1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2016,2017 IBM Corporation.
4 */
5
6 #define pr_fmt(fmt) "xive: " fmt
7
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22
23 #include <asm/prom.h>
24 #include <asm/io.h>
25 #include <asm/smp.h>
26 #include <asm/machdep.h>
27 #include <asm/irq.h>
28 #include <asm/errno.h>
29 #include <asm/xive.h>
30 #include <asm/xive-regs.h>
31 #include <asm/xmon.h>
32
33 #include "xive-internal.h"
34
35 #undef DEBUG_FLUSH
36 #undef DEBUG_ALL
37
38 #ifdef DEBUG_ALL
39 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
40 smp_processor_id(), ## __VA_ARGS__)
41 #else
42 #define DBG_VERBOSE(fmt...) do { } while(0)
43 #endif
44
45 bool __xive_enabled;
46 EXPORT_SYMBOL_GPL(__xive_enabled);
47 bool xive_cmdline_disabled;
48
49 /* We use only one priority for now */
50 static u8 xive_irq_priority;
51
52 /* TIMA exported to KVM */
53 void __iomem *xive_tima;
54 EXPORT_SYMBOL_GPL(xive_tima);
55 u32 xive_tima_offset;
56
57 /* Backend ops */
58 static const struct xive_ops *xive_ops;
59
60 /* Our global interrupt domain */
61 static struct irq_domain *xive_irq_domain;
62
63 #ifdef CONFIG_SMP
64 /* The IPIs all use the same logical irq number */
65 static u32 xive_ipi_irq;
66 #endif
67
68 /* Xive state for each CPU */
69 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
70
71 /*
72 * A "disabled" interrupt should never fire, to catch problems
73 * we set its logical number to this
74 */
75 #define XIVE_BAD_IRQ 0x7fffffff
76 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
77
78 /* An invalid CPU target */
79 #define XIVE_INVALID_TARGET (-1)
80
81 /*
82 * Read the next entry in a queue, return its content if it's valid
83 * or 0 if there is no new entry.
84 *
85 * The queue pointer is moved forward unless "just_peek" is set
86 */
xive_read_eq(struct xive_q * q,bool just_peek)87 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
88 {
89 u32 cur;
90
91 if (!q->qpage)
92 return 0;
93 cur = be32_to_cpup(q->qpage + q->idx);
94
95 /* Check valid bit (31) vs current toggle polarity */
96 if ((cur >> 31) == q->toggle)
97 return 0;
98
99 /* If consuming from the queue ... */
100 if (!just_peek) {
101 /* Next entry */
102 q->idx = (q->idx + 1) & q->msk;
103
104 /* Wrap around: flip valid toggle */
105 if (q->idx == 0)
106 q->toggle ^= 1;
107 }
108 /* Mask out the valid bit (31) */
109 return cur & 0x7fffffff;
110 }
111
112 /*
113 * Scans all the queue that may have interrupts in them
114 * (based on "pending_prio") in priority order until an
115 * interrupt is found or all the queues are empty.
116 *
117 * Then updates the CPPR (Current Processor Priority
118 * Register) based on the most favored interrupt found
119 * (0xff if none) and return what was found (0 if none).
120 *
121 * If just_peek is set, return the most favored pending
122 * interrupt if any but don't update the queue pointers.
123 *
124 * Note: This function can operate generically on any number
125 * of queues (up to 8). The current implementation of the XIVE
126 * driver only uses a single queue however.
127 *
128 * Note2: This will also "flush" "the pending_count" of a queue
129 * into the "count" when that queue is observed to be empty.
130 * This is used to keep track of the amount of interrupts
131 * targetting a queue. When an interrupt is moved away from
132 * a queue, we only decrement that queue count once the queue
133 * has been observed empty to avoid races.
134 */
xive_scan_interrupts(struct xive_cpu * xc,bool just_peek)135 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
136 {
137 u32 irq = 0;
138 u8 prio = 0;
139
140 /* Find highest pending priority */
141 while (xc->pending_prio != 0) {
142 struct xive_q *q;
143
144 prio = ffs(xc->pending_prio) - 1;
145 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
146
147 /* Try to fetch */
148 irq = xive_read_eq(&xc->queue[prio], just_peek);
149
150 /* Found something ? That's it */
151 if (irq) {
152 if (just_peek || irq_to_desc(irq))
153 break;
154 /*
155 * We should never get here; if we do then we must
156 * have failed to synchronize the interrupt properly
157 * when shutting it down.
158 */
159 pr_crit("xive: got interrupt %d without descriptor, dropping\n",
160 irq);
161 WARN_ON(1);
162 continue;
163 }
164
165 /* Clear pending bits */
166 xc->pending_prio &= ~(1 << prio);
167
168 /*
169 * Check if the queue count needs adjusting due to
170 * interrupts being moved away. See description of
171 * xive_dec_target_count()
172 */
173 q = &xc->queue[prio];
174 if (atomic_read(&q->pending_count)) {
175 int p = atomic_xchg(&q->pending_count, 0);
176 if (p) {
177 WARN_ON(p > atomic_read(&q->count));
178 atomic_sub(p, &q->count);
179 }
180 }
181 }
182
183 /* If nothing was found, set CPPR to 0xff */
184 if (irq == 0)
185 prio = 0xff;
186
187 /* Update HW CPPR to match if necessary */
188 if (prio != xc->cppr) {
189 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
190 xc->cppr = prio;
191 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
192 }
193
194 return irq;
195 }
196
197 /*
198 * This is used to perform the magic loads from an ESB
199 * described in xive-regs.h
200 */
xive_esb_read(struct xive_irq_data * xd,u32 offset)201 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
202 {
203 u64 val;
204
205 /* Handle HW errata */
206 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
207 offset |= offset << 4;
208
209 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
210 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
211 else
212 val = in_be64(xd->eoi_mmio + offset);
213
214 return (u8)val;
215 }
216
xive_esb_write(struct xive_irq_data * xd,u32 offset,u64 data)217 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
218 {
219 /* Handle HW errata */
220 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
221 offset |= offset << 4;
222
223 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
224 xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
225 else
226 out_be64(xd->eoi_mmio + offset, data);
227 }
228
229 #ifdef CONFIG_XMON
xive_dump_eq(const char * name,struct xive_q * q)230 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
231 {
232 u32 i0, i1, idx;
233
234 if (!q->qpage)
235 return;
236 idx = q->idx;
237 i0 = be32_to_cpup(q->qpage + idx);
238 idx = (idx + 1) & q->msk;
239 i1 = be32_to_cpup(q->qpage + idx);
240 xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
241 q->idx, q->toggle, i0, i1);
242 }
243
xmon_xive_do_dump(int cpu)244 notrace void xmon_xive_do_dump(int cpu)
245 {
246 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
247
248 xmon_printf("CPU %d:", cpu);
249 if (xc) {
250 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
251
252 #ifdef CONFIG_SMP
253 {
254 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
255
256 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
257 val & XIVE_ESB_VAL_P ? 'P' : '-',
258 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
259 }
260 #endif
261 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
262 }
263 xmon_printf("\n");
264 }
265
xmon_xive_get_irq_config(u32 hw_irq,struct irq_data * d)266 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
267 {
268 int rc;
269 u32 target;
270 u8 prio;
271 u32 lirq;
272
273 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
274 if (rc) {
275 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
276 return rc;
277 }
278
279 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
280 hw_irq, target, prio, lirq);
281
282 if (d) {
283 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
284 u64 val = xive_esb_read(xd, XIVE_ESB_GET);
285
286 xmon_printf("PQ=%c%c",
287 val & XIVE_ESB_VAL_P ? 'P' : '-',
288 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
289 }
290
291 xmon_printf("\n");
292 return 0;
293 }
294
295 #endif /* CONFIG_XMON */
296
xive_get_irq(void)297 static unsigned int xive_get_irq(void)
298 {
299 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
300 u32 irq;
301
302 /*
303 * This can be called either as a result of a HW interrupt or
304 * as a "replay" because EOI decided there was still something
305 * in one of the queues.
306 *
307 * First we perform an ACK cycle in order to update our mask
308 * of pending priorities. This will also have the effect of
309 * updating the CPPR to the most favored pending interrupts.
310 *
311 * In the future, if we have a way to differentiate a first
312 * entry (on HW interrupt) from a replay triggered by EOI,
313 * we could skip this on replays unless we soft-mask tells us
314 * that a new HW interrupt occurred.
315 */
316 xive_ops->update_pending(xc);
317
318 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
319
320 /* Scan our queue(s) for interrupts */
321 irq = xive_scan_interrupts(xc, false);
322
323 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
324 irq, xc->pending_prio);
325
326 /* Return pending interrupt if any */
327 if (irq == XIVE_BAD_IRQ)
328 return 0;
329 return irq;
330 }
331
332 /*
333 * After EOI'ing an interrupt, we need to re-check the queue
334 * to see if another interrupt is pending since multiple
335 * interrupts can coalesce into a single notification to the
336 * CPU.
337 *
338 * If we find that there is indeed more in there, we call
339 * force_external_irq_replay() to make Linux synthetize an
340 * external interrupt on the next call to local_irq_restore().
341 */
xive_do_queue_eoi(struct xive_cpu * xc)342 static void xive_do_queue_eoi(struct xive_cpu *xc)
343 {
344 if (xive_scan_interrupts(xc, true) != 0) {
345 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
346 force_external_irq_replay();
347 }
348 }
349
350 /*
351 * EOI an interrupt at the source. There are several methods
352 * to do this depending on the HW version and source type
353 */
xive_do_source_eoi(u32 hw_irq,struct xive_irq_data * xd)354 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
355 {
356 xd->stale_p = false;
357 /* If the XIVE supports the new "store EOI facility, use it */
358 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
359 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
360 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
361 /*
362 * The FW told us to call it. This happens for some
363 * interrupt sources that need additional HW whacking
364 * beyond the ESB manipulation. For example LPC interrupts
365 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
366 * itself. The Firmware will take care of it.
367 */
368 if (WARN_ON_ONCE(!xive_ops->eoi))
369 return;
370 xive_ops->eoi(hw_irq);
371 } else {
372 u8 eoi_val;
373
374 /*
375 * Otherwise for EOI, we use the special MMIO that does
376 * a clear of both P and Q and returns the old Q,
377 * except for LSIs where we use the "EOI cycle" special
378 * load.
379 *
380 * This allows us to then do a re-trigger if Q was set
381 * rather than synthesizing an interrupt in software
382 *
383 * For LSIs the HW EOI cycle is used rather than PQ bits,
384 * as they are automatically re-triggred in HW when still
385 * pending.
386 */
387 if (xd->flags & XIVE_IRQ_FLAG_LSI)
388 xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
389 else {
390 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
391 DBG_VERBOSE("eoi_val=%x\n", eoi_val);
392
393 /* Re-trigger if needed */
394 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
395 out_be64(xd->trig_mmio, 0);
396 }
397 }
398 }
399
400 /* irq_chip eoi callback, called with irq descriptor lock held */
xive_irq_eoi(struct irq_data * d)401 static void xive_irq_eoi(struct irq_data *d)
402 {
403 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
404 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
405
406 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
407 d->irq, irqd_to_hwirq(d), xc->pending_prio);
408
409 /*
410 * EOI the source if it hasn't been disabled and hasn't
411 * been passed-through to a KVM guest
412 */
413 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
414 !(xd->flags & XIVE_IRQ_NO_EOI))
415 xive_do_source_eoi(irqd_to_hwirq(d), xd);
416 else
417 xd->stale_p = true;
418
419 /*
420 * Clear saved_p to indicate that it's no longer occupying
421 * a queue slot on the target queue
422 */
423 xd->saved_p = false;
424
425 /* Check for more work in the queue */
426 xive_do_queue_eoi(xc);
427 }
428
429 /*
430 * Helper used to mask and unmask an interrupt source. This
431 * is only called for normal interrupts that do not require
432 * masking/unmasking via firmware.
433 */
xive_do_source_set_mask(struct xive_irq_data * xd,bool mask)434 static void xive_do_source_set_mask(struct xive_irq_data *xd,
435 bool mask)
436 {
437 u64 val;
438
439 /*
440 * If the interrupt had P set, it may be in a queue.
441 *
442 * We need to make sure we don't re-enable it until it
443 * has been fetched from that queue and EOId. We keep
444 * a copy of that P state and use it to restore the
445 * ESB accordingly on unmask.
446 */
447 if (mask) {
448 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
449 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
450 xd->saved_p = true;
451 xd->stale_p = false;
452 } else if (xd->saved_p) {
453 xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
454 xd->saved_p = false;
455 } else {
456 xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
457 xd->stale_p = false;
458 }
459 }
460
461 /*
462 * Try to chose "cpu" as a new interrupt target. Increments
463 * the queue accounting for that target if it's not already
464 * full.
465 */
xive_try_pick_target(int cpu)466 static bool xive_try_pick_target(int cpu)
467 {
468 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
469 struct xive_q *q = &xc->queue[xive_irq_priority];
470 int max;
471
472 /*
473 * Calculate max number of interrupts in that queue.
474 *
475 * We leave a gap of 1 just in case...
476 */
477 max = (q->msk + 1) - 1;
478 return !!atomic_add_unless(&q->count, 1, max);
479 }
480
481 /*
482 * Un-account an interrupt for a target CPU. We don't directly
483 * decrement q->count since the interrupt might still be present
484 * in the queue.
485 *
486 * Instead increment a separate counter "pending_count" which
487 * will be substracted from "count" later when that CPU observes
488 * the queue to be empty.
489 */
xive_dec_target_count(int cpu)490 static void xive_dec_target_count(int cpu)
491 {
492 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
493 struct xive_q *q = &xc->queue[xive_irq_priority];
494
495 if (WARN_ON(cpu < 0 || !xc)) {
496 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
497 return;
498 }
499
500 /*
501 * We increment the "pending count" which will be used
502 * to decrement the target queue count whenever it's next
503 * processed and found empty. This ensure that we don't
504 * decrement while we still have the interrupt there
505 * occupying a slot.
506 */
507 atomic_inc(&q->pending_count);
508 }
509
510 /* Find a tentative CPU target in a CPU mask */
xive_find_target_in_mask(const struct cpumask * mask,unsigned int fuzz)511 static int xive_find_target_in_mask(const struct cpumask *mask,
512 unsigned int fuzz)
513 {
514 int cpu, first, num, i;
515
516 /* Pick up a starting point CPU in the mask based on fuzz */
517 num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
518 first = fuzz % num;
519
520 /* Locate it */
521 cpu = cpumask_first(mask);
522 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
523 cpu = cpumask_next(cpu, mask);
524
525 /* Sanity check */
526 if (WARN_ON(cpu >= nr_cpu_ids))
527 cpu = cpumask_first(cpu_online_mask);
528
529 /* Remember first one to handle wrap-around */
530 first = cpu;
531
532 /*
533 * Now go through the entire mask until we find a valid
534 * target.
535 */
536 do {
537 /*
538 * We re-check online as the fallback case passes us
539 * an untested affinity mask
540 */
541 if (cpu_online(cpu) && xive_try_pick_target(cpu))
542 return cpu;
543 cpu = cpumask_next(cpu, mask);
544 /* Wrap around */
545 if (cpu >= nr_cpu_ids)
546 cpu = cpumask_first(mask);
547 } while (cpu != first);
548
549 return -1;
550 }
551
552 /*
553 * Pick a target CPU for an interrupt. This is done at
554 * startup or if the affinity is changed in a way that
555 * invalidates the current target.
556 */
xive_pick_irq_target(struct irq_data * d,const struct cpumask * affinity)557 static int xive_pick_irq_target(struct irq_data *d,
558 const struct cpumask *affinity)
559 {
560 static unsigned int fuzz;
561 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
562 cpumask_var_t mask;
563 int cpu = -1;
564
565 /*
566 * If we have chip IDs, first we try to build a mask of
567 * CPUs matching the CPU and find a target in there
568 */
569 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
570 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
571 /* Build a mask of matching chip IDs */
572 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
573 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
574 if (xc->chip_id == xd->src_chip)
575 cpumask_set_cpu(cpu, mask);
576 }
577 /* Try to find a target */
578 if (cpumask_empty(mask))
579 cpu = -1;
580 else
581 cpu = xive_find_target_in_mask(mask, fuzz++);
582 free_cpumask_var(mask);
583 if (cpu >= 0)
584 return cpu;
585 fuzz--;
586 }
587
588 /* No chip IDs, fallback to using the affinity mask */
589 return xive_find_target_in_mask(affinity, fuzz++);
590 }
591
xive_irq_startup(struct irq_data * d)592 static unsigned int xive_irq_startup(struct irq_data *d)
593 {
594 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
595 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
596 int target, rc;
597
598 xd->saved_p = false;
599 xd->stale_p = false;
600 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
601 d->irq, hw_irq, d);
602
603 #ifdef CONFIG_PCI_MSI
604 /*
605 * The generic MSI code returns with the interrupt disabled on the
606 * card, using the MSI mask bits. Firmware doesn't appear to unmask
607 * at that level, so we do it here by hand.
608 */
609 if (irq_data_get_msi_desc(d))
610 pci_msi_unmask_irq(d);
611 #endif
612
613 /* Pick a target */
614 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
615 if (target == XIVE_INVALID_TARGET) {
616 /* Try again breaking affinity */
617 target = xive_pick_irq_target(d, cpu_online_mask);
618 if (target == XIVE_INVALID_TARGET)
619 return -ENXIO;
620 pr_warn("irq %d started with broken affinity\n", d->irq);
621 }
622
623 /* Sanity check */
624 if (WARN_ON(target == XIVE_INVALID_TARGET ||
625 target >= nr_cpu_ids))
626 target = smp_processor_id();
627
628 xd->target = target;
629
630 /*
631 * Configure the logical number to be the Linux IRQ number
632 * and set the target queue
633 */
634 rc = xive_ops->configure_irq(hw_irq,
635 get_hard_smp_processor_id(target),
636 xive_irq_priority, d->irq);
637 if (rc)
638 return rc;
639
640 /* Unmask the ESB */
641 xive_do_source_set_mask(xd, false);
642
643 return 0;
644 }
645
646 /* called with irq descriptor lock held */
xive_irq_shutdown(struct irq_data * d)647 static void xive_irq_shutdown(struct irq_data *d)
648 {
649 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
650 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
651
652 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
653 d->irq, hw_irq, d);
654
655 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
656 return;
657
658 /* Mask the interrupt at the source */
659 xive_do_source_set_mask(xd, true);
660
661 /*
662 * Mask the interrupt in HW in the IVT/EAS and set the number
663 * to be the "bad" IRQ number
664 */
665 xive_ops->configure_irq(hw_irq,
666 get_hard_smp_processor_id(xd->target),
667 0xff, XIVE_BAD_IRQ);
668
669 xive_dec_target_count(xd->target);
670 xd->target = XIVE_INVALID_TARGET;
671 }
672
xive_irq_unmask(struct irq_data * d)673 static void xive_irq_unmask(struct irq_data *d)
674 {
675 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
676
677 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
678
679 /*
680 * This is a workaround for PCI LSI problems on P9, for
681 * these, we call FW to set the mask. The problems might
682 * be fixed by P9 DD2.0, if that is the case, firmware
683 * will no longer set that flag.
684 */
685 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
686 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
687 xive_ops->configure_irq(hw_irq,
688 get_hard_smp_processor_id(xd->target),
689 xive_irq_priority, d->irq);
690 return;
691 }
692
693 xive_do_source_set_mask(xd, false);
694 }
695
xive_irq_mask(struct irq_data * d)696 static void xive_irq_mask(struct irq_data *d)
697 {
698 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
699
700 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
701
702 /*
703 * This is a workaround for PCI LSI problems on P9, for
704 * these, we call OPAL to set the mask. The problems might
705 * be fixed by P9 DD2.0, if that is the case, firmware
706 * will no longer set that flag.
707 */
708 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
709 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
710 xive_ops->configure_irq(hw_irq,
711 get_hard_smp_processor_id(xd->target),
712 0xff, d->irq);
713 return;
714 }
715
716 xive_do_source_set_mask(xd, true);
717 }
718
xive_irq_set_affinity(struct irq_data * d,const struct cpumask * cpumask,bool force)719 static int xive_irq_set_affinity(struct irq_data *d,
720 const struct cpumask *cpumask,
721 bool force)
722 {
723 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
724 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
725 u32 target, old_target;
726 int rc = 0;
727
728 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
729
730 /* Is this valid ? */
731 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
732 return -EINVAL;
733
734 /* Don't do anything if the interrupt isn't started */
735 if (!irqd_is_started(d))
736 return IRQ_SET_MASK_OK;
737
738 /*
739 * If existing target is already in the new mask, and is
740 * online then do nothing.
741 */
742 if (xd->target != XIVE_INVALID_TARGET &&
743 cpu_online(xd->target) &&
744 cpumask_test_cpu(xd->target, cpumask))
745 return IRQ_SET_MASK_OK;
746
747 /* Pick a new target */
748 target = xive_pick_irq_target(d, cpumask);
749
750 /* No target found */
751 if (target == XIVE_INVALID_TARGET)
752 return -ENXIO;
753
754 /* Sanity check */
755 if (WARN_ON(target >= nr_cpu_ids))
756 target = smp_processor_id();
757
758 old_target = xd->target;
759
760 /*
761 * Only configure the irq if it's not currently passed-through to
762 * a KVM guest
763 */
764 if (!irqd_is_forwarded_to_vcpu(d))
765 rc = xive_ops->configure_irq(hw_irq,
766 get_hard_smp_processor_id(target),
767 xive_irq_priority, d->irq);
768 if (rc < 0) {
769 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
770 return rc;
771 }
772
773 pr_devel(" target: 0x%x\n", target);
774 xd->target = target;
775
776 /* Give up previous target */
777 if (old_target != XIVE_INVALID_TARGET)
778 xive_dec_target_count(old_target);
779
780 return IRQ_SET_MASK_OK;
781 }
782
xive_irq_set_type(struct irq_data * d,unsigned int flow_type)783 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
784 {
785 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
786
787 /*
788 * We only support these. This has really no effect other than setting
789 * the corresponding descriptor bits mind you but those will in turn
790 * affect the resend function when re-enabling an edge interrupt.
791 *
792 * Set set the default to edge as explained in map().
793 */
794 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
795 flow_type = IRQ_TYPE_EDGE_RISING;
796
797 if (flow_type != IRQ_TYPE_EDGE_RISING &&
798 flow_type != IRQ_TYPE_LEVEL_LOW)
799 return -EINVAL;
800
801 irqd_set_trigger_type(d, flow_type);
802
803 /*
804 * Double check it matches what the FW thinks
805 *
806 * NOTE: We don't know yet if the PAPR interface will provide
807 * the LSI vs MSI information apart from the device-tree so
808 * this check might have to move into an optional backend call
809 * that is specific to the native backend
810 */
811 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
812 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
813 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
814 d->irq, (u32)irqd_to_hwirq(d),
815 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
816 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
817 }
818
819 return IRQ_SET_MASK_OK_NOCOPY;
820 }
821
xive_irq_retrigger(struct irq_data * d)822 static int xive_irq_retrigger(struct irq_data *d)
823 {
824 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
825
826 /* This should be only for MSIs */
827 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
828 return 0;
829
830 /*
831 * To perform a retrigger, we first set the PQ bits to
832 * 11, then perform an EOI.
833 */
834 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
835
836 /*
837 * Note: We pass "0" to the hw_irq argument in order to
838 * avoid calling into the backend EOI code which we don't
839 * want to do in the case of a re-trigger. Backends typically
840 * only do EOI for LSIs anyway.
841 */
842 xive_do_source_eoi(0, xd);
843
844 return 1;
845 }
846
847 /*
848 * Caller holds the irq descriptor lock, so this won't be called
849 * concurrently with xive_get_irqchip_state on the same interrupt.
850 */
xive_irq_set_vcpu_affinity(struct irq_data * d,void * state)851 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
852 {
853 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
854 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
855 int rc;
856 u8 pq;
857
858 /*
859 * We only support this on interrupts that do not require
860 * firmware calls for masking and unmasking
861 */
862 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
863 return -EIO;
864
865 /*
866 * This is called by KVM with state non-NULL for enabling
867 * pass-through or NULL for disabling it
868 */
869 if (state) {
870 irqd_set_forwarded_to_vcpu(d);
871
872 /* Set it to PQ=10 state to prevent further sends */
873 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
874 if (!xd->stale_p) {
875 xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
876 xd->stale_p = !xd->saved_p;
877 }
878
879 /* No target ? nothing to do */
880 if (xd->target == XIVE_INVALID_TARGET) {
881 /*
882 * An untargetted interrupt should have been
883 * also masked at the source
884 */
885 WARN_ON(xd->saved_p);
886
887 return 0;
888 }
889
890 /*
891 * If P was set, adjust state to PQ=11 to indicate
892 * that a resend is needed for the interrupt to reach
893 * the guest. Also remember the value of P.
894 *
895 * This also tells us that it's in flight to a host queue
896 * or has already been fetched but hasn't been EOIed yet
897 * by the host. This it's potentially using up a host
898 * queue slot. This is important to know because as long
899 * as this is the case, we must not hard-unmask it when
900 * "returning" that interrupt to the host.
901 *
902 * This saved_p is cleared by the host EOI, when we know
903 * for sure the queue slot is no longer in use.
904 */
905 if (xd->saved_p) {
906 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
907
908 /*
909 * Sync the XIVE source HW to ensure the interrupt
910 * has gone through the EAS before we change its
911 * target to the guest. That should guarantee us
912 * that we *will* eventually get an EOI for it on
913 * the host. Otherwise there would be a small window
914 * for P to be seen here but the interrupt going
915 * to the guest queue.
916 */
917 if (xive_ops->sync_source)
918 xive_ops->sync_source(hw_irq);
919 }
920 } else {
921 irqd_clr_forwarded_to_vcpu(d);
922
923 /* No host target ? hard mask and return */
924 if (xd->target == XIVE_INVALID_TARGET) {
925 xive_do_source_set_mask(xd, true);
926 return 0;
927 }
928
929 /*
930 * Sync the XIVE source HW to ensure the interrupt
931 * has gone through the EAS before we change its
932 * target to the host.
933 */
934 if (xive_ops->sync_source)
935 xive_ops->sync_source(hw_irq);
936
937 /*
938 * By convention we are called with the interrupt in
939 * a PQ=10 or PQ=11 state, ie, it won't fire and will
940 * have latched in Q whether there's a pending HW
941 * interrupt or not.
942 *
943 * First reconfigure the target.
944 */
945 rc = xive_ops->configure_irq(hw_irq,
946 get_hard_smp_processor_id(xd->target),
947 xive_irq_priority, d->irq);
948 if (rc)
949 return rc;
950
951 /*
952 * Then if saved_p is not set, effectively re-enable the
953 * interrupt with an EOI. If it is set, we know there is
954 * still a message in a host queue somewhere that will be
955 * EOId eventually.
956 *
957 * Note: We don't check irqd_irq_disabled(). Effectively,
958 * we *will* let the irq get through even if masked if the
959 * HW is still firing it in order to deal with the whole
960 * saved_p business properly. If the interrupt triggers
961 * while masked, the generic code will re-mask it anyway.
962 */
963 if (!xd->saved_p)
964 xive_do_source_eoi(hw_irq, xd);
965
966 }
967 return 0;
968 }
969
970 /* Called with irq descriptor lock held. */
xive_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)971 static int xive_get_irqchip_state(struct irq_data *data,
972 enum irqchip_irq_state which, bool *state)
973 {
974 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
975
976 switch (which) {
977 case IRQCHIP_STATE_ACTIVE:
978 *state = !xd->stale_p &&
979 (xd->saved_p ||
980 !!(xive_esb_read(xd, XIVE_ESB_GET) & XIVE_ESB_VAL_P));
981 return 0;
982 default:
983 return -EINVAL;
984 }
985 }
986
987 static struct irq_chip xive_irq_chip = {
988 .name = "XIVE-IRQ",
989 .irq_startup = xive_irq_startup,
990 .irq_shutdown = xive_irq_shutdown,
991 .irq_eoi = xive_irq_eoi,
992 .irq_mask = xive_irq_mask,
993 .irq_unmask = xive_irq_unmask,
994 .irq_set_affinity = xive_irq_set_affinity,
995 .irq_set_type = xive_irq_set_type,
996 .irq_retrigger = xive_irq_retrigger,
997 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
998 .irq_get_irqchip_state = xive_get_irqchip_state,
999 };
1000
is_xive_irq(struct irq_chip * chip)1001 bool is_xive_irq(struct irq_chip *chip)
1002 {
1003 return chip == &xive_irq_chip;
1004 }
1005 EXPORT_SYMBOL_GPL(is_xive_irq);
1006
xive_cleanup_irq_data(struct xive_irq_data * xd)1007 void xive_cleanup_irq_data(struct xive_irq_data *xd)
1008 {
1009 if (xd->eoi_mmio) {
1010 iounmap(xd->eoi_mmio);
1011 if (xd->eoi_mmio == xd->trig_mmio)
1012 xd->trig_mmio = NULL;
1013 xd->eoi_mmio = NULL;
1014 }
1015 if (xd->trig_mmio) {
1016 iounmap(xd->trig_mmio);
1017 xd->trig_mmio = NULL;
1018 }
1019 }
1020 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1021
xive_irq_alloc_data(unsigned int virq,irq_hw_number_t hw)1022 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1023 {
1024 struct xive_irq_data *xd;
1025 int rc;
1026
1027 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1028 if (!xd)
1029 return -ENOMEM;
1030 rc = xive_ops->populate_irq_data(hw, xd);
1031 if (rc) {
1032 kfree(xd);
1033 return rc;
1034 }
1035 xd->target = XIVE_INVALID_TARGET;
1036 irq_set_handler_data(virq, xd);
1037
1038 return 0;
1039 }
1040
xive_irq_free_data(unsigned int virq)1041 static void xive_irq_free_data(unsigned int virq)
1042 {
1043 struct xive_irq_data *xd = irq_get_handler_data(virq);
1044
1045 if (!xd)
1046 return;
1047 irq_set_handler_data(virq, NULL);
1048 xive_cleanup_irq_data(xd);
1049 kfree(xd);
1050 }
1051
1052 #ifdef CONFIG_SMP
1053
xive_cause_ipi(int cpu)1054 static void xive_cause_ipi(int cpu)
1055 {
1056 struct xive_cpu *xc;
1057 struct xive_irq_data *xd;
1058
1059 xc = per_cpu(xive_cpu, cpu);
1060
1061 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1062 smp_processor_id(), cpu, xc->hw_ipi);
1063
1064 xd = &xc->ipi_data;
1065 if (WARN_ON(!xd->trig_mmio))
1066 return;
1067 out_be64(xd->trig_mmio, 0);
1068 }
1069
xive_muxed_ipi_action(int irq,void * dev_id)1070 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1071 {
1072 return smp_ipi_demux();
1073 }
1074
xive_ipi_eoi(struct irq_data * d)1075 static void xive_ipi_eoi(struct irq_data *d)
1076 {
1077 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1078
1079 /* Handle possible race with unplug and drop stale IPIs */
1080 if (!xc)
1081 return;
1082
1083 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1084 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1085
1086 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1087 xive_do_queue_eoi(xc);
1088 }
1089
xive_ipi_do_nothing(struct irq_data * d)1090 static void xive_ipi_do_nothing(struct irq_data *d)
1091 {
1092 /*
1093 * Nothing to do, we never mask/unmask IPIs, but the callback
1094 * has to exist for the struct irq_chip.
1095 */
1096 }
1097
1098 static struct irq_chip xive_ipi_chip = {
1099 .name = "XIVE-IPI",
1100 .irq_eoi = xive_ipi_eoi,
1101 .irq_mask = xive_ipi_do_nothing,
1102 .irq_unmask = xive_ipi_do_nothing,
1103 };
1104
xive_request_ipi(void)1105 static void __init xive_request_ipi(void)
1106 {
1107 unsigned int virq;
1108
1109 /*
1110 * Initialization failed, move on, we might manage to
1111 * reach the point where we display our errors before
1112 * the system falls appart
1113 */
1114 if (!xive_irq_domain)
1115 return;
1116
1117 /* Initialize it */
1118 virq = irq_create_mapping(xive_irq_domain, 0);
1119 xive_ipi_irq = virq;
1120
1121 WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1122 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1123 }
1124
xive_setup_cpu_ipi(unsigned int cpu)1125 static int xive_setup_cpu_ipi(unsigned int cpu)
1126 {
1127 struct xive_cpu *xc;
1128 int rc;
1129
1130 pr_debug("Setting up IPI for CPU %d\n", cpu);
1131
1132 xc = per_cpu(xive_cpu, cpu);
1133
1134 /* Check if we are already setup */
1135 if (xc->hw_ipi != 0)
1136 return 0;
1137
1138 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1139 if (xive_ops->get_ipi(cpu, xc))
1140 return -EIO;
1141
1142 /*
1143 * Populate the IRQ data in the xive_cpu structure and
1144 * configure the HW / enable the IPIs.
1145 */
1146 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1147 if (rc) {
1148 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1149 return -EIO;
1150 }
1151 rc = xive_ops->configure_irq(xc->hw_ipi,
1152 get_hard_smp_processor_id(cpu),
1153 xive_irq_priority, xive_ipi_irq);
1154 if (rc) {
1155 pr_err("Failed to map IPI CPU %d\n", cpu);
1156 return -EIO;
1157 }
1158 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1159 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1160
1161 /* Unmask it */
1162 xive_do_source_set_mask(&xc->ipi_data, false);
1163
1164 return 0;
1165 }
1166
xive_cleanup_cpu_ipi(unsigned int cpu,struct xive_cpu * xc)1167 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1168 {
1169 /* Disable the IPI and free the IRQ data */
1170
1171 /* Already cleaned up ? */
1172 if (xc->hw_ipi == 0)
1173 return;
1174
1175 /* Mask the IPI */
1176 xive_do_source_set_mask(&xc->ipi_data, true);
1177
1178 /*
1179 * Note: We don't call xive_cleanup_irq_data() to free
1180 * the mappings as this is called from an IPI on kexec
1181 * which is not a safe environment to call iounmap()
1182 */
1183
1184 /* Deconfigure/mask in the backend */
1185 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1186 0xff, xive_ipi_irq);
1187
1188 /* Free the IPIs in the backend */
1189 xive_ops->put_ipi(cpu, xc);
1190 }
1191
xive_smp_probe(void)1192 void __init xive_smp_probe(void)
1193 {
1194 smp_ops->cause_ipi = xive_cause_ipi;
1195
1196 /* Register the IPI */
1197 xive_request_ipi();
1198
1199 /* Allocate and setup IPI for the boot CPU */
1200 xive_setup_cpu_ipi(smp_processor_id());
1201 }
1202
1203 #endif /* CONFIG_SMP */
1204
xive_irq_domain_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1205 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1206 irq_hw_number_t hw)
1207 {
1208 int rc;
1209
1210 /*
1211 * Mark interrupts as edge sensitive by default so that resend
1212 * actually works. Will fix that up below if needed.
1213 */
1214 irq_clear_status_flags(virq, IRQ_LEVEL);
1215
1216 #ifdef CONFIG_SMP
1217 /* IPIs are special and come up with HW number 0 */
1218 if (hw == 0) {
1219 /*
1220 * IPIs are marked per-cpu. We use separate HW interrupts under
1221 * the hood but associated with the same "linux" interrupt
1222 */
1223 irq_set_chip_and_handler(virq, &xive_ipi_chip,
1224 handle_percpu_irq);
1225 return 0;
1226 }
1227 #endif
1228
1229 rc = xive_irq_alloc_data(virq, hw);
1230 if (rc)
1231 return rc;
1232
1233 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1234
1235 return 0;
1236 }
1237
xive_irq_domain_unmap(struct irq_domain * d,unsigned int virq)1238 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1239 {
1240 struct irq_data *data = irq_get_irq_data(virq);
1241 unsigned int hw_irq;
1242
1243 /* XXX Assign BAD number */
1244 if (!data)
1245 return;
1246 hw_irq = (unsigned int)irqd_to_hwirq(data);
1247 if (hw_irq)
1248 xive_irq_free_data(virq);
1249 }
1250
xive_irq_domain_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)1251 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1252 const u32 *intspec, unsigned int intsize,
1253 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1254
1255 {
1256 *out_hwirq = intspec[0];
1257
1258 /*
1259 * If intsize is at least 2, we look for the type in the second cell,
1260 * we assume the LSB indicates a level interrupt.
1261 */
1262 if (intsize > 1) {
1263 if (intspec[1] & 1)
1264 *out_flags = IRQ_TYPE_LEVEL_LOW;
1265 else
1266 *out_flags = IRQ_TYPE_EDGE_RISING;
1267 } else
1268 *out_flags = IRQ_TYPE_LEVEL_LOW;
1269
1270 return 0;
1271 }
1272
xive_irq_domain_match(struct irq_domain * h,struct device_node * node,enum irq_domain_bus_token bus_token)1273 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1274 enum irq_domain_bus_token bus_token)
1275 {
1276 return xive_ops->match(node);
1277 }
1278
1279 static const struct irq_domain_ops xive_irq_domain_ops = {
1280 .match = xive_irq_domain_match,
1281 .map = xive_irq_domain_map,
1282 .unmap = xive_irq_domain_unmap,
1283 .xlate = xive_irq_domain_xlate,
1284 };
1285
xive_init_host(void)1286 static void __init xive_init_host(void)
1287 {
1288 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1289 &xive_irq_domain_ops, NULL);
1290 if (WARN_ON(xive_irq_domain == NULL))
1291 return;
1292 irq_set_default_host(xive_irq_domain);
1293 }
1294
xive_cleanup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1295 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1296 {
1297 if (xc->queue[xive_irq_priority].qpage)
1298 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1299 }
1300
xive_setup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1301 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1302 {
1303 int rc = 0;
1304
1305 /* We setup 1 queues for now with a 64k page */
1306 if (!xc->queue[xive_irq_priority].qpage)
1307 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1308
1309 return rc;
1310 }
1311
xive_prepare_cpu(unsigned int cpu)1312 static int xive_prepare_cpu(unsigned int cpu)
1313 {
1314 struct xive_cpu *xc;
1315
1316 xc = per_cpu(xive_cpu, cpu);
1317 if (!xc) {
1318 struct device_node *np;
1319
1320 xc = kzalloc_node(sizeof(struct xive_cpu),
1321 GFP_KERNEL, cpu_to_node(cpu));
1322 if (!xc)
1323 return -ENOMEM;
1324 np = of_get_cpu_node(cpu, NULL);
1325 if (np)
1326 xc->chip_id = of_get_ibm_chip_id(np);
1327 of_node_put(np);
1328
1329 per_cpu(xive_cpu, cpu) = xc;
1330 }
1331
1332 /* Setup EQs if not already */
1333 return xive_setup_cpu_queues(cpu, xc);
1334 }
1335
xive_setup_cpu(void)1336 static void xive_setup_cpu(void)
1337 {
1338 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1339
1340 /* The backend might have additional things to do */
1341 if (xive_ops->setup_cpu)
1342 xive_ops->setup_cpu(smp_processor_id(), xc);
1343
1344 /* Set CPPR to 0xff to enable flow of interrupts */
1345 xc->cppr = 0xff;
1346 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1347 }
1348
1349 #ifdef CONFIG_SMP
xive_smp_setup_cpu(void)1350 void xive_smp_setup_cpu(void)
1351 {
1352 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1353
1354 /* This will have already been done on the boot CPU */
1355 if (smp_processor_id() != boot_cpuid)
1356 xive_setup_cpu();
1357
1358 }
1359
xive_smp_prepare_cpu(unsigned int cpu)1360 int xive_smp_prepare_cpu(unsigned int cpu)
1361 {
1362 int rc;
1363
1364 /* Allocate per-CPU data and queues */
1365 rc = xive_prepare_cpu(cpu);
1366 if (rc)
1367 return rc;
1368
1369 /* Allocate and setup IPI for the new CPU */
1370 return xive_setup_cpu_ipi(cpu);
1371 }
1372
1373 #ifdef CONFIG_HOTPLUG_CPU
xive_flush_cpu_queue(unsigned int cpu,struct xive_cpu * xc)1374 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1375 {
1376 u32 irq;
1377
1378 /* We assume local irqs are disabled */
1379 WARN_ON(!irqs_disabled());
1380
1381 /* Check what's already in the CPU queue */
1382 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1383 /*
1384 * We need to re-route that interrupt to its new destination.
1385 * First get and lock the descriptor
1386 */
1387 struct irq_desc *desc = irq_to_desc(irq);
1388 struct irq_data *d = irq_desc_get_irq_data(desc);
1389 struct xive_irq_data *xd;
1390 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1391
1392 /*
1393 * Ignore anything that isn't a XIVE irq and ignore
1394 * IPIs, so can just be dropped.
1395 */
1396 if (d->domain != xive_irq_domain || hw_irq == 0)
1397 continue;
1398
1399 /*
1400 * The IRQ should have already been re-routed, it's just a
1401 * stale in the old queue, so re-trigger it in order to make
1402 * it reach is new destination.
1403 */
1404 #ifdef DEBUG_FLUSH
1405 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1406 cpu, irq);
1407 #endif
1408 raw_spin_lock(&desc->lock);
1409 xd = irq_desc_get_handler_data(desc);
1410
1411 /*
1412 * Clear saved_p to indicate that it's no longer pending
1413 */
1414 xd->saved_p = false;
1415
1416 /*
1417 * For LSIs, we EOI, this will cause a resend if it's
1418 * still asserted. Otherwise do an MSI retrigger.
1419 */
1420 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1421 xive_do_source_eoi(irqd_to_hwirq(d), xd);
1422 else
1423 xive_irq_retrigger(d);
1424
1425 raw_spin_unlock(&desc->lock);
1426 }
1427 }
1428
xive_smp_disable_cpu(void)1429 void xive_smp_disable_cpu(void)
1430 {
1431 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1432 unsigned int cpu = smp_processor_id();
1433
1434 /* Migrate interrupts away from the CPU */
1435 irq_migrate_all_off_this_cpu();
1436
1437 /* Set CPPR to 0 to disable flow of interrupts */
1438 xc->cppr = 0;
1439 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1440
1441 /* Flush everything still in the queue */
1442 xive_flush_cpu_queue(cpu, xc);
1443
1444 /* Re-enable CPPR */
1445 xc->cppr = 0xff;
1446 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1447 }
1448
xive_flush_interrupt(void)1449 void xive_flush_interrupt(void)
1450 {
1451 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1452 unsigned int cpu = smp_processor_id();
1453
1454 /* Called if an interrupt occurs while the CPU is hot unplugged */
1455 xive_flush_cpu_queue(cpu, xc);
1456 }
1457
1458 #endif /* CONFIG_HOTPLUG_CPU */
1459
1460 #endif /* CONFIG_SMP */
1461
xive_teardown_cpu(void)1462 void xive_teardown_cpu(void)
1463 {
1464 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1465 unsigned int cpu = smp_processor_id();
1466
1467 /* Set CPPR to 0 to disable flow of interrupts */
1468 xc->cppr = 0;
1469 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1470
1471 if (xive_ops->teardown_cpu)
1472 xive_ops->teardown_cpu(cpu, xc);
1473
1474 #ifdef CONFIG_SMP
1475 /* Get rid of IPI */
1476 xive_cleanup_cpu_ipi(cpu, xc);
1477 #endif
1478
1479 /* Disable and free the queues */
1480 xive_cleanup_cpu_queues(cpu, xc);
1481 }
1482
xive_shutdown(void)1483 void xive_shutdown(void)
1484 {
1485 xive_ops->shutdown();
1486 }
1487
xive_core_init(const struct xive_ops * ops,void __iomem * area,u32 offset,u8 max_prio)1488 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1489 u8 max_prio)
1490 {
1491 xive_tima = area;
1492 xive_tima_offset = offset;
1493 xive_ops = ops;
1494 xive_irq_priority = max_prio;
1495
1496 ppc_md.get_irq = xive_get_irq;
1497 __xive_enabled = true;
1498
1499 pr_devel("Initializing host..\n");
1500 xive_init_host();
1501
1502 pr_devel("Initializing boot CPU..\n");
1503
1504 /* Allocate per-CPU data and queues */
1505 xive_prepare_cpu(smp_processor_id());
1506
1507 /* Get ready for interrupts */
1508 xive_setup_cpu();
1509
1510 pr_info("Interrupt handling initialized with %s backend\n",
1511 xive_ops->name);
1512 pr_info("Using priority %d for all interrupts\n", max_prio);
1513
1514 return true;
1515 }
1516
xive_queue_page_alloc(unsigned int cpu,u32 queue_shift)1517 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1518 {
1519 unsigned int alloc_order;
1520 struct page *pages;
1521 __be32 *qpage;
1522
1523 alloc_order = xive_alloc_order(queue_shift);
1524 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1525 if (!pages)
1526 return ERR_PTR(-ENOMEM);
1527 qpage = (__be32 *)page_address(pages);
1528 memset(qpage, 0, 1 << queue_shift);
1529
1530 return qpage;
1531 }
1532
xive_off(char * arg)1533 static int __init xive_off(char *arg)
1534 {
1535 xive_cmdline_disabled = true;
1536 return 0;
1537 }
1538 __setup("xive=off", xive_off);
1539