1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23
24 kmem_zone_t *xfs_log_ticket_zone;
25
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
33 STATIC int
34 xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
37 STATIC void
38 xlog_dealloc_log(
39 struct xlog *log);
40
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 struct xlog_in_core *iclog);
44 STATIC int
45 xlog_state_get_iclog_space(
46 struct xlog *log,
47 int len,
48 struct xlog_in_core **iclog,
49 struct xlog_ticket *ticket,
50 int *continued_write,
51 int *logoffsetp);
52 STATIC void
53 xlog_state_switch_iclogs(
54 struct xlog *log,
55 struct xlog_in_core *iclog,
56 int eventual_size);
57 STATIC void
58 xlog_grant_push_ail(
59 struct xlog *log,
60 int need_bytes);
61 STATIC void
62 xlog_sync(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_verify_dest_ptr(
68 struct xlog *log,
69 void *ptr);
70 STATIC void
71 xlog_verify_grant_tail(
72 struct xlog *log);
73 STATIC void
74 xlog_verify_iclog(
75 struct xlog *log,
76 struct xlog_in_core *iclog,
77 int count);
78 STATIC void
79 xlog_verify_tail_lsn(
80 struct xlog *log,
81 struct xlog_in_core *iclog,
82 xfs_lsn_t tail_lsn);
83 #else
84 #define xlog_verify_dest_ptr(a,b)
85 #define xlog_verify_grant_tail(a)
86 #define xlog_verify_iclog(a,b,c)
87 #define xlog_verify_tail_lsn(a,b,c)
88 #endif
89
90 STATIC int
91 xlog_iclogs_empty(
92 struct xlog *log);
93
94 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)95 xlog_grant_sub_space(
96 struct xlog *log,
97 atomic64_t *head,
98 int bytes)
99 {
100 int64_t head_val = atomic64_read(head);
101 int64_t new, old;
102
103 do {
104 int cycle, space;
105
106 xlog_crack_grant_head_val(head_val, &cycle, &space);
107
108 space -= bytes;
109 if (space < 0) {
110 space += log->l_logsize;
111 cycle--;
112 }
113
114 old = head_val;
115 new = xlog_assign_grant_head_val(cycle, space);
116 head_val = atomic64_cmpxchg(head, old, new);
117 } while (head_val != old);
118 }
119
120 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)121 xlog_grant_add_space(
122 struct xlog *log,
123 atomic64_t *head,
124 int bytes)
125 {
126 int64_t head_val = atomic64_read(head);
127 int64_t new, old;
128
129 do {
130 int tmp;
131 int cycle, space;
132
133 xlog_crack_grant_head_val(head_val, &cycle, &space);
134
135 tmp = log->l_logsize - space;
136 if (tmp > bytes)
137 space += bytes;
138 else {
139 space = bytes - tmp;
140 cycle++;
141 }
142
143 old = head_val;
144 new = xlog_assign_grant_head_val(cycle, space);
145 head_val = atomic64_cmpxchg(head, old, new);
146 } while (head_val != old);
147 }
148
149 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 struct xlog_grant_head *head)
152 {
153 xlog_assign_grant_head(&head->grant, 1, 0);
154 INIT_LIST_HEAD(&head->waiters);
155 spin_lock_init(&head->lock);
156 }
157
158 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)159 xlog_grant_head_wake_all(
160 struct xlog_grant_head *head)
161 {
162 struct xlog_ticket *tic;
163
164 spin_lock(&head->lock);
165 list_for_each_entry(tic, &head->waiters, t_queue)
166 wake_up_process(tic->t_task);
167 spin_unlock(&head->lock);
168 }
169
170 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)171 xlog_ticket_reservation(
172 struct xlog *log,
173 struct xlog_grant_head *head,
174 struct xlog_ticket *tic)
175 {
176 if (head == &log->l_write_head) {
177 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
178 return tic->t_unit_res;
179 } else {
180 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
181 return tic->t_unit_res * tic->t_cnt;
182 else
183 return tic->t_unit_res;
184 }
185 }
186
187 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)188 xlog_grant_head_wake(
189 struct xlog *log,
190 struct xlog_grant_head *head,
191 int *free_bytes)
192 {
193 struct xlog_ticket *tic;
194 int need_bytes;
195 bool woken_task = false;
196
197 list_for_each_entry(tic, &head->waiters, t_queue) {
198
199 /*
200 * There is a chance that the size of the CIL checkpoints in
201 * progress at the last AIL push target calculation resulted in
202 * limiting the target to the log head (l_last_sync_lsn) at the
203 * time. This may not reflect where the log head is now as the
204 * CIL checkpoints may have completed.
205 *
206 * Hence when we are woken here, it may be that the head of the
207 * log that has moved rather than the tail. As the tail didn't
208 * move, there still won't be space available for the
209 * reservation we require. However, if the AIL has already
210 * pushed to the target defined by the old log head location, we
211 * will hang here waiting for something else to update the AIL
212 * push target.
213 *
214 * Therefore, if there isn't space to wake the first waiter on
215 * the grant head, we need to push the AIL again to ensure the
216 * target reflects both the current log tail and log head
217 * position before we wait for the tail to move again.
218 */
219
220 need_bytes = xlog_ticket_reservation(log, head, tic);
221 if (*free_bytes < need_bytes) {
222 if (!woken_task)
223 xlog_grant_push_ail(log, need_bytes);
224 return false;
225 }
226
227 *free_bytes -= need_bytes;
228 trace_xfs_log_grant_wake_up(log, tic);
229 wake_up_process(tic->t_task);
230 woken_task = true;
231 }
232
233 return true;
234 }
235
236 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)237 xlog_grant_head_wait(
238 struct xlog *log,
239 struct xlog_grant_head *head,
240 struct xlog_ticket *tic,
241 int need_bytes) __releases(&head->lock)
242 __acquires(&head->lock)
243 {
244 list_add_tail(&tic->t_queue, &head->waiters);
245
246 do {
247 if (XLOG_FORCED_SHUTDOWN(log))
248 goto shutdown;
249 xlog_grant_push_ail(log, need_bytes);
250
251 __set_current_state(TASK_UNINTERRUPTIBLE);
252 spin_unlock(&head->lock);
253
254 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
255
256 trace_xfs_log_grant_sleep(log, tic);
257 schedule();
258 trace_xfs_log_grant_wake(log, tic);
259
260 spin_lock(&head->lock);
261 if (XLOG_FORCED_SHUTDOWN(log))
262 goto shutdown;
263 } while (xlog_space_left(log, &head->grant) < need_bytes);
264
265 list_del_init(&tic->t_queue);
266 return 0;
267 shutdown:
268 list_del_init(&tic->t_queue);
269 return -EIO;
270 }
271
272 /*
273 * Atomically get the log space required for a log ticket.
274 *
275 * Once a ticket gets put onto head->waiters, it will only return after the
276 * needed reservation is satisfied.
277 *
278 * This function is structured so that it has a lock free fast path. This is
279 * necessary because every new transaction reservation will come through this
280 * path. Hence any lock will be globally hot if we take it unconditionally on
281 * every pass.
282 *
283 * As tickets are only ever moved on and off head->waiters under head->lock, we
284 * only need to take that lock if we are going to add the ticket to the queue
285 * and sleep. We can avoid taking the lock if the ticket was never added to
286 * head->waiters because the t_queue list head will be empty and we hold the
287 * only reference to it so it can safely be checked unlocked.
288 */
289 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)290 xlog_grant_head_check(
291 struct xlog *log,
292 struct xlog_grant_head *head,
293 struct xlog_ticket *tic,
294 int *need_bytes)
295 {
296 int free_bytes;
297 int error = 0;
298
299 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
300
301 /*
302 * If there are other waiters on the queue then give them a chance at
303 * logspace before us. Wake up the first waiters, if we do not wake
304 * up all the waiters then go to sleep waiting for more free space,
305 * otherwise try to get some space for this transaction.
306 */
307 *need_bytes = xlog_ticket_reservation(log, head, tic);
308 free_bytes = xlog_space_left(log, &head->grant);
309 if (!list_empty_careful(&head->waiters)) {
310 spin_lock(&head->lock);
311 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
312 free_bytes < *need_bytes) {
313 error = xlog_grant_head_wait(log, head, tic,
314 *need_bytes);
315 }
316 spin_unlock(&head->lock);
317 } else if (free_bytes < *need_bytes) {
318 spin_lock(&head->lock);
319 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
320 spin_unlock(&head->lock);
321 }
322
323 return error;
324 }
325
326 static void
xlog_tic_reset_res(xlog_ticket_t * tic)327 xlog_tic_reset_res(xlog_ticket_t *tic)
328 {
329 tic->t_res_num = 0;
330 tic->t_res_arr_sum = 0;
331 tic->t_res_num_ophdrs = 0;
332 }
333
334 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)335 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
336 {
337 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
338 /* add to overflow and start again */
339 tic->t_res_o_flow += tic->t_res_arr_sum;
340 tic->t_res_num = 0;
341 tic->t_res_arr_sum = 0;
342 }
343
344 tic->t_res_arr[tic->t_res_num].r_len = len;
345 tic->t_res_arr[tic->t_res_num].r_type = type;
346 tic->t_res_arr_sum += len;
347 tic->t_res_num++;
348 }
349
350 /*
351 * Replenish the byte reservation required by moving the grant write head.
352 */
353 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)354 xfs_log_regrant(
355 struct xfs_mount *mp,
356 struct xlog_ticket *tic)
357 {
358 struct xlog *log = mp->m_log;
359 int need_bytes;
360 int error = 0;
361
362 if (XLOG_FORCED_SHUTDOWN(log))
363 return -EIO;
364
365 XFS_STATS_INC(mp, xs_try_logspace);
366
367 /*
368 * This is a new transaction on the ticket, so we need to change the
369 * transaction ID so that the next transaction has a different TID in
370 * the log. Just add one to the existing tid so that we can see chains
371 * of rolling transactions in the log easily.
372 */
373 tic->t_tid++;
374
375 xlog_grant_push_ail(log, tic->t_unit_res);
376
377 tic->t_curr_res = tic->t_unit_res;
378 xlog_tic_reset_res(tic);
379
380 if (tic->t_cnt > 0)
381 return 0;
382
383 trace_xfs_log_regrant(log, tic);
384
385 error = xlog_grant_head_check(log, &log->l_write_head, tic,
386 &need_bytes);
387 if (error)
388 goto out_error;
389
390 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
391 trace_xfs_log_regrant_exit(log, tic);
392 xlog_verify_grant_tail(log);
393 return 0;
394
395 out_error:
396 /*
397 * If we are failing, make sure the ticket doesn't have any current
398 * reservations. We don't want to add this back when the ticket/
399 * transaction gets cancelled.
400 */
401 tic->t_curr_res = 0;
402 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
403 return error;
404 }
405
406 /*
407 * Reserve log space and return a ticket corresponding to the reservation.
408 *
409 * Each reservation is going to reserve extra space for a log record header.
410 * When writes happen to the on-disk log, we don't subtract the length of the
411 * log record header from any reservation. By wasting space in each
412 * reservation, we prevent over allocation problems.
413 */
414 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)415 xfs_log_reserve(
416 struct xfs_mount *mp,
417 int unit_bytes,
418 int cnt,
419 struct xlog_ticket **ticp,
420 uint8_t client,
421 bool permanent)
422 {
423 struct xlog *log = mp->m_log;
424 struct xlog_ticket *tic;
425 int need_bytes;
426 int error = 0;
427
428 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
429
430 if (XLOG_FORCED_SHUTDOWN(log))
431 return -EIO;
432
433 XFS_STATS_INC(mp, xs_try_logspace);
434
435 ASSERT(*ticp == NULL);
436 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
437 *ticp = tic;
438
439 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
440 : tic->t_unit_res);
441
442 trace_xfs_log_reserve(log, tic);
443
444 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
445 &need_bytes);
446 if (error)
447 goto out_error;
448
449 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
450 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
451 trace_xfs_log_reserve_exit(log, tic);
452 xlog_verify_grant_tail(log);
453 return 0;
454
455 out_error:
456 /*
457 * If we are failing, make sure the ticket doesn't have any current
458 * reservations. We don't want to add this back when the ticket/
459 * transaction gets cancelled.
460 */
461 tic->t_curr_res = 0;
462 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
463 return error;
464 }
465
466 static bool
__xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)467 __xlog_state_release_iclog(
468 struct xlog *log,
469 struct xlog_in_core *iclog)
470 {
471 lockdep_assert_held(&log->l_icloglock);
472
473 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
474 /* update tail before writing to iclog */
475 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
476
477 iclog->ic_state = XLOG_STATE_SYNCING;
478 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
479 xlog_verify_tail_lsn(log, iclog, tail_lsn);
480 /* cycle incremented when incrementing curr_block */
481 return true;
482 }
483
484 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
485 return false;
486 }
487
488 /*
489 * Flush iclog to disk if this is the last reference to the given iclog and the
490 * it is in the WANT_SYNC state.
491 */
492 static int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)493 xlog_state_release_iclog(
494 struct xlog *log,
495 struct xlog_in_core *iclog)
496 {
497 lockdep_assert_held(&log->l_icloglock);
498
499 if (iclog->ic_state == XLOG_STATE_IOERROR)
500 return -EIO;
501
502 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
503 __xlog_state_release_iclog(log, iclog)) {
504 spin_unlock(&log->l_icloglock);
505 xlog_sync(log, iclog);
506 spin_lock(&log->l_icloglock);
507 }
508
509 return 0;
510 }
511
512 void
xfs_log_release_iclog(struct xlog_in_core * iclog)513 xfs_log_release_iclog(
514 struct xlog_in_core *iclog)
515 {
516 struct xlog *log = iclog->ic_log;
517 bool sync = false;
518
519 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
520 if (iclog->ic_state != XLOG_STATE_IOERROR)
521 sync = __xlog_state_release_iclog(log, iclog);
522 spin_unlock(&log->l_icloglock);
523 }
524
525 if (sync)
526 xlog_sync(log, iclog);
527 }
528
529 /*
530 * Mount a log filesystem
531 *
532 * mp - ubiquitous xfs mount point structure
533 * log_target - buftarg of on-disk log device
534 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
535 * num_bblocks - Number of BBSIZE blocks in on-disk log
536 *
537 * Return error or zero.
538 */
539 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)540 xfs_log_mount(
541 xfs_mount_t *mp,
542 xfs_buftarg_t *log_target,
543 xfs_daddr_t blk_offset,
544 int num_bblks)
545 {
546 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
547 int error = 0;
548 int min_logfsbs;
549
550 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
551 xfs_notice(mp, "Mounting V%d Filesystem",
552 XFS_SB_VERSION_NUM(&mp->m_sb));
553 } else {
554 xfs_notice(mp,
555 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
556 XFS_SB_VERSION_NUM(&mp->m_sb));
557 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
558 }
559
560 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
561 if (IS_ERR(mp->m_log)) {
562 error = PTR_ERR(mp->m_log);
563 goto out;
564 }
565
566 /*
567 * Validate the given log space and drop a critical message via syslog
568 * if the log size is too small that would lead to some unexpected
569 * situations in transaction log space reservation stage.
570 *
571 * Note: we can't just reject the mount if the validation fails. This
572 * would mean that people would have to downgrade their kernel just to
573 * remedy the situation as there is no way to grow the log (short of
574 * black magic surgery with xfs_db).
575 *
576 * We can, however, reject mounts for CRC format filesystems, as the
577 * mkfs binary being used to make the filesystem should never create a
578 * filesystem with a log that is too small.
579 */
580 min_logfsbs = xfs_log_calc_minimum_size(mp);
581
582 if (mp->m_sb.sb_logblocks < min_logfsbs) {
583 xfs_warn(mp,
584 "Log size %d blocks too small, minimum size is %d blocks",
585 mp->m_sb.sb_logblocks, min_logfsbs);
586 error = -EINVAL;
587 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
588 xfs_warn(mp,
589 "Log size %d blocks too large, maximum size is %lld blocks",
590 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
591 error = -EINVAL;
592 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
593 xfs_warn(mp,
594 "log size %lld bytes too large, maximum size is %lld bytes",
595 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
596 XFS_MAX_LOG_BYTES);
597 error = -EINVAL;
598 } else if (mp->m_sb.sb_logsunit > 1 &&
599 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
600 xfs_warn(mp,
601 "log stripe unit %u bytes must be a multiple of block size",
602 mp->m_sb.sb_logsunit);
603 error = -EINVAL;
604 fatal = true;
605 }
606 if (error) {
607 /*
608 * Log check errors are always fatal on v5; or whenever bad
609 * metadata leads to a crash.
610 */
611 if (fatal) {
612 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
613 ASSERT(0);
614 goto out_free_log;
615 }
616 xfs_crit(mp, "Log size out of supported range.");
617 xfs_crit(mp,
618 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
619 }
620
621 /*
622 * Initialize the AIL now we have a log.
623 */
624 error = xfs_trans_ail_init(mp);
625 if (error) {
626 xfs_warn(mp, "AIL initialisation failed: error %d", error);
627 goto out_free_log;
628 }
629 mp->m_log->l_ailp = mp->m_ail;
630
631 /*
632 * skip log recovery on a norecovery mount. pretend it all
633 * just worked.
634 */
635 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
636 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
637
638 if (readonly)
639 mp->m_flags &= ~XFS_MOUNT_RDONLY;
640
641 error = xlog_recover(mp->m_log);
642
643 if (readonly)
644 mp->m_flags |= XFS_MOUNT_RDONLY;
645 if (error) {
646 xfs_warn(mp, "log mount/recovery failed: error %d",
647 error);
648 xlog_recover_cancel(mp->m_log);
649 goto out_destroy_ail;
650 }
651 }
652
653 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
654 "log");
655 if (error)
656 goto out_destroy_ail;
657
658 /* Normal transactions can now occur */
659 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
660
661 /*
662 * Now the log has been fully initialised and we know were our
663 * space grant counters are, we can initialise the permanent ticket
664 * needed for delayed logging to work.
665 */
666 xlog_cil_init_post_recovery(mp->m_log);
667
668 return 0;
669
670 out_destroy_ail:
671 xfs_trans_ail_destroy(mp);
672 out_free_log:
673 xlog_dealloc_log(mp->m_log);
674 out:
675 return error;
676 }
677
678 /*
679 * Finish the recovery of the file system. This is separate from the
680 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
681 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
682 * here.
683 *
684 * If we finish recovery successfully, start the background log work. If we are
685 * not doing recovery, then we have a RO filesystem and we don't need to start
686 * it.
687 */
688 int
xfs_log_mount_finish(struct xfs_mount * mp)689 xfs_log_mount_finish(
690 struct xfs_mount *mp)
691 {
692 int error = 0;
693 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
694 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
695
696 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
697 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
698 return 0;
699 } else if (readonly) {
700 /* Allow unlinked processing to proceed */
701 mp->m_flags &= ~XFS_MOUNT_RDONLY;
702 }
703
704 /*
705 * During the second phase of log recovery, we need iget and
706 * iput to behave like they do for an active filesystem.
707 * xfs_fs_drop_inode needs to be able to prevent the deletion
708 * of inodes before we're done replaying log items on those
709 * inodes. Turn it off immediately after recovery finishes
710 * so that we don't leak the quota inodes if subsequent mount
711 * activities fail.
712 *
713 * We let all inodes involved in redo item processing end up on
714 * the LRU instead of being evicted immediately so that if we do
715 * something to an unlinked inode, the irele won't cause
716 * premature truncation and freeing of the inode, which results
717 * in log recovery failure. We have to evict the unreferenced
718 * lru inodes after clearing SB_ACTIVE because we don't
719 * otherwise clean up the lru if there's a subsequent failure in
720 * xfs_mountfs, which leads to us leaking the inodes if nothing
721 * else (e.g. quotacheck) references the inodes before the
722 * mount failure occurs.
723 */
724 mp->m_super->s_flags |= SB_ACTIVE;
725 error = xlog_recover_finish(mp->m_log);
726 if (!error)
727 xfs_log_work_queue(mp);
728 mp->m_super->s_flags &= ~SB_ACTIVE;
729 evict_inodes(mp->m_super);
730
731 /*
732 * Drain the buffer LRU after log recovery. This is required for v4
733 * filesystems to avoid leaving around buffers with NULL verifier ops,
734 * but we do it unconditionally to make sure we're always in a clean
735 * cache state after mount.
736 *
737 * Don't push in the error case because the AIL may have pending intents
738 * that aren't removed until recovery is cancelled.
739 */
740 if (!error && recovered) {
741 xfs_log_force(mp, XFS_LOG_SYNC);
742 xfs_ail_push_all_sync(mp->m_ail);
743 }
744 xfs_wait_buftarg(mp->m_ddev_targp);
745
746 if (readonly)
747 mp->m_flags |= XFS_MOUNT_RDONLY;
748
749 return error;
750 }
751
752 /*
753 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
754 * the log.
755 */
756 void
xfs_log_mount_cancel(struct xfs_mount * mp)757 xfs_log_mount_cancel(
758 struct xfs_mount *mp)
759 {
760 xlog_recover_cancel(mp->m_log);
761 xfs_log_unmount(mp);
762 }
763
764 /*
765 * Wait for the iclog to be written disk, or return an error if the log has been
766 * shut down.
767 */
768 static int
xlog_wait_on_iclog(struct xlog_in_core * iclog)769 xlog_wait_on_iclog(
770 struct xlog_in_core *iclog)
771 __releases(iclog->ic_log->l_icloglock)
772 {
773 struct xlog *log = iclog->ic_log;
774
775 if (!XLOG_FORCED_SHUTDOWN(log) &&
776 iclog->ic_state != XLOG_STATE_ACTIVE &&
777 iclog->ic_state != XLOG_STATE_DIRTY) {
778 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
779 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
780 } else {
781 spin_unlock(&log->l_icloglock);
782 }
783
784 if (XLOG_FORCED_SHUTDOWN(log))
785 return -EIO;
786 return 0;
787 }
788
789 /*
790 * Write out an unmount record using the ticket provided. We have to account for
791 * the data space used in the unmount ticket as this write is not done from a
792 * transaction context that has already done the accounting for us.
793 */
794 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket,xfs_lsn_t * lsn,uint flags)795 xlog_write_unmount_record(
796 struct xlog *log,
797 struct xlog_ticket *ticket,
798 xfs_lsn_t *lsn,
799 uint flags)
800 {
801 struct xfs_unmount_log_format ulf = {
802 .magic = XLOG_UNMOUNT_TYPE,
803 };
804 struct xfs_log_iovec reg = {
805 .i_addr = &ulf,
806 .i_len = sizeof(ulf),
807 .i_type = XLOG_REG_TYPE_UNMOUNT,
808 };
809 struct xfs_log_vec vec = {
810 .lv_niovecs = 1,
811 .lv_iovecp = ®,
812 };
813
814 /* account for space used by record data */
815 ticket->t_curr_res -= sizeof(ulf);
816 return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
817 }
818
819 /*
820 * Mark the filesystem clean by writing an unmount record to the head of the
821 * log.
822 */
823 static void
xlog_unmount_write(struct xlog * log)824 xlog_unmount_write(
825 struct xlog *log)
826 {
827 struct xfs_mount *mp = log->l_mp;
828 struct xlog_in_core *iclog;
829 struct xlog_ticket *tic = NULL;
830 xfs_lsn_t lsn;
831 uint flags = XLOG_UNMOUNT_TRANS;
832 int error;
833
834 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
835 if (error)
836 goto out_err;
837
838 error = xlog_write_unmount_record(log, tic, &lsn, flags);
839 /*
840 * At this point, we're umounting anyway, so there's no point in
841 * transitioning log state to IOERROR. Just continue...
842 */
843 out_err:
844 if (error)
845 xfs_alert(mp, "%s: unmount record failed", __func__);
846
847 spin_lock(&log->l_icloglock);
848 iclog = log->l_iclog;
849 atomic_inc(&iclog->ic_refcnt);
850 if (iclog->ic_state == XLOG_STATE_ACTIVE)
851 xlog_state_switch_iclogs(log, iclog, 0);
852 else
853 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
854 iclog->ic_state == XLOG_STATE_IOERROR);
855 error = xlog_state_release_iclog(log, iclog);
856 xlog_wait_on_iclog(iclog);
857
858 if (tic) {
859 trace_xfs_log_umount_write(log, tic);
860 xfs_log_ticket_ungrant(log, tic);
861 }
862 }
863
864 static void
xfs_log_unmount_verify_iclog(struct xlog * log)865 xfs_log_unmount_verify_iclog(
866 struct xlog *log)
867 {
868 struct xlog_in_core *iclog = log->l_iclog;
869
870 do {
871 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
872 ASSERT(iclog->ic_offset == 0);
873 } while ((iclog = iclog->ic_next) != log->l_iclog);
874 }
875
876 /*
877 * Unmount record used to have a string "Unmount filesystem--" in the
878 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
879 * We just write the magic number now since that particular field isn't
880 * currently architecture converted and "Unmount" is a bit foo.
881 * As far as I know, there weren't any dependencies on the old behaviour.
882 */
883 static void
xfs_log_unmount_write(struct xfs_mount * mp)884 xfs_log_unmount_write(
885 struct xfs_mount *mp)
886 {
887 struct xlog *log = mp->m_log;
888
889 /*
890 * Don't write out unmount record on norecovery mounts or ro devices.
891 * Or, if we are doing a forced umount (typically because of IO errors).
892 */
893 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
894 xfs_readonly_buftarg(log->l_targ)) {
895 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
896 return;
897 }
898
899 xfs_log_force(mp, XFS_LOG_SYNC);
900
901 if (XLOG_FORCED_SHUTDOWN(log))
902 return;
903
904 /*
905 * If we think the summary counters are bad, avoid writing the unmount
906 * record to force log recovery at next mount, after which the summary
907 * counters will be recalculated. Refer to xlog_check_unmount_rec for
908 * more details.
909 */
910 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
911 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
912 xfs_alert(mp, "%s: will fix summary counters at next mount",
913 __func__);
914 return;
915 }
916
917 xfs_log_unmount_verify_iclog(log);
918 xlog_unmount_write(log);
919 }
920
921 /*
922 * Empty the log for unmount/freeze.
923 *
924 * To do this, we first need to shut down the background log work so it is not
925 * trying to cover the log as we clean up. We then need to unpin all objects in
926 * the log so we can then flush them out. Once they have completed their IO and
927 * run the callbacks removing themselves from the AIL, we can write the unmount
928 * record.
929 */
930 void
xfs_log_quiesce(struct xfs_mount * mp)931 xfs_log_quiesce(
932 struct xfs_mount *mp)
933 {
934 cancel_delayed_work_sync(&mp->m_log->l_work);
935 xfs_log_force(mp, XFS_LOG_SYNC);
936
937 /*
938 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
939 * will push it, xfs_wait_buftarg() will not wait for it. Further,
940 * xfs_buf_iowait() cannot be used because it was pushed with the
941 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
942 * the IO to complete.
943 */
944 xfs_ail_push_all_sync(mp->m_ail);
945 xfs_wait_buftarg(mp->m_ddev_targp);
946 xfs_buf_lock(mp->m_sb_bp);
947 xfs_buf_unlock(mp->m_sb_bp);
948
949 xfs_log_unmount_write(mp);
950 }
951
952 /*
953 * Shut down and release the AIL and Log.
954 *
955 * During unmount, we need to ensure we flush all the dirty metadata objects
956 * from the AIL so that the log is empty before we write the unmount record to
957 * the log. Once this is done, we can tear down the AIL and the log.
958 */
959 void
xfs_log_unmount(struct xfs_mount * mp)960 xfs_log_unmount(
961 struct xfs_mount *mp)
962 {
963 xfs_log_quiesce(mp);
964
965 xfs_trans_ail_destroy(mp);
966
967 xfs_sysfs_del(&mp->m_log->l_kobj);
968
969 xlog_dealloc_log(mp->m_log);
970 }
971
972 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)973 xfs_log_item_init(
974 struct xfs_mount *mp,
975 struct xfs_log_item *item,
976 int type,
977 const struct xfs_item_ops *ops)
978 {
979 item->li_mountp = mp;
980 item->li_ailp = mp->m_ail;
981 item->li_type = type;
982 item->li_ops = ops;
983 item->li_lv = NULL;
984
985 INIT_LIST_HEAD(&item->li_ail);
986 INIT_LIST_HEAD(&item->li_cil);
987 INIT_LIST_HEAD(&item->li_bio_list);
988 INIT_LIST_HEAD(&item->li_trans);
989 }
990
991 /*
992 * Wake up processes waiting for log space after we have moved the log tail.
993 */
994 void
xfs_log_space_wake(struct xfs_mount * mp)995 xfs_log_space_wake(
996 struct xfs_mount *mp)
997 {
998 struct xlog *log = mp->m_log;
999 int free_bytes;
1000
1001 if (XLOG_FORCED_SHUTDOWN(log))
1002 return;
1003
1004 if (!list_empty_careful(&log->l_write_head.waiters)) {
1005 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1006
1007 spin_lock(&log->l_write_head.lock);
1008 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1009 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1010 spin_unlock(&log->l_write_head.lock);
1011 }
1012
1013 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1014 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1015
1016 spin_lock(&log->l_reserve_head.lock);
1017 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1018 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1019 spin_unlock(&log->l_reserve_head.lock);
1020 }
1021 }
1022
1023 /*
1024 * Determine if we have a transaction that has gone to disk that needs to be
1025 * covered. To begin the transition to the idle state firstly the log needs to
1026 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1027 * we start attempting to cover the log.
1028 *
1029 * Only if we are then in a state where covering is needed, the caller is
1030 * informed that dummy transactions are required to move the log into the idle
1031 * state.
1032 *
1033 * If there are any items in the AIl or CIL, then we do not want to attempt to
1034 * cover the log as we may be in a situation where there isn't log space
1035 * available to run a dummy transaction and this can lead to deadlocks when the
1036 * tail of the log is pinned by an item that is modified in the CIL. Hence
1037 * there's no point in running a dummy transaction at this point because we
1038 * can't start trying to idle the log until both the CIL and AIL are empty.
1039 */
1040 static int
xfs_log_need_covered(xfs_mount_t * mp)1041 xfs_log_need_covered(xfs_mount_t *mp)
1042 {
1043 struct xlog *log = mp->m_log;
1044 int needed = 0;
1045
1046 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1047 return 0;
1048
1049 if (!xlog_cil_empty(log))
1050 return 0;
1051
1052 spin_lock(&log->l_icloglock);
1053 switch (log->l_covered_state) {
1054 case XLOG_STATE_COVER_DONE:
1055 case XLOG_STATE_COVER_DONE2:
1056 case XLOG_STATE_COVER_IDLE:
1057 break;
1058 case XLOG_STATE_COVER_NEED:
1059 case XLOG_STATE_COVER_NEED2:
1060 if (xfs_ail_min_lsn(log->l_ailp))
1061 break;
1062 if (!xlog_iclogs_empty(log))
1063 break;
1064
1065 needed = 1;
1066 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1067 log->l_covered_state = XLOG_STATE_COVER_DONE;
1068 else
1069 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1070 break;
1071 default:
1072 needed = 1;
1073 break;
1074 }
1075 spin_unlock(&log->l_icloglock);
1076 return needed;
1077 }
1078
1079 /*
1080 * We may be holding the log iclog lock upon entering this routine.
1081 */
1082 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1083 xlog_assign_tail_lsn_locked(
1084 struct xfs_mount *mp)
1085 {
1086 struct xlog *log = mp->m_log;
1087 struct xfs_log_item *lip;
1088 xfs_lsn_t tail_lsn;
1089
1090 assert_spin_locked(&mp->m_ail->ail_lock);
1091
1092 /*
1093 * To make sure we always have a valid LSN for the log tail we keep
1094 * track of the last LSN which was committed in log->l_last_sync_lsn,
1095 * and use that when the AIL was empty.
1096 */
1097 lip = xfs_ail_min(mp->m_ail);
1098 if (lip)
1099 tail_lsn = lip->li_lsn;
1100 else
1101 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1102 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1103 atomic64_set(&log->l_tail_lsn, tail_lsn);
1104 return tail_lsn;
1105 }
1106
1107 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1108 xlog_assign_tail_lsn(
1109 struct xfs_mount *mp)
1110 {
1111 xfs_lsn_t tail_lsn;
1112
1113 spin_lock(&mp->m_ail->ail_lock);
1114 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1115 spin_unlock(&mp->m_ail->ail_lock);
1116
1117 return tail_lsn;
1118 }
1119
1120 /*
1121 * Return the space in the log between the tail and the head. The head
1122 * is passed in the cycle/bytes formal parms. In the special case where
1123 * the reserve head has wrapped passed the tail, this calculation is no
1124 * longer valid. In this case, just return 0 which means there is no space
1125 * in the log. This works for all places where this function is called
1126 * with the reserve head. Of course, if the write head were to ever
1127 * wrap the tail, we should blow up. Rather than catch this case here,
1128 * we depend on other ASSERTions in other parts of the code. XXXmiken
1129 *
1130 * This code also handles the case where the reservation head is behind
1131 * the tail. The details of this case are described below, but the end
1132 * result is that we return the size of the log as the amount of space left.
1133 */
1134 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1135 xlog_space_left(
1136 struct xlog *log,
1137 atomic64_t *head)
1138 {
1139 int free_bytes;
1140 int tail_bytes;
1141 int tail_cycle;
1142 int head_cycle;
1143 int head_bytes;
1144
1145 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1146 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1147 tail_bytes = BBTOB(tail_bytes);
1148 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1149 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1150 else if (tail_cycle + 1 < head_cycle)
1151 return 0;
1152 else if (tail_cycle < head_cycle) {
1153 ASSERT(tail_cycle == (head_cycle - 1));
1154 free_bytes = tail_bytes - head_bytes;
1155 } else {
1156 /*
1157 * The reservation head is behind the tail.
1158 * In this case we just want to return the size of the
1159 * log as the amount of space left.
1160 */
1161 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1162 xfs_alert(log->l_mp,
1163 " tail_cycle = %d, tail_bytes = %d",
1164 tail_cycle, tail_bytes);
1165 xfs_alert(log->l_mp,
1166 " GH cycle = %d, GH bytes = %d",
1167 head_cycle, head_bytes);
1168 ASSERT(0);
1169 free_bytes = log->l_logsize;
1170 }
1171 return free_bytes;
1172 }
1173
1174
1175 static void
xlog_ioend_work(struct work_struct * work)1176 xlog_ioend_work(
1177 struct work_struct *work)
1178 {
1179 struct xlog_in_core *iclog =
1180 container_of(work, struct xlog_in_core, ic_end_io_work);
1181 struct xlog *log = iclog->ic_log;
1182 int error;
1183
1184 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1185 #ifdef DEBUG
1186 /* treat writes with injected CRC errors as failed */
1187 if (iclog->ic_fail_crc)
1188 error = -EIO;
1189 #endif
1190
1191 /*
1192 * Race to shutdown the filesystem if we see an error.
1193 */
1194 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1195 xfs_alert(log->l_mp, "log I/O error %d", error);
1196 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1197 }
1198
1199 xlog_state_done_syncing(iclog);
1200 bio_uninit(&iclog->ic_bio);
1201
1202 /*
1203 * Drop the lock to signal that we are done. Nothing references the
1204 * iclog after this, so an unmount waiting on this lock can now tear it
1205 * down safely. As such, it is unsafe to reference the iclog after the
1206 * unlock as we could race with it being freed.
1207 */
1208 up(&iclog->ic_sema);
1209 }
1210
1211 /*
1212 * Return size of each in-core log record buffer.
1213 *
1214 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1215 *
1216 * If the filesystem blocksize is too large, we may need to choose a
1217 * larger size since the directory code currently logs entire blocks.
1218 */
1219 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1220 xlog_get_iclog_buffer_size(
1221 struct xfs_mount *mp,
1222 struct xlog *log)
1223 {
1224 if (mp->m_logbufs <= 0)
1225 mp->m_logbufs = XLOG_MAX_ICLOGS;
1226 if (mp->m_logbsize <= 0)
1227 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1228
1229 log->l_iclog_bufs = mp->m_logbufs;
1230 log->l_iclog_size = mp->m_logbsize;
1231
1232 /*
1233 * # headers = size / 32k - one header holds cycles from 32k of data.
1234 */
1235 log->l_iclog_heads =
1236 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1237 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1238 }
1239
1240 void
xfs_log_work_queue(struct xfs_mount * mp)1241 xfs_log_work_queue(
1242 struct xfs_mount *mp)
1243 {
1244 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1245 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1246 }
1247
1248 /*
1249 * Every sync period we need to unpin all items in the AIL and push them to
1250 * disk. If there is nothing dirty, then we might need to cover the log to
1251 * indicate that the filesystem is idle.
1252 */
1253 static void
xfs_log_worker(struct work_struct * work)1254 xfs_log_worker(
1255 struct work_struct *work)
1256 {
1257 struct xlog *log = container_of(to_delayed_work(work),
1258 struct xlog, l_work);
1259 struct xfs_mount *mp = log->l_mp;
1260
1261 /* dgc: errors ignored - not fatal and nowhere to report them */
1262 if (xfs_log_need_covered(mp)) {
1263 /*
1264 * Dump a transaction into the log that contains no real change.
1265 * This is needed to stamp the current tail LSN into the log
1266 * during the covering operation.
1267 *
1268 * We cannot use an inode here for this - that will push dirty
1269 * state back up into the VFS and then periodic inode flushing
1270 * will prevent log covering from making progress. Hence we
1271 * synchronously log the superblock instead to ensure the
1272 * superblock is immediately unpinned and can be written back.
1273 */
1274 xfs_sync_sb(mp, true);
1275 } else
1276 xfs_log_force(mp, 0);
1277
1278 /* start pushing all the metadata that is currently dirty */
1279 xfs_ail_push_all(mp->m_ail);
1280
1281 /* queue us up again */
1282 xfs_log_work_queue(mp);
1283 }
1284
1285 /*
1286 * This routine initializes some of the log structure for a given mount point.
1287 * Its primary purpose is to fill in enough, so recovery can occur. However,
1288 * some other stuff may be filled in too.
1289 */
1290 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1291 xlog_alloc_log(
1292 struct xfs_mount *mp,
1293 struct xfs_buftarg *log_target,
1294 xfs_daddr_t blk_offset,
1295 int num_bblks)
1296 {
1297 struct xlog *log;
1298 xlog_rec_header_t *head;
1299 xlog_in_core_t **iclogp;
1300 xlog_in_core_t *iclog, *prev_iclog=NULL;
1301 int i;
1302 int error = -ENOMEM;
1303 uint log2_size = 0;
1304
1305 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1306 if (!log) {
1307 xfs_warn(mp, "Log allocation failed: No memory!");
1308 goto out;
1309 }
1310
1311 log->l_mp = mp;
1312 log->l_targ = log_target;
1313 log->l_logsize = BBTOB(num_bblks);
1314 log->l_logBBstart = blk_offset;
1315 log->l_logBBsize = num_bblks;
1316 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1317 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1318 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1319
1320 log->l_prev_block = -1;
1321 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1323 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1324 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1325
1326 xlog_grant_head_init(&log->l_reserve_head);
1327 xlog_grant_head_init(&log->l_write_head);
1328
1329 error = -EFSCORRUPTED;
1330 if (xfs_sb_version_hassector(&mp->m_sb)) {
1331 log2_size = mp->m_sb.sb_logsectlog;
1332 if (log2_size < BBSHIFT) {
1333 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1334 log2_size, BBSHIFT);
1335 goto out_free_log;
1336 }
1337
1338 log2_size -= BBSHIFT;
1339 if (log2_size > mp->m_sectbb_log) {
1340 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1341 log2_size, mp->m_sectbb_log);
1342 goto out_free_log;
1343 }
1344
1345 /* for larger sector sizes, must have v2 or external log */
1346 if (log2_size && log->l_logBBstart > 0 &&
1347 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1348 xfs_warn(mp,
1349 "log sector size (0x%x) invalid for configuration.",
1350 log2_size);
1351 goto out_free_log;
1352 }
1353 }
1354 log->l_sectBBsize = 1 << log2_size;
1355
1356 xlog_get_iclog_buffer_size(mp, log);
1357
1358 spin_lock_init(&log->l_icloglock);
1359 init_waitqueue_head(&log->l_flush_wait);
1360
1361 iclogp = &log->l_iclog;
1362 /*
1363 * The amount of memory to allocate for the iclog structure is
1364 * rather funky due to the way the structure is defined. It is
1365 * done this way so that we can use different sizes for machines
1366 * with different amounts of memory. See the definition of
1367 * xlog_in_core_t in xfs_log_priv.h for details.
1368 */
1369 ASSERT(log->l_iclog_size >= 4096);
1370 for (i = 0; i < log->l_iclog_bufs; i++) {
1371 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1372 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1373 sizeof(struct bio_vec);
1374
1375 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1376 if (!iclog)
1377 goto out_free_iclog;
1378
1379 *iclogp = iclog;
1380 iclog->ic_prev = prev_iclog;
1381 prev_iclog = iclog;
1382
1383 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1384 KM_MAYFAIL | KM_ZERO);
1385 if (!iclog->ic_data)
1386 goto out_free_iclog;
1387 #ifdef DEBUG
1388 log->l_iclog_bak[i] = &iclog->ic_header;
1389 #endif
1390 head = &iclog->ic_header;
1391 memset(head, 0, sizeof(xlog_rec_header_t));
1392 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1393 head->h_version = cpu_to_be32(
1394 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1395 head->h_size = cpu_to_be32(log->l_iclog_size);
1396 /* new fields */
1397 head->h_fmt = cpu_to_be32(XLOG_FMT);
1398 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1399
1400 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1401 iclog->ic_state = XLOG_STATE_ACTIVE;
1402 iclog->ic_log = log;
1403 atomic_set(&iclog->ic_refcnt, 0);
1404 spin_lock_init(&iclog->ic_callback_lock);
1405 INIT_LIST_HEAD(&iclog->ic_callbacks);
1406 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1407
1408 init_waitqueue_head(&iclog->ic_force_wait);
1409 init_waitqueue_head(&iclog->ic_write_wait);
1410 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1411 sema_init(&iclog->ic_sema, 1);
1412
1413 iclogp = &iclog->ic_next;
1414 }
1415 *iclogp = log->l_iclog; /* complete ring */
1416 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1417
1418 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1419 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1420 mp->m_super->s_id);
1421 if (!log->l_ioend_workqueue)
1422 goto out_free_iclog;
1423
1424 error = xlog_cil_init(log);
1425 if (error)
1426 goto out_destroy_workqueue;
1427 return log;
1428
1429 out_destroy_workqueue:
1430 destroy_workqueue(log->l_ioend_workqueue);
1431 out_free_iclog:
1432 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1433 prev_iclog = iclog->ic_next;
1434 kmem_free(iclog->ic_data);
1435 kmem_free(iclog);
1436 if (prev_iclog == log->l_iclog)
1437 break;
1438 }
1439 out_free_log:
1440 kmem_free(log);
1441 out:
1442 return ERR_PTR(error);
1443 } /* xlog_alloc_log */
1444
1445 /*
1446 * Write out the commit record of a transaction associated with the given
1447 * ticket to close off a running log write. Return the lsn of the commit record.
1448 */
1449 int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * lsn)1450 xlog_commit_record(
1451 struct xlog *log,
1452 struct xlog_ticket *ticket,
1453 struct xlog_in_core **iclog,
1454 xfs_lsn_t *lsn)
1455 {
1456 struct xfs_log_iovec reg = {
1457 .i_addr = NULL,
1458 .i_len = 0,
1459 .i_type = XLOG_REG_TYPE_COMMIT,
1460 };
1461 struct xfs_log_vec vec = {
1462 .lv_niovecs = 1,
1463 .lv_iovecp = ®,
1464 };
1465 int error;
1466
1467 if (XLOG_FORCED_SHUTDOWN(log))
1468 return -EIO;
1469
1470 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1471 false);
1472 if (error)
1473 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1474 return error;
1475 }
1476
1477 /*
1478 * Compute the LSN that we'd need to push the log tail towards in order to have
1479 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1480 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1481 * log free space already meets all three thresholds, this function returns
1482 * NULLCOMMITLSN.
1483 */
1484 xfs_lsn_t
xlog_grant_push_threshold(struct xlog * log,int need_bytes)1485 xlog_grant_push_threshold(
1486 struct xlog *log,
1487 int need_bytes)
1488 {
1489 xfs_lsn_t threshold_lsn = 0;
1490 xfs_lsn_t last_sync_lsn;
1491 int free_blocks;
1492 int free_bytes;
1493 int threshold_block;
1494 int threshold_cycle;
1495 int free_threshold;
1496
1497 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1498
1499 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1500 free_blocks = BTOBBT(free_bytes);
1501
1502 /*
1503 * Set the threshold for the minimum number of free blocks in the
1504 * log to the maximum of what the caller needs, one quarter of the
1505 * log, and 256 blocks.
1506 */
1507 free_threshold = BTOBB(need_bytes);
1508 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1509 free_threshold = max(free_threshold, 256);
1510 if (free_blocks >= free_threshold)
1511 return NULLCOMMITLSN;
1512
1513 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1514 &threshold_block);
1515 threshold_block += free_threshold;
1516 if (threshold_block >= log->l_logBBsize) {
1517 threshold_block -= log->l_logBBsize;
1518 threshold_cycle += 1;
1519 }
1520 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1521 threshold_block);
1522 /*
1523 * Don't pass in an lsn greater than the lsn of the last
1524 * log record known to be on disk. Use a snapshot of the last sync lsn
1525 * so that it doesn't change between the compare and the set.
1526 */
1527 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1528 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1529 threshold_lsn = last_sync_lsn;
1530
1531 return threshold_lsn;
1532 }
1533
1534 /*
1535 * Push the tail of the log if we need to do so to maintain the free log space
1536 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1537 * policy which pushes on an lsn which is further along in the log once we
1538 * reach the high water mark. In this manner, we would be creating a low water
1539 * mark.
1540 */
1541 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1542 xlog_grant_push_ail(
1543 struct xlog *log,
1544 int need_bytes)
1545 {
1546 xfs_lsn_t threshold_lsn;
1547
1548 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1549 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1550 return;
1551
1552 /*
1553 * Get the transaction layer to kick the dirty buffers out to
1554 * disk asynchronously. No point in trying to do this if
1555 * the filesystem is shutting down.
1556 */
1557 xfs_ail_push(log->l_ailp, threshold_lsn);
1558 }
1559
1560 /*
1561 * Stamp cycle number in every block
1562 */
1563 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1564 xlog_pack_data(
1565 struct xlog *log,
1566 struct xlog_in_core *iclog,
1567 int roundoff)
1568 {
1569 int i, j, k;
1570 int size = iclog->ic_offset + roundoff;
1571 __be32 cycle_lsn;
1572 char *dp;
1573
1574 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1575
1576 dp = iclog->ic_datap;
1577 for (i = 0; i < BTOBB(size); i++) {
1578 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1579 break;
1580 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1581 *(__be32 *)dp = cycle_lsn;
1582 dp += BBSIZE;
1583 }
1584
1585 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1586 xlog_in_core_2_t *xhdr = iclog->ic_data;
1587
1588 for ( ; i < BTOBB(size); i++) {
1589 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1590 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1591 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1592 *(__be32 *)dp = cycle_lsn;
1593 dp += BBSIZE;
1594 }
1595
1596 for (i = 1; i < log->l_iclog_heads; i++)
1597 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1598 }
1599 }
1600
1601 /*
1602 * Calculate the checksum for a log buffer.
1603 *
1604 * This is a little more complicated than it should be because the various
1605 * headers and the actual data are non-contiguous.
1606 */
1607 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1608 xlog_cksum(
1609 struct xlog *log,
1610 struct xlog_rec_header *rhead,
1611 char *dp,
1612 int size)
1613 {
1614 uint32_t crc;
1615
1616 /* first generate the crc for the record header ... */
1617 crc = xfs_start_cksum_update((char *)rhead,
1618 sizeof(struct xlog_rec_header),
1619 offsetof(struct xlog_rec_header, h_crc));
1620
1621 /* ... then for additional cycle data for v2 logs ... */
1622 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1623 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1624 int i;
1625 int xheads;
1626
1627 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1628
1629 for (i = 1; i < xheads; i++) {
1630 crc = crc32c(crc, &xhdr[i].hic_xheader,
1631 sizeof(struct xlog_rec_ext_header));
1632 }
1633 }
1634
1635 /* ... and finally for the payload */
1636 crc = crc32c(crc, dp, size);
1637
1638 return xfs_end_cksum(crc);
1639 }
1640
1641 static void
xlog_bio_end_io(struct bio * bio)1642 xlog_bio_end_io(
1643 struct bio *bio)
1644 {
1645 struct xlog_in_core *iclog = bio->bi_private;
1646
1647 queue_work(iclog->ic_log->l_ioend_workqueue,
1648 &iclog->ic_end_io_work);
1649 }
1650
1651 static int
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1652 xlog_map_iclog_data(
1653 struct bio *bio,
1654 void *data,
1655 size_t count)
1656 {
1657 do {
1658 struct page *page = kmem_to_page(data);
1659 unsigned int off = offset_in_page(data);
1660 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1661
1662 if (bio_add_page(bio, page, len, off) != len)
1663 return -EIO;
1664
1665 data += len;
1666 count -= len;
1667 } while (count);
1668
1669 return 0;
1670 }
1671
1672 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count,bool need_flush)1673 xlog_write_iclog(
1674 struct xlog *log,
1675 struct xlog_in_core *iclog,
1676 uint64_t bno,
1677 unsigned int count,
1678 bool need_flush)
1679 {
1680 ASSERT(bno < log->l_logBBsize);
1681
1682 /*
1683 * We lock the iclogbufs here so that we can serialise against I/O
1684 * completion during unmount. We might be processing a shutdown
1685 * triggered during unmount, and that can occur asynchronously to the
1686 * unmount thread, and hence we need to ensure that completes before
1687 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1688 * across the log IO to archieve that.
1689 */
1690 down(&iclog->ic_sema);
1691 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1692 /*
1693 * It would seem logical to return EIO here, but we rely on
1694 * the log state machine to propagate I/O errors instead of
1695 * doing it here. We kick of the state machine and unlock
1696 * the buffer manually, the code needs to be kept in sync
1697 * with the I/O completion path.
1698 */
1699 xlog_state_done_syncing(iclog);
1700 up(&iclog->ic_sema);
1701 return;
1702 }
1703
1704 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1705 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1706 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1707 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1708 iclog->ic_bio.bi_private = iclog;
1709
1710 /*
1711 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1712 * IOs coming immediately after this one. This prevents the block layer
1713 * writeback throttle from throttling log writes behind background
1714 * metadata writeback and causing priority inversions.
1715 */
1716 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1717 REQ_IDLE | REQ_FUA;
1718 if (need_flush)
1719 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1720
1721 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1722 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1723 return;
1724 }
1725 if (is_vmalloc_addr(iclog->ic_data))
1726 flush_kernel_vmap_range(iclog->ic_data, count);
1727
1728 /*
1729 * If this log buffer would straddle the end of the log we will have
1730 * to split it up into two bios, so that we can continue at the start.
1731 */
1732 if (bno + BTOBB(count) > log->l_logBBsize) {
1733 struct bio *split;
1734
1735 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1736 GFP_NOIO, &fs_bio_set);
1737 bio_chain(split, &iclog->ic_bio);
1738 submit_bio(split);
1739
1740 /* restart at logical offset zero for the remainder */
1741 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1742 }
1743
1744 submit_bio(&iclog->ic_bio);
1745 }
1746
1747 /*
1748 * We need to bump cycle number for the part of the iclog that is
1749 * written to the start of the log. Watch out for the header magic
1750 * number case, though.
1751 */
1752 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1753 xlog_split_iclog(
1754 struct xlog *log,
1755 void *data,
1756 uint64_t bno,
1757 unsigned int count)
1758 {
1759 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1760 unsigned int i;
1761
1762 for (i = split_offset; i < count; i += BBSIZE) {
1763 uint32_t cycle = get_unaligned_be32(data + i);
1764
1765 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1766 cycle++;
1767 put_unaligned_be32(cycle, data + i);
1768 }
1769 }
1770
1771 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1772 xlog_calc_iclog_size(
1773 struct xlog *log,
1774 struct xlog_in_core *iclog,
1775 uint32_t *roundoff)
1776 {
1777 uint32_t count_init, count;
1778 bool use_lsunit;
1779
1780 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1781 log->l_mp->m_sb.sb_logsunit > 1;
1782
1783 /* Add for LR header */
1784 count_init = log->l_iclog_hsize + iclog->ic_offset;
1785
1786 /* Round out the log write size */
1787 if (use_lsunit) {
1788 /* we have a v2 stripe unit to use */
1789 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1790 } else {
1791 count = BBTOB(BTOBB(count_init));
1792 }
1793
1794 ASSERT(count >= count_init);
1795 *roundoff = count - count_init;
1796
1797 if (use_lsunit)
1798 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1799 else
1800 ASSERT(*roundoff < BBTOB(1));
1801 return count;
1802 }
1803
1804 /*
1805 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1806 * fashion. Previously, we should have moved the current iclog
1807 * ptr in the log to point to the next available iclog. This allows further
1808 * write to continue while this code syncs out an iclog ready to go.
1809 * Before an in-core log can be written out, the data section must be scanned
1810 * to save away the 1st word of each BBSIZE block into the header. We replace
1811 * it with the current cycle count. Each BBSIZE block is tagged with the
1812 * cycle count because there in an implicit assumption that drives will
1813 * guarantee that entire 512 byte blocks get written at once. In other words,
1814 * we can't have part of a 512 byte block written and part not written. By
1815 * tagging each block, we will know which blocks are valid when recovering
1816 * after an unclean shutdown.
1817 *
1818 * This routine is single threaded on the iclog. No other thread can be in
1819 * this routine with the same iclog. Changing contents of iclog can there-
1820 * fore be done without grabbing the state machine lock. Updating the global
1821 * log will require grabbing the lock though.
1822 *
1823 * The entire log manager uses a logical block numbering scheme. Only
1824 * xlog_write_iclog knows about the fact that the log may not start with
1825 * block zero on a given device.
1826 */
1827 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1828 xlog_sync(
1829 struct xlog *log,
1830 struct xlog_in_core *iclog)
1831 {
1832 unsigned int count; /* byte count of bwrite */
1833 unsigned int roundoff; /* roundoff to BB or stripe */
1834 uint64_t bno;
1835 unsigned int size;
1836 bool need_flush = true, split = false;
1837
1838 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1839
1840 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1841
1842 /* move grant heads by roundoff in sync */
1843 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1844 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1845
1846 /* put cycle number in every block */
1847 xlog_pack_data(log, iclog, roundoff);
1848
1849 /* real byte length */
1850 size = iclog->ic_offset;
1851 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1852 size += roundoff;
1853 iclog->ic_header.h_len = cpu_to_be32(size);
1854
1855 XFS_STATS_INC(log->l_mp, xs_log_writes);
1856 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1857
1858 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1859
1860 /* Do we need to split this write into 2 parts? */
1861 if (bno + BTOBB(count) > log->l_logBBsize) {
1862 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1863 split = true;
1864 }
1865
1866 /* calculcate the checksum */
1867 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1868 iclog->ic_datap, size);
1869 /*
1870 * Intentionally corrupt the log record CRC based on the error injection
1871 * frequency, if defined. This facilitates testing log recovery in the
1872 * event of torn writes. Hence, set the IOABORT state to abort the log
1873 * write on I/O completion and shutdown the fs. The subsequent mount
1874 * detects the bad CRC and attempts to recover.
1875 */
1876 #ifdef DEBUG
1877 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1878 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1879 iclog->ic_fail_crc = true;
1880 xfs_warn(log->l_mp,
1881 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1882 be64_to_cpu(iclog->ic_header.h_lsn));
1883 }
1884 #endif
1885
1886 /*
1887 * Flush the data device before flushing the log to make sure all meta
1888 * data written back from the AIL actually made it to disk before
1889 * stamping the new log tail LSN into the log buffer. For an external
1890 * log we need to issue the flush explicitly, and unfortunately
1891 * synchronously here; for an internal log we can simply use the block
1892 * layer state machine for preflushes.
1893 */
1894 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1895 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1896 need_flush = false;
1897 }
1898
1899 xlog_verify_iclog(log, iclog, count);
1900 xlog_write_iclog(log, iclog, bno, count, need_flush);
1901 }
1902
1903 /*
1904 * Deallocate a log structure
1905 */
1906 STATIC void
xlog_dealloc_log(struct xlog * log)1907 xlog_dealloc_log(
1908 struct xlog *log)
1909 {
1910 xlog_in_core_t *iclog, *next_iclog;
1911 int i;
1912
1913 xlog_cil_destroy(log);
1914
1915 /*
1916 * Cycle all the iclogbuf locks to make sure all log IO completion
1917 * is done before we tear down these buffers.
1918 */
1919 iclog = log->l_iclog;
1920 for (i = 0; i < log->l_iclog_bufs; i++) {
1921 down(&iclog->ic_sema);
1922 up(&iclog->ic_sema);
1923 iclog = iclog->ic_next;
1924 }
1925
1926 iclog = log->l_iclog;
1927 for (i = 0; i < log->l_iclog_bufs; i++) {
1928 next_iclog = iclog->ic_next;
1929 kmem_free(iclog->ic_data);
1930 kmem_free(iclog);
1931 iclog = next_iclog;
1932 }
1933
1934 log->l_mp->m_log = NULL;
1935 destroy_workqueue(log->l_ioend_workqueue);
1936 kmem_free(log);
1937 }
1938
1939 /*
1940 * Update counters atomically now that memcpy is done.
1941 */
1942 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1943 xlog_state_finish_copy(
1944 struct xlog *log,
1945 struct xlog_in_core *iclog,
1946 int record_cnt,
1947 int copy_bytes)
1948 {
1949 lockdep_assert_held(&log->l_icloglock);
1950
1951 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1952 iclog->ic_offset += copy_bytes;
1953 }
1954
1955 /*
1956 * print out info relating to regions written which consume
1957 * the reservation
1958 */
1959 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1960 xlog_print_tic_res(
1961 struct xfs_mount *mp,
1962 struct xlog_ticket *ticket)
1963 {
1964 uint i;
1965 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1966
1967 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1968 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1969 static char *res_type_str[] = {
1970 REG_TYPE_STR(BFORMAT, "bformat"),
1971 REG_TYPE_STR(BCHUNK, "bchunk"),
1972 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1973 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1974 REG_TYPE_STR(IFORMAT, "iformat"),
1975 REG_TYPE_STR(ICORE, "icore"),
1976 REG_TYPE_STR(IEXT, "iext"),
1977 REG_TYPE_STR(IBROOT, "ibroot"),
1978 REG_TYPE_STR(ILOCAL, "ilocal"),
1979 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1980 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1981 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1982 REG_TYPE_STR(QFORMAT, "qformat"),
1983 REG_TYPE_STR(DQUOT, "dquot"),
1984 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1985 REG_TYPE_STR(LRHEADER, "LR header"),
1986 REG_TYPE_STR(UNMOUNT, "unmount"),
1987 REG_TYPE_STR(COMMIT, "commit"),
1988 REG_TYPE_STR(TRANSHDR, "trans header"),
1989 REG_TYPE_STR(ICREATE, "inode create"),
1990 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
1991 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
1992 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
1993 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
1994 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
1995 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
1996 };
1997 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
1998 #undef REG_TYPE_STR
1999
2000 xfs_warn(mp, "ticket reservation summary:");
2001 xfs_warn(mp, " unit res = %d bytes",
2002 ticket->t_unit_res);
2003 xfs_warn(mp, " current res = %d bytes",
2004 ticket->t_curr_res);
2005 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2006 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2007 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2008 ticket->t_res_num_ophdrs, ophdr_spc);
2009 xfs_warn(mp, " ophdr + reg = %u bytes",
2010 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2011 xfs_warn(mp, " num regions = %u",
2012 ticket->t_res_num);
2013
2014 for (i = 0; i < ticket->t_res_num; i++) {
2015 uint r_type = ticket->t_res_arr[i].r_type;
2016 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2017 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2018 "bad-rtype" : res_type_str[r_type]),
2019 ticket->t_res_arr[i].r_len);
2020 }
2021 }
2022
2023 /*
2024 * Print a summary of the transaction.
2025 */
2026 void
xlog_print_trans(struct xfs_trans * tp)2027 xlog_print_trans(
2028 struct xfs_trans *tp)
2029 {
2030 struct xfs_mount *mp = tp->t_mountp;
2031 struct xfs_log_item *lip;
2032
2033 /* dump core transaction and ticket info */
2034 xfs_warn(mp, "transaction summary:");
2035 xfs_warn(mp, " log res = %d", tp->t_log_res);
2036 xfs_warn(mp, " log count = %d", tp->t_log_count);
2037 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2038
2039 xlog_print_tic_res(mp, tp->t_ticket);
2040
2041 /* dump each log item */
2042 list_for_each_entry(lip, &tp->t_items, li_trans) {
2043 struct xfs_log_vec *lv = lip->li_lv;
2044 struct xfs_log_iovec *vec;
2045 int i;
2046
2047 xfs_warn(mp, "log item: ");
2048 xfs_warn(mp, " type = 0x%x", lip->li_type);
2049 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2050 if (!lv)
2051 continue;
2052 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2053 xfs_warn(mp, " size = %d", lv->lv_size);
2054 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2055 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2056
2057 /* dump each iovec for the log item */
2058 vec = lv->lv_iovecp;
2059 for (i = 0; i < lv->lv_niovecs; i++) {
2060 int dumplen = min(vec->i_len, 32);
2061
2062 xfs_warn(mp, " iovec[%d]", i);
2063 xfs_warn(mp, " type = 0x%x", vec->i_type);
2064 xfs_warn(mp, " len = %d", vec->i_len);
2065 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2066 xfs_hex_dump(vec->i_addr, dumplen);
2067
2068 vec++;
2069 }
2070 }
2071 }
2072
2073 /*
2074 * Calculate the potential space needed by the log vector. We may need a start
2075 * record, and each region gets its own struct xlog_op_header and may need to be
2076 * double word aligned.
2077 */
2078 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector,bool need_start_rec)2079 xlog_write_calc_vec_length(
2080 struct xlog_ticket *ticket,
2081 struct xfs_log_vec *log_vector,
2082 bool need_start_rec)
2083 {
2084 struct xfs_log_vec *lv;
2085 int headers = need_start_rec ? 1 : 0;
2086 int len = 0;
2087 int i;
2088
2089 for (lv = log_vector; lv; lv = lv->lv_next) {
2090 /* we don't write ordered log vectors */
2091 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2092 continue;
2093
2094 headers += lv->lv_niovecs;
2095
2096 for (i = 0; i < lv->lv_niovecs; i++) {
2097 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2098
2099 len += vecp->i_len;
2100 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2101 }
2102 }
2103
2104 ticket->t_res_num_ophdrs += headers;
2105 len += headers * sizeof(struct xlog_op_header);
2106
2107 return len;
2108 }
2109
2110 static void
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2111 xlog_write_start_rec(
2112 struct xlog_op_header *ophdr,
2113 struct xlog_ticket *ticket)
2114 {
2115 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2116 ophdr->oh_clientid = ticket->t_clientid;
2117 ophdr->oh_len = 0;
2118 ophdr->oh_flags = XLOG_START_TRANS;
2119 ophdr->oh_res2 = 0;
2120 }
2121
2122 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2123 xlog_write_setup_ophdr(
2124 struct xlog *log,
2125 struct xlog_op_header *ophdr,
2126 struct xlog_ticket *ticket,
2127 uint flags)
2128 {
2129 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2130 ophdr->oh_clientid = ticket->t_clientid;
2131 ophdr->oh_res2 = 0;
2132
2133 /* are we copying a commit or unmount record? */
2134 ophdr->oh_flags = flags;
2135
2136 /*
2137 * We've seen logs corrupted with bad transaction client ids. This
2138 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2139 * and shut down the filesystem.
2140 */
2141 switch (ophdr->oh_clientid) {
2142 case XFS_TRANSACTION:
2143 case XFS_VOLUME:
2144 case XFS_LOG:
2145 break;
2146 default:
2147 xfs_warn(log->l_mp,
2148 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2149 ophdr->oh_clientid, ticket);
2150 return NULL;
2151 }
2152
2153 return ophdr;
2154 }
2155
2156 /*
2157 * Set up the parameters of the region copy into the log. This has
2158 * to handle region write split across multiple log buffers - this
2159 * state is kept external to this function so that this code can
2160 * be written in an obvious, self documenting manner.
2161 */
2162 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2163 xlog_write_setup_copy(
2164 struct xlog_ticket *ticket,
2165 struct xlog_op_header *ophdr,
2166 int space_available,
2167 int space_required,
2168 int *copy_off,
2169 int *copy_len,
2170 int *last_was_partial_copy,
2171 int *bytes_consumed)
2172 {
2173 int still_to_copy;
2174
2175 still_to_copy = space_required - *bytes_consumed;
2176 *copy_off = *bytes_consumed;
2177
2178 if (still_to_copy <= space_available) {
2179 /* write of region completes here */
2180 *copy_len = still_to_copy;
2181 ophdr->oh_len = cpu_to_be32(*copy_len);
2182 if (*last_was_partial_copy)
2183 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2184 *last_was_partial_copy = 0;
2185 *bytes_consumed = 0;
2186 return 0;
2187 }
2188
2189 /* partial write of region, needs extra log op header reservation */
2190 *copy_len = space_available;
2191 ophdr->oh_len = cpu_to_be32(*copy_len);
2192 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2193 if (*last_was_partial_copy)
2194 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2195 *bytes_consumed += *copy_len;
2196 (*last_was_partial_copy)++;
2197
2198 /* account for new log op header */
2199 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2200 ticket->t_res_num_ophdrs++;
2201
2202 return sizeof(struct xlog_op_header);
2203 }
2204
2205 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2206 xlog_write_copy_finish(
2207 struct xlog *log,
2208 struct xlog_in_core *iclog,
2209 uint flags,
2210 int *record_cnt,
2211 int *data_cnt,
2212 int *partial_copy,
2213 int *partial_copy_len,
2214 int log_offset,
2215 struct xlog_in_core **commit_iclog)
2216 {
2217 int error;
2218
2219 if (*partial_copy) {
2220 /*
2221 * This iclog has already been marked WANT_SYNC by
2222 * xlog_state_get_iclog_space.
2223 */
2224 spin_lock(&log->l_icloglock);
2225 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2226 *record_cnt = 0;
2227 *data_cnt = 0;
2228 goto release_iclog;
2229 }
2230
2231 *partial_copy = 0;
2232 *partial_copy_len = 0;
2233
2234 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2235 /* no more space in this iclog - push it. */
2236 spin_lock(&log->l_icloglock);
2237 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2238 *record_cnt = 0;
2239 *data_cnt = 0;
2240
2241 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2242 xlog_state_switch_iclogs(log, iclog, 0);
2243 else
2244 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2245 iclog->ic_state == XLOG_STATE_IOERROR);
2246 if (!commit_iclog)
2247 goto release_iclog;
2248 spin_unlock(&log->l_icloglock);
2249 ASSERT(flags & XLOG_COMMIT_TRANS);
2250 *commit_iclog = iclog;
2251 }
2252
2253 return 0;
2254
2255 release_iclog:
2256 error = xlog_state_release_iclog(log, iclog);
2257 spin_unlock(&log->l_icloglock);
2258 return error;
2259 }
2260
2261 /*
2262 * Write some region out to in-core log
2263 *
2264 * This will be called when writing externally provided regions or when
2265 * writing out a commit record for a given transaction.
2266 *
2267 * General algorithm:
2268 * 1. Find total length of this write. This may include adding to the
2269 * lengths passed in.
2270 * 2. Check whether we violate the tickets reservation.
2271 * 3. While writing to this iclog
2272 * A. Reserve as much space in this iclog as can get
2273 * B. If this is first write, save away start lsn
2274 * C. While writing this region:
2275 * 1. If first write of transaction, write start record
2276 * 2. Write log operation header (header per region)
2277 * 3. Find out if we can fit entire region into this iclog
2278 * 4. Potentially, verify destination memcpy ptr
2279 * 5. Memcpy (partial) region
2280 * 6. If partial copy, release iclog; otherwise, continue
2281 * copying more regions into current iclog
2282 * 4. Mark want sync bit (in simulation mode)
2283 * 5. Release iclog for potential flush to on-disk log.
2284 *
2285 * ERRORS:
2286 * 1. Panic if reservation is overrun. This should never happen since
2287 * reservation amounts are generated internal to the filesystem.
2288 * NOTES:
2289 * 1. Tickets are single threaded data structures.
2290 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2291 * syncing routine. When a single log_write region needs to span
2292 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2293 * on all log operation writes which don't contain the end of the
2294 * region. The XLOG_END_TRANS bit is used for the in-core log
2295 * operation which contains the end of the continued log_write region.
2296 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2297 * we don't really know exactly how much space will be used. As a result,
2298 * we don't update ic_offset until the end when we know exactly how many
2299 * bytes have been written out.
2300 */
2301 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags,bool need_start_rec)2302 xlog_write(
2303 struct xlog *log,
2304 struct xfs_log_vec *log_vector,
2305 struct xlog_ticket *ticket,
2306 xfs_lsn_t *start_lsn,
2307 struct xlog_in_core **commit_iclog,
2308 uint flags,
2309 bool need_start_rec)
2310 {
2311 struct xlog_in_core *iclog = NULL;
2312 struct xfs_log_vec *lv = log_vector;
2313 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2314 int index = 0;
2315 int len;
2316 int partial_copy = 0;
2317 int partial_copy_len = 0;
2318 int contwr = 0;
2319 int record_cnt = 0;
2320 int data_cnt = 0;
2321 int error = 0;
2322
2323 /*
2324 * If this is a commit or unmount transaction, we don't need a start
2325 * record to be written. We do, however, have to account for the
2326 * commit or unmount header that gets written. Hence we always have
2327 * to account for an extra xlog_op_header here.
2328 */
2329 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2330 if (ticket->t_curr_res < 0) {
2331 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2332 "ctx ticket reservation ran out. Need to up reservation");
2333 xlog_print_tic_res(log->l_mp, ticket);
2334 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2335 }
2336
2337 len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2338 *start_lsn = 0;
2339 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2340 void *ptr;
2341 int log_offset;
2342
2343 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2344 &contwr, &log_offset);
2345 if (error)
2346 return error;
2347
2348 ASSERT(log_offset <= iclog->ic_size - 1);
2349 ptr = iclog->ic_datap + log_offset;
2350
2351 /* start_lsn is the first lsn written to. That's all we need. */
2352 if (!*start_lsn)
2353 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2354
2355 /*
2356 * This loop writes out as many regions as can fit in the amount
2357 * of space which was allocated by xlog_state_get_iclog_space().
2358 */
2359 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2360 struct xfs_log_iovec *reg;
2361 struct xlog_op_header *ophdr;
2362 int copy_len;
2363 int copy_off;
2364 bool ordered = false;
2365
2366 /* ordered log vectors have no regions to write */
2367 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2368 ASSERT(lv->lv_niovecs == 0);
2369 ordered = true;
2370 goto next_lv;
2371 }
2372
2373 reg = &vecp[index];
2374 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2375 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2376
2377 /*
2378 * Before we start formatting log vectors, we need to
2379 * write a start record. Only do this for the first
2380 * iclog we write to.
2381 */
2382 if (need_start_rec) {
2383 xlog_write_start_rec(ptr, ticket);
2384 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2385 sizeof(struct xlog_op_header));
2386 }
2387
2388 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2389 if (!ophdr)
2390 return -EIO;
2391
2392 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2393 sizeof(struct xlog_op_header));
2394
2395 len += xlog_write_setup_copy(ticket, ophdr,
2396 iclog->ic_size-log_offset,
2397 reg->i_len,
2398 ©_off, ©_len,
2399 &partial_copy,
2400 &partial_copy_len);
2401 xlog_verify_dest_ptr(log, ptr);
2402
2403 /*
2404 * Copy region.
2405 *
2406 * Unmount records just log an opheader, so can have
2407 * empty payloads with no data region to copy. Hence we
2408 * only copy the payload if the vector says it has data
2409 * to copy.
2410 */
2411 ASSERT(copy_len >= 0);
2412 if (copy_len > 0) {
2413 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2414 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2415 copy_len);
2416 }
2417 copy_len += sizeof(struct xlog_op_header);
2418 record_cnt++;
2419 if (need_start_rec) {
2420 copy_len += sizeof(struct xlog_op_header);
2421 record_cnt++;
2422 need_start_rec = false;
2423 }
2424 data_cnt += contwr ? copy_len : 0;
2425
2426 error = xlog_write_copy_finish(log, iclog, flags,
2427 &record_cnt, &data_cnt,
2428 &partial_copy,
2429 &partial_copy_len,
2430 log_offset,
2431 commit_iclog);
2432 if (error)
2433 return error;
2434
2435 /*
2436 * if we had a partial copy, we need to get more iclog
2437 * space but we don't want to increment the region
2438 * index because there is still more is this region to
2439 * write.
2440 *
2441 * If we completed writing this region, and we flushed
2442 * the iclog (indicated by resetting of the record
2443 * count), then we also need to get more log space. If
2444 * this was the last record, though, we are done and
2445 * can just return.
2446 */
2447 if (partial_copy)
2448 break;
2449
2450 if (++index == lv->lv_niovecs) {
2451 next_lv:
2452 lv = lv->lv_next;
2453 index = 0;
2454 if (lv)
2455 vecp = lv->lv_iovecp;
2456 }
2457 if (record_cnt == 0 && !ordered) {
2458 if (!lv)
2459 return 0;
2460 break;
2461 }
2462 }
2463 }
2464
2465 ASSERT(len == 0);
2466
2467 spin_lock(&log->l_icloglock);
2468 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2469 if (commit_iclog) {
2470 ASSERT(flags & XLOG_COMMIT_TRANS);
2471 *commit_iclog = iclog;
2472 } else {
2473 error = xlog_state_release_iclog(log, iclog);
2474 }
2475 spin_unlock(&log->l_icloglock);
2476
2477 return error;
2478 }
2479
2480 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2481 xlog_state_activate_iclog(
2482 struct xlog_in_core *iclog,
2483 int *iclogs_changed)
2484 {
2485 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2486
2487 /*
2488 * If the number of ops in this iclog indicate it just contains the
2489 * dummy transaction, we can change state into IDLE (the second time
2490 * around). Otherwise we should change the state into NEED a dummy.
2491 * We don't need to cover the dummy.
2492 */
2493 if (*iclogs_changed == 0 &&
2494 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2495 *iclogs_changed = 1;
2496 } else {
2497 /*
2498 * We have two dirty iclogs so start over. This could also be
2499 * num of ops indicating this is not the dummy going out.
2500 */
2501 *iclogs_changed = 2;
2502 }
2503
2504 iclog->ic_state = XLOG_STATE_ACTIVE;
2505 iclog->ic_offset = 0;
2506 iclog->ic_header.h_num_logops = 0;
2507 memset(iclog->ic_header.h_cycle_data, 0,
2508 sizeof(iclog->ic_header.h_cycle_data));
2509 iclog->ic_header.h_lsn = 0;
2510 }
2511
2512 /*
2513 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2514 * ACTIVE after iclog I/O has completed.
2515 */
2516 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2517 xlog_state_activate_iclogs(
2518 struct xlog *log,
2519 int *iclogs_changed)
2520 {
2521 struct xlog_in_core *iclog = log->l_iclog;
2522
2523 do {
2524 if (iclog->ic_state == XLOG_STATE_DIRTY)
2525 xlog_state_activate_iclog(iclog, iclogs_changed);
2526 /*
2527 * The ordering of marking iclogs ACTIVE must be maintained, so
2528 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2529 */
2530 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2531 break;
2532 } while ((iclog = iclog->ic_next) != log->l_iclog);
2533 }
2534
2535 static int
xlog_covered_state(int prev_state,int iclogs_changed)2536 xlog_covered_state(
2537 int prev_state,
2538 int iclogs_changed)
2539 {
2540 /*
2541 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2542 * are done writing the dummy record. If we are done with the second
2543 * dummy recored (DONE2), then we go to IDLE.
2544 */
2545 switch (prev_state) {
2546 case XLOG_STATE_COVER_IDLE:
2547 case XLOG_STATE_COVER_NEED:
2548 case XLOG_STATE_COVER_NEED2:
2549 break;
2550 case XLOG_STATE_COVER_DONE:
2551 if (iclogs_changed == 1)
2552 return XLOG_STATE_COVER_NEED2;
2553 break;
2554 case XLOG_STATE_COVER_DONE2:
2555 if (iclogs_changed == 1)
2556 return XLOG_STATE_COVER_IDLE;
2557 break;
2558 default:
2559 ASSERT(0);
2560 }
2561
2562 return XLOG_STATE_COVER_NEED;
2563 }
2564
2565 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2566 xlog_state_clean_iclog(
2567 struct xlog *log,
2568 struct xlog_in_core *dirty_iclog)
2569 {
2570 int iclogs_changed = 0;
2571
2572 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2573
2574 xlog_state_activate_iclogs(log, &iclogs_changed);
2575 wake_up_all(&dirty_iclog->ic_force_wait);
2576
2577 if (iclogs_changed) {
2578 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2579 iclogs_changed);
2580 }
2581 }
2582
2583 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2584 xlog_get_lowest_lsn(
2585 struct xlog *log)
2586 {
2587 struct xlog_in_core *iclog = log->l_iclog;
2588 xfs_lsn_t lowest_lsn = 0, lsn;
2589
2590 do {
2591 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2592 iclog->ic_state == XLOG_STATE_DIRTY)
2593 continue;
2594
2595 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2596 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2597 lowest_lsn = lsn;
2598 } while ((iclog = iclog->ic_next) != log->l_iclog);
2599
2600 return lowest_lsn;
2601 }
2602
2603 /*
2604 * Completion of a iclog IO does not imply that a transaction has completed, as
2605 * transactions can be large enough to span many iclogs. We cannot change the
2606 * tail of the log half way through a transaction as this may be the only
2607 * transaction in the log and moving the tail to point to the middle of it
2608 * will prevent recovery from finding the start of the transaction. Hence we
2609 * should only update the last_sync_lsn if this iclog contains transaction
2610 * completion callbacks on it.
2611 *
2612 * We have to do this before we drop the icloglock to ensure we are the only one
2613 * that can update it.
2614 *
2615 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2616 * the reservation grant head pushing. This is due to the fact that the push
2617 * target is bound by the current last_sync_lsn value. Hence if we have a large
2618 * amount of log space bound up in this committing transaction then the
2619 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2620 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2621 * should push the AIL to ensure the push target (and hence the grant head) is
2622 * no longer bound by the old log head location and can move forwards and make
2623 * progress again.
2624 */
2625 static void
xlog_state_set_callback(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t header_lsn)2626 xlog_state_set_callback(
2627 struct xlog *log,
2628 struct xlog_in_core *iclog,
2629 xfs_lsn_t header_lsn)
2630 {
2631 iclog->ic_state = XLOG_STATE_CALLBACK;
2632
2633 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2634 header_lsn) <= 0);
2635
2636 if (list_empty_careful(&iclog->ic_callbacks))
2637 return;
2638
2639 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2640 xlog_grant_push_ail(log, 0);
2641 }
2642
2643 /*
2644 * Return true if we need to stop processing, false to continue to the next
2645 * iclog. The caller will need to run callbacks if the iclog is returned in the
2646 * XLOG_STATE_CALLBACK state.
2647 */
2648 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog,bool * ioerror)2649 xlog_state_iodone_process_iclog(
2650 struct xlog *log,
2651 struct xlog_in_core *iclog,
2652 bool *ioerror)
2653 {
2654 xfs_lsn_t lowest_lsn;
2655 xfs_lsn_t header_lsn;
2656
2657 switch (iclog->ic_state) {
2658 case XLOG_STATE_ACTIVE:
2659 case XLOG_STATE_DIRTY:
2660 /*
2661 * Skip all iclogs in the ACTIVE & DIRTY states:
2662 */
2663 return false;
2664 case XLOG_STATE_IOERROR:
2665 /*
2666 * Between marking a filesystem SHUTDOWN and stopping the log,
2667 * we do flush all iclogs to disk (if there wasn't a log I/O
2668 * error). So, we do want things to go smoothly in case of just
2669 * a SHUTDOWN w/o a LOG_IO_ERROR.
2670 */
2671 *ioerror = true;
2672 return false;
2673 case XLOG_STATE_DONE_SYNC:
2674 /*
2675 * Now that we have an iclog that is in the DONE_SYNC state, do
2676 * one more check here to see if we have chased our tail around.
2677 * If this is not the lowest lsn iclog, then we will leave it
2678 * for another completion to process.
2679 */
2680 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2681 lowest_lsn = xlog_get_lowest_lsn(log);
2682 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2683 return false;
2684 xlog_state_set_callback(log, iclog, header_lsn);
2685 return false;
2686 default:
2687 /*
2688 * Can only perform callbacks in order. Since this iclog is not
2689 * in the DONE_SYNC state, we skip the rest and just try to
2690 * clean up.
2691 */
2692 return true;
2693 }
2694 }
2695
2696 /*
2697 * Keep processing entries in the iclog callback list until we come around and
2698 * it is empty. We need to atomically see that the list is empty and change the
2699 * state to DIRTY so that we don't miss any more callbacks being added.
2700 *
2701 * This function is called with the icloglock held and returns with it held. We
2702 * drop it while running callbacks, however, as holding it over thousands of
2703 * callbacks is unnecessary and causes excessive contention if we do.
2704 */
2705 static void
xlog_state_do_iclog_callbacks(struct xlog * log,struct xlog_in_core * iclog)2706 xlog_state_do_iclog_callbacks(
2707 struct xlog *log,
2708 struct xlog_in_core *iclog)
2709 __releases(&log->l_icloglock)
2710 __acquires(&log->l_icloglock)
2711 {
2712 spin_unlock(&log->l_icloglock);
2713 spin_lock(&iclog->ic_callback_lock);
2714 while (!list_empty(&iclog->ic_callbacks)) {
2715 LIST_HEAD(tmp);
2716
2717 list_splice_init(&iclog->ic_callbacks, &tmp);
2718
2719 spin_unlock(&iclog->ic_callback_lock);
2720 xlog_cil_process_committed(&tmp);
2721 spin_lock(&iclog->ic_callback_lock);
2722 }
2723
2724 /*
2725 * Pick up the icloglock while still holding the callback lock so we
2726 * serialise against anyone trying to add more callbacks to this iclog
2727 * now we've finished processing.
2728 */
2729 spin_lock(&log->l_icloglock);
2730 spin_unlock(&iclog->ic_callback_lock);
2731 }
2732
2733 STATIC void
xlog_state_do_callback(struct xlog * log)2734 xlog_state_do_callback(
2735 struct xlog *log)
2736 {
2737 struct xlog_in_core *iclog;
2738 struct xlog_in_core *first_iclog;
2739 bool cycled_icloglock;
2740 bool ioerror;
2741 int flushcnt = 0;
2742 int repeats = 0;
2743
2744 spin_lock(&log->l_icloglock);
2745 do {
2746 /*
2747 * Scan all iclogs starting with the one pointed to by the
2748 * log. Reset this starting point each time the log is
2749 * unlocked (during callbacks).
2750 *
2751 * Keep looping through iclogs until one full pass is made
2752 * without running any callbacks.
2753 */
2754 first_iclog = log->l_iclog;
2755 iclog = log->l_iclog;
2756 cycled_icloglock = false;
2757 ioerror = false;
2758 repeats++;
2759
2760 do {
2761 if (xlog_state_iodone_process_iclog(log, iclog,
2762 &ioerror))
2763 break;
2764
2765 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2766 iclog->ic_state != XLOG_STATE_IOERROR) {
2767 iclog = iclog->ic_next;
2768 continue;
2769 }
2770
2771 /*
2772 * Running callbacks will drop the icloglock which means
2773 * we'll have to run at least one more complete loop.
2774 */
2775 cycled_icloglock = true;
2776 xlog_state_do_iclog_callbacks(log, iclog);
2777 if (XLOG_FORCED_SHUTDOWN(log))
2778 wake_up_all(&iclog->ic_force_wait);
2779 else
2780 xlog_state_clean_iclog(log, iclog);
2781 iclog = iclog->ic_next;
2782 } while (first_iclog != iclog);
2783
2784 if (repeats > 5000) {
2785 flushcnt += repeats;
2786 repeats = 0;
2787 xfs_warn(log->l_mp,
2788 "%s: possible infinite loop (%d iterations)",
2789 __func__, flushcnt);
2790 }
2791 } while (!ioerror && cycled_icloglock);
2792
2793 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2794 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2795 wake_up_all(&log->l_flush_wait);
2796
2797 spin_unlock(&log->l_icloglock);
2798 }
2799
2800
2801 /*
2802 * Finish transitioning this iclog to the dirty state.
2803 *
2804 * Make sure that we completely execute this routine only when this is
2805 * the last call to the iclog. There is a good chance that iclog flushes,
2806 * when we reach the end of the physical log, get turned into 2 separate
2807 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2808 * routine. By using the reference count bwritecnt, we guarantee that only
2809 * the second completion goes through.
2810 *
2811 * Callbacks could take time, so they are done outside the scope of the
2812 * global state machine log lock.
2813 */
2814 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2815 xlog_state_done_syncing(
2816 struct xlog_in_core *iclog)
2817 {
2818 struct xlog *log = iclog->ic_log;
2819
2820 spin_lock(&log->l_icloglock);
2821 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2822
2823 /*
2824 * If we got an error, either on the first buffer, or in the case of
2825 * split log writes, on the second, we shut down the file system and
2826 * no iclogs should ever be attempted to be written to disk again.
2827 */
2828 if (!XLOG_FORCED_SHUTDOWN(log)) {
2829 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2830 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2831 }
2832
2833 /*
2834 * Someone could be sleeping prior to writing out the next
2835 * iclog buffer, we wake them all, one will get to do the
2836 * I/O, the others get to wait for the result.
2837 */
2838 wake_up_all(&iclog->ic_write_wait);
2839 spin_unlock(&log->l_icloglock);
2840 xlog_state_do_callback(log);
2841 }
2842
2843 /*
2844 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2845 * sleep. We wait on the flush queue on the head iclog as that should be
2846 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2847 * we will wait here and all new writes will sleep until a sync completes.
2848 *
2849 * The in-core logs are used in a circular fashion. They are not used
2850 * out-of-order even when an iclog past the head is free.
2851 *
2852 * return:
2853 * * log_offset where xlog_write() can start writing into the in-core
2854 * log's data space.
2855 * * in-core log pointer to which xlog_write() should write.
2856 * * boolean indicating this is a continued write to an in-core log.
2857 * If this is the last write, then the in-core log's offset field
2858 * needs to be incremented, depending on the amount of data which
2859 * is copied.
2860 */
2861 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2862 xlog_state_get_iclog_space(
2863 struct xlog *log,
2864 int len,
2865 struct xlog_in_core **iclogp,
2866 struct xlog_ticket *ticket,
2867 int *continued_write,
2868 int *logoffsetp)
2869 {
2870 int log_offset;
2871 xlog_rec_header_t *head;
2872 xlog_in_core_t *iclog;
2873
2874 restart:
2875 spin_lock(&log->l_icloglock);
2876 if (XLOG_FORCED_SHUTDOWN(log)) {
2877 spin_unlock(&log->l_icloglock);
2878 return -EIO;
2879 }
2880
2881 iclog = log->l_iclog;
2882 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2883 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2884
2885 /* Wait for log writes to have flushed */
2886 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2887 goto restart;
2888 }
2889
2890 head = &iclog->ic_header;
2891
2892 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2893 log_offset = iclog->ic_offset;
2894
2895 /* On the 1st write to an iclog, figure out lsn. This works
2896 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2897 * committing to. If the offset is set, that's how many blocks
2898 * must be written.
2899 */
2900 if (log_offset == 0) {
2901 ticket->t_curr_res -= log->l_iclog_hsize;
2902 xlog_tic_add_region(ticket,
2903 log->l_iclog_hsize,
2904 XLOG_REG_TYPE_LRHEADER);
2905 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2906 head->h_lsn = cpu_to_be64(
2907 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2908 ASSERT(log->l_curr_block >= 0);
2909 }
2910
2911 /* If there is enough room to write everything, then do it. Otherwise,
2912 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2913 * bit is on, so this will get flushed out. Don't update ic_offset
2914 * until you know exactly how many bytes get copied. Therefore, wait
2915 * until later to update ic_offset.
2916 *
2917 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2918 * can fit into remaining data section.
2919 */
2920 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2921 int error = 0;
2922
2923 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2924
2925 /*
2926 * If we are the only one writing to this iclog, sync it to
2927 * disk. We need to do an atomic compare and decrement here to
2928 * avoid racing with concurrent atomic_dec_and_lock() calls in
2929 * xlog_state_release_iclog() when there is more than one
2930 * reference to the iclog.
2931 */
2932 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2933 error = xlog_state_release_iclog(log, iclog);
2934 spin_unlock(&log->l_icloglock);
2935 if (error)
2936 return error;
2937 goto restart;
2938 }
2939
2940 /* Do we have enough room to write the full amount in the remainder
2941 * of this iclog? Or must we continue a write on the next iclog and
2942 * mark this iclog as completely taken? In the case where we switch
2943 * iclogs (to mark it taken), this particular iclog will release/sync
2944 * to disk in xlog_write().
2945 */
2946 if (len <= iclog->ic_size - iclog->ic_offset) {
2947 *continued_write = 0;
2948 iclog->ic_offset += len;
2949 } else {
2950 *continued_write = 1;
2951 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2952 }
2953 *iclogp = iclog;
2954
2955 ASSERT(iclog->ic_offset <= iclog->ic_size);
2956 spin_unlock(&log->l_icloglock);
2957
2958 *logoffsetp = log_offset;
2959 return 0;
2960 }
2961
2962 /*
2963 * The first cnt-1 times a ticket goes through here we don't need to move the
2964 * grant write head because the permanent reservation has reserved cnt times the
2965 * unit amount. Release part of current permanent unit reservation and reset
2966 * current reservation to be one units worth. Also move grant reservation head
2967 * forward.
2968 */
2969 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2970 xfs_log_ticket_regrant(
2971 struct xlog *log,
2972 struct xlog_ticket *ticket)
2973 {
2974 trace_xfs_log_ticket_regrant(log, ticket);
2975
2976 if (ticket->t_cnt > 0)
2977 ticket->t_cnt--;
2978
2979 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2980 ticket->t_curr_res);
2981 xlog_grant_sub_space(log, &log->l_write_head.grant,
2982 ticket->t_curr_res);
2983 ticket->t_curr_res = ticket->t_unit_res;
2984 xlog_tic_reset_res(ticket);
2985
2986 trace_xfs_log_ticket_regrant_sub(log, ticket);
2987
2988 /* just return if we still have some of the pre-reserved space */
2989 if (!ticket->t_cnt) {
2990 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2991 ticket->t_unit_res);
2992 trace_xfs_log_ticket_regrant_exit(log, ticket);
2993
2994 ticket->t_curr_res = ticket->t_unit_res;
2995 xlog_tic_reset_res(ticket);
2996 }
2997
2998 xfs_log_ticket_put(ticket);
2999 }
3000
3001 /*
3002 * Give back the space left from a reservation.
3003 *
3004 * All the information we need to make a correct determination of space left
3005 * is present. For non-permanent reservations, things are quite easy. The
3006 * count should have been decremented to zero. We only need to deal with the
3007 * space remaining in the current reservation part of the ticket. If the
3008 * ticket contains a permanent reservation, there may be left over space which
3009 * needs to be released. A count of N means that N-1 refills of the current
3010 * reservation can be done before we need to ask for more space. The first
3011 * one goes to fill up the first current reservation. Once we run out of
3012 * space, the count will stay at zero and the only space remaining will be
3013 * in the current reservation field.
3014 */
3015 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)3016 xfs_log_ticket_ungrant(
3017 struct xlog *log,
3018 struct xlog_ticket *ticket)
3019 {
3020 int bytes;
3021
3022 trace_xfs_log_ticket_ungrant(log, ticket);
3023
3024 if (ticket->t_cnt > 0)
3025 ticket->t_cnt--;
3026
3027 trace_xfs_log_ticket_ungrant_sub(log, ticket);
3028
3029 /*
3030 * If this is a permanent reservation ticket, we may be able to free
3031 * up more space based on the remaining count.
3032 */
3033 bytes = ticket->t_curr_res;
3034 if (ticket->t_cnt > 0) {
3035 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3036 bytes += ticket->t_unit_res*ticket->t_cnt;
3037 }
3038
3039 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3040 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3041
3042 trace_xfs_log_ticket_ungrant_exit(log, ticket);
3043
3044 xfs_log_space_wake(log->l_mp);
3045 xfs_log_ticket_put(ticket);
3046 }
3047
3048 /*
3049 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3050 * the current iclog pointer to the next iclog in the ring.
3051 */
3052 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3053 xlog_state_switch_iclogs(
3054 struct xlog *log,
3055 struct xlog_in_core *iclog,
3056 int eventual_size)
3057 {
3058 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3059 assert_spin_locked(&log->l_icloglock);
3060
3061 if (!eventual_size)
3062 eventual_size = iclog->ic_offset;
3063 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3064 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3065 log->l_prev_block = log->l_curr_block;
3066 log->l_prev_cycle = log->l_curr_cycle;
3067
3068 /* roll log?: ic_offset changed later */
3069 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3070
3071 /* Round up to next log-sunit */
3072 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3073 log->l_mp->m_sb.sb_logsunit > 1) {
3074 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3075 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3076 }
3077
3078 if (log->l_curr_block >= log->l_logBBsize) {
3079 /*
3080 * Rewind the current block before the cycle is bumped to make
3081 * sure that the combined LSN never transiently moves forward
3082 * when the log wraps to the next cycle. This is to support the
3083 * unlocked sample of these fields from xlog_valid_lsn(). Most
3084 * other cases should acquire l_icloglock.
3085 */
3086 log->l_curr_block -= log->l_logBBsize;
3087 ASSERT(log->l_curr_block >= 0);
3088 smp_wmb();
3089 log->l_curr_cycle++;
3090 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3091 log->l_curr_cycle++;
3092 }
3093 ASSERT(iclog == log->l_iclog);
3094 log->l_iclog = iclog->ic_next;
3095 }
3096
3097 /*
3098 * Write out all data in the in-core log as of this exact moment in time.
3099 *
3100 * Data may be written to the in-core log during this call. However,
3101 * we don't guarantee this data will be written out. A change from past
3102 * implementation means this routine will *not* write out zero length LRs.
3103 *
3104 * Basically, we try and perform an intelligent scan of the in-core logs.
3105 * If we determine there is no flushable data, we just return. There is no
3106 * flushable data if:
3107 *
3108 * 1. the current iclog is active and has no data; the previous iclog
3109 * is in the active or dirty state.
3110 * 2. the current iclog is drity, and the previous iclog is in the
3111 * active or dirty state.
3112 *
3113 * We may sleep if:
3114 *
3115 * 1. the current iclog is not in the active nor dirty state.
3116 * 2. the current iclog dirty, and the previous iclog is not in the
3117 * active nor dirty state.
3118 * 3. the current iclog is active, and there is another thread writing
3119 * to this particular iclog.
3120 * 4. a) the current iclog is active and has no other writers
3121 * b) when we return from flushing out this iclog, it is still
3122 * not in the active nor dirty state.
3123 */
3124 int
xfs_log_force(struct xfs_mount * mp,uint flags)3125 xfs_log_force(
3126 struct xfs_mount *mp,
3127 uint flags)
3128 {
3129 struct xlog *log = mp->m_log;
3130 struct xlog_in_core *iclog;
3131 xfs_lsn_t lsn;
3132
3133 XFS_STATS_INC(mp, xs_log_force);
3134 trace_xfs_log_force(mp, 0, _RET_IP_);
3135
3136 xlog_cil_force(log);
3137
3138 spin_lock(&log->l_icloglock);
3139 iclog = log->l_iclog;
3140 if (iclog->ic_state == XLOG_STATE_IOERROR)
3141 goto out_error;
3142
3143 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3144 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3145 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3146 /*
3147 * If the head is dirty or (active and empty), then we need to
3148 * look at the previous iclog.
3149 *
3150 * If the previous iclog is active or dirty we are done. There
3151 * is nothing to sync out. Otherwise, we attach ourselves to the
3152 * previous iclog and go to sleep.
3153 */
3154 iclog = iclog->ic_prev;
3155 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3156 if (atomic_read(&iclog->ic_refcnt) == 0) {
3157 /*
3158 * We are the only one with access to this iclog.
3159 *
3160 * Flush it out now. There should be a roundoff of zero
3161 * to show that someone has already taken care of the
3162 * roundoff from the previous sync.
3163 */
3164 atomic_inc(&iclog->ic_refcnt);
3165 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3166 xlog_state_switch_iclogs(log, iclog, 0);
3167 if (xlog_state_release_iclog(log, iclog))
3168 goto out_error;
3169
3170 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3171 goto out_unlock;
3172 } else {
3173 /*
3174 * Someone else is writing to this iclog.
3175 *
3176 * Use its call to flush out the data. However, the
3177 * other thread may not force out this LR, so we mark
3178 * it WANT_SYNC.
3179 */
3180 xlog_state_switch_iclogs(log, iclog, 0);
3181 }
3182 } else {
3183 /*
3184 * If the head iclog is not active nor dirty, we just attach
3185 * ourselves to the head and go to sleep if necessary.
3186 */
3187 ;
3188 }
3189
3190 if (flags & XFS_LOG_SYNC)
3191 return xlog_wait_on_iclog(iclog);
3192 out_unlock:
3193 spin_unlock(&log->l_icloglock);
3194 return 0;
3195 out_error:
3196 spin_unlock(&log->l_icloglock);
3197 return -EIO;
3198 }
3199
3200 static int
__xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3201 __xfs_log_force_lsn(
3202 struct xfs_mount *mp,
3203 xfs_lsn_t lsn,
3204 uint flags,
3205 int *log_flushed,
3206 bool already_slept)
3207 {
3208 struct xlog *log = mp->m_log;
3209 struct xlog_in_core *iclog;
3210
3211 spin_lock(&log->l_icloglock);
3212 iclog = log->l_iclog;
3213 if (iclog->ic_state == XLOG_STATE_IOERROR)
3214 goto out_error;
3215
3216 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3217 iclog = iclog->ic_next;
3218 if (iclog == log->l_iclog)
3219 goto out_unlock;
3220 }
3221
3222 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3223 /*
3224 * We sleep here if we haven't already slept (e.g. this is the
3225 * first time we've looked at the correct iclog buf) and the
3226 * buffer before us is going to be sync'ed. The reason for this
3227 * is that if we are doing sync transactions here, by waiting
3228 * for the previous I/O to complete, we can allow a few more
3229 * transactions into this iclog before we close it down.
3230 *
3231 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3232 * refcnt so we can release the log (which drops the ref count).
3233 * The state switch keeps new transaction commits from using
3234 * this buffer. When the current commits finish writing into
3235 * the buffer, the refcount will drop to zero and the buffer
3236 * will go out then.
3237 */
3238 if (!already_slept &&
3239 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3240 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3241 XFS_STATS_INC(mp, xs_log_force_sleep);
3242
3243 xlog_wait(&iclog->ic_prev->ic_write_wait,
3244 &log->l_icloglock);
3245 return -EAGAIN;
3246 }
3247 atomic_inc(&iclog->ic_refcnt);
3248 xlog_state_switch_iclogs(log, iclog, 0);
3249 if (xlog_state_release_iclog(log, iclog))
3250 goto out_error;
3251 if (log_flushed)
3252 *log_flushed = 1;
3253 }
3254
3255 if (flags & XFS_LOG_SYNC)
3256 return xlog_wait_on_iclog(iclog);
3257 out_unlock:
3258 spin_unlock(&log->l_icloglock);
3259 return 0;
3260 out_error:
3261 spin_unlock(&log->l_icloglock);
3262 return -EIO;
3263 }
3264
3265 /*
3266 * Force the in-core log to disk for a specific LSN.
3267 *
3268 * Find in-core log with lsn.
3269 * If it is in the DIRTY state, just return.
3270 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3271 * state and go to sleep or return.
3272 * If it is in any other state, go to sleep or return.
3273 *
3274 * Synchronous forces are implemented with a wait queue. All callers trying
3275 * to force a given lsn to disk must wait on the queue attached to the
3276 * specific in-core log. When given in-core log finally completes its write
3277 * to disk, that thread will wake up all threads waiting on the queue.
3278 */
3279 int
xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3280 xfs_log_force_lsn(
3281 struct xfs_mount *mp,
3282 xfs_lsn_t lsn,
3283 uint flags,
3284 int *log_flushed)
3285 {
3286 int ret;
3287 ASSERT(lsn != 0);
3288
3289 XFS_STATS_INC(mp, xs_log_force);
3290 trace_xfs_log_force(mp, lsn, _RET_IP_);
3291
3292 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3293 if (lsn == NULLCOMMITLSN)
3294 return 0;
3295
3296 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3297 if (ret == -EAGAIN)
3298 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3299 return ret;
3300 }
3301
3302 /*
3303 * Free a used ticket when its refcount falls to zero.
3304 */
3305 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3306 xfs_log_ticket_put(
3307 xlog_ticket_t *ticket)
3308 {
3309 ASSERT(atomic_read(&ticket->t_ref) > 0);
3310 if (atomic_dec_and_test(&ticket->t_ref))
3311 kmem_cache_free(xfs_log_ticket_zone, ticket);
3312 }
3313
3314 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3315 xfs_log_ticket_get(
3316 xlog_ticket_t *ticket)
3317 {
3318 ASSERT(atomic_read(&ticket->t_ref) > 0);
3319 atomic_inc(&ticket->t_ref);
3320 return ticket;
3321 }
3322
3323 /*
3324 * Figure out the total log space unit (in bytes) that would be
3325 * required for a log ticket.
3326 */
3327 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3328 xfs_log_calc_unit_res(
3329 struct xfs_mount *mp,
3330 int unit_bytes)
3331 {
3332 struct xlog *log = mp->m_log;
3333 int iclog_space;
3334 uint num_headers;
3335
3336 /*
3337 * Permanent reservations have up to 'cnt'-1 active log operations
3338 * in the log. A unit in this case is the amount of space for one
3339 * of these log operations. Normal reservations have a cnt of 1
3340 * and their unit amount is the total amount of space required.
3341 *
3342 * The following lines of code account for non-transaction data
3343 * which occupy space in the on-disk log.
3344 *
3345 * Normal form of a transaction is:
3346 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3347 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3348 *
3349 * We need to account for all the leadup data and trailer data
3350 * around the transaction data.
3351 * And then we need to account for the worst case in terms of using
3352 * more space.
3353 * The worst case will happen if:
3354 * - the placement of the transaction happens to be such that the
3355 * roundoff is at its maximum
3356 * - the transaction data is synced before the commit record is synced
3357 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3358 * Therefore the commit record is in its own Log Record.
3359 * This can happen as the commit record is called with its
3360 * own region to xlog_write().
3361 * This then means that in the worst case, roundoff can happen for
3362 * the commit-rec as well.
3363 * The commit-rec is smaller than padding in this scenario and so it is
3364 * not added separately.
3365 */
3366
3367 /* for trans header */
3368 unit_bytes += sizeof(xlog_op_header_t);
3369 unit_bytes += sizeof(xfs_trans_header_t);
3370
3371 /* for start-rec */
3372 unit_bytes += sizeof(xlog_op_header_t);
3373
3374 /*
3375 * for LR headers - the space for data in an iclog is the size minus
3376 * the space used for the headers. If we use the iclog size, then we
3377 * undercalculate the number of headers required.
3378 *
3379 * Furthermore - the addition of op headers for split-recs might
3380 * increase the space required enough to require more log and op
3381 * headers, so take that into account too.
3382 *
3383 * IMPORTANT: This reservation makes the assumption that if this
3384 * transaction is the first in an iclog and hence has the LR headers
3385 * accounted to it, then the remaining space in the iclog is
3386 * exclusively for this transaction. i.e. if the transaction is larger
3387 * than the iclog, it will be the only thing in that iclog.
3388 * Fundamentally, this means we must pass the entire log vector to
3389 * xlog_write to guarantee this.
3390 */
3391 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3392 num_headers = howmany(unit_bytes, iclog_space);
3393
3394 /* for split-recs - ophdrs added when data split over LRs */
3395 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3396
3397 /* add extra header reservations if we overrun */
3398 while (!num_headers ||
3399 howmany(unit_bytes, iclog_space) > num_headers) {
3400 unit_bytes += sizeof(xlog_op_header_t);
3401 num_headers++;
3402 }
3403 unit_bytes += log->l_iclog_hsize * num_headers;
3404
3405 /* for commit-rec LR header - note: padding will subsume the ophdr */
3406 unit_bytes += log->l_iclog_hsize;
3407
3408 /* for roundoff padding for transaction data and one for commit record */
3409 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3410 /* log su roundoff */
3411 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3412 } else {
3413 /* BB roundoff */
3414 unit_bytes += 2 * BBSIZE;
3415 }
3416
3417 return unit_bytes;
3418 }
3419
3420 /*
3421 * Allocate and initialise a new log ticket.
3422 */
3423 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent)3424 xlog_ticket_alloc(
3425 struct xlog *log,
3426 int unit_bytes,
3427 int cnt,
3428 char client,
3429 bool permanent)
3430 {
3431 struct xlog_ticket *tic;
3432 int unit_res;
3433
3434 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3435
3436 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3437
3438 atomic_set(&tic->t_ref, 1);
3439 tic->t_task = current;
3440 INIT_LIST_HEAD(&tic->t_queue);
3441 tic->t_unit_res = unit_res;
3442 tic->t_curr_res = unit_res;
3443 tic->t_cnt = cnt;
3444 tic->t_ocnt = cnt;
3445 tic->t_tid = prandom_u32();
3446 tic->t_clientid = client;
3447 if (permanent)
3448 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3449
3450 xlog_tic_reset_res(tic);
3451
3452 return tic;
3453 }
3454
3455 #if defined(DEBUG)
3456 /*
3457 * Make sure that the destination ptr is within the valid data region of
3458 * one of the iclogs. This uses backup pointers stored in a different
3459 * part of the log in case we trash the log structure.
3460 */
3461 STATIC void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3462 xlog_verify_dest_ptr(
3463 struct xlog *log,
3464 void *ptr)
3465 {
3466 int i;
3467 int good_ptr = 0;
3468
3469 for (i = 0; i < log->l_iclog_bufs; i++) {
3470 if (ptr >= log->l_iclog_bak[i] &&
3471 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3472 good_ptr++;
3473 }
3474
3475 if (!good_ptr)
3476 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3477 }
3478
3479 /*
3480 * Check to make sure the grant write head didn't just over lap the tail. If
3481 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3482 * the cycles differ by exactly one and check the byte count.
3483 *
3484 * This check is run unlocked, so can give false positives. Rather than assert
3485 * on failures, use a warn-once flag and a panic tag to allow the admin to
3486 * determine if they want to panic the machine when such an error occurs. For
3487 * debug kernels this will have the same effect as using an assert but, unlinke
3488 * an assert, it can be turned off at runtime.
3489 */
3490 STATIC void
xlog_verify_grant_tail(struct xlog * log)3491 xlog_verify_grant_tail(
3492 struct xlog *log)
3493 {
3494 int tail_cycle, tail_blocks;
3495 int cycle, space;
3496
3497 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3498 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3499 if (tail_cycle != cycle) {
3500 if (cycle - 1 != tail_cycle &&
3501 !(log->l_flags & XLOG_TAIL_WARN)) {
3502 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3503 "%s: cycle - 1 != tail_cycle", __func__);
3504 log->l_flags |= XLOG_TAIL_WARN;
3505 }
3506
3507 if (space > BBTOB(tail_blocks) &&
3508 !(log->l_flags & XLOG_TAIL_WARN)) {
3509 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3510 "%s: space > BBTOB(tail_blocks)", __func__);
3511 log->l_flags |= XLOG_TAIL_WARN;
3512 }
3513 }
3514 }
3515
3516 /* check if it will fit */
3517 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3518 xlog_verify_tail_lsn(
3519 struct xlog *log,
3520 struct xlog_in_core *iclog,
3521 xfs_lsn_t tail_lsn)
3522 {
3523 int blocks;
3524
3525 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3526 blocks =
3527 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3528 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3529 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3530 } else {
3531 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3532
3533 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3534 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3535
3536 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3537 if (blocks < BTOBB(iclog->ic_offset) + 1)
3538 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3539 }
3540 }
3541
3542 /*
3543 * Perform a number of checks on the iclog before writing to disk.
3544 *
3545 * 1. Make sure the iclogs are still circular
3546 * 2. Make sure we have a good magic number
3547 * 3. Make sure we don't have magic numbers in the data
3548 * 4. Check fields of each log operation header for:
3549 * A. Valid client identifier
3550 * B. tid ptr value falls in valid ptr space (user space code)
3551 * C. Length in log record header is correct according to the
3552 * individual operation headers within record.
3553 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3554 * log, check the preceding blocks of the physical log to make sure all
3555 * the cycle numbers agree with the current cycle number.
3556 */
3557 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3558 xlog_verify_iclog(
3559 struct xlog *log,
3560 struct xlog_in_core *iclog,
3561 int count)
3562 {
3563 xlog_op_header_t *ophead;
3564 xlog_in_core_t *icptr;
3565 xlog_in_core_2_t *xhdr;
3566 void *base_ptr, *ptr, *p;
3567 ptrdiff_t field_offset;
3568 uint8_t clientid;
3569 int len, i, j, k, op_len;
3570 int idx;
3571
3572 /* check validity of iclog pointers */
3573 spin_lock(&log->l_icloglock);
3574 icptr = log->l_iclog;
3575 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3576 ASSERT(icptr);
3577
3578 if (icptr != log->l_iclog)
3579 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3580 spin_unlock(&log->l_icloglock);
3581
3582 /* check log magic numbers */
3583 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3584 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3585
3586 base_ptr = ptr = &iclog->ic_header;
3587 p = &iclog->ic_header;
3588 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3589 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3590 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3591 __func__);
3592 }
3593
3594 /* check fields */
3595 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3596 base_ptr = ptr = iclog->ic_datap;
3597 ophead = ptr;
3598 xhdr = iclog->ic_data;
3599 for (i = 0; i < len; i++) {
3600 ophead = ptr;
3601
3602 /* clientid is only 1 byte */
3603 p = &ophead->oh_clientid;
3604 field_offset = p - base_ptr;
3605 if (field_offset & 0x1ff) {
3606 clientid = ophead->oh_clientid;
3607 } else {
3608 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3609 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3610 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3611 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3612 clientid = xlog_get_client_id(
3613 xhdr[j].hic_xheader.xh_cycle_data[k]);
3614 } else {
3615 clientid = xlog_get_client_id(
3616 iclog->ic_header.h_cycle_data[idx]);
3617 }
3618 }
3619 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3620 xfs_warn(log->l_mp,
3621 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3622 __func__, clientid, ophead,
3623 (unsigned long)field_offset);
3624
3625 /* check length */
3626 p = &ophead->oh_len;
3627 field_offset = p - base_ptr;
3628 if (field_offset & 0x1ff) {
3629 op_len = be32_to_cpu(ophead->oh_len);
3630 } else {
3631 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3632 (uintptr_t)iclog->ic_datap);
3633 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3634 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3635 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3636 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3637 } else {
3638 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3639 }
3640 }
3641 ptr += sizeof(xlog_op_header_t) + op_len;
3642 }
3643 }
3644 #endif
3645
3646 /*
3647 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3648 */
3649 STATIC int
xlog_state_ioerror(struct xlog * log)3650 xlog_state_ioerror(
3651 struct xlog *log)
3652 {
3653 xlog_in_core_t *iclog, *ic;
3654
3655 iclog = log->l_iclog;
3656 if (iclog->ic_state != XLOG_STATE_IOERROR) {
3657 /*
3658 * Mark all the incore logs IOERROR.
3659 * From now on, no log flushes will result.
3660 */
3661 ic = iclog;
3662 do {
3663 ic->ic_state = XLOG_STATE_IOERROR;
3664 ic = ic->ic_next;
3665 } while (ic != iclog);
3666 return 0;
3667 }
3668 /*
3669 * Return non-zero, if state transition has already happened.
3670 */
3671 return 1;
3672 }
3673
3674 /*
3675 * This is called from xfs_force_shutdown, when we're forcibly
3676 * shutting down the filesystem, typically because of an IO error.
3677 * Our main objectives here are to make sure that:
3678 * a. if !logerror, flush the logs to disk. Anything modified
3679 * after this is ignored.
3680 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3681 * parties to find out, 'atomically'.
3682 * c. those who're sleeping on log reservations, pinned objects and
3683 * other resources get woken up, and be told the bad news.
3684 * d. nothing new gets queued up after (b) and (c) are done.
3685 *
3686 * Note: for the !logerror case we need to flush the regions held in memory out
3687 * to disk first. This needs to be done before the log is marked as shutdown,
3688 * otherwise the iclog writes will fail.
3689 */
3690 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3691 xfs_log_force_umount(
3692 struct xfs_mount *mp,
3693 int logerror)
3694 {
3695 struct xlog *log;
3696 int retval;
3697
3698 log = mp->m_log;
3699
3700 /*
3701 * If this happens during log recovery, don't worry about
3702 * locking; the log isn't open for business yet.
3703 */
3704 if (!log ||
3705 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3706 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3707 if (mp->m_sb_bp)
3708 mp->m_sb_bp->b_flags |= XBF_DONE;
3709 return 0;
3710 }
3711
3712 /*
3713 * Somebody could've already done the hard work for us.
3714 * No need to get locks for this.
3715 */
3716 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3717 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3718 return 1;
3719 }
3720
3721 /*
3722 * Flush all the completed transactions to disk before marking the log
3723 * being shut down. We need to do it in this order to ensure that
3724 * completed operations are safely on disk before we shut down, and that
3725 * we don't have to issue any buffer IO after the shutdown flags are set
3726 * to guarantee this.
3727 */
3728 if (!logerror)
3729 xfs_log_force(mp, XFS_LOG_SYNC);
3730
3731 /*
3732 * mark the filesystem and the as in a shutdown state and wake
3733 * everybody up to tell them the bad news.
3734 */
3735 spin_lock(&log->l_icloglock);
3736 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3737 if (mp->m_sb_bp)
3738 mp->m_sb_bp->b_flags |= XBF_DONE;
3739
3740 /*
3741 * Mark the log and the iclogs with IO error flags to prevent any
3742 * further log IO from being issued or completed.
3743 */
3744 log->l_flags |= XLOG_IO_ERROR;
3745 retval = xlog_state_ioerror(log);
3746 spin_unlock(&log->l_icloglock);
3747
3748 /*
3749 * We don't want anybody waiting for log reservations after this. That
3750 * means we have to wake up everybody queued up on reserveq as well as
3751 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3752 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3753 * action is protected by the grant locks.
3754 */
3755 xlog_grant_head_wake_all(&log->l_reserve_head);
3756 xlog_grant_head_wake_all(&log->l_write_head);
3757
3758 /*
3759 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3760 * as if the log writes were completed. The abort handling in the log
3761 * item committed callback functions will do this again under lock to
3762 * avoid races.
3763 */
3764 spin_lock(&log->l_cilp->xc_push_lock);
3765 wake_up_all(&log->l_cilp->xc_commit_wait);
3766 spin_unlock(&log->l_cilp->xc_push_lock);
3767 xlog_state_do_callback(log);
3768
3769 /* return non-zero if log IOERROR transition had already happened */
3770 return retval;
3771 }
3772
3773 STATIC int
xlog_iclogs_empty(struct xlog * log)3774 xlog_iclogs_empty(
3775 struct xlog *log)
3776 {
3777 xlog_in_core_t *iclog;
3778
3779 iclog = log->l_iclog;
3780 do {
3781 /* endianness does not matter here, zero is zero in
3782 * any language.
3783 */
3784 if (iclog->ic_header.h_num_logops)
3785 return 0;
3786 iclog = iclog->ic_next;
3787 } while (iclog != log->l_iclog);
3788 return 1;
3789 }
3790
3791 /*
3792 * Verify that an LSN stamped into a piece of metadata is valid. This is
3793 * intended for use in read verifiers on v5 superblocks.
3794 */
3795 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3796 xfs_log_check_lsn(
3797 struct xfs_mount *mp,
3798 xfs_lsn_t lsn)
3799 {
3800 struct xlog *log = mp->m_log;
3801 bool valid;
3802
3803 /*
3804 * norecovery mode skips mount-time log processing and unconditionally
3805 * resets the in-core LSN. We can't validate in this mode, but
3806 * modifications are not allowed anyways so just return true.
3807 */
3808 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3809 return true;
3810
3811 /*
3812 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3813 * handled by recovery and thus safe to ignore here.
3814 */
3815 if (lsn == NULLCOMMITLSN)
3816 return true;
3817
3818 valid = xlog_valid_lsn(mp->m_log, lsn);
3819
3820 /* warn the user about what's gone wrong before verifier failure */
3821 if (!valid) {
3822 spin_lock(&log->l_icloglock);
3823 xfs_warn(mp,
3824 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3825 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3826 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3827 log->l_curr_cycle, log->l_curr_block);
3828 spin_unlock(&log->l_icloglock);
3829 }
3830
3831 return valid;
3832 }
3833
3834 bool
xfs_log_in_recovery(struct xfs_mount * mp)3835 xfs_log_in_recovery(
3836 struct xfs_mount *mp)
3837 {
3838 struct xlog *log = mp->m_log;
3839
3840 return log->l_flags & XLOG_ACTIVE_RECOVERY;
3841 }
3842