * page)2322 static void unmap_page(struct page *page)
2323 {
2324 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2325 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2326 bool unmap_success;
2327
2328 VM_BUG_ON_PAGE(!PageHead(page), page);
2329
2330 if (PageAnon(page))
2331 ttu_flags |= TTU_SPLIT_FREEZE;
2332
2333 unmap_success = try_to_unmap(page, ttu_flags);
2334 VM_BUG_ON_PAGE(!unmap_success, page);
2335 }
2336
remap_page(struct page * page,unsigned int nr)2337 static void remap_page(struct page *page, unsigned int nr)
2338 {
2339 int i;
2340 if (PageTransHuge(page)) {
2341 remove_migration_ptes(page, page, true);
2342 } else {
2343 for (i = 0; i < nr; i++)
2344 remove_migration_ptes(page + i, page + i, true);
2345 }
2346 }
2347
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2348 static void __split_huge_page_tail(struct page *head, int tail,
2349 struct lruvec *lruvec, struct list_head *list)
2350 {
2351 struct page *page_tail = head + tail;
2352
2353 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2354
2355 /*
2356 * Clone page flags before unfreezing refcount.
2357 *
2358 * After successful get_page_unless_zero() might follow flags change,
2359 * for exmaple lock_page() which set PG_waiters.
2360 */
2361 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2362 page_tail->flags |= (head->flags &
2363 ((1L << PG_referenced) |
2364 (1L << PG_swapbacked) |
2365 (1L << PG_swapcache) |
2366 (1L << PG_mlocked) |
2367 (1L << PG_uptodate) |
2368 (1L << PG_active) |
2369 (1L << PG_workingset) |
2370 (1L << PG_locked) |
2371 (1L << PG_unevictable) |
2372 #ifdef CONFIG_64BIT
2373 (1L << PG_arch_2) |
2374 #endif
2375 (1L << PG_dirty)));
2376
2377 /* ->mapping in first tail page is compound_mapcount */
2378 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2379 page_tail);
2380 page_tail->mapping = head->mapping;
2381 page_tail->index = head->index + tail;
2382
2383 /* Page flags must be visible before we make the page non-compound. */
2384 smp_wmb();
2385
2386 /*
2387 * Clear PageTail before unfreezing page refcount.
2388 *
2389 * After successful get_page_unless_zero() might follow put_page()
2390 * which needs correct compound_head().
2391 */
2392 clear_compound_head(page_tail);
2393
2394 /* Finally unfreeze refcount. Additional reference from page cache. */
2395 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2396 PageSwapCache(head)));
2397
2398 if (page_is_young(head))
2399 set_page_young(page_tail);
2400 if (page_is_idle(head))
2401 set_page_idle(page_tail);
2402
2403 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404
2405 /*
2406 * always add to the tail because some iterators expect new
2407 * pages to show after the currently processed elements - e.g.
2408 * migrate_pages
2409 */
2410 lru_add_page_tail(head, page_tail, lruvec, list);
2411 }
2412
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned long flags)2413 static void __split_huge_page(struct page *page, struct list_head *list,
2414 pgoff_t end, unsigned long flags)
2415 {
2416 struct page *head = compound_head(page);
2417 pg_data_t *pgdat = page_pgdat(head);
2418 struct lruvec *lruvec;
2419 struct address_space *swap_cache = NULL;
2420 unsigned long offset = 0;
2421 unsigned int nr = thp_nr_pages(head);
2422 int i;
2423
2424 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2425
2426 /* complete memcg works before add pages to LRU */
2427 mem_cgroup_split_huge_fixup(head);
2428
2429 if (PageAnon(head) && PageSwapCache(head)) {
2430 swp_entry_t entry = { .val = page_private(head) };
2431
2432 offset = swp_offset(entry);
2433 swap_cache = swap_address_space(entry);
2434 xa_lock(&swap_cache->i_pages);
2435 }
2436
2437 for (i = nr - 1; i >= 1; i--) {
2438 __split_huge_page_tail(head, i, lruvec, list);
2439 /* Some pages can be beyond i_size: drop them from page cache */
2440 if (head[i].index >= end) {
2441 ClearPageDirty(head + i);
2442 __delete_from_page_cache(head + i, NULL);
2443 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2444 shmem_uncharge(head->mapping->host, 1);
2445 put_page(head + i);
2446 } else if (!PageAnon(page)) {
2447 __xa_store(&head->mapping->i_pages, head[i].index,
2448 head + i, 0);
2449 } else if (swap_cache) {
2450 __xa_store(&swap_cache->i_pages, offset + i,
2451 head + i, 0);
2452 }
2453 }
2454
2455 ClearPageCompound(head);
2456
2457 split_page_owner(head, nr);
2458
2459 /* See comment in __split_huge_page_tail() */
2460 if (PageAnon(head)) {
2461 /* Additional pin to swap cache */
2462 if (PageSwapCache(head)) {
2463 page_ref_add(head, 2);
2464 xa_unlock(&swap_cache->i_pages);
2465 } else {
2466 page_ref_inc(head);
2467 }
2468 } else {
2469 /* Additional pin to page cache */
2470 page_ref_add(head, 2);
2471 xa_unlock(&head->mapping->i_pages);
2472 }
2473
2474 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2475
2476 remap_page(head, nr);
2477
2478 if (PageSwapCache(head)) {
2479 swp_entry_t entry = { .val = page_private(head) };
2480
2481 split_swap_cluster(entry);
2482 }
2483
2484 for (i = 0; i < nr; i++) {
2485 struct page *subpage = head + i;
2486 if (subpage == page)
2487 continue;
2488 unlock_page(subpage);
2489
2490 /*
2491 * Subpages may be freed if there wasn't any mapping
2492 * like if add_to_swap() is running on a lru page that
2493 * had its mapping zapped. And freeing these pages
2494 * requires taking the lru_lock so we do the put_page
2495 * of the tail pages after the split is complete.
2496 */
2497 put_page(subpage);
2498 }
2499 }
2500
total_mapcount(struct page * page)2501 int total_mapcount(struct page *page)
2502 {
2503 int i, compound, nr, ret;
2504
2505 VM_BUG_ON_PAGE(PageTail(page), page);
2506
2507 if (likely(!PageCompound(page)))
2508 return atomic_read(&page->_mapcount) + 1;
2509
2510 compound = compound_mapcount(page);
2511 nr = compound_nr(page);
2512 if (PageHuge(page))
2513 return compound;
2514 ret = compound;
2515 for (i = 0; i < nr; i++)
2516 ret += atomic_read(&page[i]._mapcount) + 1;
2517 /* File pages has compound_mapcount included in _mapcount */
2518 if (!PageAnon(page))
2519 return ret - compound * nr;
2520 if (PageDoubleMap(page))
2521 ret -= nr;
2522 return ret;
2523 }
2524
2525 /*
2526 * This calculates accurately how many mappings a transparent hugepage
2527 * has (unlike page_mapcount() which isn't fully accurate). This full
2528 * accuracy is primarily needed to know if copy-on-write faults can
2529 * reuse the page and change the mapping to read-write instead of
2530 * copying them. At the same time this returns the total_mapcount too.
2531 *
2532 * The function returns the highest mapcount any one of the subpages
2533 * has. If the return value is one, even if different processes are
2534 * mapping different subpages of the transparent hugepage, they can
2535 * all reuse it, because each process is reusing a different subpage.
2536 *
2537 * The total_mapcount is instead counting all virtual mappings of the
2538 * subpages. If the total_mapcount is equal to "one", it tells the
2539 * caller all mappings belong to the same "mm" and in turn the
2540 * anon_vma of the transparent hugepage can become the vma->anon_vma
2541 * local one as no other process may be mapping any of the subpages.
2542 *
2543 * It would be more accurate to replace page_mapcount() with
2544 * page_trans_huge_mapcount(), however we only use
2545 * page_trans_huge_mapcount() in the copy-on-write faults where we
2546 * need full accuracy to avoid breaking page pinning, because
2547 * page_trans_huge_mapcount() is slower than page_mapcount().
2548 */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2549 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2550 {
2551 int i, ret, _total_mapcount, mapcount;
2552
2553 /* hugetlbfs shouldn't call it */
2554 VM_BUG_ON_PAGE(PageHuge(page), page);
2555
2556 if (likely(!PageTransCompound(page))) {
2557 mapcount = atomic_read(&page->_mapcount) + 1;
2558 if (total_mapcount)
2559 *total_mapcount = mapcount;
2560 return mapcount;
2561 }
2562
2563 page = compound_head(page);
2564
2565 _total_mapcount = ret = 0;
2566 for (i = 0; i < thp_nr_pages(page); i++) {
2567 mapcount = atomic_read(&page[i]._mapcount) + 1;
2568 ret = max(ret, mapcount);
2569 _total_mapcount += mapcount;
2570 }
2571 if (PageDoubleMap(page)) {
2572 ret -= 1;
2573 _total_mapcount -= thp_nr_pages(page);
2574 }
2575 mapcount = compound_mapcount(page);
2576 ret += mapcount;
2577 _total_mapcount += mapcount;
2578 if (total_mapcount)
2579 *total_mapcount = _total_mapcount;
2580 return ret;
2581 }
2582
2583 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2584 bool can_split_huge_page(struct page *page, int *pextra_pins)
2585 {
2586 int extra_pins;
2587
2588 /* Additional pins from page cache */
2589 if (PageAnon(page))
2590 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2591 else
2592 extra_pins = thp_nr_pages(page);
2593 if (pextra_pins)
2594 *pextra_pins = extra_pins;
2595 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2596 }
2597
2598 /*
2599 * This function splits huge page into normal pages. @page can point to any
2600 * subpage of huge page to split. Split doesn't change the position of @page.
2601 *
2602 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2603 * The huge page must be locked.
2604 *
2605 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2606 *
2607 * Both head page and tail pages will inherit mapping, flags, and so on from
2608 * the hugepage.
2609 *
2610 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2611 * they are not mapped.
2612 *
2613 * Returns 0 if the hugepage is split successfully.
2614 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2615 * us.
2616 */
split_huge_page_to_list(struct page * page,struct list_head * list)2617 int split_huge_page_to_list(struct page *page, struct list_head *list)
2618 {
2619 struct page *head = compound_head(page);
2620 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2621 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2622 struct anon_vma *anon_vma = NULL;
2623 struct address_space *mapping = NULL;
2624 int count, mapcount, extra_pins, ret;
2625 unsigned long flags;
2626 pgoff_t end;
2627
2628 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2629 VM_BUG_ON_PAGE(!PageLocked(head), head);
2630 VM_BUG_ON_PAGE(!PageCompound(head), head);
2631
2632 if (PageWriteback(head))
2633 return -EBUSY;
2634
2635 if (PageAnon(head)) {
2636 /*
2637 * The caller does not necessarily hold an mmap_lock that would
2638 * prevent the anon_vma disappearing so we first we take a
2639 * reference to it and then lock the anon_vma for write. This
2640 * is similar to page_lock_anon_vma_read except the write lock
2641 * is taken to serialise against parallel split or collapse
2642 * operations.
2643 */
2644 anon_vma = page_get_anon_vma(head);
2645 if (!anon_vma) {
2646 ret = -EBUSY;
2647 goto out;
2648 }
2649 end = -1;
2650 mapping = NULL;
2651 anon_vma_lock_write(anon_vma);
2652 } else {
2653 mapping = head->mapping;
2654
2655 /* Truncated ? */
2656 if (!mapping) {
2657 ret = -EBUSY;
2658 goto out;
2659 }
2660
2661 anon_vma = NULL;
2662 i_mmap_lock_read(mapping);
2663
2664 /*
2665 *__split_huge_page() may need to trim off pages beyond EOF:
2666 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2667 * which cannot be nested inside the page tree lock. So note
2668 * end now: i_size itself may be changed at any moment, but
2669 * head page lock is good enough to serialize the trimming.
2670 */
2671 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2672 }
2673
2674 /*
2675 * Racy check if we can split the page, before unmap_page() will
2676 * split PMDs
2677 */
2678 if (!can_split_huge_page(head, &extra_pins)) {
2679 ret = -EBUSY;
2680 goto out_unlock;
2681 }
2682
2683 unmap_page(head);
2684 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2685
2686 /* prevent PageLRU to go away from under us, and freeze lru stats */
2687 spin_lock_irqsave(&pgdata->lru_lock, flags);
2688
2689 if (mapping) {
2690 XA_STATE(xas, &mapping->i_pages, page_index(head));
2691
2692 /*
2693 * Check if the head page is present in page cache.
2694 * We assume all tail are present too, if head is there.
2695 */
2696 xa_lock(&mapping->i_pages);
2697 if (xas_load(&xas) != head)
2698 goto fail;
2699 }
2700
2701 /* Prevent deferred_split_scan() touching ->_refcount */
2702 spin_lock(&ds_queue->split_queue_lock);
2703 count = page_count(head);
2704 mapcount = total_mapcount(head);
2705 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2706 if (!list_empty(page_deferred_list(head))) {
2707 ds_queue->split_queue_len--;
2708 list_del(page_deferred_list(head));
2709 }
2710 spin_unlock(&ds_queue->split_queue_lock);
2711 if (mapping) {
2712 if (PageSwapBacked(head))
2713 __dec_node_page_state(head, NR_SHMEM_THPS);
2714 else
2715 __dec_node_page_state(head, NR_FILE_THPS);
2716 }
2717
2718 __split_huge_page(page, list, end, flags);
2719 ret = 0;
2720 } else {
2721 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2722 pr_alert("total_mapcount: %u, page_count(): %u\n",
2723 mapcount, count);
2724 if (PageTail(page))
2725 dump_page(head, NULL);
2726 dump_page(page, "total_mapcount(head) > 0");
2727 BUG();
2728 }
2729 spin_unlock(&ds_queue->split_queue_lock);
2730 fail: if (mapping)
2731 xa_unlock(&mapping->i_pages);
2732 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2733 remap_page(head, thp_nr_pages(head));
2734 ret = -EBUSY;
2735 }
2736
2737 out_unlock:
2738 if (anon_vma) {
2739 anon_vma_unlock_write(anon_vma);
2740 put_anon_vma(anon_vma);
2741 }
2742 if (mapping)
2743 i_mmap_unlock_read(mapping);
2744 out:
2745 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2746 return ret;
2747 }
2748
free_transhuge_page(struct page * page)2749 void free_transhuge_page(struct page *page)
2750 {
2751 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2752 unsigned long flags;
2753
2754 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2755 if (!list_empty(page_deferred_list(page))) {
2756 ds_queue->split_queue_len--;
2757 list_del(page_deferred_list(page));
2758 }
2759 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2760 free_compound_page(page);
2761 }
2762
deferred_split_huge_page(struct page * page)2763 void deferred_split_huge_page(struct page *page)
2764 {
2765 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2766 #ifdef CONFIG_MEMCG
2767 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2768 #endif
2769 unsigned long flags;
2770
2771 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2772
2773 /*
2774 * The try_to_unmap() in page reclaim path might reach here too,
2775 * this may cause a race condition to corrupt deferred split queue.
2776 * And, if page reclaim is already handling the same page, it is
2777 * unnecessary to handle it again in shrinker.
2778 *
2779 * Check PageSwapCache to determine if the page is being
2780 * handled by page reclaim since THP swap would add the page into
2781 * swap cache before calling try_to_unmap().
2782 */
2783 if (PageSwapCache(page))
2784 return;
2785
2786 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2787 if (list_empty(page_deferred_list(page))) {
2788 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2789 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2790 ds_queue->split_queue_len++;
2791 #ifdef CONFIG_MEMCG
2792 if (memcg)
2793 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2794 deferred_split_shrinker.id);
2795 #endif
2796 }
2797 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2798 }
2799
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2800 static unsigned long deferred_split_count(struct shrinker *shrink,
2801 struct shrink_control *sc)
2802 {
2803 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2804 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2805
2806 #ifdef CONFIG_MEMCG
2807 if (sc->memcg)
2808 ds_queue = &sc->memcg->deferred_split_queue;
2809 #endif
2810 return READ_ONCE(ds_queue->split_queue_len);
2811 }
2812
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2813 static unsigned long deferred_split_scan(struct shrinker *shrink,
2814 struct shrink_control *sc)
2815 {
2816 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2817 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2818 unsigned long flags;
2819 LIST_HEAD(list), *pos, *next;
2820 struct page *page;
2821 int split = 0;
2822
2823 #ifdef CONFIG_MEMCG
2824 if (sc->memcg)
2825 ds_queue = &sc->memcg->deferred_split_queue;
2826 #endif
2827
2828 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829 /* Take pin on all head pages to avoid freeing them under us */
2830 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2831 page = list_entry((void *)pos, struct page, mapping);
2832 page = compound_head(page);
2833 if (get_page_unless_zero(page)) {
2834 list_move(page_deferred_list(page), &list);
2835 } else {
2836 /* We lost race with put_compound_page() */
2837 list_del_init(page_deferred_list(page));
2838 ds_queue->split_queue_len--;
2839 }
2840 if (!--sc->nr_to_scan)
2841 break;
2842 }
2843 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2844
2845 list_for_each_safe(pos, next, &list) {
2846 page = list_entry((void *)pos, struct page, mapping);
2847 if (!trylock_page(page))
2848 goto next;
2849 /* split_huge_page() removes page from list on success */
2850 if (!split_huge_page(page))
2851 split++;
2852 unlock_page(page);
2853 next:
2854 put_page(page);
2855 }
2856
2857 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2858 list_splice_tail(&list, &ds_queue->split_queue);
2859 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2860
2861 /*
2862 * Stop shrinker if we didn't split any page, but the queue is empty.
2863 * This can happen if pages were freed under us.
2864 */
2865 if (!split && list_empty(&ds_queue->split_queue))
2866 return SHRINK_STOP;
2867 return split;
2868 }
2869
2870 static struct shrinker deferred_split_shrinker = {
2871 .count_objects = deferred_split_count,
2872 .scan_objects = deferred_split_scan,
2873 .seeks = DEFAULT_SEEKS,
2874 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2875 SHRINKER_NONSLAB,
2876 };
2877
2878 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)2879 static int split_huge_pages_set(void *data, u64 val)
2880 {
2881 struct zone *zone;
2882 struct page *page;
2883 unsigned long pfn, max_zone_pfn;
2884 unsigned long total = 0, split = 0;
2885
2886 if (val != 1)
2887 return -EINVAL;
2888
2889 for_each_populated_zone(zone) {
2890 max_zone_pfn = zone_end_pfn(zone);
2891 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2892 if (!pfn_valid(pfn))
2893 continue;
2894
2895 page = pfn_to_page(pfn);
2896 if (!get_page_unless_zero(page))
2897 continue;
2898
2899 if (zone != page_zone(page))
2900 goto next;
2901
2902 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2903 goto next;
2904
2905 total++;
2906 lock_page(page);
2907 if (!split_huge_page(page))
2908 split++;
2909 unlock_page(page);
2910 next:
2911 put_page(page);
2912 }
2913 }
2914
2915 pr_info("%lu of %lu THP split\n", split, total);
2916
2917 return 0;
2918 }
2919 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2920 "%llu\n");
2921
split_huge_pages_debugfs(void)2922 static int __init split_huge_pages_debugfs(void)
2923 {
2924 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2925 &split_huge_pages_fops);
2926 return 0;
2927 }
2928 late_initcall(split_huge_pages_debugfs);
2929 #endif
2930
2931 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)2932 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2933 struct page *page)
2934 {
2935 struct vm_area_struct *vma = pvmw->vma;
2936 struct mm_struct *mm = vma->vm_mm;
2937 unsigned long address = pvmw->address;
2938 pmd_t pmdval;
2939 swp_entry_t entry;
2940 pmd_t pmdswp;
2941
2942 if (!(pvmw->pmd && !pvmw->pte))
2943 return;
2944
2945 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2946 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2947 if (pmd_dirty(pmdval))
2948 set_page_dirty(page);
2949 entry = make_migration_entry(page, pmd_write(pmdval));
2950 pmdswp = swp_entry_to_pmd(entry);
2951 if (pmd_soft_dirty(pmdval))
2952 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2953 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2954 page_remove_rmap(page, true);
2955 put_page(page);
2956 }
2957
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)2958 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2959 {
2960 struct vm_area_struct *vma = pvmw->vma;
2961 struct mm_struct *mm = vma->vm_mm;
2962 unsigned long address = pvmw->address;
2963 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2964 pmd_t pmde;
2965 swp_entry_t entry;
2966
2967 if (!(pvmw->pmd && !pvmw->pte))
2968 return;
2969
2970 entry = pmd_to_swp_entry(*pvmw->pmd);
2971 get_page(new);
2972 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2973 if (pmd_swp_soft_dirty(*pvmw->pmd))
2974 pmde = pmd_mksoft_dirty(pmde);
2975 if (is_write_migration_entry(entry))
2976 pmde = maybe_pmd_mkwrite(pmde, vma);
2977
2978 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2979 if (PageAnon(new))
2980 page_add_anon_rmap(new, vma, mmun_start, true);
2981 else
2982 page_add_file_rmap(new, true);
2983 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2984 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2985 mlock_vma_page(new);
2986 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2987 }
2988 #endif
2989