1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag_resv.h"
26 #include "xfs_quota.h"
27 #include "scrub/scrub.h"
28 #include "scrub/common.h"
29 #include "scrub/trace.h"
30 #include "scrub/repair.h"
31 #include "scrub/bitmap.h"
32
33 /*
34 * Attempt to repair some metadata, if the metadata is corrupt and userspace
35 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
36 * and will set *fixed to true if it thinks it repaired anything.
37 */
38 int
xrep_attempt(struct xfs_inode * ip,struct xfs_scrub * sc)39 xrep_attempt(
40 struct xfs_inode *ip,
41 struct xfs_scrub *sc)
42 {
43 int error = 0;
44
45 trace_xrep_attempt(ip, sc->sm, error);
46
47 xchk_ag_btcur_free(&sc->sa);
48
49 /* Repair whatever's broken. */
50 ASSERT(sc->ops->repair);
51 error = sc->ops->repair(sc);
52 trace_xrep_done(ip, sc->sm, error);
53 switch (error) {
54 case 0:
55 /*
56 * Repair succeeded. Commit the fixes and perform a second
57 * scrub so that we can tell userspace if we fixed the problem.
58 */
59 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
60 sc->flags |= XREP_ALREADY_FIXED;
61 return -EAGAIN;
62 case -EDEADLOCK:
63 case -EAGAIN:
64 /* Tell the caller to try again having grabbed all the locks. */
65 if (!(sc->flags & XCHK_TRY_HARDER)) {
66 sc->flags |= XCHK_TRY_HARDER;
67 return -EAGAIN;
68 }
69 /*
70 * We tried harder but still couldn't grab all the resources
71 * we needed to fix it. The corruption has not been fixed,
72 * so report back to userspace.
73 */
74 return -EFSCORRUPTED;
75 default:
76 return error;
77 }
78 }
79
80 /*
81 * Complain about unfixable problems in the filesystem. We don't log
82 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
83 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
84 * administrator isn't running xfs_scrub in no-repairs mode.
85 *
86 * Use this helper function because _ratelimited silently declares a static
87 * structure to track rate limiting information.
88 */
89 void
xrep_failure(struct xfs_mount * mp)90 xrep_failure(
91 struct xfs_mount *mp)
92 {
93 xfs_alert_ratelimited(mp,
94 "Corruption not fixed during online repair. Unmount and run xfs_repair.");
95 }
96
97 /*
98 * Repair probe -- userspace uses this to probe if we're willing to repair a
99 * given mountpoint.
100 */
101 int
xrep_probe(struct xfs_scrub * sc)102 xrep_probe(
103 struct xfs_scrub *sc)
104 {
105 int error = 0;
106
107 if (xchk_should_terminate(sc, &error))
108 return error;
109
110 return 0;
111 }
112
113 /*
114 * Roll a transaction, keeping the AG headers locked and reinitializing
115 * the btree cursors.
116 */
117 int
xrep_roll_ag_trans(struct xfs_scrub * sc)118 xrep_roll_ag_trans(
119 struct xfs_scrub *sc)
120 {
121 int error;
122
123 /* Keep the AG header buffers locked so we can keep going. */
124 if (sc->sa.agi_bp)
125 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
126 if (sc->sa.agf_bp)
127 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
128 if (sc->sa.agfl_bp)
129 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
130
131 /*
132 * Roll the transaction. We still own the buffer and the buffer lock
133 * regardless of whether or not the roll succeeds. If the roll fails,
134 * the buffers will be released during teardown on our way out of the
135 * kernel. If it succeeds, we join them to the new transaction and
136 * move on.
137 */
138 error = xfs_trans_roll(&sc->tp);
139 if (error)
140 return error;
141
142 /* Join AG headers to the new transaction. */
143 if (sc->sa.agi_bp)
144 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
145 if (sc->sa.agf_bp)
146 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
147 if (sc->sa.agfl_bp)
148 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
149
150 return 0;
151 }
152
153 /*
154 * Does the given AG have enough space to rebuild a btree? Neither AG
155 * reservation can be critical, and we must have enough space (factoring
156 * in AG reservations) to construct a whole btree.
157 */
158 bool
xrep_ag_has_space(struct xfs_perag * pag,xfs_extlen_t nr_blocks,enum xfs_ag_resv_type type)159 xrep_ag_has_space(
160 struct xfs_perag *pag,
161 xfs_extlen_t nr_blocks,
162 enum xfs_ag_resv_type type)
163 {
164 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
165 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
166 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
167 }
168
169 /*
170 * Figure out how many blocks to reserve for an AG repair. We calculate the
171 * worst case estimate for the number of blocks we'd need to rebuild one of
172 * any type of per-AG btree.
173 */
174 xfs_extlen_t
xrep_calc_ag_resblks(struct xfs_scrub * sc)175 xrep_calc_ag_resblks(
176 struct xfs_scrub *sc)
177 {
178 struct xfs_mount *mp = sc->mp;
179 struct xfs_scrub_metadata *sm = sc->sm;
180 struct xfs_perag *pag;
181 struct xfs_buf *bp;
182 xfs_agino_t icount = NULLAGINO;
183 xfs_extlen_t aglen = NULLAGBLOCK;
184 xfs_extlen_t usedlen;
185 xfs_extlen_t freelen;
186 xfs_extlen_t bnobt_sz;
187 xfs_extlen_t inobt_sz;
188 xfs_extlen_t rmapbt_sz;
189 xfs_extlen_t refcbt_sz;
190 int error;
191
192 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
193 return 0;
194
195 pag = xfs_perag_get(mp, sm->sm_agno);
196 if (pag->pagi_init) {
197 /* Use in-core icount if possible. */
198 icount = pag->pagi_count;
199 } else {
200 /* Try to get the actual counters from disk. */
201 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
202 if (!error) {
203 icount = pag->pagi_count;
204 xfs_buf_relse(bp);
205 }
206 }
207
208 /* Now grab the block counters from the AGF. */
209 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
210 if (!error) {
211 struct xfs_agf *agf = bp->b_addr;
212
213 aglen = be32_to_cpu(agf->agf_length);
214 freelen = be32_to_cpu(agf->agf_freeblks);
215 usedlen = aglen - freelen;
216 xfs_buf_relse(bp);
217 }
218 xfs_perag_put(pag);
219
220 /* If the icount is impossible, make some worst-case assumptions. */
221 if (icount == NULLAGINO ||
222 !xfs_verify_agino(mp, sm->sm_agno, icount)) {
223 xfs_agino_t first, last;
224
225 xfs_agino_range(mp, sm->sm_agno, &first, &last);
226 icount = last - first + 1;
227 }
228
229 /* If the block counts are impossible, make worst-case assumptions. */
230 if (aglen == NULLAGBLOCK ||
231 aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
232 freelen >= aglen) {
233 aglen = xfs_ag_block_count(mp, sm->sm_agno);
234 freelen = aglen;
235 usedlen = aglen;
236 }
237
238 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
239 freelen, usedlen);
240
241 /*
242 * Figure out how many blocks we'd need worst case to rebuild
243 * each type of btree. Note that we can only rebuild the
244 * bnobt/cntbt or inobt/finobt as pairs.
245 */
246 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
247 if (xfs_sb_version_hassparseinodes(&mp->m_sb))
248 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
249 XFS_INODES_PER_HOLEMASK_BIT);
250 else
251 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
252 XFS_INODES_PER_CHUNK);
253 if (xfs_sb_version_hasfinobt(&mp->m_sb))
254 inobt_sz *= 2;
255 if (xfs_sb_version_hasreflink(&mp->m_sb))
256 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
257 else
258 refcbt_sz = 0;
259 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
260 /*
261 * Guess how many blocks we need to rebuild the rmapbt.
262 * For non-reflink filesystems we can't have more records than
263 * used blocks. However, with reflink it's possible to have
264 * more than one rmap record per AG block. We don't know how
265 * many rmaps there could be in the AG, so we start off with
266 * what we hope is an generous over-estimation.
267 */
268 if (xfs_sb_version_hasreflink(&mp->m_sb))
269 rmapbt_sz = xfs_rmapbt_calc_size(mp,
270 (unsigned long long)aglen * 2);
271 else
272 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
273 } else {
274 rmapbt_sz = 0;
275 }
276
277 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
278 inobt_sz, rmapbt_sz, refcbt_sz);
279
280 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
281 }
282
283 /* Allocate a block in an AG. */
284 int
xrep_alloc_ag_block(struct xfs_scrub * sc,const struct xfs_owner_info * oinfo,xfs_fsblock_t * fsbno,enum xfs_ag_resv_type resv)285 xrep_alloc_ag_block(
286 struct xfs_scrub *sc,
287 const struct xfs_owner_info *oinfo,
288 xfs_fsblock_t *fsbno,
289 enum xfs_ag_resv_type resv)
290 {
291 struct xfs_alloc_arg args = {0};
292 xfs_agblock_t bno;
293 int error;
294
295 switch (resv) {
296 case XFS_AG_RESV_AGFL:
297 case XFS_AG_RESV_RMAPBT:
298 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
299 if (error)
300 return error;
301 if (bno == NULLAGBLOCK)
302 return -ENOSPC;
303 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
304 1, false);
305 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
306 if (resv == XFS_AG_RESV_RMAPBT)
307 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
308 return 0;
309 default:
310 break;
311 }
312
313 args.tp = sc->tp;
314 args.mp = sc->mp;
315 args.oinfo = *oinfo;
316 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
317 args.minlen = 1;
318 args.maxlen = 1;
319 args.prod = 1;
320 args.type = XFS_ALLOCTYPE_THIS_AG;
321 args.resv = resv;
322
323 error = xfs_alloc_vextent(&args);
324 if (error)
325 return error;
326 if (args.fsbno == NULLFSBLOCK)
327 return -ENOSPC;
328 ASSERT(args.len == 1);
329 *fsbno = args.fsbno;
330
331 return 0;
332 }
333
334 /* Initialize a new AG btree root block with zero entries. */
335 int
xrep_init_btblock(struct xfs_scrub * sc,xfs_fsblock_t fsb,struct xfs_buf ** bpp,xfs_btnum_t btnum,const struct xfs_buf_ops * ops)336 xrep_init_btblock(
337 struct xfs_scrub *sc,
338 xfs_fsblock_t fsb,
339 struct xfs_buf **bpp,
340 xfs_btnum_t btnum,
341 const struct xfs_buf_ops *ops)
342 {
343 struct xfs_trans *tp = sc->tp;
344 struct xfs_mount *mp = sc->mp;
345 struct xfs_buf *bp;
346 int error;
347
348 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
349 XFS_FSB_TO_AGBNO(mp, fsb), btnum);
350
351 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
352 error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
353 XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
354 &bp);
355 if (error)
356 return error;
357 xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
358 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno);
359 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
360 xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
361 bp->b_ops = ops;
362 *bpp = bp;
363
364 return 0;
365 }
366
367 /*
368 * Reconstructing per-AG Btrees
369 *
370 * When a space btree is corrupt, we don't bother trying to fix it. Instead,
371 * we scan secondary space metadata to derive the records that should be in
372 * the damaged btree, initialize a fresh btree root, and insert the records.
373 * Note that for rebuilding the rmapbt we scan all the primary data to
374 * generate the new records.
375 *
376 * However, that leaves the matter of removing all the metadata describing the
377 * old broken structure. For primary metadata we use the rmap data to collect
378 * every extent with a matching rmap owner (bitmap); we then iterate all other
379 * metadata structures with the same rmap owner to collect the extents that
380 * cannot be removed (sublist). We then subtract sublist from bitmap to
381 * derive the blocks that were used by the old btree. These blocks can be
382 * reaped.
383 *
384 * For rmapbt reconstructions we must use different tactics for extent
385 * collection. First we iterate all primary metadata (this excludes the old
386 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
387 * records are collected as bitmap. The bnobt records are collected as
388 * sublist. As with the other btrees we subtract sublist from bitmap, and the
389 * result (since the rmapbt lives in the free space) are the blocks from the
390 * old rmapbt.
391 *
392 * Disposal of Blocks from Old per-AG Btrees
393 *
394 * Now that we've constructed a new btree to replace the damaged one, we want
395 * to dispose of the blocks that (we think) the old btree was using.
396 * Previously, we used the rmapbt to collect the extents (bitmap) with the
397 * rmap owner corresponding to the tree we rebuilt, collected extents for any
398 * blocks with the same rmap owner that are owned by another data structure
399 * (sublist), and subtracted sublist from bitmap. In theory the extents
400 * remaining in bitmap are the old btree's blocks.
401 *
402 * Unfortunately, it's possible that the btree was crosslinked with other
403 * blocks on disk. The rmap data can tell us if there are multiple owners, so
404 * if the rmapbt says there is an owner of this block other than @oinfo, then
405 * the block is crosslinked. Remove the reverse mapping and continue.
406 *
407 * If there is one rmap record, we can free the block, which removes the
408 * reverse mapping but doesn't add the block to the free space. Our repair
409 * strategy is to hope the other metadata objects crosslinked on this block
410 * will be rebuilt (atop different blocks), thereby removing all the cross
411 * links.
412 *
413 * If there are no rmap records at all, we also free the block. If the btree
414 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
415 * supposed to be a rmap record and everything is ok. For other btrees there
416 * had to have been an rmap entry for the block to have ended up on @bitmap,
417 * so if it's gone now there's something wrong and the fs will shut down.
418 *
419 * Note: If there are multiple rmap records with only the same rmap owner as
420 * the btree we're trying to rebuild and the block is indeed owned by another
421 * data structure with the same rmap owner, then the block will be in sublist
422 * and therefore doesn't need disposal. If there are multiple rmap records
423 * with only the same rmap owner but the block is not owned by something with
424 * the same rmap owner, the block will be freed.
425 *
426 * The caller is responsible for locking the AG headers for the entire rebuild
427 * operation so that nothing else can sneak in and change the AG state while
428 * we're not looking. We also assume that the caller already invalidated any
429 * buffers associated with @bitmap.
430 */
431
432 /*
433 * Invalidate buffers for per-AG btree blocks we're dumping. This function
434 * is not intended for use with file data repairs; we have bunmapi for that.
435 */
436 int
xrep_invalidate_blocks(struct xfs_scrub * sc,struct xbitmap * bitmap)437 xrep_invalidate_blocks(
438 struct xfs_scrub *sc,
439 struct xbitmap *bitmap)
440 {
441 struct xbitmap_range *bmr;
442 struct xbitmap_range *n;
443 struct xfs_buf *bp;
444 xfs_fsblock_t fsbno;
445
446 /*
447 * For each block in each extent, see if there's an incore buffer for
448 * exactly that block; if so, invalidate it. The buffer cache only
449 * lets us look for one buffer at a time, so we have to look one block
450 * at a time. Avoid invalidating AG headers and post-EOFS blocks
451 * because we never own those; and if we can't TRYLOCK the buffer we
452 * assume it's owned by someone else.
453 */
454 for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
455 /* Skip AG headers and post-EOFS blocks */
456 if (!xfs_verify_fsbno(sc->mp, fsbno))
457 continue;
458 bp = xfs_buf_incore(sc->mp->m_ddev_targp,
459 XFS_FSB_TO_DADDR(sc->mp, fsbno),
460 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
461 if (bp) {
462 xfs_trans_bjoin(sc->tp, bp);
463 xfs_trans_binval(sc->tp, bp);
464 }
465 }
466
467 return 0;
468 }
469
470 /* Ensure the freelist is the correct size. */
471 int
xrep_fix_freelist(struct xfs_scrub * sc,bool can_shrink)472 xrep_fix_freelist(
473 struct xfs_scrub *sc,
474 bool can_shrink)
475 {
476 struct xfs_alloc_arg args = {0};
477
478 args.mp = sc->mp;
479 args.tp = sc->tp;
480 args.agno = sc->sa.agno;
481 args.alignment = 1;
482 args.pag = sc->sa.pag;
483
484 return xfs_alloc_fix_freelist(&args,
485 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
486 }
487
488 /*
489 * Put a block back on the AGFL.
490 */
491 STATIC int
xrep_put_freelist(struct xfs_scrub * sc,xfs_agblock_t agbno)492 xrep_put_freelist(
493 struct xfs_scrub *sc,
494 xfs_agblock_t agbno)
495 {
496 int error;
497
498 /* Make sure there's space on the freelist. */
499 error = xrep_fix_freelist(sc, true);
500 if (error)
501 return error;
502
503 /*
504 * Since we're "freeing" a lost block onto the AGFL, we have to
505 * create an rmap for the block prior to merging it or else other
506 * parts will break.
507 */
508 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
509 &XFS_RMAP_OINFO_AG);
510 if (error)
511 return error;
512
513 /* Put the block on the AGFL. */
514 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
515 agbno, 0);
516 if (error)
517 return error;
518 xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
519 XFS_EXTENT_BUSY_SKIP_DISCARD);
520
521 return 0;
522 }
523
524 /* Dispose of a single block. */
525 STATIC int
xrep_reap_block(struct xfs_scrub * sc,xfs_fsblock_t fsbno,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type resv)526 xrep_reap_block(
527 struct xfs_scrub *sc,
528 xfs_fsblock_t fsbno,
529 const struct xfs_owner_info *oinfo,
530 enum xfs_ag_resv_type resv)
531 {
532 struct xfs_btree_cur *cur;
533 struct xfs_buf *agf_bp = NULL;
534 xfs_agnumber_t agno;
535 xfs_agblock_t agbno;
536 bool has_other_rmap;
537 int error;
538
539 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
540 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
541
542 /*
543 * If we are repairing per-inode metadata, we need to read in the AGF
544 * buffer. Otherwise, we're repairing a per-AG structure, so reuse
545 * the AGF buffer that the setup functions already grabbed.
546 */
547 if (sc->ip) {
548 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
549 if (error)
550 return error;
551 } else {
552 agf_bp = sc->sa.agf_bp;
553 }
554 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
555
556 /* Can we find any other rmappings? */
557 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
558 xfs_btree_del_cursor(cur, error);
559 if (error)
560 goto out_free;
561
562 /*
563 * If there are other rmappings, this block is cross linked and must
564 * not be freed. Remove the reverse mapping and move on. Otherwise,
565 * we were the only owner of the block, so free the extent, which will
566 * also remove the rmap.
567 *
568 * XXX: XFS doesn't support detecting the case where a single block
569 * metadata structure is crosslinked with a multi-block structure
570 * because the buffer cache doesn't detect aliasing problems, so we
571 * can't fix 100% of crosslinking problems (yet). The verifiers will
572 * blow on writeout, the filesystem will shut down, and the admin gets
573 * to run xfs_repair.
574 */
575 if (has_other_rmap)
576 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
577 else if (resv == XFS_AG_RESV_AGFL)
578 error = xrep_put_freelist(sc, agbno);
579 else
580 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
581 if (agf_bp != sc->sa.agf_bp)
582 xfs_trans_brelse(sc->tp, agf_bp);
583 if (error)
584 return error;
585
586 if (sc->ip)
587 return xfs_trans_roll_inode(&sc->tp, sc->ip);
588 return xrep_roll_ag_trans(sc);
589
590 out_free:
591 if (agf_bp != sc->sa.agf_bp)
592 xfs_trans_brelse(sc->tp, agf_bp);
593 return error;
594 }
595
596 /* Dispose of every block of every extent in the bitmap. */
597 int
xrep_reap_extents(struct xfs_scrub * sc,struct xbitmap * bitmap,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type)598 xrep_reap_extents(
599 struct xfs_scrub *sc,
600 struct xbitmap *bitmap,
601 const struct xfs_owner_info *oinfo,
602 enum xfs_ag_resv_type type)
603 {
604 struct xbitmap_range *bmr;
605 struct xbitmap_range *n;
606 xfs_fsblock_t fsbno;
607 int error = 0;
608
609 ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
610
611 for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
612 ASSERT(sc->ip != NULL ||
613 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
614 trace_xrep_dispose_btree_extent(sc->mp,
615 XFS_FSB_TO_AGNO(sc->mp, fsbno),
616 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
617
618 error = xrep_reap_block(sc, fsbno, oinfo, type);
619 if (error)
620 break;
621 }
622
623 return error;
624 }
625
626 /*
627 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
628 *
629 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
630 * the AG headers by using the rmap data to rummage through the AG looking for
631 * btree roots. This is not guaranteed to work if the AG is heavily damaged
632 * or the rmap data are corrupt.
633 *
634 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
635 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
636 * AGI is being rebuilt. It must maintain these locks until it's safe for
637 * other threads to change the btrees' shapes. The caller provides
638 * information about the btrees to look for by passing in an array of
639 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
640 * The (root, height) fields will be set on return if anything is found. The
641 * last element of the array should have a NULL buf_ops to mark the end of the
642 * array.
643 *
644 * For every rmapbt record matching any of the rmap owners in btree_info,
645 * read each block referenced by the rmap record. If the block is a btree
646 * block from this filesystem matching any of the magic numbers and has a
647 * level higher than what we've already seen, remember the block and the
648 * height of the tree required to have such a block. When the call completes,
649 * we return the highest block we've found for each btree description; those
650 * should be the roots.
651 */
652
653 struct xrep_findroot {
654 struct xfs_scrub *sc;
655 struct xfs_buf *agfl_bp;
656 struct xfs_agf *agf;
657 struct xrep_find_ag_btree *btree_info;
658 };
659
660 /* See if our block is in the AGFL. */
661 STATIC int
xrep_findroot_agfl_walk(struct xfs_mount * mp,xfs_agblock_t bno,void * priv)662 xrep_findroot_agfl_walk(
663 struct xfs_mount *mp,
664 xfs_agblock_t bno,
665 void *priv)
666 {
667 xfs_agblock_t *agbno = priv;
668
669 return (*agbno == bno) ? -ECANCELED : 0;
670 }
671
672 /* Does this block match the btree information passed in? */
673 STATIC int
xrep_findroot_block(struct xrep_findroot * ri,struct xrep_find_ag_btree * fab,uint64_t owner,xfs_agblock_t agbno,bool * done_with_block)674 xrep_findroot_block(
675 struct xrep_findroot *ri,
676 struct xrep_find_ag_btree *fab,
677 uint64_t owner,
678 xfs_agblock_t agbno,
679 bool *done_with_block)
680 {
681 struct xfs_mount *mp = ri->sc->mp;
682 struct xfs_buf *bp;
683 struct xfs_btree_block *btblock;
684 xfs_daddr_t daddr;
685 int block_level;
686 int error = 0;
687
688 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
689
690 /*
691 * Blocks in the AGFL have stale contents that might just happen to
692 * have a matching magic and uuid. We don't want to pull these blocks
693 * in as part of a tree root, so we have to filter out the AGFL stuff
694 * here. If the AGFL looks insane we'll just refuse to repair.
695 */
696 if (owner == XFS_RMAP_OWN_AG) {
697 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
698 xrep_findroot_agfl_walk, &agbno);
699 if (error == -ECANCELED)
700 return 0;
701 if (error)
702 return error;
703 }
704
705 /*
706 * Read the buffer into memory so that we can see if it's a match for
707 * our btree type. We have no clue if it is beforehand, and we want to
708 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
709 * will cause needless disk reads in subsequent calls to this function)
710 * and logging metadata verifier failures.
711 *
712 * Therefore, pass in NULL buffer ops. If the buffer was already in
713 * memory from some other caller it will already have b_ops assigned.
714 * If it was in memory from a previous unsuccessful findroot_block
715 * call, the buffer won't have b_ops but it should be clean and ready
716 * for us to try to verify if the read call succeeds. The same applies
717 * if the buffer wasn't in memory at all.
718 *
719 * Note: If we never match a btree type with this buffer, it will be
720 * left in memory with NULL b_ops. This shouldn't be a problem unless
721 * the buffer gets written.
722 */
723 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
724 mp->m_bsize, 0, &bp, NULL);
725 if (error)
726 return error;
727
728 /* Ensure the block magic matches the btree type we're looking for. */
729 btblock = XFS_BUF_TO_BLOCK(bp);
730 ASSERT(fab->buf_ops->magic[1] != 0);
731 if (btblock->bb_magic != fab->buf_ops->magic[1])
732 goto out;
733
734 /*
735 * If the buffer already has ops applied and they're not the ones for
736 * this btree type, we know this block doesn't match the btree and we
737 * can bail out.
738 *
739 * If the buffer ops match ours, someone else has already validated
740 * the block for us, so we can move on to checking if this is a root
741 * block candidate.
742 *
743 * If the buffer does not have ops, nobody has successfully validated
744 * the contents and the buffer cannot be dirty. If the magic, uuid,
745 * and structure match this btree type then we'll move on to checking
746 * if it's a root block candidate. If there is no match, bail out.
747 */
748 if (bp->b_ops) {
749 if (bp->b_ops != fab->buf_ops)
750 goto out;
751 } else {
752 ASSERT(!xfs_trans_buf_is_dirty(bp));
753 if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
754 &mp->m_sb.sb_meta_uuid))
755 goto out;
756 /*
757 * Read verifiers can reference b_ops, so we set the pointer
758 * here. If the verifier fails we'll reset the buffer state
759 * to what it was before we touched the buffer.
760 */
761 bp->b_ops = fab->buf_ops;
762 fab->buf_ops->verify_read(bp);
763 if (bp->b_error) {
764 bp->b_ops = NULL;
765 bp->b_error = 0;
766 goto out;
767 }
768
769 /*
770 * Some read verifiers will (re)set b_ops, so we must be
771 * careful not to change b_ops after running the verifier.
772 */
773 }
774
775 /*
776 * This block passes the magic/uuid and verifier tests for this btree
777 * type. We don't need the caller to try the other tree types.
778 */
779 *done_with_block = true;
780
781 /*
782 * Compare this btree block's level to the height of the current
783 * candidate root block.
784 *
785 * If the level matches the root we found previously, throw away both
786 * blocks because there can't be two candidate roots.
787 *
788 * If level is lower in the tree than the root we found previously,
789 * ignore this block.
790 */
791 block_level = xfs_btree_get_level(btblock);
792 if (block_level + 1 == fab->height) {
793 fab->root = NULLAGBLOCK;
794 goto out;
795 } else if (block_level < fab->height) {
796 goto out;
797 }
798
799 /*
800 * This is the highest block in the tree that we've found so far.
801 * Update the btree height to reflect what we've learned from this
802 * block.
803 */
804 fab->height = block_level + 1;
805
806 /*
807 * If this block doesn't have sibling pointers, then it's the new root
808 * block candidate. Otherwise, the root will be found farther up the
809 * tree.
810 */
811 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
812 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
813 fab->root = agbno;
814 else
815 fab->root = NULLAGBLOCK;
816
817 trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
818 be32_to_cpu(btblock->bb_magic), fab->height - 1);
819 out:
820 xfs_trans_brelse(ri->sc->tp, bp);
821 return error;
822 }
823
824 /*
825 * Do any of the blocks in this rmap record match one of the btrees we're
826 * looking for?
827 */
828 STATIC int
xrep_findroot_rmap(struct xfs_btree_cur * cur,struct xfs_rmap_irec * rec,void * priv)829 xrep_findroot_rmap(
830 struct xfs_btree_cur *cur,
831 struct xfs_rmap_irec *rec,
832 void *priv)
833 {
834 struct xrep_findroot *ri = priv;
835 struct xrep_find_ag_btree *fab;
836 xfs_agblock_t b;
837 bool done;
838 int error = 0;
839
840 /* Ignore anything that isn't AG metadata. */
841 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
842 return 0;
843
844 /* Otherwise scan each block + btree type. */
845 for (b = 0; b < rec->rm_blockcount; b++) {
846 done = false;
847 for (fab = ri->btree_info; fab->buf_ops; fab++) {
848 if (rec->rm_owner != fab->rmap_owner)
849 continue;
850 error = xrep_findroot_block(ri, fab,
851 rec->rm_owner, rec->rm_startblock + b,
852 &done);
853 if (error)
854 return error;
855 if (done)
856 break;
857 }
858 }
859
860 return 0;
861 }
862
863 /* Find the roots of the per-AG btrees described in btree_info. */
864 int
xrep_find_ag_btree_roots(struct xfs_scrub * sc,struct xfs_buf * agf_bp,struct xrep_find_ag_btree * btree_info,struct xfs_buf * agfl_bp)865 xrep_find_ag_btree_roots(
866 struct xfs_scrub *sc,
867 struct xfs_buf *agf_bp,
868 struct xrep_find_ag_btree *btree_info,
869 struct xfs_buf *agfl_bp)
870 {
871 struct xfs_mount *mp = sc->mp;
872 struct xrep_findroot ri;
873 struct xrep_find_ag_btree *fab;
874 struct xfs_btree_cur *cur;
875 int error;
876
877 ASSERT(xfs_buf_islocked(agf_bp));
878 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
879
880 ri.sc = sc;
881 ri.btree_info = btree_info;
882 ri.agf = agf_bp->b_addr;
883 ri.agfl_bp = agfl_bp;
884 for (fab = btree_info; fab->buf_ops; fab++) {
885 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
886 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
887 fab->root = NULLAGBLOCK;
888 fab->height = 0;
889 }
890
891 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
892 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
893 xfs_btree_del_cursor(cur, error);
894
895 return error;
896 }
897
898 /* Force a quotacheck the next time we mount. */
899 void
xrep_force_quotacheck(struct xfs_scrub * sc,xfs_dqtype_t type)900 xrep_force_quotacheck(
901 struct xfs_scrub *sc,
902 xfs_dqtype_t type)
903 {
904 uint flag;
905
906 flag = xfs_quota_chkd_flag(type);
907 if (!(flag & sc->mp->m_qflags))
908 return;
909
910 sc->mp->m_qflags &= ~flag;
911 spin_lock(&sc->mp->m_sb_lock);
912 sc->mp->m_sb.sb_qflags &= ~flag;
913 spin_unlock(&sc->mp->m_sb_lock);
914 xfs_log_sb(sc->tp);
915 }
916
917 /*
918 * Attach dquots to this inode, or schedule quotacheck to fix them.
919 *
920 * This function ensures that the appropriate dquots are attached to an inode.
921 * We cannot allow the dquot code to allocate an on-disk dquot block here
922 * because we're already in transaction context with the inode locked. The
923 * on-disk dquot should already exist anyway. If the quota code signals
924 * corruption or missing quota information, schedule quotacheck, which will
925 * repair corruptions in the quota metadata.
926 */
927 int
xrep_ino_dqattach(struct xfs_scrub * sc)928 xrep_ino_dqattach(
929 struct xfs_scrub *sc)
930 {
931 int error;
932
933 error = xfs_qm_dqattach_locked(sc->ip, false);
934 switch (error) {
935 case -EFSBADCRC:
936 case -EFSCORRUPTED:
937 case -ENOENT:
938 xfs_err_ratelimited(sc->mp,
939 "inode %llu repair encountered quota error %d, quotacheck forced.",
940 (unsigned long long)sc->ip->i_ino, error);
941 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
942 xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
943 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
944 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
945 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
946 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
947 /* fall through */
948 case -ESRCH:
949 error = 0;
950 break;
951 default:
952 break;
953 }
954
955 return error;
956 }
957