1 /*
2 * x_tables core - Backend for {ip,ip6,arp}_tables
3 *
4 * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
5 * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6 *
7 * Based on existing ip_tables code which is
8 * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
9 * Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/socket.h>
20 #include <linux/net.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/string.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mutex.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/audit.h>
29 #include <linux/user_namespace.h>
30 #include <net/net_namespace.h>
31
32 #include <linux/netfilter/x_tables.h>
33 #include <linux/netfilter_arp.h>
34 #include <linux/netfilter_ipv4/ip_tables.h>
35 #include <linux/netfilter_ipv6/ip6_tables.h>
36 #include <linux/netfilter_arp/arp_tables.h>
37
38 MODULE_LICENSE("GPL");
39 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
40 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
41
42 #define XT_PCPU_BLOCK_SIZE 4096
43 #define XT_MAX_TABLE_SIZE (512 * 1024 * 1024)
44
45 struct compat_delta {
46 unsigned int offset; /* offset in kernel */
47 int delta; /* delta in 32bit user land */
48 };
49
50 struct xt_af {
51 struct mutex mutex;
52 struct list_head match;
53 struct list_head target;
54 #ifdef CONFIG_COMPAT
55 struct mutex compat_mutex;
56 struct compat_delta *compat_tab;
57 unsigned int number; /* number of slots in compat_tab[] */
58 unsigned int cur; /* number of used slots in compat_tab[] */
59 #endif
60 };
61
62 static struct xt_af *xt;
63
64 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
65 [NFPROTO_UNSPEC] = "x",
66 [NFPROTO_IPV4] = "ip",
67 [NFPROTO_ARP] = "arp",
68 [NFPROTO_BRIDGE] = "eb",
69 [NFPROTO_IPV6] = "ip6",
70 };
71
72 /* Registration hooks for targets. */
xt_register_target(struct xt_target * target)73 int xt_register_target(struct xt_target *target)
74 {
75 u_int8_t af = target->family;
76
77 mutex_lock(&xt[af].mutex);
78 list_add(&target->list, &xt[af].target);
79 mutex_unlock(&xt[af].mutex);
80 return 0;
81 }
82 EXPORT_SYMBOL(xt_register_target);
83
84 void
xt_unregister_target(struct xt_target * target)85 xt_unregister_target(struct xt_target *target)
86 {
87 u_int8_t af = target->family;
88
89 mutex_lock(&xt[af].mutex);
90 list_del(&target->list);
91 mutex_unlock(&xt[af].mutex);
92 }
93 EXPORT_SYMBOL(xt_unregister_target);
94
95 int
xt_register_targets(struct xt_target * target,unsigned int n)96 xt_register_targets(struct xt_target *target, unsigned int n)
97 {
98 unsigned int i;
99 int err = 0;
100
101 for (i = 0; i < n; i++) {
102 err = xt_register_target(&target[i]);
103 if (err)
104 goto err;
105 }
106 return err;
107
108 err:
109 if (i > 0)
110 xt_unregister_targets(target, i);
111 return err;
112 }
113 EXPORT_SYMBOL(xt_register_targets);
114
115 void
xt_unregister_targets(struct xt_target * target,unsigned int n)116 xt_unregister_targets(struct xt_target *target, unsigned int n)
117 {
118 while (n-- > 0)
119 xt_unregister_target(&target[n]);
120 }
121 EXPORT_SYMBOL(xt_unregister_targets);
122
xt_register_match(struct xt_match * match)123 int xt_register_match(struct xt_match *match)
124 {
125 u_int8_t af = match->family;
126
127 mutex_lock(&xt[af].mutex);
128 list_add(&match->list, &xt[af].match);
129 mutex_unlock(&xt[af].mutex);
130 return 0;
131 }
132 EXPORT_SYMBOL(xt_register_match);
133
134 void
xt_unregister_match(struct xt_match * match)135 xt_unregister_match(struct xt_match *match)
136 {
137 u_int8_t af = match->family;
138
139 mutex_lock(&xt[af].mutex);
140 list_del(&match->list);
141 mutex_unlock(&xt[af].mutex);
142 }
143 EXPORT_SYMBOL(xt_unregister_match);
144
145 int
xt_register_matches(struct xt_match * match,unsigned int n)146 xt_register_matches(struct xt_match *match, unsigned int n)
147 {
148 unsigned int i;
149 int err = 0;
150
151 for (i = 0; i < n; i++) {
152 err = xt_register_match(&match[i]);
153 if (err)
154 goto err;
155 }
156 return err;
157
158 err:
159 if (i > 0)
160 xt_unregister_matches(match, i);
161 return err;
162 }
163 EXPORT_SYMBOL(xt_register_matches);
164
165 void
xt_unregister_matches(struct xt_match * match,unsigned int n)166 xt_unregister_matches(struct xt_match *match, unsigned int n)
167 {
168 while (n-- > 0)
169 xt_unregister_match(&match[n]);
170 }
171 EXPORT_SYMBOL(xt_unregister_matches);
172
173
174 /*
175 * These are weird, but module loading must not be done with mutex
176 * held (since they will register), and we have to have a single
177 * function to use.
178 */
179
180 /* Find match, grabs ref. Returns ERR_PTR() on error. */
xt_find_match(u8 af,const char * name,u8 revision)181 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
182 {
183 struct xt_match *m;
184 int err = -ENOENT;
185
186 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
187 return ERR_PTR(-EINVAL);
188
189 mutex_lock(&xt[af].mutex);
190 list_for_each_entry(m, &xt[af].match, list) {
191 if (strcmp(m->name, name) == 0) {
192 if (m->revision == revision) {
193 if (try_module_get(m->me)) {
194 mutex_unlock(&xt[af].mutex);
195 return m;
196 }
197 } else
198 err = -EPROTOTYPE; /* Found something. */
199 }
200 }
201 mutex_unlock(&xt[af].mutex);
202
203 if (af != NFPROTO_UNSPEC)
204 /* Try searching again in the family-independent list */
205 return xt_find_match(NFPROTO_UNSPEC, name, revision);
206
207 return ERR_PTR(err);
208 }
209 EXPORT_SYMBOL(xt_find_match);
210
211 struct xt_match *
xt_request_find_match(uint8_t nfproto,const char * name,uint8_t revision)212 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
213 {
214 struct xt_match *match;
215
216 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
217 return ERR_PTR(-EINVAL);
218
219 match = xt_find_match(nfproto, name, revision);
220 if (IS_ERR(match)) {
221 request_module("%st_%s", xt_prefix[nfproto], name);
222 match = xt_find_match(nfproto, name, revision);
223 }
224
225 return match;
226 }
227 EXPORT_SYMBOL_GPL(xt_request_find_match);
228
229 /* Find target, grabs ref. Returns ERR_PTR() on error. */
xt_find_target(u8 af,const char * name,u8 revision)230 struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
231 {
232 struct xt_target *t;
233 int err = -ENOENT;
234
235 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
236 return ERR_PTR(-EINVAL);
237
238 mutex_lock(&xt[af].mutex);
239 list_for_each_entry(t, &xt[af].target, list) {
240 if (strcmp(t->name, name) == 0) {
241 if (t->revision == revision) {
242 if (try_module_get(t->me)) {
243 mutex_unlock(&xt[af].mutex);
244 return t;
245 }
246 } else
247 err = -EPROTOTYPE; /* Found something. */
248 }
249 }
250 mutex_unlock(&xt[af].mutex);
251
252 if (af != NFPROTO_UNSPEC)
253 /* Try searching again in the family-independent list */
254 return xt_find_target(NFPROTO_UNSPEC, name, revision);
255
256 return ERR_PTR(err);
257 }
258 EXPORT_SYMBOL(xt_find_target);
259
xt_request_find_target(u8 af,const char * name,u8 revision)260 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
261 {
262 struct xt_target *target;
263
264 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
265 return ERR_PTR(-EINVAL);
266
267 target = xt_find_target(af, name, revision);
268 if (IS_ERR(target)) {
269 request_module("%st_%s", xt_prefix[af], name);
270 target = xt_find_target(af, name, revision);
271 }
272
273 return target;
274 }
275 EXPORT_SYMBOL_GPL(xt_request_find_target);
276
277
xt_obj_to_user(u16 __user * psize,u16 size,void __user * pname,const char * name,u8 __user * prev,u8 rev)278 static int xt_obj_to_user(u16 __user *psize, u16 size,
279 void __user *pname, const char *name,
280 u8 __user *prev, u8 rev)
281 {
282 if (put_user(size, psize))
283 return -EFAULT;
284 if (copy_to_user(pname, name, strlen(name) + 1))
285 return -EFAULT;
286 if (put_user(rev, prev))
287 return -EFAULT;
288
289 return 0;
290 }
291
292 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE) \
293 xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size, \
294 U->u.user.name, K->u.kernel.TYPE->name, \
295 &U->u.user.revision, K->u.kernel.TYPE->revision)
296
xt_data_to_user(void __user * dst,const void * src,int usersize,int size,int aligned_size)297 int xt_data_to_user(void __user *dst, const void *src,
298 int usersize, int size, int aligned_size)
299 {
300 usersize = usersize ? : size;
301 if (copy_to_user(dst, src, usersize))
302 return -EFAULT;
303 if (usersize != aligned_size &&
304 clear_user(dst + usersize, aligned_size - usersize))
305 return -EFAULT;
306
307 return 0;
308 }
309 EXPORT_SYMBOL_GPL(xt_data_to_user);
310
311 #define XT_DATA_TO_USER(U, K, TYPE) \
312 xt_data_to_user(U->data, K->data, \
313 K->u.kernel.TYPE->usersize, \
314 K->u.kernel.TYPE->TYPE##size, \
315 XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
316
xt_match_to_user(const struct xt_entry_match * m,struct xt_entry_match __user * u)317 int xt_match_to_user(const struct xt_entry_match *m,
318 struct xt_entry_match __user *u)
319 {
320 return XT_OBJ_TO_USER(u, m, match, 0) ||
321 XT_DATA_TO_USER(u, m, match);
322 }
323 EXPORT_SYMBOL_GPL(xt_match_to_user);
324
xt_target_to_user(const struct xt_entry_target * t,struct xt_entry_target __user * u)325 int xt_target_to_user(const struct xt_entry_target *t,
326 struct xt_entry_target __user *u)
327 {
328 return XT_OBJ_TO_USER(u, t, target, 0) ||
329 XT_DATA_TO_USER(u, t, target);
330 }
331 EXPORT_SYMBOL_GPL(xt_target_to_user);
332
match_revfn(u8 af,const char * name,u8 revision,int * bestp)333 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
334 {
335 const struct xt_match *m;
336 int have_rev = 0;
337
338 list_for_each_entry(m, &xt[af].match, list) {
339 if (strcmp(m->name, name) == 0) {
340 if (m->revision > *bestp)
341 *bestp = m->revision;
342 if (m->revision == revision)
343 have_rev = 1;
344 }
345 }
346
347 if (af != NFPROTO_UNSPEC && !have_rev)
348 return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
349
350 return have_rev;
351 }
352
target_revfn(u8 af,const char * name,u8 revision,int * bestp)353 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
354 {
355 const struct xt_target *t;
356 int have_rev = 0;
357
358 list_for_each_entry(t, &xt[af].target, list) {
359 if (strcmp(t->name, name) == 0) {
360 if (t->revision > *bestp)
361 *bestp = t->revision;
362 if (t->revision == revision)
363 have_rev = 1;
364 }
365 }
366
367 if (af != NFPROTO_UNSPEC && !have_rev)
368 return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
369
370 return have_rev;
371 }
372
373 /* Returns true or false (if no such extension at all) */
xt_find_revision(u8 af,const char * name,u8 revision,int target,int * err)374 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
375 int *err)
376 {
377 int have_rev, best = -1;
378
379 mutex_lock(&xt[af].mutex);
380 if (target == 1)
381 have_rev = target_revfn(af, name, revision, &best);
382 else
383 have_rev = match_revfn(af, name, revision, &best);
384 mutex_unlock(&xt[af].mutex);
385
386 /* Nothing at all? Return 0 to try loading module. */
387 if (best == -1) {
388 *err = -ENOENT;
389 return 0;
390 }
391
392 *err = best;
393 if (!have_rev)
394 *err = -EPROTONOSUPPORT;
395 return 1;
396 }
397 EXPORT_SYMBOL_GPL(xt_find_revision);
398
399 static char *
textify_hooks(char * buf,size_t size,unsigned int mask,uint8_t nfproto)400 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
401 {
402 static const char *const inetbr_names[] = {
403 "PREROUTING", "INPUT", "FORWARD",
404 "OUTPUT", "POSTROUTING", "BROUTING",
405 };
406 static const char *const arp_names[] = {
407 "INPUT", "FORWARD", "OUTPUT",
408 };
409 const char *const *names;
410 unsigned int i, max;
411 char *p = buf;
412 bool np = false;
413 int res;
414
415 names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
416 max = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
417 ARRAY_SIZE(inetbr_names);
418 *p = '\0';
419 for (i = 0; i < max; ++i) {
420 if (!(mask & (1 << i)))
421 continue;
422 res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
423 if (res > 0) {
424 size -= res;
425 p += res;
426 }
427 np = true;
428 }
429
430 return buf;
431 }
432
433 /**
434 * xt_check_proc_name - check that name is suitable for /proc file creation
435 *
436 * @name: file name candidate
437 * @size: length of buffer
438 *
439 * some x_tables modules wish to create a file in /proc.
440 * This function makes sure that the name is suitable for this
441 * purpose, it checks that name is NUL terminated and isn't a 'special'
442 * name, like "..".
443 *
444 * returns negative number on error or 0 if name is useable.
445 */
xt_check_proc_name(const char * name,unsigned int size)446 int xt_check_proc_name(const char *name, unsigned int size)
447 {
448 if (name[0] == '\0')
449 return -EINVAL;
450
451 if (strnlen(name, size) == size)
452 return -ENAMETOOLONG;
453
454 if (strcmp(name, ".") == 0 ||
455 strcmp(name, "..") == 0 ||
456 strchr(name, '/'))
457 return -EINVAL;
458
459 return 0;
460 }
461 EXPORT_SYMBOL(xt_check_proc_name);
462
xt_check_match(struct xt_mtchk_param * par,unsigned int size,u_int8_t proto,bool inv_proto)463 int xt_check_match(struct xt_mtchk_param *par,
464 unsigned int size, u_int8_t proto, bool inv_proto)
465 {
466 int ret;
467
468 if (XT_ALIGN(par->match->matchsize) != size &&
469 par->match->matchsize != -1) {
470 /*
471 * ebt_among is exempt from centralized matchsize checking
472 * because it uses a dynamic-size data set.
473 */
474 pr_err_ratelimited("%s_tables: %s.%u match: invalid size %u (kernel) != (user) %u\n",
475 xt_prefix[par->family], par->match->name,
476 par->match->revision,
477 XT_ALIGN(par->match->matchsize), size);
478 return -EINVAL;
479 }
480 if (par->match->table != NULL &&
481 strcmp(par->match->table, par->table) != 0) {
482 pr_info_ratelimited("%s_tables: %s match: only valid in %s table, not %s\n",
483 xt_prefix[par->family], par->match->name,
484 par->match->table, par->table);
485 return -EINVAL;
486 }
487 if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
488 char used[64], allow[64];
489
490 pr_info_ratelimited("%s_tables: %s match: used from hooks %s, but only valid from %s\n",
491 xt_prefix[par->family], par->match->name,
492 textify_hooks(used, sizeof(used),
493 par->hook_mask, par->family),
494 textify_hooks(allow, sizeof(allow),
495 par->match->hooks,
496 par->family));
497 return -EINVAL;
498 }
499 if (par->match->proto && (par->match->proto != proto || inv_proto)) {
500 pr_info_ratelimited("%s_tables: %s match: only valid for protocol %u\n",
501 xt_prefix[par->family], par->match->name,
502 par->match->proto);
503 return -EINVAL;
504 }
505 if (par->match->checkentry != NULL) {
506 ret = par->match->checkentry(par);
507 if (ret < 0)
508 return ret;
509 else if (ret > 0)
510 /* Flag up potential errors. */
511 return -EIO;
512 }
513 return 0;
514 }
515 EXPORT_SYMBOL_GPL(xt_check_match);
516
517 /** xt_check_entry_match - check that matches end before start of target
518 *
519 * @match: beginning of xt_entry_match
520 * @target: beginning of this rules target (alleged end of matches)
521 * @alignment: alignment requirement of match structures
522 *
523 * Validates that all matches add up to the beginning of the target,
524 * and that each match covers at least the base structure size.
525 *
526 * Return: 0 on success, negative errno on failure.
527 */
xt_check_entry_match(const char * match,const char * target,const size_t alignment)528 static int xt_check_entry_match(const char *match, const char *target,
529 const size_t alignment)
530 {
531 const struct xt_entry_match *pos;
532 int length = target - match;
533
534 if (length == 0) /* no matches */
535 return 0;
536
537 pos = (struct xt_entry_match *)match;
538 do {
539 if ((unsigned long)pos % alignment)
540 return -EINVAL;
541
542 if (length < (int)sizeof(struct xt_entry_match))
543 return -EINVAL;
544
545 if (pos->u.match_size < sizeof(struct xt_entry_match))
546 return -EINVAL;
547
548 if (pos->u.match_size > length)
549 return -EINVAL;
550
551 length -= pos->u.match_size;
552 pos = ((void *)((char *)(pos) + (pos)->u.match_size));
553 } while (length > 0);
554
555 return 0;
556 }
557
558 /** xt_check_table_hooks - check hook entry points are sane
559 *
560 * @info xt_table_info to check
561 * @valid_hooks - hook entry points that we can enter from
562 *
563 * Validates that the hook entry and underflows points are set up.
564 *
565 * Return: 0 on success, negative errno on failure.
566 */
xt_check_table_hooks(const struct xt_table_info * info,unsigned int valid_hooks)567 int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks)
568 {
569 const char *err = "unsorted underflow";
570 unsigned int i, max_uflow, max_entry;
571 bool check_hooks = false;
572
573 BUILD_BUG_ON(ARRAY_SIZE(info->hook_entry) != ARRAY_SIZE(info->underflow));
574
575 max_entry = 0;
576 max_uflow = 0;
577
578 for (i = 0; i < ARRAY_SIZE(info->hook_entry); i++) {
579 if (!(valid_hooks & (1 << i)))
580 continue;
581
582 if (info->hook_entry[i] == 0xFFFFFFFF)
583 return -EINVAL;
584 if (info->underflow[i] == 0xFFFFFFFF)
585 return -EINVAL;
586
587 if (check_hooks) {
588 if (max_uflow > info->underflow[i])
589 goto error;
590
591 if (max_uflow == info->underflow[i]) {
592 err = "duplicate underflow";
593 goto error;
594 }
595 if (max_entry > info->hook_entry[i]) {
596 err = "unsorted entry";
597 goto error;
598 }
599 if (max_entry == info->hook_entry[i]) {
600 err = "duplicate entry";
601 goto error;
602 }
603 }
604 max_entry = info->hook_entry[i];
605 max_uflow = info->underflow[i];
606 check_hooks = true;
607 }
608
609 return 0;
610 error:
611 pr_err_ratelimited("%s at hook %d\n", err, i);
612 return -EINVAL;
613 }
614 EXPORT_SYMBOL(xt_check_table_hooks);
615
verdict_ok(int verdict)616 static bool verdict_ok(int verdict)
617 {
618 if (verdict > 0)
619 return true;
620
621 if (verdict < 0) {
622 int v = -verdict - 1;
623
624 if (verdict == XT_RETURN)
625 return true;
626
627 switch (v) {
628 case NF_ACCEPT: return true;
629 case NF_DROP: return true;
630 case NF_QUEUE: return true;
631 default:
632 break;
633 }
634
635 return false;
636 }
637
638 return false;
639 }
640
error_tg_ok(unsigned int usersize,unsigned int kernsize,const char * msg,unsigned int msglen)641 static bool error_tg_ok(unsigned int usersize, unsigned int kernsize,
642 const char *msg, unsigned int msglen)
643 {
644 return usersize == kernsize && strnlen(msg, msglen) < msglen;
645 }
646
647 #ifdef CONFIG_COMPAT
xt_compat_add_offset(u_int8_t af,unsigned int offset,int delta)648 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
649 {
650 struct xt_af *xp = &xt[af];
651
652 WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
653
654 if (WARN_ON(!xp->compat_tab))
655 return -ENOMEM;
656
657 if (xp->cur >= xp->number)
658 return -EINVAL;
659
660 if (xp->cur)
661 delta += xp->compat_tab[xp->cur - 1].delta;
662 xp->compat_tab[xp->cur].offset = offset;
663 xp->compat_tab[xp->cur].delta = delta;
664 xp->cur++;
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
668
xt_compat_flush_offsets(u_int8_t af)669 void xt_compat_flush_offsets(u_int8_t af)
670 {
671 WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
672
673 if (xt[af].compat_tab) {
674 vfree(xt[af].compat_tab);
675 xt[af].compat_tab = NULL;
676 xt[af].number = 0;
677 xt[af].cur = 0;
678 }
679 }
680 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
681
xt_compat_calc_jump(u_int8_t af,unsigned int offset)682 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
683 {
684 struct compat_delta *tmp = xt[af].compat_tab;
685 int mid, left = 0, right = xt[af].cur - 1;
686
687 while (left <= right) {
688 mid = (left + right) >> 1;
689 if (offset > tmp[mid].offset)
690 left = mid + 1;
691 else if (offset < tmp[mid].offset)
692 right = mid - 1;
693 else
694 return mid ? tmp[mid - 1].delta : 0;
695 }
696 return left ? tmp[left - 1].delta : 0;
697 }
698 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
699
xt_compat_init_offsets(u8 af,unsigned int number)700 int xt_compat_init_offsets(u8 af, unsigned int number)
701 {
702 size_t mem;
703
704 WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
705
706 if (!number || number > (INT_MAX / sizeof(struct compat_delta)))
707 return -EINVAL;
708
709 if (WARN_ON(xt[af].compat_tab))
710 return -EINVAL;
711
712 mem = sizeof(struct compat_delta) * number;
713 if (mem > XT_MAX_TABLE_SIZE)
714 return -ENOMEM;
715
716 xt[af].compat_tab = vmalloc(mem);
717 if (!xt[af].compat_tab)
718 return -ENOMEM;
719
720 xt[af].number = number;
721 xt[af].cur = 0;
722
723 return 0;
724 }
725 EXPORT_SYMBOL(xt_compat_init_offsets);
726
xt_compat_match_offset(const struct xt_match * match)727 int xt_compat_match_offset(const struct xt_match *match)
728 {
729 u_int16_t csize = match->compatsize ? : match->matchsize;
730 return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
731 }
732 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
733
xt_compat_match_from_user(struct xt_entry_match * m,void ** dstptr,unsigned int * size)734 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
735 unsigned int *size)
736 {
737 const struct xt_match *match = m->u.kernel.match;
738 struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
739 int pad, off = xt_compat_match_offset(match);
740 u_int16_t msize = cm->u.user.match_size;
741 char name[sizeof(m->u.user.name)];
742
743 m = *dstptr;
744 memcpy(m, cm, sizeof(*cm));
745 if (match->compat_from_user)
746 match->compat_from_user(m->data, cm->data);
747 else
748 memcpy(m->data, cm->data, msize - sizeof(*cm));
749 pad = XT_ALIGN(match->matchsize) - match->matchsize;
750 if (pad > 0)
751 memset(m->data + match->matchsize, 0, pad);
752
753 msize += off;
754 m->u.user.match_size = msize;
755 strlcpy(name, match->name, sizeof(name));
756 module_put(match->me);
757 strncpy(m->u.user.name, name, sizeof(m->u.user.name));
758
759 *size += off;
760 *dstptr += msize;
761 }
762 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
763
764 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE) \
765 xt_data_to_user(U->data, K->data, \
766 K->u.kernel.TYPE->usersize, \
767 C_SIZE, \
768 COMPAT_XT_ALIGN(C_SIZE))
769
xt_compat_match_to_user(const struct xt_entry_match * m,void __user ** dstptr,unsigned int * size)770 int xt_compat_match_to_user(const struct xt_entry_match *m,
771 void __user **dstptr, unsigned int *size)
772 {
773 const struct xt_match *match = m->u.kernel.match;
774 struct compat_xt_entry_match __user *cm = *dstptr;
775 int off = xt_compat_match_offset(match);
776 u_int16_t msize = m->u.user.match_size - off;
777
778 if (XT_OBJ_TO_USER(cm, m, match, msize))
779 return -EFAULT;
780
781 if (match->compat_to_user) {
782 if (match->compat_to_user((void __user *)cm->data, m->data))
783 return -EFAULT;
784 } else {
785 if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
786 return -EFAULT;
787 }
788
789 *size -= off;
790 *dstptr += msize;
791 return 0;
792 }
793 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
794
795 /* non-compat version may have padding after verdict */
796 struct compat_xt_standard_target {
797 struct compat_xt_entry_target t;
798 compat_uint_t verdict;
799 };
800
801 struct compat_xt_error_target {
802 struct compat_xt_entry_target t;
803 char errorname[XT_FUNCTION_MAXNAMELEN];
804 };
805
xt_compat_check_entry_offsets(const void * base,const char * elems,unsigned int target_offset,unsigned int next_offset)806 int xt_compat_check_entry_offsets(const void *base, const char *elems,
807 unsigned int target_offset,
808 unsigned int next_offset)
809 {
810 long size_of_base_struct = elems - (const char *)base;
811 const struct compat_xt_entry_target *t;
812 const char *e = base;
813
814 if (target_offset < size_of_base_struct)
815 return -EINVAL;
816
817 if (target_offset + sizeof(*t) > next_offset)
818 return -EINVAL;
819
820 t = (void *)(e + target_offset);
821 if (t->u.target_size < sizeof(*t))
822 return -EINVAL;
823
824 if (target_offset + t->u.target_size > next_offset)
825 return -EINVAL;
826
827 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
828 const struct compat_xt_standard_target *st = (const void *)t;
829
830 if (COMPAT_XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
831 return -EINVAL;
832
833 if (!verdict_ok(st->verdict))
834 return -EINVAL;
835 } else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
836 const struct compat_xt_error_target *et = (const void *)t;
837
838 if (!error_tg_ok(t->u.target_size, sizeof(*et),
839 et->errorname, sizeof(et->errorname)))
840 return -EINVAL;
841 }
842
843 /* compat_xt_entry match has less strict alignment requirements,
844 * otherwise they are identical. In case of padding differences
845 * we need to add compat version of xt_check_entry_match.
846 */
847 BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
848
849 return xt_check_entry_match(elems, base + target_offset,
850 __alignof__(struct compat_xt_entry_match));
851 }
852 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
853 #endif /* CONFIG_COMPAT */
854
855 /**
856 * xt_check_entry_offsets - validate arp/ip/ip6t_entry
857 *
858 * @base: pointer to arp/ip/ip6t_entry
859 * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
860 * @target_offset: the arp/ip/ip6_t->target_offset
861 * @next_offset: the arp/ip/ip6_t->next_offset
862 *
863 * validates that target_offset and next_offset are sane and that all
864 * match sizes (if any) align with the target offset.
865 *
866 * This function does not validate the targets or matches themselves, it
867 * only tests that all the offsets and sizes are correct, that all
868 * match structures are aligned, and that the last structure ends where
869 * the target structure begins.
870 *
871 * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
872 *
873 * The arp/ip/ip6t_entry structure @base must have passed following tests:
874 * - it must point to a valid memory location
875 * - base to base + next_offset must be accessible, i.e. not exceed allocated
876 * length.
877 *
878 * A well-formed entry looks like this:
879 *
880 * ip(6)t_entry match [mtdata] match [mtdata] target [tgdata] ip(6)t_entry
881 * e->elems[]-----' | |
882 * matchsize | |
883 * matchsize | |
884 * | |
885 * target_offset---------------------------------' |
886 * next_offset---------------------------------------------------'
887 *
888 * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
889 * This is where matches (if any) and the target reside.
890 * target_offset: beginning of target.
891 * next_offset: start of the next rule; also: size of this rule.
892 * Since targets have a minimum size, target_offset + minlen <= next_offset.
893 *
894 * Every match stores its size, sum of sizes must not exceed target_offset.
895 *
896 * Return: 0 on success, negative errno on failure.
897 */
xt_check_entry_offsets(const void * base,const char * elems,unsigned int target_offset,unsigned int next_offset)898 int xt_check_entry_offsets(const void *base,
899 const char *elems,
900 unsigned int target_offset,
901 unsigned int next_offset)
902 {
903 long size_of_base_struct = elems - (const char *)base;
904 const struct xt_entry_target *t;
905 const char *e = base;
906
907 /* target start is within the ip/ip6/arpt_entry struct */
908 if (target_offset < size_of_base_struct)
909 return -EINVAL;
910
911 if (target_offset + sizeof(*t) > next_offset)
912 return -EINVAL;
913
914 t = (void *)(e + target_offset);
915 if (t->u.target_size < sizeof(*t))
916 return -EINVAL;
917
918 if (target_offset + t->u.target_size > next_offset)
919 return -EINVAL;
920
921 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
922 const struct xt_standard_target *st = (const void *)t;
923
924 if (XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
925 return -EINVAL;
926
927 if (!verdict_ok(st->verdict))
928 return -EINVAL;
929 } else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
930 const struct xt_error_target *et = (const void *)t;
931
932 if (!error_tg_ok(t->u.target_size, sizeof(*et),
933 et->errorname, sizeof(et->errorname)))
934 return -EINVAL;
935 }
936
937 return xt_check_entry_match(elems, base + target_offset,
938 __alignof__(struct xt_entry_match));
939 }
940 EXPORT_SYMBOL(xt_check_entry_offsets);
941
942 /**
943 * xt_alloc_entry_offsets - allocate array to store rule head offsets
944 *
945 * @size: number of entries
946 *
947 * Return: NULL or kmalloc'd or vmalloc'd array
948 */
xt_alloc_entry_offsets(unsigned int size)949 unsigned int *xt_alloc_entry_offsets(unsigned int size)
950 {
951 if (size > XT_MAX_TABLE_SIZE / sizeof(unsigned int))
952 return NULL;
953
954 return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
955
956 }
957 EXPORT_SYMBOL(xt_alloc_entry_offsets);
958
959 /**
960 * xt_find_jump_offset - check if target is a valid jump offset
961 *
962 * @offsets: array containing all valid rule start offsets of a rule blob
963 * @target: the jump target to search for
964 * @size: entries in @offset
965 */
xt_find_jump_offset(const unsigned int * offsets,unsigned int target,unsigned int size)966 bool xt_find_jump_offset(const unsigned int *offsets,
967 unsigned int target, unsigned int size)
968 {
969 int m, low = 0, hi = size;
970
971 while (hi > low) {
972 m = (low + hi) / 2u;
973
974 if (offsets[m] > target)
975 hi = m;
976 else if (offsets[m] < target)
977 low = m + 1;
978 else
979 return true;
980 }
981
982 return false;
983 }
984 EXPORT_SYMBOL(xt_find_jump_offset);
985
xt_check_target(struct xt_tgchk_param * par,unsigned int size,u_int8_t proto,bool inv_proto)986 int xt_check_target(struct xt_tgchk_param *par,
987 unsigned int size, u_int8_t proto, bool inv_proto)
988 {
989 int ret;
990
991 if (XT_ALIGN(par->target->targetsize) != size) {
992 pr_err_ratelimited("%s_tables: %s.%u target: invalid size %u (kernel) != (user) %u\n",
993 xt_prefix[par->family], par->target->name,
994 par->target->revision,
995 XT_ALIGN(par->target->targetsize), size);
996 return -EINVAL;
997 }
998 if (par->target->table != NULL &&
999 strcmp(par->target->table, par->table) != 0) {
1000 pr_info_ratelimited("%s_tables: %s target: only valid in %s table, not %s\n",
1001 xt_prefix[par->family], par->target->name,
1002 par->target->table, par->table);
1003 return -EINVAL;
1004 }
1005 if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
1006 char used[64], allow[64];
1007
1008 pr_info_ratelimited("%s_tables: %s target: used from hooks %s, but only usable from %s\n",
1009 xt_prefix[par->family], par->target->name,
1010 textify_hooks(used, sizeof(used),
1011 par->hook_mask, par->family),
1012 textify_hooks(allow, sizeof(allow),
1013 par->target->hooks,
1014 par->family));
1015 return -EINVAL;
1016 }
1017 if (par->target->proto && (par->target->proto != proto || inv_proto)) {
1018 pr_info_ratelimited("%s_tables: %s target: only valid for protocol %u\n",
1019 xt_prefix[par->family], par->target->name,
1020 par->target->proto);
1021 return -EINVAL;
1022 }
1023 if (par->target->checkentry != NULL) {
1024 ret = par->target->checkentry(par);
1025 if (ret < 0)
1026 return ret;
1027 else if (ret > 0)
1028 /* Flag up potential errors. */
1029 return -EIO;
1030 }
1031 return 0;
1032 }
1033 EXPORT_SYMBOL_GPL(xt_check_target);
1034
1035 /**
1036 * xt_copy_counters_from_user - copy counters and metadata from userspace
1037 *
1038 * @user: src pointer to userspace memory
1039 * @len: alleged size of userspace memory
1040 * @info: where to store the xt_counters_info metadata
1041 * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
1042 *
1043 * Copies counter meta data from @user and stores it in @info.
1044 *
1045 * vmallocs memory to hold the counters, then copies the counter data
1046 * from @user to the new memory and returns a pointer to it.
1047 *
1048 * If @compat is true, @info gets converted automatically to the 64bit
1049 * representation.
1050 *
1051 * The metadata associated with the counters is stored in @info.
1052 *
1053 * Return: returns pointer that caller has to test via IS_ERR().
1054 * If IS_ERR is false, caller has to vfree the pointer.
1055 */
xt_copy_counters_from_user(const void __user * user,unsigned int len,struct xt_counters_info * info,bool compat)1056 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
1057 struct xt_counters_info *info, bool compat)
1058 {
1059 void *mem;
1060 u64 size;
1061
1062 #ifdef CONFIG_COMPAT
1063 if (compat) {
1064 /* structures only differ in size due to alignment */
1065 struct compat_xt_counters_info compat_tmp;
1066
1067 if (len <= sizeof(compat_tmp))
1068 return ERR_PTR(-EINVAL);
1069
1070 len -= sizeof(compat_tmp);
1071 if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
1072 return ERR_PTR(-EFAULT);
1073
1074 memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1);
1075 info->num_counters = compat_tmp.num_counters;
1076 user += sizeof(compat_tmp);
1077 } else
1078 #endif
1079 {
1080 if (len <= sizeof(*info))
1081 return ERR_PTR(-EINVAL);
1082
1083 len -= sizeof(*info);
1084 if (copy_from_user(info, user, sizeof(*info)) != 0)
1085 return ERR_PTR(-EFAULT);
1086
1087 user += sizeof(*info);
1088 }
1089 info->name[sizeof(info->name) - 1] = '\0';
1090
1091 size = sizeof(struct xt_counters);
1092 size *= info->num_counters;
1093
1094 if (size != (u64)len)
1095 return ERR_PTR(-EINVAL);
1096
1097 mem = vmalloc(len);
1098 if (!mem)
1099 return ERR_PTR(-ENOMEM);
1100
1101 if (copy_from_user(mem, user, len) == 0)
1102 return mem;
1103
1104 vfree(mem);
1105 return ERR_PTR(-EFAULT);
1106 }
1107 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
1108
1109 #ifdef CONFIG_COMPAT
xt_compat_target_offset(const struct xt_target * target)1110 int xt_compat_target_offset(const struct xt_target *target)
1111 {
1112 u_int16_t csize = target->compatsize ? : target->targetsize;
1113 return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
1114 }
1115 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
1116
xt_compat_target_from_user(struct xt_entry_target * t,void ** dstptr,unsigned int * size)1117 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
1118 unsigned int *size)
1119 {
1120 const struct xt_target *target = t->u.kernel.target;
1121 struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
1122 int pad, off = xt_compat_target_offset(target);
1123 u_int16_t tsize = ct->u.user.target_size;
1124 char name[sizeof(t->u.user.name)];
1125
1126 t = *dstptr;
1127 memcpy(t, ct, sizeof(*ct));
1128 if (target->compat_from_user)
1129 target->compat_from_user(t->data, ct->data);
1130 else
1131 memcpy(t->data, ct->data, tsize - sizeof(*ct));
1132 pad = XT_ALIGN(target->targetsize) - target->targetsize;
1133 if (pad > 0)
1134 memset(t->data + target->targetsize, 0, pad);
1135
1136 tsize += off;
1137 t->u.user.target_size = tsize;
1138 strlcpy(name, target->name, sizeof(name));
1139 module_put(target->me);
1140 strncpy(t->u.user.name, name, sizeof(t->u.user.name));
1141
1142 *size += off;
1143 *dstptr += tsize;
1144 }
1145 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
1146
xt_compat_target_to_user(const struct xt_entry_target * t,void __user ** dstptr,unsigned int * size)1147 int xt_compat_target_to_user(const struct xt_entry_target *t,
1148 void __user **dstptr, unsigned int *size)
1149 {
1150 const struct xt_target *target = t->u.kernel.target;
1151 struct compat_xt_entry_target __user *ct = *dstptr;
1152 int off = xt_compat_target_offset(target);
1153 u_int16_t tsize = t->u.user.target_size - off;
1154
1155 if (XT_OBJ_TO_USER(ct, t, target, tsize))
1156 return -EFAULT;
1157
1158 if (target->compat_to_user) {
1159 if (target->compat_to_user((void __user *)ct->data, t->data))
1160 return -EFAULT;
1161 } else {
1162 if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
1163 return -EFAULT;
1164 }
1165
1166 *size -= off;
1167 *dstptr += tsize;
1168 return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
1171 #endif
1172
xt_alloc_table_info(unsigned int size)1173 struct xt_table_info *xt_alloc_table_info(unsigned int size)
1174 {
1175 struct xt_table_info *info = NULL;
1176 size_t sz = sizeof(*info) + size;
1177
1178 if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE)
1179 return NULL;
1180
1181 info = kvmalloc(sz, GFP_KERNEL_ACCOUNT);
1182 if (!info)
1183 return NULL;
1184
1185 memset(info, 0, sizeof(*info));
1186 info->size = size;
1187 return info;
1188 }
1189 EXPORT_SYMBOL(xt_alloc_table_info);
1190
xt_free_table_info(struct xt_table_info * info)1191 void xt_free_table_info(struct xt_table_info *info)
1192 {
1193 int cpu;
1194
1195 if (info->jumpstack != NULL) {
1196 for_each_possible_cpu(cpu)
1197 kvfree(info->jumpstack[cpu]);
1198 kvfree(info->jumpstack);
1199 }
1200
1201 kvfree(info);
1202 }
1203 EXPORT_SYMBOL(xt_free_table_info);
1204
1205 /* Find table by name, grabs mutex & ref. Returns ERR_PTR on error. */
xt_find_table_lock(struct net * net,u_int8_t af,const char * name)1206 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1207 const char *name)
1208 {
1209 struct xt_table *t, *found = NULL;
1210
1211 mutex_lock(&xt[af].mutex);
1212 list_for_each_entry(t, &net->xt.tables[af], list)
1213 if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1214 return t;
1215
1216 if (net == &init_net)
1217 goto out;
1218
1219 /* Table doesn't exist in this netns, re-try init */
1220 list_for_each_entry(t, &init_net.xt.tables[af], list) {
1221 int err;
1222
1223 if (strcmp(t->name, name))
1224 continue;
1225 if (!try_module_get(t->me))
1226 goto out;
1227 mutex_unlock(&xt[af].mutex);
1228 err = t->table_init(net);
1229 if (err < 0) {
1230 module_put(t->me);
1231 return ERR_PTR(err);
1232 }
1233
1234 found = t;
1235
1236 mutex_lock(&xt[af].mutex);
1237 break;
1238 }
1239
1240 if (!found)
1241 goto out;
1242
1243 /* and once again: */
1244 list_for_each_entry(t, &net->xt.tables[af], list)
1245 if (strcmp(t->name, name) == 0)
1246 return t;
1247
1248 module_put(found->me);
1249 out:
1250 mutex_unlock(&xt[af].mutex);
1251 return ERR_PTR(-ENOENT);
1252 }
1253 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1254
xt_request_find_table_lock(struct net * net,u_int8_t af,const char * name)1255 struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af,
1256 const char *name)
1257 {
1258 struct xt_table *t = xt_find_table_lock(net, af, name);
1259
1260 #ifdef CONFIG_MODULES
1261 if (IS_ERR(t)) {
1262 int err = request_module("%stable_%s", xt_prefix[af], name);
1263 if (err < 0)
1264 return ERR_PTR(err);
1265 t = xt_find_table_lock(net, af, name);
1266 }
1267 #endif
1268
1269 return t;
1270 }
1271 EXPORT_SYMBOL_GPL(xt_request_find_table_lock);
1272
xt_table_unlock(struct xt_table * table)1273 void xt_table_unlock(struct xt_table *table)
1274 {
1275 mutex_unlock(&xt[table->af].mutex);
1276 }
1277 EXPORT_SYMBOL_GPL(xt_table_unlock);
1278
1279 #ifdef CONFIG_COMPAT
xt_compat_lock(u_int8_t af)1280 void xt_compat_lock(u_int8_t af)
1281 {
1282 mutex_lock(&xt[af].compat_mutex);
1283 }
1284 EXPORT_SYMBOL_GPL(xt_compat_lock);
1285
xt_compat_unlock(u_int8_t af)1286 void xt_compat_unlock(u_int8_t af)
1287 {
1288 mutex_unlock(&xt[af].compat_mutex);
1289 }
1290 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1291 #endif
1292
1293 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1294 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1295
1296 struct static_key xt_tee_enabled __read_mostly;
1297 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1298
xt_jumpstack_alloc(struct xt_table_info * i)1299 static int xt_jumpstack_alloc(struct xt_table_info *i)
1300 {
1301 unsigned int size;
1302 int cpu;
1303
1304 size = sizeof(void **) * nr_cpu_ids;
1305 if (size > PAGE_SIZE)
1306 i->jumpstack = kvzalloc(size, GFP_KERNEL);
1307 else
1308 i->jumpstack = kzalloc(size, GFP_KERNEL);
1309 if (i->jumpstack == NULL)
1310 return -ENOMEM;
1311
1312 /* ruleset without jumps -- no stack needed */
1313 if (i->stacksize == 0)
1314 return 0;
1315
1316 /* Jumpstack needs to be able to record two full callchains, one
1317 * from the first rule set traversal, plus one table reentrancy
1318 * via -j TEE without clobbering the callchain that brought us to
1319 * TEE target.
1320 *
1321 * This is done by allocating two jumpstacks per cpu, on reentry
1322 * the upper half of the stack is used.
1323 *
1324 * see the jumpstack setup in ipt_do_table() for more details.
1325 */
1326 size = sizeof(void *) * i->stacksize * 2u;
1327 for_each_possible_cpu(cpu) {
1328 i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1329 cpu_to_node(cpu));
1330 if (i->jumpstack[cpu] == NULL)
1331 /*
1332 * Freeing will be done later on by the callers. The
1333 * chain is: xt_replace_table -> __do_replace ->
1334 * do_replace -> xt_free_table_info.
1335 */
1336 return -ENOMEM;
1337 }
1338
1339 return 0;
1340 }
1341
xt_counters_alloc(unsigned int counters)1342 struct xt_counters *xt_counters_alloc(unsigned int counters)
1343 {
1344 struct xt_counters *mem;
1345
1346 if (counters == 0 || counters > INT_MAX / sizeof(*mem))
1347 return NULL;
1348
1349 counters *= sizeof(*mem);
1350 if (counters > XT_MAX_TABLE_SIZE)
1351 return NULL;
1352
1353 return vzalloc(counters);
1354 }
1355 EXPORT_SYMBOL(xt_counters_alloc);
1356
1357 struct xt_table_info *
xt_replace_table(struct xt_table * table,unsigned int num_counters,struct xt_table_info * newinfo,int * error)1358 xt_replace_table(struct xt_table *table,
1359 unsigned int num_counters,
1360 struct xt_table_info *newinfo,
1361 int *error)
1362 {
1363 struct xt_table_info *private;
1364 unsigned int cpu;
1365 int ret;
1366
1367 ret = xt_jumpstack_alloc(newinfo);
1368 if (ret < 0) {
1369 *error = ret;
1370 return NULL;
1371 }
1372
1373 /* Do the substitution. */
1374 local_bh_disable();
1375 private = table->private;
1376
1377 /* Check inside lock: is the old number correct? */
1378 if (num_counters != private->number) {
1379 pr_debug("num_counters != table->private->number (%u/%u)\n",
1380 num_counters, private->number);
1381 local_bh_enable();
1382 *error = -EAGAIN;
1383 return NULL;
1384 }
1385
1386 newinfo->initial_entries = private->initial_entries;
1387 /*
1388 * Ensure contents of newinfo are visible before assigning to
1389 * private.
1390 */
1391 smp_wmb();
1392 table->private = newinfo;
1393
1394 /* make sure all cpus see new ->private value */
1395 smp_wmb();
1396
1397 /*
1398 * Even though table entries have now been swapped, other CPU's
1399 * may still be using the old entries...
1400 */
1401 local_bh_enable();
1402
1403 /* ... so wait for even xt_recseq on all cpus */
1404 for_each_possible_cpu(cpu) {
1405 seqcount_t *s = &per_cpu(xt_recseq, cpu);
1406 u32 seq = raw_read_seqcount(s);
1407
1408 if (seq & 1) {
1409 do {
1410 cond_resched();
1411 cpu_relax();
1412 } while (seq == raw_read_seqcount(s));
1413 }
1414 }
1415
1416 #ifdef CONFIG_AUDIT
1417 if (audit_enabled) {
1418 audit_log(audit_context(), GFP_KERNEL,
1419 AUDIT_NETFILTER_CFG,
1420 "table=%s family=%u entries=%u",
1421 table->name, table->af, private->number);
1422 }
1423 #endif
1424
1425 return private;
1426 }
1427 EXPORT_SYMBOL_GPL(xt_replace_table);
1428
xt_register_table(struct net * net,const struct xt_table * input_table,struct xt_table_info * bootstrap,struct xt_table_info * newinfo)1429 struct xt_table *xt_register_table(struct net *net,
1430 const struct xt_table *input_table,
1431 struct xt_table_info *bootstrap,
1432 struct xt_table_info *newinfo)
1433 {
1434 int ret;
1435 struct xt_table_info *private;
1436 struct xt_table *t, *table;
1437
1438 /* Don't add one object to multiple lists. */
1439 table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1440 if (!table) {
1441 ret = -ENOMEM;
1442 goto out;
1443 }
1444
1445 mutex_lock(&xt[table->af].mutex);
1446 /* Don't autoload: we'd eat our tail... */
1447 list_for_each_entry(t, &net->xt.tables[table->af], list) {
1448 if (strcmp(t->name, table->name) == 0) {
1449 ret = -EEXIST;
1450 goto unlock;
1451 }
1452 }
1453
1454 /* Simplifies replace_table code. */
1455 table->private = bootstrap;
1456
1457 if (!xt_replace_table(table, 0, newinfo, &ret))
1458 goto unlock;
1459
1460 private = table->private;
1461 pr_debug("table->private->number = %u\n", private->number);
1462
1463 /* save number of initial entries */
1464 private->initial_entries = private->number;
1465
1466 list_add(&table->list, &net->xt.tables[table->af]);
1467 mutex_unlock(&xt[table->af].mutex);
1468 return table;
1469
1470 unlock:
1471 mutex_unlock(&xt[table->af].mutex);
1472 kfree(table);
1473 out:
1474 return ERR_PTR(ret);
1475 }
1476 EXPORT_SYMBOL_GPL(xt_register_table);
1477
xt_unregister_table(struct xt_table * table)1478 void *xt_unregister_table(struct xt_table *table)
1479 {
1480 struct xt_table_info *private;
1481
1482 mutex_lock(&xt[table->af].mutex);
1483 private = table->private;
1484 list_del(&table->list);
1485 mutex_unlock(&xt[table->af].mutex);
1486 kfree(table);
1487
1488 return private;
1489 }
1490 EXPORT_SYMBOL_GPL(xt_unregister_table);
1491
1492 #ifdef CONFIG_PROC_FS
xt_table_seq_start(struct seq_file * seq,loff_t * pos)1493 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1494 {
1495 struct net *net = seq_file_net(seq);
1496 u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1497
1498 mutex_lock(&xt[af].mutex);
1499 return seq_list_start(&net->xt.tables[af], *pos);
1500 }
1501
xt_table_seq_next(struct seq_file * seq,void * v,loff_t * pos)1502 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1503 {
1504 struct net *net = seq_file_net(seq);
1505 u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1506
1507 return seq_list_next(v, &net->xt.tables[af], pos);
1508 }
1509
xt_table_seq_stop(struct seq_file * seq,void * v)1510 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1511 {
1512 u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1513
1514 mutex_unlock(&xt[af].mutex);
1515 }
1516
xt_table_seq_show(struct seq_file * seq,void * v)1517 static int xt_table_seq_show(struct seq_file *seq, void *v)
1518 {
1519 struct xt_table *table = list_entry(v, struct xt_table, list);
1520
1521 if (*table->name)
1522 seq_printf(seq, "%s\n", table->name);
1523 return 0;
1524 }
1525
1526 static const struct seq_operations xt_table_seq_ops = {
1527 .start = xt_table_seq_start,
1528 .next = xt_table_seq_next,
1529 .stop = xt_table_seq_stop,
1530 .show = xt_table_seq_show,
1531 };
1532
1533 /*
1534 * Traverse state for ip{,6}_{tables,matches} for helping crossing
1535 * the multi-AF mutexes.
1536 */
1537 struct nf_mttg_trav {
1538 struct list_head *head, *curr;
1539 uint8_t class;
1540 };
1541
1542 enum {
1543 MTTG_TRAV_INIT,
1544 MTTG_TRAV_NFP_UNSPEC,
1545 MTTG_TRAV_NFP_SPEC,
1546 MTTG_TRAV_DONE,
1547 };
1548
xt_mttg_seq_next(struct seq_file * seq,void * v,loff_t * ppos,bool is_target)1549 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1550 bool is_target)
1551 {
1552 static const uint8_t next_class[] = {
1553 [MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1554 [MTTG_TRAV_NFP_SPEC] = MTTG_TRAV_DONE,
1555 };
1556 uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file));
1557 struct nf_mttg_trav *trav = seq->private;
1558
1559 switch (trav->class) {
1560 case MTTG_TRAV_INIT:
1561 trav->class = MTTG_TRAV_NFP_UNSPEC;
1562 mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1563 trav->head = trav->curr = is_target ?
1564 &xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1565 break;
1566 case MTTG_TRAV_NFP_UNSPEC:
1567 trav->curr = trav->curr->next;
1568 if (trav->curr != trav->head)
1569 break;
1570 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1571 mutex_lock(&xt[nfproto].mutex);
1572 trav->head = trav->curr = is_target ?
1573 &xt[nfproto].target : &xt[nfproto].match;
1574 trav->class = next_class[trav->class];
1575 break;
1576 case MTTG_TRAV_NFP_SPEC:
1577 trav->curr = trav->curr->next;
1578 if (trav->curr != trav->head)
1579 break;
1580 /* fall through */
1581 default:
1582 return NULL;
1583 }
1584
1585 if (ppos != NULL)
1586 ++*ppos;
1587 return trav;
1588 }
1589
xt_mttg_seq_start(struct seq_file * seq,loff_t * pos,bool is_target)1590 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1591 bool is_target)
1592 {
1593 struct nf_mttg_trav *trav = seq->private;
1594 unsigned int j;
1595
1596 trav->class = MTTG_TRAV_INIT;
1597 for (j = 0; j < *pos; ++j)
1598 if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1599 return NULL;
1600 return trav;
1601 }
1602
xt_mttg_seq_stop(struct seq_file * seq,void * v)1603 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1604 {
1605 uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file));
1606 struct nf_mttg_trav *trav = seq->private;
1607
1608 switch (trav->class) {
1609 case MTTG_TRAV_NFP_UNSPEC:
1610 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1611 break;
1612 case MTTG_TRAV_NFP_SPEC:
1613 mutex_unlock(&xt[nfproto].mutex);
1614 break;
1615 }
1616 }
1617
xt_match_seq_start(struct seq_file * seq,loff_t * pos)1618 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1619 {
1620 return xt_mttg_seq_start(seq, pos, false);
1621 }
1622
xt_match_seq_next(struct seq_file * seq,void * v,loff_t * ppos)1623 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1624 {
1625 return xt_mttg_seq_next(seq, v, ppos, false);
1626 }
1627
xt_match_seq_show(struct seq_file * seq,void * v)1628 static int xt_match_seq_show(struct seq_file *seq, void *v)
1629 {
1630 const struct nf_mttg_trav *trav = seq->private;
1631 const struct xt_match *match;
1632
1633 switch (trav->class) {
1634 case MTTG_TRAV_NFP_UNSPEC:
1635 case MTTG_TRAV_NFP_SPEC:
1636 if (trav->curr == trav->head)
1637 return 0;
1638 match = list_entry(trav->curr, struct xt_match, list);
1639 if (*match->name)
1640 seq_printf(seq, "%s\n", match->name);
1641 }
1642 return 0;
1643 }
1644
1645 static const struct seq_operations xt_match_seq_ops = {
1646 .start = xt_match_seq_start,
1647 .next = xt_match_seq_next,
1648 .stop = xt_mttg_seq_stop,
1649 .show = xt_match_seq_show,
1650 };
1651
xt_target_seq_start(struct seq_file * seq,loff_t * pos)1652 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1653 {
1654 return xt_mttg_seq_start(seq, pos, true);
1655 }
1656
xt_target_seq_next(struct seq_file * seq,void * v,loff_t * ppos)1657 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1658 {
1659 return xt_mttg_seq_next(seq, v, ppos, true);
1660 }
1661
xt_target_seq_show(struct seq_file * seq,void * v)1662 static int xt_target_seq_show(struct seq_file *seq, void *v)
1663 {
1664 const struct nf_mttg_trav *trav = seq->private;
1665 const struct xt_target *target;
1666
1667 switch (trav->class) {
1668 case MTTG_TRAV_NFP_UNSPEC:
1669 case MTTG_TRAV_NFP_SPEC:
1670 if (trav->curr == trav->head)
1671 return 0;
1672 target = list_entry(trav->curr, struct xt_target, list);
1673 if (*target->name)
1674 seq_printf(seq, "%s\n", target->name);
1675 }
1676 return 0;
1677 }
1678
1679 static const struct seq_operations xt_target_seq_ops = {
1680 .start = xt_target_seq_start,
1681 .next = xt_target_seq_next,
1682 .stop = xt_mttg_seq_stop,
1683 .show = xt_target_seq_show,
1684 };
1685
1686 #define FORMAT_TABLES "_tables_names"
1687 #define FORMAT_MATCHES "_tables_matches"
1688 #define FORMAT_TARGETS "_tables_targets"
1689
1690 #endif /* CONFIG_PROC_FS */
1691
1692 /**
1693 * xt_hook_ops_alloc - set up hooks for a new table
1694 * @table: table with metadata needed to set up hooks
1695 * @fn: Hook function
1696 *
1697 * This function will create the nf_hook_ops that the x_table needs
1698 * to hand to xt_hook_link_net().
1699 */
1700 struct nf_hook_ops *
xt_hook_ops_alloc(const struct xt_table * table,nf_hookfn * fn)1701 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1702 {
1703 unsigned int hook_mask = table->valid_hooks;
1704 uint8_t i, num_hooks = hweight32(hook_mask);
1705 uint8_t hooknum;
1706 struct nf_hook_ops *ops;
1707
1708 if (!num_hooks)
1709 return ERR_PTR(-EINVAL);
1710
1711 ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1712 if (ops == NULL)
1713 return ERR_PTR(-ENOMEM);
1714
1715 for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1716 hook_mask >>= 1, ++hooknum) {
1717 if (!(hook_mask & 1))
1718 continue;
1719 ops[i].hook = fn;
1720 ops[i].pf = table->af;
1721 ops[i].hooknum = hooknum;
1722 ops[i].priority = table->priority;
1723 ++i;
1724 }
1725
1726 return ops;
1727 }
1728 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1729
xt_proto_init(struct net * net,u_int8_t af)1730 int xt_proto_init(struct net *net, u_int8_t af)
1731 {
1732 #ifdef CONFIG_PROC_FS
1733 char buf[XT_FUNCTION_MAXNAMELEN];
1734 struct proc_dir_entry *proc;
1735 kuid_t root_uid;
1736 kgid_t root_gid;
1737 #endif
1738
1739 if (af >= ARRAY_SIZE(xt_prefix))
1740 return -EINVAL;
1741
1742
1743 #ifdef CONFIG_PROC_FS
1744 root_uid = make_kuid(net->user_ns, 0);
1745 root_gid = make_kgid(net->user_ns, 0);
1746
1747 strlcpy(buf, xt_prefix[af], sizeof(buf));
1748 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1749 proc = proc_create_net_data(buf, 0440, net->proc_net, &xt_table_seq_ops,
1750 sizeof(struct seq_net_private),
1751 (void *)(unsigned long)af);
1752 if (!proc)
1753 goto out;
1754 if (uid_valid(root_uid) && gid_valid(root_gid))
1755 proc_set_user(proc, root_uid, root_gid);
1756
1757 strlcpy(buf, xt_prefix[af], sizeof(buf));
1758 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1759 proc = proc_create_seq_private(buf, 0440, net->proc_net,
1760 &xt_match_seq_ops, sizeof(struct nf_mttg_trav),
1761 (void *)(unsigned long)af);
1762 if (!proc)
1763 goto out_remove_tables;
1764 if (uid_valid(root_uid) && gid_valid(root_gid))
1765 proc_set_user(proc, root_uid, root_gid);
1766
1767 strlcpy(buf, xt_prefix[af], sizeof(buf));
1768 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1769 proc = proc_create_seq_private(buf, 0440, net->proc_net,
1770 &xt_target_seq_ops, sizeof(struct nf_mttg_trav),
1771 (void *)(unsigned long)af);
1772 if (!proc)
1773 goto out_remove_matches;
1774 if (uid_valid(root_uid) && gid_valid(root_gid))
1775 proc_set_user(proc, root_uid, root_gid);
1776 #endif
1777
1778 return 0;
1779
1780 #ifdef CONFIG_PROC_FS
1781 out_remove_matches:
1782 strlcpy(buf, xt_prefix[af], sizeof(buf));
1783 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1784 remove_proc_entry(buf, net->proc_net);
1785
1786 out_remove_tables:
1787 strlcpy(buf, xt_prefix[af], sizeof(buf));
1788 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1789 remove_proc_entry(buf, net->proc_net);
1790 out:
1791 return -1;
1792 #endif
1793 }
1794 EXPORT_SYMBOL_GPL(xt_proto_init);
1795
xt_proto_fini(struct net * net,u_int8_t af)1796 void xt_proto_fini(struct net *net, u_int8_t af)
1797 {
1798 #ifdef CONFIG_PROC_FS
1799 char buf[XT_FUNCTION_MAXNAMELEN];
1800
1801 strlcpy(buf, xt_prefix[af], sizeof(buf));
1802 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1803 remove_proc_entry(buf, net->proc_net);
1804
1805 strlcpy(buf, xt_prefix[af], sizeof(buf));
1806 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1807 remove_proc_entry(buf, net->proc_net);
1808
1809 strlcpy(buf, xt_prefix[af], sizeof(buf));
1810 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1811 remove_proc_entry(buf, net->proc_net);
1812 #endif /*CONFIG_PROC_FS*/
1813 }
1814 EXPORT_SYMBOL_GPL(xt_proto_fini);
1815
1816 /**
1817 * xt_percpu_counter_alloc - allocate x_tables rule counter
1818 *
1819 * @state: pointer to xt_percpu allocation state
1820 * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1821 *
1822 * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1823 * contain the address of the real (percpu) counter.
1824 *
1825 * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1826 * to fetch the real percpu counter.
1827 *
1828 * To speed up allocation and improve data locality, a 4kb block is
1829 * allocated. Freeing any counter may free an entire block, so all
1830 * counters allocated using the same state must be freed at the same
1831 * time.
1832 *
1833 * xt_percpu_counter_alloc_state contains the base address of the
1834 * allocated page and the current sub-offset.
1835 *
1836 * returns false on error.
1837 */
xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state * state,struct xt_counters * counter)1838 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1839 struct xt_counters *counter)
1840 {
1841 BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1842
1843 if (nr_cpu_ids <= 1)
1844 return true;
1845
1846 if (!state->mem) {
1847 state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1848 XT_PCPU_BLOCK_SIZE);
1849 if (!state->mem)
1850 return false;
1851 }
1852 counter->pcnt = (__force unsigned long)(state->mem + state->off);
1853 state->off += sizeof(*counter);
1854 if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1855 state->mem = NULL;
1856 state->off = 0;
1857 }
1858 return true;
1859 }
1860 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1861
xt_percpu_counter_free(struct xt_counters * counters)1862 void xt_percpu_counter_free(struct xt_counters *counters)
1863 {
1864 unsigned long pcnt = counters->pcnt;
1865
1866 if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1867 free_percpu((void __percpu *)pcnt);
1868 }
1869 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1870
xt_net_init(struct net * net)1871 static int __net_init xt_net_init(struct net *net)
1872 {
1873 int i;
1874
1875 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1876 INIT_LIST_HEAD(&net->xt.tables[i]);
1877 return 0;
1878 }
1879
xt_net_exit(struct net * net)1880 static void __net_exit xt_net_exit(struct net *net)
1881 {
1882 int i;
1883
1884 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1885 WARN_ON_ONCE(!list_empty(&net->xt.tables[i]));
1886 }
1887
1888 static struct pernet_operations xt_net_ops = {
1889 .init = xt_net_init,
1890 .exit = xt_net_exit,
1891 };
1892
xt_init(void)1893 static int __init xt_init(void)
1894 {
1895 unsigned int i;
1896 int rv;
1897
1898 for_each_possible_cpu(i) {
1899 seqcount_init(&per_cpu(xt_recseq, i));
1900 }
1901
1902 xt = kmalloc_array(NFPROTO_NUMPROTO, sizeof(struct xt_af), GFP_KERNEL);
1903 if (!xt)
1904 return -ENOMEM;
1905
1906 for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1907 mutex_init(&xt[i].mutex);
1908 #ifdef CONFIG_COMPAT
1909 mutex_init(&xt[i].compat_mutex);
1910 xt[i].compat_tab = NULL;
1911 #endif
1912 INIT_LIST_HEAD(&xt[i].target);
1913 INIT_LIST_HEAD(&xt[i].match);
1914 }
1915 rv = register_pernet_subsys(&xt_net_ops);
1916 if (rv < 0)
1917 kfree(xt);
1918 return rv;
1919 }
1920
xt_fini(void)1921 static void __exit xt_fini(void)
1922 {
1923 unregister_pernet_subsys(&xt_net_ops);
1924 kfree(xt);
1925 }
1926
1927 module_init(xt_init);
1928 module_exit(xt_fini);
1929
1930