1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_log_recover.h"
20 #include "xfs_inode.h"
21 #include "xfs_trace.h"
22 #include "xfs_fsops.h"
23 #include "xfs_cksum.h"
24 #include "xfs_sysfs.h"
25 #include "xfs_sb.h"
26
27 kmem_zone_t *xfs_log_ticket_zone;
28
29 /* Local miscellaneous function prototypes */
30 STATIC int
31 xlog_commit_record(
32 struct xlog *log,
33 struct xlog_ticket *ticket,
34 struct xlog_in_core **iclog,
35 xfs_lsn_t *commitlsnp);
36
37 STATIC struct xlog *
38 xlog_alloc_log(
39 struct xfs_mount *mp,
40 struct xfs_buftarg *log_target,
41 xfs_daddr_t blk_offset,
42 int num_bblks);
43 STATIC int
44 xlog_space_left(
45 struct xlog *log,
46 atomic64_t *head);
47 STATIC int
48 xlog_sync(
49 struct xlog *log,
50 struct xlog_in_core *iclog);
51 STATIC void
52 xlog_dealloc_log(
53 struct xlog *log);
54
55 /* local state machine functions */
56 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
57 STATIC void
58 xlog_state_do_callback(
59 struct xlog *log,
60 int aborted,
61 struct xlog_in_core *iclog);
62 STATIC int
63 xlog_state_get_iclog_space(
64 struct xlog *log,
65 int len,
66 struct xlog_in_core **iclog,
67 struct xlog_ticket *ticket,
68 int *continued_write,
69 int *logoffsetp);
70 STATIC int
71 xlog_state_release_iclog(
72 struct xlog *log,
73 struct xlog_in_core *iclog);
74 STATIC void
75 xlog_state_switch_iclogs(
76 struct xlog *log,
77 struct xlog_in_core *iclog,
78 int eventual_size);
79 STATIC void
80 xlog_state_want_sync(
81 struct xlog *log,
82 struct xlog_in_core *iclog);
83
84 STATIC void
85 xlog_grant_push_ail(
86 struct xlog *log,
87 int need_bytes);
88 STATIC void
89 xlog_regrant_reserve_log_space(
90 struct xlog *log,
91 struct xlog_ticket *ticket);
92 STATIC void
93 xlog_ungrant_log_space(
94 struct xlog *log,
95 struct xlog_ticket *ticket);
96
97 #if defined(DEBUG)
98 STATIC void
99 xlog_verify_dest_ptr(
100 struct xlog *log,
101 void *ptr);
102 STATIC void
103 xlog_verify_grant_tail(
104 struct xlog *log);
105 STATIC void
106 xlog_verify_iclog(
107 struct xlog *log,
108 struct xlog_in_core *iclog,
109 int count,
110 bool syncing);
111 STATIC void
112 xlog_verify_tail_lsn(
113 struct xlog *log,
114 struct xlog_in_core *iclog,
115 xfs_lsn_t tail_lsn);
116 #else
117 #define xlog_verify_dest_ptr(a,b)
118 #define xlog_verify_grant_tail(a)
119 #define xlog_verify_iclog(a,b,c,d)
120 #define xlog_verify_tail_lsn(a,b,c)
121 #endif
122
123 STATIC int
124 xlog_iclogs_empty(
125 struct xlog *log);
126
127 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)128 xlog_grant_sub_space(
129 struct xlog *log,
130 atomic64_t *head,
131 int bytes)
132 {
133 int64_t head_val = atomic64_read(head);
134 int64_t new, old;
135
136 do {
137 int cycle, space;
138
139 xlog_crack_grant_head_val(head_val, &cycle, &space);
140
141 space -= bytes;
142 if (space < 0) {
143 space += log->l_logsize;
144 cycle--;
145 }
146
147 old = head_val;
148 new = xlog_assign_grant_head_val(cycle, space);
149 head_val = atomic64_cmpxchg(head, old, new);
150 } while (head_val != old);
151 }
152
153 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)154 xlog_grant_add_space(
155 struct xlog *log,
156 atomic64_t *head,
157 int bytes)
158 {
159 int64_t head_val = atomic64_read(head);
160 int64_t new, old;
161
162 do {
163 int tmp;
164 int cycle, space;
165
166 xlog_crack_grant_head_val(head_val, &cycle, &space);
167
168 tmp = log->l_logsize - space;
169 if (tmp > bytes)
170 space += bytes;
171 else {
172 space = bytes - tmp;
173 cycle++;
174 }
175
176 old = head_val;
177 new = xlog_assign_grant_head_val(cycle, space);
178 head_val = atomic64_cmpxchg(head, old, new);
179 } while (head_val != old);
180 }
181
182 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)183 xlog_grant_head_init(
184 struct xlog_grant_head *head)
185 {
186 xlog_assign_grant_head(&head->grant, 1, 0);
187 INIT_LIST_HEAD(&head->waiters);
188 spin_lock_init(&head->lock);
189 }
190
191 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)192 xlog_grant_head_wake_all(
193 struct xlog_grant_head *head)
194 {
195 struct xlog_ticket *tic;
196
197 spin_lock(&head->lock);
198 list_for_each_entry(tic, &head->waiters, t_queue)
199 wake_up_process(tic->t_task);
200 spin_unlock(&head->lock);
201 }
202
203 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)204 xlog_ticket_reservation(
205 struct xlog *log,
206 struct xlog_grant_head *head,
207 struct xlog_ticket *tic)
208 {
209 if (head == &log->l_write_head) {
210 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
211 return tic->t_unit_res;
212 } else {
213 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
214 return tic->t_unit_res * tic->t_cnt;
215 else
216 return tic->t_unit_res;
217 }
218 }
219
220 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)221 xlog_grant_head_wake(
222 struct xlog *log,
223 struct xlog_grant_head *head,
224 int *free_bytes)
225 {
226 struct xlog_ticket *tic;
227 int need_bytes;
228
229 list_for_each_entry(tic, &head->waiters, t_queue) {
230 need_bytes = xlog_ticket_reservation(log, head, tic);
231 if (*free_bytes < need_bytes)
232 return false;
233
234 *free_bytes -= need_bytes;
235 trace_xfs_log_grant_wake_up(log, tic);
236 wake_up_process(tic->t_task);
237 }
238
239 return true;
240 }
241
242 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)243 xlog_grant_head_wait(
244 struct xlog *log,
245 struct xlog_grant_head *head,
246 struct xlog_ticket *tic,
247 int need_bytes) __releases(&head->lock)
248 __acquires(&head->lock)
249 {
250 list_add_tail(&tic->t_queue, &head->waiters);
251
252 do {
253 if (XLOG_FORCED_SHUTDOWN(log))
254 goto shutdown;
255 xlog_grant_push_ail(log, need_bytes);
256
257 __set_current_state(TASK_UNINTERRUPTIBLE);
258 spin_unlock(&head->lock);
259
260 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
261
262 trace_xfs_log_grant_sleep(log, tic);
263 schedule();
264 trace_xfs_log_grant_wake(log, tic);
265
266 spin_lock(&head->lock);
267 if (XLOG_FORCED_SHUTDOWN(log))
268 goto shutdown;
269 } while (xlog_space_left(log, &head->grant) < need_bytes);
270
271 list_del_init(&tic->t_queue);
272 return 0;
273 shutdown:
274 list_del_init(&tic->t_queue);
275 return -EIO;
276 }
277
278 /*
279 * Atomically get the log space required for a log ticket.
280 *
281 * Once a ticket gets put onto head->waiters, it will only return after the
282 * needed reservation is satisfied.
283 *
284 * This function is structured so that it has a lock free fast path. This is
285 * necessary because every new transaction reservation will come through this
286 * path. Hence any lock will be globally hot if we take it unconditionally on
287 * every pass.
288 *
289 * As tickets are only ever moved on and off head->waiters under head->lock, we
290 * only need to take that lock if we are going to add the ticket to the queue
291 * and sleep. We can avoid taking the lock if the ticket was never added to
292 * head->waiters because the t_queue list head will be empty and we hold the
293 * only reference to it so it can safely be checked unlocked.
294 */
295 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)296 xlog_grant_head_check(
297 struct xlog *log,
298 struct xlog_grant_head *head,
299 struct xlog_ticket *tic,
300 int *need_bytes)
301 {
302 int free_bytes;
303 int error = 0;
304
305 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
306
307 /*
308 * If there are other waiters on the queue then give them a chance at
309 * logspace before us. Wake up the first waiters, if we do not wake
310 * up all the waiters then go to sleep waiting for more free space,
311 * otherwise try to get some space for this transaction.
312 */
313 *need_bytes = xlog_ticket_reservation(log, head, tic);
314 free_bytes = xlog_space_left(log, &head->grant);
315 if (!list_empty_careful(&head->waiters)) {
316 spin_lock(&head->lock);
317 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
318 free_bytes < *need_bytes) {
319 error = xlog_grant_head_wait(log, head, tic,
320 *need_bytes);
321 }
322 spin_unlock(&head->lock);
323 } else if (free_bytes < *need_bytes) {
324 spin_lock(&head->lock);
325 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
326 spin_unlock(&head->lock);
327 }
328
329 return error;
330 }
331
332 static void
xlog_tic_reset_res(xlog_ticket_t * tic)333 xlog_tic_reset_res(xlog_ticket_t *tic)
334 {
335 tic->t_res_num = 0;
336 tic->t_res_arr_sum = 0;
337 tic->t_res_num_ophdrs = 0;
338 }
339
340 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)341 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
342 {
343 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
344 /* add to overflow and start again */
345 tic->t_res_o_flow += tic->t_res_arr_sum;
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 }
349
350 tic->t_res_arr[tic->t_res_num].r_len = len;
351 tic->t_res_arr[tic->t_res_num].r_type = type;
352 tic->t_res_arr_sum += len;
353 tic->t_res_num++;
354 }
355
356 /*
357 * Replenish the byte reservation required by moving the grant write head.
358 */
359 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)360 xfs_log_regrant(
361 struct xfs_mount *mp,
362 struct xlog_ticket *tic)
363 {
364 struct xlog *log = mp->m_log;
365 int need_bytes;
366 int error = 0;
367
368 if (XLOG_FORCED_SHUTDOWN(log))
369 return -EIO;
370
371 XFS_STATS_INC(mp, xs_try_logspace);
372
373 /*
374 * This is a new transaction on the ticket, so we need to change the
375 * transaction ID so that the next transaction has a different TID in
376 * the log. Just add one to the existing tid so that we can see chains
377 * of rolling transactions in the log easily.
378 */
379 tic->t_tid++;
380
381 xlog_grant_push_ail(log, tic->t_unit_res);
382
383 tic->t_curr_res = tic->t_unit_res;
384 xlog_tic_reset_res(tic);
385
386 if (tic->t_cnt > 0)
387 return 0;
388
389 trace_xfs_log_regrant(log, tic);
390
391 error = xlog_grant_head_check(log, &log->l_write_head, tic,
392 &need_bytes);
393 if (error)
394 goto out_error;
395
396 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
397 trace_xfs_log_regrant_exit(log, tic);
398 xlog_verify_grant_tail(log);
399 return 0;
400
401 out_error:
402 /*
403 * If we are failing, make sure the ticket doesn't have any current
404 * reservations. We don't want to add this back when the ticket/
405 * transaction gets cancelled.
406 */
407 tic->t_curr_res = 0;
408 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
409 return error;
410 }
411
412 /*
413 * Reserve log space and return a ticket corresponding to the reservation.
414 *
415 * Each reservation is going to reserve extra space for a log record header.
416 * When writes happen to the on-disk log, we don't subtract the length of the
417 * log record header from any reservation. By wasting space in each
418 * reservation, we prevent over allocation problems.
419 */
420 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)421 xfs_log_reserve(
422 struct xfs_mount *mp,
423 int unit_bytes,
424 int cnt,
425 struct xlog_ticket **ticp,
426 uint8_t client,
427 bool permanent)
428 {
429 struct xlog *log = mp->m_log;
430 struct xlog_ticket *tic;
431 int need_bytes;
432 int error = 0;
433
434 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
435
436 if (XLOG_FORCED_SHUTDOWN(log))
437 return -EIO;
438
439 XFS_STATS_INC(mp, xs_try_logspace);
440
441 ASSERT(*ticp == NULL);
442 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
443 KM_SLEEP | KM_MAYFAIL);
444 if (!tic)
445 return -ENOMEM;
446
447 *ticp = tic;
448
449 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
450 : tic->t_unit_res);
451
452 trace_xfs_log_reserve(log, tic);
453
454 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
455 &need_bytes);
456 if (error)
457 goto out_error;
458
459 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
460 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
461 trace_xfs_log_reserve_exit(log, tic);
462 xlog_verify_grant_tail(log);
463 return 0;
464
465 out_error:
466 /*
467 * If we are failing, make sure the ticket doesn't have any current
468 * reservations. We don't want to add this back when the ticket/
469 * transaction gets cancelled.
470 */
471 tic->t_curr_res = 0;
472 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
473 return error;
474 }
475
476
477 /*
478 * NOTES:
479 *
480 * 1. currblock field gets updated at startup and after in-core logs
481 * marked as with WANT_SYNC.
482 */
483
484 /*
485 * This routine is called when a user of a log manager ticket is done with
486 * the reservation. If the ticket was ever used, then a commit record for
487 * the associated transaction is written out as a log operation header with
488 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
489 * a given ticket. If the ticket was one with a permanent reservation, then
490 * a few operations are done differently. Permanent reservation tickets by
491 * default don't release the reservation. They just commit the current
492 * transaction with the belief that the reservation is still needed. A flag
493 * must be passed in before permanent reservations are actually released.
494 * When these type of tickets are not released, they need to be set into
495 * the inited state again. By doing this, a start record will be written
496 * out when the next write occurs.
497 */
498 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)499 xfs_log_done(
500 struct xfs_mount *mp,
501 struct xlog_ticket *ticket,
502 struct xlog_in_core **iclog,
503 bool regrant)
504 {
505 struct xlog *log = mp->m_log;
506 xfs_lsn_t lsn = 0;
507
508 if (XLOG_FORCED_SHUTDOWN(log) ||
509 /*
510 * If nothing was ever written, don't write out commit record.
511 * If we get an error, just continue and give back the log ticket.
512 */
513 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
514 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
515 lsn = (xfs_lsn_t) -1;
516 regrant = false;
517 }
518
519
520 if (!regrant) {
521 trace_xfs_log_done_nonperm(log, ticket);
522
523 /*
524 * Release ticket if not permanent reservation or a specific
525 * request has been made to release a permanent reservation.
526 */
527 xlog_ungrant_log_space(log, ticket);
528 } else {
529 trace_xfs_log_done_perm(log, ticket);
530
531 xlog_regrant_reserve_log_space(log, ticket);
532 /* If this ticket was a permanent reservation and we aren't
533 * trying to release it, reset the inited flags; so next time
534 * we write, a start record will be written out.
535 */
536 ticket->t_flags |= XLOG_TIC_INITED;
537 }
538
539 xfs_log_ticket_put(ticket);
540 return lsn;
541 }
542
543 /*
544 * Attaches a new iclog I/O completion callback routine during
545 * transaction commit. If the log is in error state, a non-zero
546 * return code is handed back and the caller is responsible for
547 * executing the callback at an appropriate time.
548 */
549 int
xfs_log_notify(struct xlog_in_core * iclog,xfs_log_callback_t * cb)550 xfs_log_notify(
551 struct xlog_in_core *iclog,
552 xfs_log_callback_t *cb)
553 {
554 int abortflg;
555
556 spin_lock(&iclog->ic_callback_lock);
557 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
558 if (!abortflg) {
559 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
560 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
561 cb->cb_next = NULL;
562 *(iclog->ic_callback_tail) = cb;
563 iclog->ic_callback_tail = &(cb->cb_next);
564 }
565 spin_unlock(&iclog->ic_callback_lock);
566 return abortflg;
567 }
568
569 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)570 xfs_log_release_iclog(
571 struct xfs_mount *mp,
572 struct xlog_in_core *iclog)
573 {
574 if (xlog_state_release_iclog(mp->m_log, iclog)) {
575 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
576 return -EIO;
577 }
578
579 return 0;
580 }
581
582 /*
583 * Mount a log filesystem
584 *
585 * mp - ubiquitous xfs mount point structure
586 * log_target - buftarg of on-disk log device
587 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
588 * num_bblocks - Number of BBSIZE blocks in on-disk log
589 *
590 * Return error or zero.
591 */
592 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)593 xfs_log_mount(
594 xfs_mount_t *mp,
595 xfs_buftarg_t *log_target,
596 xfs_daddr_t blk_offset,
597 int num_bblks)
598 {
599 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
600 int error = 0;
601 int min_logfsbs;
602
603 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
604 xfs_notice(mp, "Mounting V%d Filesystem",
605 XFS_SB_VERSION_NUM(&mp->m_sb));
606 } else {
607 xfs_notice(mp,
608 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
609 XFS_SB_VERSION_NUM(&mp->m_sb));
610 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
611 }
612
613 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
614 if (IS_ERR(mp->m_log)) {
615 error = PTR_ERR(mp->m_log);
616 goto out;
617 }
618
619 /*
620 * Validate the given log space and drop a critical message via syslog
621 * if the log size is too small that would lead to some unexpected
622 * situations in transaction log space reservation stage.
623 *
624 * Note: we can't just reject the mount if the validation fails. This
625 * would mean that people would have to downgrade their kernel just to
626 * remedy the situation as there is no way to grow the log (short of
627 * black magic surgery with xfs_db).
628 *
629 * We can, however, reject mounts for CRC format filesystems, as the
630 * mkfs binary being used to make the filesystem should never create a
631 * filesystem with a log that is too small.
632 */
633 min_logfsbs = xfs_log_calc_minimum_size(mp);
634
635 if (mp->m_sb.sb_logblocks < min_logfsbs) {
636 xfs_warn(mp,
637 "Log size %d blocks too small, minimum size is %d blocks",
638 mp->m_sb.sb_logblocks, min_logfsbs);
639 error = -EINVAL;
640 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
641 xfs_warn(mp,
642 "Log size %d blocks too large, maximum size is %lld blocks",
643 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
644 error = -EINVAL;
645 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
646 xfs_warn(mp,
647 "log size %lld bytes too large, maximum size is %lld bytes",
648 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
649 XFS_MAX_LOG_BYTES);
650 error = -EINVAL;
651 } else if (mp->m_sb.sb_logsunit > 1 &&
652 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
653 xfs_warn(mp,
654 "log stripe unit %u bytes must be a multiple of block size",
655 mp->m_sb.sb_logsunit);
656 error = -EINVAL;
657 fatal = true;
658 }
659 if (error) {
660 /*
661 * Log check errors are always fatal on v5; or whenever bad
662 * metadata leads to a crash.
663 */
664 if (fatal) {
665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 ASSERT(0);
667 goto out_free_log;
668 }
669 xfs_crit(mp, "Log size out of supported range.");
670 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 }
673
674 /*
675 * Initialize the AIL now we have a log.
676 */
677 error = xfs_trans_ail_init(mp);
678 if (error) {
679 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 goto out_free_log;
681 }
682 mp->m_log->l_ailp = mp->m_ail;
683
684 /*
685 * skip log recovery on a norecovery mount. pretend it all
686 * just worked.
687 */
688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691 if (readonly)
692 mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694 error = xlog_recover(mp->m_log);
695
696 if (readonly)
697 mp->m_flags |= XFS_MOUNT_RDONLY;
698 if (error) {
699 xfs_warn(mp, "log mount/recovery failed: error %d",
700 error);
701 xlog_recover_cancel(mp->m_log);
702 goto out_destroy_ail;
703 }
704 }
705
706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 "log");
708 if (error)
709 goto out_destroy_ail;
710
711 /* Normal transactions can now occur */
712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714 /*
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
718 */
719 xlog_cil_init_post_recovery(mp->m_log);
720
721 return 0;
722
723 out_destroy_ail:
724 xfs_trans_ail_destroy(mp);
725 out_free_log:
726 xlog_dealloc_log(mp->m_log);
727 out:
728 return error;
729 }
730
731 /*
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735 * here.
736 *
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
739 * it.
740 */
741 int
xfs_log_mount_finish(struct xfs_mount * mp)742 xfs_log_mount_finish(
743 struct xfs_mount *mp)
744 {
745 int error = 0;
746 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
747 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
748
749 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 return 0;
752 } else if (readonly) {
753 /* Allow unlinked processing to proceed */
754 mp->m_flags &= ~XFS_MOUNT_RDONLY;
755 }
756
757 /*
758 * During the second phase of log recovery, we need iget and
759 * iput to behave like they do for an active filesystem.
760 * xfs_fs_drop_inode needs to be able to prevent the deletion
761 * of inodes before we're done replaying log items on those
762 * inodes. Turn it off immediately after recovery finishes
763 * so that we don't leak the quota inodes if subsequent mount
764 * activities fail.
765 *
766 * We let all inodes involved in redo item processing end up on
767 * the LRU instead of being evicted immediately so that if we do
768 * something to an unlinked inode, the irele won't cause
769 * premature truncation and freeing of the inode, which results
770 * in log recovery failure. We have to evict the unreferenced
771 * lru inodes after clearing SB_ACTIVE because we don't
772 * otherwise clean up the lru if there's a subsequent failure in
773 * xfs_mountfs, which leads to us leaking the inodes if nothing
774 * else (e.g. quotacheck) references the inodes before the
775 * mount failure occurs.
776 */
777 mp->m_super->s_flags |= SB_ACTIVE;
778 error = xlog_recover_finish(mp->m_log);
779 if (!error)
780 xfs_log_work_queue(mp);
781 mp->m_super->s_flags &= ~SB_ACTIVE;
782 evict_inodes(mp->m_super);
783
784 /*
785 * Drain the buffer LRU after log recovery. This is required for v4
786 * filesystems to avoid leaving around buffers with NULL verifier ops,
787 * but we do it unconditionally to make sure we're always in a clean
788 * cache state after mount.
789 *
790 * Don't push in the error case because the AIL may have pending intents
791 * that aren't removed until recovery is cancelled.
792 */
793 if (!error && recovered) {
794 xfs_log_force(mp, XFS_LOG_SYNC);
795 xfs_ail_push_all_sync(mp->m_ail);
796 }
797 xfs_wait_buftarg(mp->m_ddev_targp);
798
799 if (readonly)
800 mp->m_flags |= XFS_MOUNT_RDONLY;
801
802 return error;
803 }
804
805 /*
806 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
807 * the log.
808 */
809 int
xfs_log_mount_cancel(struct xfs_mount * mp)810 xfs_log_mount_cancel(
811 struct xfs_mount *mp)
812 {
813 int error;
814
815 error = xlog_recover_cancel(mp->m_log);
816 xfs_log_unmount(mp);
817
818 return error;
819 }
820
821 /*
822 * Final log writes as part of unmount.
823 *
824 * Mark the filesystem clean as unmount happens. Note that during relocation
825 * this routine needs to be executed as part of source-bag while the
826 * deallocation must not be done until source-end.
827 */
828
829 /* Actually write the unmount record to disk. */
830 static void
xfs_log_write_unmount_record(struct xfs_mount * mp)831 xfs_log_write_unmount_record(
832 struct xfs_mount *mp)
833 {
834 /* the data section must be 32 bit size aligned */
835 struct xfs_unmount_log_format magic = {
836 .magic = XLOG_UNMOUNT_TYPE,
837 };
838 struct xfs_log_iovec reg = {
839 .i_addr = &magic,
840 .i_len = sizeof(magic),
841 .i_type = XLOG_REG_TYPE_UNMOUNT,
842 };
843 struct xfs_log_vec vec = {
844 .lv_niovecs = 1,
845 .lv_iovecp = ®,
846 };
847 struct xlog *log = mp->m_log;
848 struct xlog_in_core *iclog;
849 struct xlog_ticket *tic = NULL;
850 xfs_lsn_t lsn;
851 uint flags = XLOG_UNMOUNT_TRANS;
852 int error;
853
854 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
855 if (error)
856 goto out_err;
857
858 /*
859 * If we think the summary counters are bad, clear the unmount header
860 * flag in the unmount record so that the summary counters will be
861 * recalculated during log recovery at next mount. Refer to
862 * xlog_check_unmount_rec for more details.
863 */
864 if (XFS_TEST_ERROR((mp->m_flags & XFS_MOUNT_BAD_SUMMARY), mp,
865 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
866 xfs_alert(mp, "%s: will fix summary counters at next mount",
867 __func__);
868 flags &= ~XLOG_UNMOUNT_TRANS;
869 }
870
871 /* remove inited flag, and account for space used */
872 tic->t_flags = 0;
873 tic->t_curr_res -= sizeof(magic);
874 error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
875 /*
876 * At this point, we're umounting anyway, so there's no point in
877 * transitioning log state to IOERROR. Just continue...
878 */
879 out_err:
880 if (error)
881 xfs_alert(mp, "%s: unmount record failed", __func__);
882
883 spin_lock(&log->l_icloglock);
884 iclog = log->l_iclog;
885 atomic_inc(&iclog->ic_refcnt);
886 xlog_state_want_sync(log, iclog);
887 spin_unlock(&log->l_icloglock);
888 error = xlog_state_release_iclog(log, iclog);
889
890 spin_lock(&log->l_icloglock);
891 switch (iclog->ic_state) {
892 default:
893 if (!XLOG_FORCED_SHUTDOWN(log)) {
894 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
895 break;
896 }
897 /* fall through */
898 case XLOG_STATE_ACTIVE:
899 case XLOG_STATE_DIRTY:
900 spin_unlock(&log->l_icloglock);
901 break;
902 }
903
904 if (tic) {
905 trace_xfs_log_umount_write(log, tic);
906 xlog_ungrant_log_space(log, tic);
907 xfs_log_ticket_put(tic);
908 }
909 }
910
911 /*
912 * Unmount record used to have a string "Unmount filesystem--" in the
913 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
914 * We just write the magic number now since that particular field isn't
915 * currently architecture converted and "Unmount" is a bit foo.
916 * As far as I know, there weren't any dependencies on the old behaviour.
917 */
918
919 static int
xfs_log_unmount_write(xfs_mount_t * mp)920 xfs_log_unmount_write(xfs_mount_t *mp)
921 {
922 struct xlog *log = mp->m_log;
923 xlog_in_core_t *iclog;
924 #ifdef DEBUG
925 xlog_in_core_t *first_iclog;
926 #endif
927 int error;
928
929 /*
930 * Don't write out unmount record on norecovery mounts or ro devices.
931 * Or, if we are doing a forced umount (typically because of IO errors).
932 */
933 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
934 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
935 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
936 return 0;
937 }
938
939 error = xfs_log_force(mp, XFS_LOG_SYNC);
940 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
941
942 #ifdef DEBUG
943 first_iclog = iclog = log->l_iclog;
944 do {
945 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
946 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
947 ASSERT(iclog->ic_offset == 0);
948 }
949 iclog = iclog->ic_next;
950 } while (iclog != first_iclog);
951 #endif
952 if (! (XLOG_FORCED_SHUTDOWN(log))) {
953 xfs_log_write_unmount_record(mp);
954 } else {
955 /*
956 * We're already in forced_shutdown mode, couldn't
957 * even attempt to write out the unmount transaction.
958 *
959 * Go through the motions of sync'ing and releasing
960 * the iclog, even though no I/O will actually happen,
961 * we need to wait for other log I/Os that may already
962 * be in progress. Do this as a separate section of
963 * code so we'll know if we ever get stuck here that
964 * we're in this odd situation of trying to unmount
965 * a file system that went into forced_shutdown as
966 * the result of an unmount..
967 */
968 spin_lock(&log->l_icloglock);
969 iclog = log->l_iclog;
970 atomic_inc(&iclog->ic_refcnt);
971
972 xlog_state_want_sync(log, iclog);
973 spin_unlock(&log->l_icloglock);
974 error = xlog_state_release_iclog(log, iclog);
975
976 spin_lock(&log->l_icloglock);
977
978 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
979 || iclog->ic_state == XLOG_STATE_DIRTY
980 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
981
982 xlog_wait(&iclog->ic_force_wait,
983 &log->l_icloglock);
984 } else {
985 spin_unlock(&log->l_icloglock);
986 }
987 }
988
989 return error;
990 } /* xfs_log_unmount_write */
991
992 /*
993 * Empty the log for unmount/freeze.
994 *
995 * To do this, we first need to shut down the background log work so it is not
996 * trying to cover the log as we clean up. We then need to unpin all objects in
997 * the log so we can then flush them out. Once they have completed their IO and
998 * run the callbacks removing themselves from the AIL, we can write the unmount
999 * record.
1000 */
1001 void
xfs_log_quiesce(struct xfs_mount * mp)1002 xfs_log_quiesce(
1003 struct xfs_mount *mp)
1004 {
1005 cancel_delayed_work_sync(&mp->m_log->l_work);
1006 xfs_log_force(mp, XFS_LOG_SYNC);
1007
1008 /*
1009 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1010 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1011 * xfs_buf_iowait() cannot be used because it was pushed with the
1012 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1013 * the IO to complete.
1014 */
1015 xfs_ail_push_all_sync(mp->m_ail);
1016 xfs_wait_buftarg(mp->m_ddev_targp);
1017 xfs_buf_lock(mp->m_sb_bp);
1018 xfs_buf_unlock(mp->m_sb_bp);
1019
1020 xfs_log_unmount_write(mp);
1021 }
1022
1023 /*
1024 * Shut down and release the AIL and Log.
1025 *
1026 * During unmount, we need to ensure we flush all the dirty metadata objects
1027 * from the AIL so that the log is empty before we write the unmount record to
1028 * the log. Once this is done, we can tear down the AIL and the log.
1029 */
1030 void
xfs_log_unmount(struct xfs_mount * mp)1031 xfs_log_unmount(
1032 struct xfs_mount *mp)
1033 {
1034 xfs_log_quiesce(mp);
1035
1036 xfs_trans_ail_destroy(mp);
1037
1038 xfs_sysfs_del(&mp->m_log->l_kobj);
1039
1040 xlog_dealloc_log(mp->m_log);
1041 }
1042
1043 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1044 xfs_log_item_init(
1045 struct xfs_mount *mp,
1046 struct xfs_log_item *item,
1047 int type,
1048 const struct xfs_item_ops *ops)
1049 {
1050 item->li_mountp = mp;
1051 item->li_ailp = mp->m_ail;
1052 item->li_type = type;
1053 item->li_ops = ops;
1054 item->li_lv = NULL;
1055
1056 INIT_LIST_HEAD(&item->li_ail);
1057 INIT_LIST_HEAD(&item->li_cil);
1058 INIT_LIST_HEAD(&item->li_bio_list);
1059 INIT_LIST_HEAD(&item->li_trans);
1060 }
1061
1062 /*
1063 * Wake up processes waiting for log space after we have moved the log tail.
1064 */
1065 void
xfs_log_space_wake(struct xfs_mount * mp)1066 xfs_log_space_wake(
1067 struct xfs_mount *mp)
1068 {
1069 struct xlog *log = mp->m_log;
1070 int free_bytes;
1071
1072 if (XLOG_FORCED_SHUTDOWN(log))
1073 return;
1074
1075 if (!list_empty_careful(&log->l_write_head.waiters)) {
1076 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1077
1078 spin_lock(&log->l_write_head.lock);
1079 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1080 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1081 spin_unlock(&log->l_write_head.lock);
1082 }
1083
1084 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1085 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1086
1087 spin_lock(&log->l_reserve_head.lock);
1088 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1089 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1090 spin_unlock(&log->l_reserve_head.lock);
1091 }
1092 }
1093
1094 /*
1095 * Determine if we have a transaction that has gone to disk that needs to be
1096 * covered. To begin the transition to the idle state firstly the log needs to
1097 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1098 * we start attempting to cover the log.
1099 *
1100 * Only if we are then in a state where covering is needed, the caller is
1101 * informed that dummy transactions are required to move the log into the idle
1102 * state.
1103 *
1104 * If there are any items in the AIl or CIL, then we do not want to attempt to
1105 * cover the log as we may be in a situation where there isn't log space
1106 * available to run a dummy transaction and this can lead to deadlocks when the
1107 * tail of the log is pinned by an item that is modified in the CIL. Hence
1108 * there's no point in running a dummy transaction at this point because we
1109 * can't start trying to idle the log until both the CIL and AIL are empty.
1110 */
1111 static int
xfs_log_need_covered(xfs_mount_t * mp)1112 xfs_log_need_covered(xfs_mount_t *mp)
1113 {
1114 struct xlog *log = mp->m_log;
1115 int needed = 0;
1116
1117 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1118 return 0;
1119
1120 if (!xlog_cil_empty(log))
1121 return 0;
1122
1123 spin_lock(&log->l_icloglock);
1124 switch (log->l_covered_state) {
1125 case XLOG_STATE_COVER_DONE:
1126 case XLOG_STATE_COVER_DONE2:
1127 case XLOG_STATE_COVER_IDLE:
1128 break;
1129 case XLOG_STATE_COVER_NEED:
1130 case XLOG_STATE_COVER_NEED2:
1131 if (xfs_ail_min_lsn(log->l_ailp))
1132 break;
1133 if (!xlog_iclogs_empty(log))
1134 break;
1135
1136 needed = 1;
1137 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1138 log->l_covered_state = XLOG_STATE_COVER_DONE;
1139 else
1140 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1141 break;
1142 default:
1143 needed = 1;
1144 break;
1145 }
1146 spin_unlock(&log->l_icloglock);
1147 return needed;
1148 }
1149
1150 /*
1151 * We may be holding the log iclog lock upon entering this routine.
1152 */
1153 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1154 xlog_assign_tail_lsn_locked(
1155 struct xfs_mount *mp)
1156 {
1157 struct xlog *log = mp->m_log;
1158 struct xfs_log_item *lip;
1159 xfs_lsn_t tail_lsn;
1160
1161 assert_spin_locked(&mp->m_ail->ail_lock);
1162
1163 /*
1164 * To make sure we always have a valid LSN for the log tail we keep
1165 * track of the last LSN which was committed in log->l_last_sync_lsn,
1166 * and use that when the AIL was empty.
1167 */
1168 lip = xfs_ail_min(mp->m_ail);
1169 if (lip)
1170 tail_lsn = lip->li_lsn;
1171 else
1172 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1173 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1174 atomic64_set(&log->l_tail_lsn, tail_lsn);
1175 return tail_lsn;
1176 }
1177
1178 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1179 xlog_assign_tail_lsn(
1180 struct xfs_mount *mp)
1181 {
1182 xfs_lsn_t tail_lsn;
1183
1184 spin_lock(&mp->m_ail->ail_lock);
1185 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1186 spin_unlock(&mp->m_ail->ail_lock);
1187
1188 return tail_lsn;
1189 }
1190
1191 /*
1192 * Return the space in the log between the tail and the head. The head
1193 * is passed in the cycle/bytes formal parms. In the special case where
1194 * the reserve head has wrapped passed the tail, this calculation is no
1195 * longer valid. In this case, just return 0 which means there is no space
1196 * in the log. This works for all places where this function is called
1197 * with the reserve head. Of course, if the write head were to ever
1198 * wrap the tail, we should blow up. Rather than catch this case here,
1199 * we depend on other ASSERTions in other parts of the code. XXXmiken
1200 *
1201 * This code also handles the case where the reservation head is behind
1202 * the tail. The details of this case are described below, but the end
1203 * result is that we return the size of the log as the amount of space left.
1204 */
1205 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1206 xlog_space_left(
1207 struct xlog *log,
1208 atomic64_t *head)
1209 {
1210 int free_bytes;
1211 int tail_bytes;
1212 int tail_cycle;
1213 int head_cycle;
1214 int head_bytes;
1215
1216 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1217 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1218 tail_bytes = BBTOB(tail_bytes);
1219 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1220 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1221 else if (tail_cycle + 1 < head_cycle)
1222 return 0;
1223 else if (tail_cycle < head_cycle) {
1224 ASSERT(tail_cycle == (head_cycle - 1));
1225 free_bytes = tail_bytes - head_bytes;
1226 } else {
1227 /*
1228 * The reservation head is behind the tail.
1229 * In this case we just want to return the size of the
1230 * log as the amount of space left.
1231 */
1232 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1233 xfs_alert(log->l_mp,
1234 " tail_cycle = %d, tail_bytes = %d",
1235 tail_cycle, tail_bytes);
1236 xfs_alert(log->l_mp,
1237 " GH cycle = %d, GH bytes = %d",
1238 head_cycle, head_bytes);
1239 ASSERT(0);
1240 free_bytes = log->l_logsize;
1241 }
1242 return free_bytes;
1243 }
1244
1245
1246 /*
1247 * Log function which is called when an io completes.
1248 *
1249 * The log manager needs its own routine, in order to control what
1250 * happens with the buffer after the write completes.
1251 */
1252 static void
xlog_iodone(xfs_buf_t * bp)1253 xlog_iodone(xfs_buf_t *bp)
1254 {
1255 struct xlog_in_core *iclog = bp->b_log_item;
1256 struct xlog *l = iclog->ic_log;
1257 int aborted = 0;
1258
1259 /*
1260 * Race to shutdown the filesystem if we see an error or the iclog is in
1261 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1262 * CRC errors into log recovery.
1263 */
1264 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1265 iclog->ic_state & XLOG_STATE_IOABORT) {
1266 if (iclog->ic_state & XLOG_STATE_IOABORT)
1267 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1268
1269 xfs_buf_ioerror_alert(bp, __func__);
1270 xfs_buf_stale(bp);
1271 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1272 /*
1273 * This flag will be propagated to the trans-committed
1274 * callback routines to let them know that the log-commit
1275 * didn't succeed.
1276 */
1277 aborted = XFS_LI_ABORTED;
1278 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1279 aborted = XFS_LI_ABORTED;
1280 }
1281
1282 /* log I/O is always issued ASYNC */
1283 ASSERT(bp->b_flags & XBF_ASYNC);
1284 xlog_state_done_syncing(iclog, aborted);
1285
1286 /*
1287 * drop the buffer lock now that we are done. Nothing references
1288 * the buffer after this, so an unmount waiting on this lock can now
1289 * tear it down safely. As such, it is unsafe to reference the buffer
1290 * (bp) after the unlock as we could race with it being freed.
1291 */
1292 xfs_buf_unlock(bp);
1293 }
1294
1295 /*
1296 * Return size of each in-core log record buffer.
1297 *
1298 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1299 *
1300 * If the filesystem blocksize is too large, we may need to choose a
1301 * larger size since the directory code currently logs entire blocks.
1302 */
1303
1304 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1305 xlog_get_iclog_buffer_size(
1306 struct xfs_mount *mp,
1307 struct xlog *log)
1308 {
1309 int size;
1310 int xhdrs;
1311
1312 if (mp->m_logbufs <= 0)
1313 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1314 else
1315 log->l_iclog_bufs = mp->m_logbufs;
1316
1317 /*
1318 * Buffer size passed in from mount system call.
1319 */
1320 if (mp->m_logbsize > 0) {
1321 size = log->l_iclog_size = mp->m_logbsize;
1322 log->l_iclog_size_log = 0;
1323 while (size != 1) {
1324 log->l_iclog_size_log++;
1325 size >>= 1;
1326 }
1327
1328 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1329 /* # headers = size / 32k
1330 * one header holds cycles from 32k of data
1331 */
1332
1333 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1334 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1335 xhdrs++;
1336 log->l_iclog_hsize = xhdrs << BBSHIFT;
1337 log->l_iclog_heads = xhdrs;
1338 } else {
1339 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1340 log->l_iclog_hsize = BBSIZE;
1341 log->l_iclog_heads = 1;
1342 }
1343 goto done;
1344 }
1345
1346 /* All machines use 32kB buffers by default. */
1347 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1348 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1349
1350 /* the default log size is 16k or 32k which is one header sector */
1351 log->l_iclog_hsize = BBSIZE;
1352 log->l_iclog_heads = 1;
1353
1354 done:
1355 /* are we being asked to make the sizes selected above visible? */
1356 if (mp->m_logbufs == 0)
1357 mp->m_logbufs = log->l_iclog_bufs;
1358 if (mp->m_logbsize == 0)
1359 mp->m_logbsize = log->l_iclog_size;
1360 } /* xlog_get_iclog_buffer_size */
1361
1362
1363 void
xfs_log_work_queue(struct xfs_mount * mp)1364 xfs_log_work_queue(
1365 struct xfs_mount *mp)
1366 {
1367 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1368 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1369 }
1370
1371 /*
1372 * Every sync period we need to unpin all items in the AIL and push them to
1373 * disk. If there is nothing dirty, then we might need to cover the log to
1374 * indicate that the filesystem is idle.
1375 */
1376 static void
xfs_log_worker(struct work_struct * work)1377 xfs_log_worker(
1378 struct work_struct *work)
1379 {
1380 struct xlog *log = container_of(to_delayed_work(work),
1381 struct xlog, l_work);
1382 struct xfs_mount *mp = log->l_mp;
1383
1384 /* dgc: errors ignored - not fatal and nowhere to report them */
1385 if (xfs_log_need_covered(mp)) {
1386 /*
1387 * Dump a transaction into the log that contains no real change.
1388 * This is needed to stamp the current tail LSN into the log
1389 * during the covering operation.
1390 *
1391 * We cannot use an inode here for this - that will push dirty
1392 * state back up into the VFS and then periodic inode flushing
1393 * will prevent log covering from making progress. Hence we
1394 * synchronously log the superblock instead to ensure the
1395 * superblock is immediately unpinned and can be written back.
1396 */
1397 xfs_sync_sb(mp, true);
1398 } else
1399 xfs_log_force(mp, 0);
1400
1401 /* start pushing all the metadata that is currently dirty */
1402 xfs_ail_push_all(mp->m_ail);
1403
1404 /* queue us up again */
1405 xfs_log_work_queue(mp);
1406 }
1407
1408 /*
1409 * This routine initializes some of the log structure for a given mount point.
1410 * Its primary purpose is to fill in enough, so recovery can occur. However,
1411 * some other stuff may be filled in too.
1412 */
1413 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1414 xlog_alloc_log(
1415 struct xfs_mount *mp,
1416 struct xfs_buftarg *log_target,
1417 xfs_daddr_t blk_offset,
1418 int num_bblks)
1419 {
1420 struct xlog *log;
1421 xlog_rec_header_t *head;
1422 xlog_in_core_t **iclogp;
1423 xlog_in_core_t *iclog, *prev_iclog=NULL;
1424 xfs_buf_t *bp;
1425 int i;
1426 int error = -ENOMEM;
1427 uint log2_size = 0;
1428
1429 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1430 if (!log) {
1431 xfs_warn(mp, "Log allocation failed: No memory!");
1432 goto out;
1433 }
1434
1435 log->l_mp = mp;
1436 log->l_targ = log_target;
1437 log->l_logsize = BBTOB(num_bblks);
1438 log->l_logBBstart = blk_offset;
1439 log->l_logBBsize = num_bblks;
1440 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1441 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1442 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1443
1444 log->l_prev_block = -1;
1445 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1446 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1447 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1448 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1449
1450 xlog_grant_head_init(&log->l_reserve_head);
1451 xlog_grant_head_init(&log->l_write_head);
1452
1453 error = -EFSCORRUPTED;
1454 if (xfs_sb_version_hassector(&mp->m_sb)) {
1455 log2_size = mp->m_sb.sb_logsectlog;
1456 if (log2_size < BBSHIFT) {
1457 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1458 log2_size, BBSHIFT);
1459 goto out_free_log;
1460 }
1461
1462 log2_size -= BBSHIFT;
1463 if (log2_size > mp->m_sectbb_log) {
1464 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1465 log2_size, mp->m_sectbb_log);
1466 goto out_free_log;
1467 }
1468
1469 /* for larger sector sizes, must have v2 or external log */
1470 if (log2_size && log->l_logBBstart > 0 &&
1471 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1472 xfs_warn(mp,
1473 "log sector size (0x%x) invalid for configuration.",
1474 log2_size);
1475 goto out_free_log;
1476 }
1477 }
1478 log->l_sectBBsize = 1 << log2_size;
1479
1480 xlog_get_iclog_buffer_size(mp, log);
1481
1482 /*
1483 * Use a NULL block for the extra log buffer used during splits so that
1484 * it will trigger errors if we ever try to do IO on it without first
1485 * having set it up properly.
1486 */
1487 error = -ENOMEM;
1488 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1489 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1490 if (!bp)
1491 goto out_free_log;
1492
1493 /*
1494 * The iclogbuf buffer locks are held over IO but we are not going to do
1495 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1496 * when appropriately.
1497 */
1498 ASSERT(xfs_buf_islocked(bp));
1499 xfs_buf_unlock(bp);
1500
1501 /* use high priority wq for log I/O completion */
1502 bp->b_ioend_wq = mp->m_log_workqueue;
1503 bp->b_iodone = xlog_iodone;
1504 log->l_xbuf = bp;
1505
1506 spin_lock_init(&log->l_icloglock);
1507 init_waitqueue_head(&log->l_flush_wait);
1508
1509 iclogp = &log->l_iclog;
1510 /*
1511 * The amount of memory to allocate for the iclog structure is
1512 * rather funky due to the way the structure is defined. It is
1513 * done this way so that we can use different sizes for machines
1514 * with different amounts of memory. See the definition of
1515 * xlog_in_core_t in xfs_log_priv.h for details.
1516 */
1517 ASSERT(log->l_iclog_size >= 4096);
1518 for (i=0; i < log->l_iclog_bufs; i++) {
1519 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1520 if (!*iclogp)
1521 goto out_free_iclog;
1522
1523 iclog = *iclogp;
1524 iclog->ic_prev = prev_iclog;
1525 prev_iclog = iclog;
1526
1527 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1528 BTOBB(log->l_iclog_size),
1529 XBF_NO_IOACCT);
1530 if (!bp)
1531 goto out_free_iclog;
1532
1533 ASSERT(xfs_buf_islocked(bp));
1534 xfs_buf_unlock(bp);
1535
1536 /* use high priority wq for log I/O completion */
1537 bp->b_ioend_wq = mp->m_log_workqueue;
1538 bp->b_iodone = xlog_iodone;
1539 iclog->ic_bp = bp;
1540 iclog->ic_data = bp->b_addr;
1541 #ifdef DEBUG
1542 log->l_iclog_bak[i] = &iclog->ic_header;
1543 #endif
1544 head = &iclog->ic_header;
1545 memset(head, 0, sizeof(xlog_rec_header_t));
1546 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1547 head->h_version = cpu_to_be32(
1548 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1549 head->h_size = cpu_to_be32(log->l_iclog_size);
1550 /* new fields */
1551 head->h_fmt = cpu_to_be32(XLOG_FMT);
1552 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1553
1554 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1555 iclog->ic_state = XLOG_STATE_ACTIVE;
1556 iclog->ic_log = log;
1557 atomic_set(&iclog->ic_refcnt, 0);
1558 spin_lock_init(&iclog->ic_callback_lock);
1559 iclog->ic_callback_tail = &(iclog->ic_callback);
1560 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1561
1562 init_waitqueue_head(&iclog->ic_force_wait);
1563 init_waitqueue_head(&iclog->ic_write_wait);
1564
1565 iclogp = &iclog->ic_next;
1566 }
1567 *iclogp = log->l_iclog; /* complete ring */
1568 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1569
1570 error = xlog_cil_init(log);
1571 if (error)
1572 goto out_free_iclog;
1573 return log;
1574
1575 out_free_iclog:
1576 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1577 prev_iclog = iclog->ic_next;
1578 if (iclog->ic_bp)
1579 xfs_buf_free(iclog->ic_bp);
1580 kmem_free(iclog);
1581 }
1582 spinlock_destroy(&log->l_icloglock);
1583 xfs_buf_free(log->l_xbuf);
1584 out_free_log:
1585 kmem_free(log);
1586 out:
1587 return ERR_PTR(error);
1588 } /* xlog_alloc_log */
1589
1590
1591 /*
1592 * Write out the commit record of a transaction associated with the given
1593 * ticket. Return the lsn of the commit record.
1594 */
1595 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1596 xlog_commit_record(
1597 struct xlog *log,
1598 struct xlog_ticket *ticket,
1599 struct xlog_in_core **iclog,
1600 xfs_lsn_t *commitlsnp)
1601 {
1602 struct xfs_mount *mp = log->l_mp;
1603 int error;
1604 struct xfs_log_iovec reg = {
1605 .i_addr = NULL,
1606 .i_len = 0,
1607 .i_type = XLOG_REG_TYPE_COMMIT,
1608 };
1609 struct xfs_log_vec vec = {
1610 .lv_niovecs = 1,
1611 .lv_iovecp = ®,
1612 };
1613
1614 ASSERT_ALWAYS(iclog);
1615 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1616 XLOG_COMMIT_TRANS);
1617 if (error)
1618 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1619 return error;
1620 }
1621
1622 /*
1623 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1624 * log space. This code pushes on the lsn which would supposedly free up
1625 * the 25% which we want to leave free. We may need to adopt a policy which
1626 * pushes on an lsn which is further along in the log once we reach the high
1627 * water mark. In this manner, we would be creating a low water mark.
1628 */
1629 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1630 xlog_grant_push_ail(
1631 struct xlog *log,
1632 int need_bytes)
1633 {
1634 xfs_lsn_t threshold_lsn = 0;
1635 xfs_lsn_t last_sync_lsn;
1636 int free_blocks;
1637 int free_bytes;
1638 int threshold_block;
1639 int threshold_cycle;
1640 int free_threshold;
1641
1642 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1643
1644 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1645 free_blocks = BTOBBT(free_bytes);
1646
1647 /*
1648 * Set the threshold for the minimum number of free blocks in the
1649 * log to the maximum of what the caller needs, one quarter of the
1650 * log, and 256 blocks.
1651 */
1652 free_threshold = BTOBB(need_bytes);
1653 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1654 free_threshold = max(free_threshold, 256);
1655 if (free_blocks >= free_threshold)
1656 return;
1657
1658 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1659 &threshold_block);
1660 threshold_block += free_threshold;
1661 if (threshold_block >= log->l_logBBsize) {
1662 threshold_block -= log->l_logBBsize;
1663 threshold_cycle += 1;
1664 }
1665 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1666 threshold_block);
1667 /*
1668 * Don't pass in an lsn greater than the lsn of the last
1669 * log record known to be on disk. Use a snapshot of the last sync lsn
1670 * so that it doesn't change between the compare and the set.
1671 */
1672 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1673 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1674 threshold_lsn = last_sync_lsn;
1675
1676 /*
1677 * Get the transaction layer to kick the dirty buffers out to
1678 * disk asynchronously. No point in trying to do this if
1679 * the filesystem is shutting down.
1680 */
1681 if (!XLOG_FORCED_SHUTDOWN(log))
1682 xfs_ail_push(log->l_ailp, threshold_lsn);
1683 }
1684
1685 /*
1686 * Stamp cycle number in every block
1687 */
1688 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1689 xlog_pack_data(
1690 struct xlog *log,
1691 struct xlog_in_core *iclog,
1692 int roundoff)
1693 {
1694 int i, j, k;
1695 int size = iclog->ic_offset + roundoff;
1696 __be32 cycle_lsn;
1697 char *dp;
1698
1699 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1700
1701 dp = iclog->ic_datap;
1702 for (i = 0; i < BTOBB(size); i++) {
1703 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1704 break;
1705 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1706 *(__be32 *)dp = cycle_lsn;
1707 dp += BBSIZE;
1708 }
1709
1710 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1711 xlog_in_core_2_t *xhdr = iclog->ic_data;
1712
1713 for ( ; i < BTOBB(size); i++) {
1714 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1715 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1716 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1717 *(__be32 *)dp = cycle_lsn;
1718 dp += BBSIZE;
1719 }
1720
1721 for (i = 1; i < log->l_iclog_heads; i++)
1722 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1723 }
1724 }
1725
1726 /*
1727 * Calculate the checksum for a log buffer.
1728 *
1729 * This is a little more complicated than it should be because the various
1730 * headers and the actual data are non-contiguous.
1731 */
1732 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1733 xlog_cksum(
1734 struct xlog *log,
1735 struct xlog_rec_header *rhead,
1736 char *dp,
1737 int size)
1738 {
1739 uint32_t crc;
1740
1741 /* first generate the crc for the record header ... */
1742 crc = xfs_start_cksum_update((char *)rhead,
1743 sizeof(struct xlog_rec_header),
1744 offsetof(struct xlog_rec_header, h_crc));
1745
1746 /* ... then for additional cycle data for v2 logs ... */
1747 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1748 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1749 int i;
1750 int xheads;
1751
1752 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1753 if (size % XLOG_HEADER_CYCLE_SIZE)
1754 xheads++;
1755
1756 for (i = 1; i < xheads; i++) {
1757 crc = crc32c(crc, &xhdr[i].hic_xheader,
1758 sizeof(struct xlog_rec_ext_header));
1759 }
1760 }
1761
1762 /* ... and finally for the payload */
1763 crc = crc32c(crc, dp, size);
1764
1765 return xfs_end_cksum(crc);
1766 }
1767
1768 /*
1769 * The bdstrat callback function for log bufs. This gives us a central
1770 * place to trap bufs in case we get hit by a log I/O error and need to
1771 * shutdown. Actually, in practice, even when we didn't get a log error,
1772 * we transition the iclogs to IOERROR state *after* flushing all existing
1773 * iclogs to disk. This is because we don't want anymore new transactions to be
1774 * started or completed afterwards.
1775 *
1776 * We lock the iclogbufs here so that we can serialise against IO completion
1777 * during unmount. We might be processing a shutdown triggered during unmount,
1778 * and that can occur asynchronously to the unmount thread, and hence we need to
1779 * ensure that completes before tearing down the iclogbufs. Hence we need to
1780 * hold the buffer lock across the log IO to acheive that.
1781 */
1782 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1783 xlog_bdstrat(
1784 struct xfs_buf *bp)
1785 {
1786 struct xlog_in_core *iclog = bp->b_log_item;
1787
1788 xfs_buf_lock(bp);
1789 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1790 xfs_buf_ioerror(bp, -EIO);
1791 xfs_buf_stale(bp);
1792 xfs_buf_ioend(bp);
1793 /*
1794 * It would seem logical to return EIO here, but we rely on
1795 * the log state machine to propagate I/O errors instead of
1796 * doing it here. Similarly, IO completion will unlock the
1797 * buffer, so we don't do it here.
1798 */
1799 return 0;
1800 }
1801
1802 xfs_buf_submit(bp);
1803 return 0;
1804 }
1805
1806 /*
1807 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1808 * fashion. Previously, we should have moved the current iclog
1809 * ptr in the log to point to the next available iclog. This allows further
1810 * write to continue while this code syncs out an iclog ready to go.
1811 * Before an in-core log can be written out, the data section must be scanned
1812 * to save away the 1st word of each BBSIZE block into the header. We replace
1813 * it with the current cycle count. Each BBSIZE block is tagged with the
1814 * cycle count because there in an implicit assumption that drives will
1815 * guarantee that entire 512 byte blocks get written at once. In other words,
1816 * we can't have part of a 512 byte block written and part not written. By
1817 * tagging each block, we will know which blocks are valid when recovering
1818 * after an unclean shutdown.
1819 *
1820 * This routine is single threaded on the iclog. No other thread can be in
1821 * this routine with the same iclog. Changing contents of iclog can there-
1822 * fore be done without grabbing the state machine lock. Updating the global
1823 * log will require grabbing the lock though.
1824 *
1825 * The entire log manager uses a logical block numbering scheme. Only
1826 * log_sync (and then only bwrite()) know about the fact that the log may
1827 * not start with block zero on a given device. The log block start offset
1828 * is added immediately before calling bwrite().
1829 */
1830
1831 STATIC int
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1832 xlog_sync(
1833 struct xlog *log,
1834 struct xlog_in_core *iclog)
1835 {
1836 xfs_buf_t *bp;
1837 int i;
1838 uint count; /* byte count of bwrite */
1839 uint count_init; /* initial count before roundup */
1840 int roundoff; /* roundoff to BB or stripe */
1841 int split = 0; /* split write into two regions */
1842 int error;
1843 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1844 int size;
1845
1846 XFS_STATS_INC(log->l_mp, xs_log_writes);
1847 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1848
1849 /* Add for LR header */
1850 count_init = log->l_iclog_hsize + iclog->ic_offset;
1851
1852 /* Round out the log write size */
1853 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1854 /* we have a v2 stripe unit to use */
1855 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1856 } else {
1857 count = BBTOB(BTOBB(count_init));
1858 }
1859 roundoff = count - count_init;
1860 ASSERT(roundoff >= 0);
1861 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1862 roundoff < log->l_mp->m_sb.sb_logsunit)
1863 ||
1864 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1865 roundoff < BBTOB(1)));
1866
1867 /* move grant heads by roundoff in sync */
1868 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1869 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1870
1871 /* put cycle number in every block */
1872 xlog_pack_data(log, iclog, roundoff);
1873
1874 /* real byte length */
1875 size = iclog->ic_offset;
1876 if (v2)
1877 size += roundoff;
1878 iclog->ic_header.h_len = cpu_to_be32(size);
1879
1880 bp = iclog->ic_bp;
1881 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1882
1883 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1884
1885 /* Do we need to split this write into 2 parts? */
1886 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1887 char *dptr;
1888
1889 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1890 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1891 iclog->ic_bwritecnt = 2;
1892
1893 /*
1894 * Bump the cycle numbers at the start of each block in the
1895 * part of the iclog that ends up in the buffer that gets
1896 * written to the start of the log.
1897 *
1898 * Watch out for the header magic number case, though.
1899 */
1900 dptr = (char *)&iclog->ic_header + count;
1901 for (i = 0; i < split; i += BBSIZE) {
1902 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1903 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1904 cycle++;
1905 *(__be32 *)dptr = cpu_to_be32(cycle);
1906
1907 dptr += BBSIZE;
1908 }
1909 } else {
1910 iclog->ic_bwritecnt = 1;
1911 }
1912
1913 /* calculcate the checksum */
1914 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1915 iclog->ic_datap, size);
1916 /*
1917 * Intentionally corrupt the log record CRC based on the error injection
1918 * frequency, if defined. This facilitates testing log recovery in the
1919 * event of torn writes. Hence, set the IOABORT state to abort the log
1920 * write on I/O completion and shutdown the fs. The subsequent mount
1921 * detects the bad CRC and attempts to recover.
1922 */
1923 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1924 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1925 iclog->ic_state |= XLOG_STATE_IOABORT;
1926 xfs_warn(log->l_mp,
1927 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1928 be64_to_cpu(iclog->ic_header.h_lsn));
1929 }
1930
1931 bp->b_io_length = BTOBB(count);
1932 bp->b_log_item = iclog;
1933 bp->b_flags &= ~XBF_FLUSH;
1934 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1935
1936 /*
1937 * Flush the data device before flushing the log to make sure all meta
1938 * data written back from the AIL actually made it to disk before
1939 * stamping the new log tail LSN into the log buffer. For an external
1940 * log we need to issue the flush explicitly, and unfortunately
1941 * synchronously here; for an internal log we can simply use the block
1942 * layer state machine for preflushes.
1943 */
1944 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1945 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1946 else
1947 bp->b_flags |= XBF_FLUSH;
1948
1949 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1950 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1951
1952 xlog_verify_iclog(log, iclog, count, true);
1953
1954 /* account for log which doesn't start at block #0 */
1955 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1956
1957 /*
1958 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1959 * is shutting down.
1960 */
1961 error = xlog_bdstrat(bp);
1962 if (error) {
1963 xfs_buf_ioerror_alert(bp, "xlog_sync");
1964 return error;
1965 }
1966 if (split) {
1967 bp = iclog->ic_log->l_xbuf;
1968 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1969 xfs_buf_associate_memory(bp,
1970 (char *)&iclog->ic_header + count, split);
1971 bp->b_log_item = iclog;
1972 bp->b_flags &= ~XBF_FLUSH;
1973 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1974
1975 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1976 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1977
1978 /* account for internal log which doesn't start at block #0 */
1979 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1980 error = xlog_bdstrat(bp);
1981 if (error) {
1982 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1983 return error;
1984 }
1985 }
1986 return 0;
1987 } /* xlog_sync */
1988
1989 /*
1990 * Deallocate a log structure
1991 */
1992 STATIC void
xlog_dealloc_log(struct xlog * log)1993 xlog_dealloc_log(
1994 struct xlog *log)
1995 {
1996 xlog_in_core_t *iclog, *next_iclog;
1997 int i;
1998
1999 xlog_cil_destroy(log);
2000
2001 /*
2002 * Cycle all the iclogbuf locks to make sure all log IO completion
2003 * is done before we tear down these buffers.
2004 */
2005 iclog = log->l_iclog;
2006 for (i = 0; i < log->l_iclog_bufs; i++) {
2007 xfs_buf_lock(iclog->ic_bp);
2008 xfs_buf_unlock(iclog->ic_bp);
2009 iclog = iclog->ic_next;
2010 }
2011
2012 /*
2013 * Always need to ensure that the extra buffer does not point to memory
2014 * owned by another log buffer before we free it. Also, cycle the lock
2015 * first to ensure we've completed IO on it.
2016 */
2017 xfs_buf_lock(log->l_xbuf);
2018 xfs_buf_unlock(log->l_xbuf);
2019 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2020 xfs_buf_free(log->l_xbuf);
2021
2022 iclog = log->l_iclog;
2023 for (i = 0; i < log->l_iclog_bufs; i++) {
2024 xfs_buf_free(iclog->ic_bp);
2025 next_iclog = iclog->ic_next;
2026 kmem_free(iclog);
2027 iclog = next_iclog;
2028 }
2029 spinlock_destroy(&log->l_icloglock);
2030
2031 log->l_mp->m_log = NULL;
2032 kmem_free(log);
2033 } /* xlog_dealloc_log */
2034
2035 /*
2036 * Update counters atomically now that memcpy is done.
2037 */
2038 /* ARGSUSED */
2039 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2040 xlog_state_finish_copy(
2041 struct xlog *log,
2042 struct xlog_in_core *iclog,
2043 int record_cnt,
2044 int copy_bytes)
2045 {
2046 spin_lock(&log->l_icloglock);
2047
2048 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2049 iclog->ic_offset += copy_bytes;
2050
2051 spin_unlock(&log->l_icloglock);
2052 } /* xlog_state_finish_copy */
2053
2054
2055
2056
2057 /*
2058 * print out info relating to regions written which consume
2059 * the reservation
2060 */
2061 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2062 xlog_print_tic_res(
2063 struct xfs_mount *mp,
2064 struct xlog_ticket *ticket)
2065 {
2066 uint i;
2067 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2068
2069 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2070 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2071 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2072 REG_TYPE_STR(BFORMAT, "bformat"),
2073 REG_TYPE_STR(BCHUNK, "bchunk"),
2074 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2075 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2076 REG_TYPE_STR(IFORMAT, "iformat"),
2077 REG_TYPE_STR(ICORE, "icore"),
2078 REG_TYPE_STR(IEXT, "iext"),
2079 REG_TYPE_STR(IBROOT, "ibroot"),
2080 REG_TYPE_STR(ILOCAL, "ilocal"),
2081 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2082 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2083 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2084 REG_TYPE_STR(QFORMAT, "qformat"),
2085 REG_TYPE_STR(DQUOT, "dquot"),
2086 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2087 REG_TYPE_STR(LRHEADER, "LR header"),
2088 REG_TYPE_STR(UNMOUNT, "unmount"),
2089 REG_TYPE_STR(COMMIT, "commit"),
2090 REG_TYPE_STR(TRANSHDR, "trans header"),
2091 REG_TYPE_STR(ICREATE, "inode create")
2092 };
2093 #undef REG_TYPE_STR
2094
2095 xfs_warn(mp, "ticket reservation summary:");
2096 xfs_warn(mp, " unit res = %d bytes",
2097 ticket->t_unit_res);
2098 xfs_warn(mp, " current res = %d bytes",
2099 ticket->t_curr_res);
2100 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2101 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2102 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2103 ticket->t_res_num_ophdrs, ophdr_spc);
2104 xfs_warn(mp, " ophdr + reg = %u bytes",
2105 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2106 xfs_warn(mp, " num regions = %u",
2107 ticket->t_res_num);
2108
2109 for (i = 0; i < ticket->t_res_num; i++) {
2110 uint r_type = ticket->t_res_arr[i].r_type;
2111 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2112 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2113 "bad-rtype" : res_type_str[r_type]),
2114 ticket->t_res_arr[i].r_len);
2115 }
2116 }
2117
2118 /*
2119 * Print a summary of the transaction.
2120 */
2121 void
xlog_print_trans(struct xfs_trans * tp)2122 xlog_print_trans(
2123 struct xfs_trans *tp)
2124 {
2125 struct xfs_mount *mp = tp->t_mountp;
2126 struct xfs_log_item *lip;
2127
2128 /* dump core transaction and ticket info */
2129 xfs_warn(mp, "transaction summary:");
2130 xfs_warn(mp, " log res = %d", tp->t_log_res);
2131 xfs_warn(mp, " log count = %d", tp->t_log_count);
2132 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2133
2134 xlog_print_tic_res(mp, tp->t_ticket);
2135
2136 /* dump each log item */
2137 list_for_each_entry(lip, &tp->t_items, li_trans) {
2138 struct xfs_log_vec *lv = lip->li_lv;
2139 struct xfs_log_iovec *vec;
2140 int i;
2141
2142 xfs_warn(mp, "log item: ");
2143 xfs_warn(mp, " type = 0x%x", lip->li_type);
2144 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2145 if (!lv)
2146 continue;
2147 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2148 xfs_warn(mp, " size = %d", lv->lv_size);
2149 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2150 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2151
2152 /* dump each iovec for the log item */
2153 vec = lv->lv_iovecp;
2154 for (i = 0; i < lv->lv_niovecs; i++) {
2155 int dumplen = min(vec->i_len, 32);
2156
2157 xfs_warn(mp, " iovec[%d]", i);
2158 xfs_warn(mp, " type = 0x%x", vec->i_type);
2159 xfs_warn(mp, " len = %d", vec->i_len);
2160 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2161 xfs_hex_dump(vec->i_addr, dumplen);
2162
2163 vec++;
2164 }
2165 }
2166 }
2167
2168 /*
2169 * Calculate the potential space needed by the log vector. Each region gets
2170 * its own xlog_op_header_t and may need to be double word aligned.
2171 */
2172 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2173 xlog_write_calc_vec_length(
2174 struct xlog_ticket *ticket,
2175 struct xfs_log_vec *log_vector)
2176 {
2177 struct xfs_log_vec *lv;
2178 int headers = 0;
2179 int len = 0;
2180 int i;
2181
2182 /* acct for start rec of xact */
2183 if (ticket->t_flags & XLOG_TIC_INITED)
2184 headers++;
2185
2186 for (lv = log_vector; lv; lv = lv->lv_next) {
2187 /* we don't write ordered log vectors */
2188 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2189 continue;
2190
2191 headers += lv->lv_niovecs;
2192
2193 for (i = 0; i < lv->lv_niovecs; i++) {
2194 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2195
2196 len += vecp->i_len;
2197 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2198 }
2199 }
2200
2201 ticket->t_res_num_ophdrs += headers;
2202 len += headers * sizeof(struct xlog_op_header);
2203
2204 return len;
2205 }
2206
2207 /*
2208 * If first write for transaction, insert start record We can't be trying to
2209 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2210 */
2211 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2212 xlog_write_start_rec(
2213 struct xlog_op_header *ophdr,
2214 struct xlog_ticket *ticket)
2215 {
2216 if (!(ticket->t_flags & XLOG_TIC_INITED))
2217 return 0;
2218
2219 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2220 ophdr->oh_clientid = ticket->t_clientid;
2221 ophdr->oh_len = 0;
2222 ophdr->oh_flags = XLOG_START_TRANS;
2223 ophdr->oh_res2 = 0;
2224
2225 ticket->t_flags &= ~XLOG_TIC_INITED;
2226
2227 return sizeof(struct xlog_op_header);
2228 }
2229
2230 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2231 xlog_write_setup_ophdr(
2232 struct xlog *log,
2233 struct xlog_op_header *ophdr,
2234 struct xlog_ticket *ticket,
2235 uint flags)
2236 {
2237 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2238 ophdr->oh_clientid = ticket->t_clientid;
2239 ophdr->oh_res2 = 0;
2240
2241 /* are we copying a commit or unmount record? */
2242 ophdr->oh_flags = flags;
2243
2244 /*
2245 * We've seen logs corrupted with bad transaction client ids. This
2246 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2247 * and shut down the filesystem.
2248 */
2249 switch (ophdr->oh_clientid) {
2250 case XFS_TRANSACTION:
2251 case XFS_VOLUME:
2252 case XFS_LOG:
2253 break;
2254 default:
2255 xfs_warn(log->l_mp,
2256 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2257 ophdr->oh_clientid, ticket);
2258 return NULL;
2259 }
2260
2261 return ophdr;
2262 }
2263
2264 /*
2265 * Set up the parameters of the region copy into the log. This has
2266 * to handle region write split across multiple log buffers - this
2267 * state is kept external to this function so that this code can
2268 * be written in an obvious, self documenting manner.
2269 */
2270 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2271 xlog_write_setup_copy(
2272 struct xlog_ticket *ticket,
2273 struct xlog_op_header *ophdr,
2274 int space_available,
2275 int space_required,
2276 int *copy_off,
2277 int *copy_len,
2278 int *last_was_partial_copy,
2279 int *bytes_consumed)
2280 {
2281 int still_to_copy;
2282
2283 still_to_copy = space_required - *bytes_consumed;
2284 *copy_off = *bytes_consumed;
2285
2286 if (still_to_copy <= space_available) {
2287 /* write of region completes here */
2288 *copy_len = still_to_copy;
2289 ophdr->oh_len = cpu_to_be32(*copy_len);
2290 if (*last_was_partial_copy)
2291 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2292 *last_was_partial_copy = 0;
2293 *bytes_consumed = 0;
2294 return 0;
2295 }
2296
2297 /* partial write of region, needs extra log op header reservation */
2298 *copy_len = space_available;
2299 ophdr->oh_len = cpu_to_be32(*copy_len);
2300 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2301 if (*last_was_partial_copy)
2302 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2303 *bytes_consumed += *copy_len;
2304 (*last_was_partial_copy)++;
2305
2306 /* account for new log op header */
2307 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2308 ticket->t_res_num_ophdrs++;
2309
2310 return sizeof(struct xlog_op_header);
2311 }
2312
2313 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2314 xlog_write_copy_finish(
2315 struct xlog *log,
2316 struct xlog_in_core *iclog,
2317 uint flags,
2318 int *record_cnt,
2319 int *data_cnt,
2320 int *partial_copy,
2321 int *partial_copy_len,
2322 int log_offset,
2323 struct xlog_in_core **commit_iclog)
2324 {
2325 if (*partial_copy) {
2326 /*
2327 * This iclog has already been marked WANT_SYNC by
2328 * xlog_state_get_iclog_space.
2329 */
2330 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2331 *record_cnt = 0;
2332 *data_cnt = 0;
2333 return xlog_state_release_iclog(log, iclog);
2334 }
2335
2336 *partial_copy = 0;
2337 *partial_copy_len = 0;
2338
2339 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2340 /* no more space in this iclog - push it. */
2341 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2342 *record_cnt = 0;
2343 *data_cnt = 0;
2344
2345 spin_lock(&log->l_icloglock);
2346 xlog_state_want_sync(log, iclog);
2347 spin_unlock(&log->l_icloglock);
2348
2349 if (!commit_iclog)
2350 return xlog_state_release_iclog(log, iclog);
2351 ASSERT(flags & XLOG_COMMIT_TRANS);
2352 *commit_iclog = iclog;
2353 }
2354
2355 return 0;
2356 }
2357
2358 /*
2359 * Write some region out to in-core log
2360 *
2361 * This will be called when writing externally provided regions or when
2362 * writing out a commit record for a given transaction.
2363 *
2364 * General algorithm:
2365 * 1. Find total length of this write. This may include adding to the
2366 * lengths passed in.
2367 * 2. Check whether we violate the tickets reservation.
2368 * 3. While writing to this iclog
2369 * A. Reserve as much space in this iclog as can get
2370 * B. If this is first write, save away start lsn
2371 * C. While writing this region:
2372 * 1. If first write of transaction, write start record
2373 * 2. Write log operation header (header per region)
2374 * 3. Find out if we can fit entire region into this iclog
2375 * 4. Potentially, verify destination memcpy ptr
2376 * 5. Memcpy (partial) region
2377 * 6. If partial copy, release iclog; otherwise, continue
2378 * copying more regions into current iclog
2379 * 4. Mark want sync bit (in simulation mode)
2380 * 5. Release iclog for potential flush to on-disk log.
2381 *
2382 * ERRORS:
2383 * 1. Panic if reservation is overrun. This should never happen since
2384 * reservation amounts are generated internal to the filesystem.
2385 * NOTES:
2386 * 1. Tickets are single threaded data structures.
2387 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2388 * syncing routine. When a single log_write region needs to span
2389 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2390 * on all log operation writes which don't contain the end of the
2391 * region. The XLOG_END_TRANS bit is used for the in-core log
2392 * operation which contains the end of the continued log_write region.
2393 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2394 * we don't really know exactly how much space will be used. As a result,
2395 * we don't update ic_offset until the end when we know exactly how many
2396 * bytes have been written out.
2397 */
2398 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2399 xlog_write(
2400 struct xlog *log,
2401 struct xfs_log_vec *log_vector,
2402 struct xlog_ticket *ticket,
2403 xfs_lsn_t *start_lsn,
2404 struct xlog_in_core **commit_iclog,
2405 uint flags)
2406 {
2407 struct xlog_in_core *iclog = NULL;
2408 struct xfs_log_iovec *vecp;
2409 struct xfs_log_vec *lv;
2410 int len;
2411 int index;
2412 int partial_copy = 0;
2413 int partial_copy_len = 0;
2414 int contwr = 0;
2415 int record_cnt = 0;
2416 int data_cnt = 0;
2417 int error;
2418
2419 *start_lsn = 0;
2420
2421 len = xlog_write_calc_vec_length(ticket, log_vector);
2422
2423 /*
2424 * Region headers and bytes are already accounted for.
2425 * We only need to take into account start records and
2426 * split regions in this function.
2427 */
2428 if (ticket->t_flags & XLOG_TIC_INITED)
2429 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2430
2431 /*
2432 * Commit record headers need to be accounted for. These
2433 * come in as separate writes so are easy to detect.
2434 */
2435 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2436 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2437
2438 if (ticket->t_curr_res < 0) {
2439 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2440 "ctx ticket reservation ran out. Need to up reservation");
2441 xlog_print_tic_res(log->l_mp, ticket);
2442 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2443 }
2444
2445 index = 0;
2446 lv = log_vector;
2447 vecp = lv->lv_iovecp;
2448 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2449 void *ptr;
2450 int log_offset;
2451
2452 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2453 &contwr, &log_offset);
2454 if (error)
2455 return error;
2456
2457 ASSERT(log_offset <= iclog->ic_size - 1);
2458 ptr = iclog->ic_datap + log_offset;
2459
2460 /* start_lsn is the first lsn written to. That's all we need. */
2461 if (!*start_lsn)
2462 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2463
2464 /*
2465 * This loop writes out as many regions as can fit in the amount
2466 * of space which was allocated by xlog_state_get_iclog_space().
2467 */
2468 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2469 struct xfs_log_iovec *reg;
2470 struct xlog_op_header *ophdr;
2471 int start_rec_copy;
2472 int copy_len;
2473 int copy_off;
2474 bool ordered = false;
2475
2476 /* ordered log vectors have no regions to write */
2477 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2478 ASSERT(lv->lv_niovecs == 0);
2479 ordered = true;
2480 goto next_lv;
2481 }
2482
2483 reg = &vecp[index];
2484 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2485 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2486
2487 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2488 if (start_rec_copy) {
2489 record_cnt++;
2490 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2491 start_rec_copy);
2492 }
2493
2494 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2495 if (!ophdr)
2496 return -EIO;
2497
2498 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2499 sizeof(struct xlog_op_header));
2500
2501 len += xlog_write_setup_copy(ticket, ophdr,
2502 iclog->ic_size-log_offset,
2503 reg->i_len,
2504 ©_off, ©_len,
2505 &partial_copy,
2506 &partial_copy_len);
2507 xlog_verify_dest_ptr(log, ptr);
2508
2509 /*
2510 * Copy region.
2511 *
2512 * Unmount records just log an opheader, so can have
2513 * empty payloads with no data region to copy. Hence we
2514 * only copy the payload if the vector says it has data
2515 * to copy.
2516 */
2517 ASSERT(copy_len >= 0);
2518 if (copy_len > 0) {
2519 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2520 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2521 copy_len);
2522 }
2523 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2524 record_cnt++;
2525 data_cnt += contwr ? copy_len : 0;
2526
2527 error = xlog_write_copy_finish(log, iclog, flags,
2528 &record_cnt, &data_cnt,
2529 &partial_copy,
2530 &partial_copy_len,
2531 log_offset,
2532 commit_iclog);
2533 if (error)
2534 return error;
2535
2536 /*
2537 * if we had a partial copy, we need to get more iclog
2538 * space but we don't want to increment the region
2539 * index because there is still more is this region to
2540 * write.
2541 *
2542 * If we completed writing this region, and we flushed
2543 * the iclog (indicated by resetting of the record
2544 * count), then we also need to get more log space. If
2545 * this was the last record, though, we are done and
2546 * can just return.
2547 */
2548 if (partial_copy)
2549 break;
2550
2551 if (++index == lv->lv_niovecs) {
2552 next_lv:
2553 lv = lv->lv_next;
2554 index = 0;
2555 if (lv)
2556 vecp = lv->lv_iovecp;
2557 }
2558 if (record_cnt == 0 && !ordered) {
2559 if (!lv)
2560 return 0;
2561 break;
2562 }
2563 }
2564 }
2565
2566 ASSERT(len == 0);
2567
2568 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2569 if (!commit_iclog)
2570 return xlog_state_release_iclog(log, iclog);
2571
2572 ASSERT(flags & XLOG_COMMIT_TRANS);
2573 *commit_iclog = iclog;
2574 return 0;
2575 }
2576
2577
2578 /*****************************************************************************
2579 *
2580 * State Machine functions
2581 *
2582 *****************************************************************************
2583 */
2584
2585 /* Clean iclogs starting from the head. This ordering must be
2586 * maintained, so an iclog doesn't become ACTIVE beyond one that
2587 * is SYNCING. This is also required to maintain the notion that we use
2588 * a ordered wait queue to hold off would be writers to the log when every
2589 * iclog is trying to sync to disk.
2590 *
2591 * State Change: DIRTY -> ACTIVE
2592 */
2593 STATIC void
xlog_state_clean_log(struct xlog * log)2594 xlog_state_clean_log(
2595 struct xlog *log)
2596 {
2597 xlog_in_core_t *iclog;
2598 int changed = 0;
2599
2600 iclog = log->l_iclog;
2601 do {
2602 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2603 iclog->ic_state = XLOG_STATE_ACTIVE;
2604 iclog->ic_offset = 0;
2605 ASSERT(iclog->ic_callback == NULL);
2606 /*
2607 * If the number of ops in this iclog indicate it just
2608 * contains the dummy transaction, we can
2609 * change state into IDLE (the second time around).
2610 * Otherwise we should change the state into
2611 * NEED a dummy.
2612 * We don't need to cover the dummy.
2613 */
2614 if (!changed &&
2615 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2616 XLOG_COVER_OPS)) {
2617 changed = 1;
2618 } else {
2619 /*
2620 * We have two dirty iclogs so start over
2621 * This could also be num of ops indicates
2622 * this is not the dummy going out.
2623 */
2624 changed = 2;
2625 }
2626 iclog->ic_header.h_num_logops = 0;
2627 memset(iclog->ic_header.h_cycle_data, 0,
2628 sizeof(iclog->ic_header.h_cycle_data));
2629 iclog->ic_header.h_lsn = 0;
2630 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2631 /* do nothing */;
2632 else
2633 break; /* stop cleaning */
2634 iclog = iclog->ic_next;
2635 } while (iclog != log->l_iclog);
2636
2637 /* log is locked when we are called */
2638 /*
2639 * Change state for the dummy log recording.
2640 * We usually go to NEED. But we go to NEED2 if the changed indicates
2641 * we are done writing the dummy record.
2642 * If we are done with the second dummy recored (DONE2), then
2643 * we go to IDLE.
2644 */
2645 if (changed) {
2646 switch (log->l_covered_state) {
2647 case XLOG_STATE_COVER_IDLE:
2648 case XLOG_STATE_COVER_NEED:
2649 case XLOG_STATE_COVER_NEED2:
2650 log->l_covered_state = XLOG_STATE_COVER_NEED;
2651 break;
2652
2653 case XLOG_STATE_COVER_DONE:
2654 if (changed == 1)
2655 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2656 else
2657 log->l_covered_state = XLOG_STATE_COVER_NEED;
2658 break;
2659
2660 case XLOG_STATE_COVER_DONE2:
2661 if (changed == 1)
2662 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2663 else
2664 log->l_covered_state = XLOG_STATE_COVER_NEED;
2665 break;
2666
2667 default:
2668 ASSERT(0);
2669 }
2670 }
2671 } /* xlog_state_clean_log */
2672
2673 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2674 xlog_get_lowest_lsn(
2675 struct xlog *log)
2676 {
2677 xlog_in_core_t *lsn_log;
2678 xfs_lsn_t lowest_lsn, lsn;
2679
2680 lsn_log = log->l_iclog;
2681 lowest_lsn = 0;
2682 do {
2683 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2684 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2685 if ((lsn && !lowest_lsn) ||
2686 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2687 lowest_lsn = lsn;
2688 }
2689 }
2690 lsn_log = lsn_log->ic_next;
2691 } while (lsn_log != log->l_iclog);
2692 return lowest_lsn;
2693 }
2694
2695
2696 STATIC void
xlog_state_do_callback(struct xlog * log,int aborted,struct xlog_in_core * ciclog)2697 xlog_state_do_callback(
2698 struct xlog *log,
2699 int aborted,
2700 struct xlog_in_core *ciclog)
2701 {
2702 xlog_in_core_t *iclog;
2703 xlog_in_core_t *first_iclog; /* used to know when we've
2704 * processed all iclogs once */
2705 xfs_log_callback_t *cb, *cb_next;
2706 int flushcnt = 0;
2707 xfs_lsn_t lowest_lsn;
2708 int ioerrors; /* counter: iclogs with errors */
2709 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2710 int funcdidcallbacks; /* flag: function did callbacks */
2711 int repeats; /* for issuing console warnings if
2712 * looping too many times */
2713 int wake = 0;
2714
2715 spin_lock(&log->l_icloglock);
2716 first_iclog = iclog = log->l_iclog;
2717 ioerrors = 0;
2718 funcdidcallbacks = 0;
2719 repeats = 0;
2720
2721 do {
2722 /*
2723 * Scan all iclogs starting with the one pointed to by the
2724 * log. Reset this starting point each time the log is
2725 * unlocked (during callbacks).
2726 *
2727 * Keep looping through iclogs until one full pass is made
2728 * without running any callbacks.
2729 */
2730 first_iclog = log->l_iclog;
2731 iclog = log->l_iclog;
2732 loopdidcallbacks = 0;
2733 repeats++;
2734
2735 do {
2736
2737 /* skip all iclogs in the ACTIVE & DIRTY states */
2738 if (iclog->ic_state &
2739 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2740 iclog = iclog->ic_next;
2741 continue;
2742 }
2743
2744 /*
2745 * Between marking a filesystem SHUTDOWN and stopping
2746 * the log, we do flush all iclogs to disk (if there
2747 * wasn't a log I/O error). So, we do want things to
2748 * go smoothly in case of just a SHUTDOWN w/o a
2749 * LOG_IO_ERROR.
2750 */
2751 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2752 /*
2753 * Can only perform callbacks in order. Since
2754 * this iclog is not in the DONE_SYNC/
2755 * DO_CALLBACK state, we skip the rest and
2756 * just try to clean up. If we set our iclog
2757 * to DO_CALLBACK, we will not process it when
2758 * we retry since a previous iclog is in the
2759 * CALLBACK and the state cannot change since
2760 * we are holding the l_icloglock.
2761 */
2762 if (!(iclog->ic_state &
2763 (XLOG_STATE_DONE_SYNC |
2764 XLOG_STATE_DO_CALLBACK))) {
2765 if (ciclog && (ciclog->ic_state ==
2766 XLOG_STATE_DONE_SYNC)) {
2767 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2768 }
2769 break;
2770 }
2771 /*
2772 * We now have an iclog that is in either the
2773 * DO_CALLBACK or DONE_SYNC states. The other
2774 * states (WANT_SYNC, SYNCING, or CALLBACK were
2775 * caught by the above if and are going to
2776 * clean (i.e. we aren't doing their callbacks)
2777 * see the above if.
2778 */
2779
2780 /*
2781 * We will do one more check here to see if we
2782 * have chased our tail around.
2783 */
2784
2785 lowest_lsn = xlog_get_lowest_lsn(log);
2786 if (lowest_lsn &&
2787 XFS_LSN_CMP(lowest_lsn,
2788 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2789 iclog = iclog->ic_next;
2790 continue; /* Leave this iclog for
2791 * another thread */
2792 }
2793
2794 iclog->ic_state = XLOG_STATE_CALLBACK;
2795
2796
2797 /*
2798 * Completion of a iclog IO does not imply that
2799 * a transaction has completed, as transactions
2800 * can be large enough to span many iclogs. We
2801 * cannot change the tail of the log half way
2802 * through a transaction as this may be the only
2803 * transaction in the log and moving th etail to
2804 * point to the middle of it will prevent
2805 * recovery from finding the start of the
2806 * transaction. Hence we should only update the
2807 * last_sync_lsn if this iclog contains
2808 * transaction completion callbacks on it.
2809 *
2810 * We have to do this before we drop the
2811 * icloglock to ensure we are the only one that
2812 * can update it.
2813 */
2814 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2815 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2816 if (iclog->ic_callback)
2817 atomic64_set(&log->l_last_sync_lsn,
2818 be64_to_cpu(iclog->ic_header.h_lsn));
2819
2820 } else
2821 ioerrors++;
2822
2823 spin_unlock(&log->l_icloglock);
2824
2825 /*
2826 * Keep processing entries in the callback list until
2827 * we come around and it is empty. We need to
2828 * atomically see that the list is empty and change the
2829 * state to DIRTY so that we don't miss any more
2830 * callbacks being added.
2831 */
2832 spin_lock(&iclog->ic_callback_lock);
2833 cb = iclog->ic_callback;
2834 while (cb) {
2835 iclog->ic_callback_tail = &(iclog->ic_callback);
2836 iclog->ic_callback = NULL;
2837 spin_unlock(&iclog->ic_callback_lock);
2838
2839 /* perform callbacks in the order given */
2840 for (; cb; cb = cb_next) {
2841 cb_next = cb->cb_next;
2842 cb->cb_func(cb->cb_arg, aborted);
2843 }
2844 spin_lock(&iclog->ic_callback_lock);
2845 cb = iclog->ic_callback;
2846 }
2847
2848 loopdidcallbacks++;
2849 funcdidcallbacks++;
2850
2851 spin_lock(&log->l_icloglock);
2852 ASSERT(iclog->ic_callback == NULL);
2853 spin_unlock(&iclog->ic_callback_lock);
2854 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2855 iclog->ic_state = XLOG_STATE_DIRTY;
2856
2857 /*
2858 * Transition from DIRTY to ACTIVE if applicable.
2859 * NOP if STATE_IOERROR.
2860 */
2861 xlog_state_clean_log(log);
2862
2863 /* wake up threads waiting in xfs_log_force() */
2864 wake_up_all(&iclog->ic_force_wait);
2865
2866 iclog = iclog->ic_next;
2867 } while (first_iclog != iclog);
2868
2869 if (repeats > 5000) {
2870 flushcnt += repeats;
2871 repeats = 0;
2872 xfs_warn(log->l_mp,
2873 "%s: possible infinite loop (%d iterations)",
2874 __func__, flushcnt);
2875 }
2876 } while (!ioerrors && loopdidcallbacks);
2877
2878 #ifdef DEBUG
2879 /*
2880 * Make one last gasp attempt to see if iclogs are being left in limbo.
2881 * If the above loop finds an iclog earlier than the current iclog and
2882 * in one of the syncing states, the current iclog is put into
2883 * DO_CALLBACK and the callbacks are deferred to the completion of the
2884 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2885 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2886 * states.
2887 *
2888 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2889 * for ic_state == SYNCING.
2890 */
2891 if (funcdidcallbacks) {
2892 first_iclog = iclog = log->l_iclog;
2893 do {
2894 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2895 /*
2896 * Terminate the loop if iclogs are found in states
2897 * which will cause other threads to clean up iclogs.
2898 *
2899 * SYNCING - i/o completion will go through logs
2900 * DONE_SYNC - interrupt thread should be waiting for
2901 * l_icloglock
2902 * IOERROR - give up hope all ye who enter here
2903 */
2904 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2905 iclog->ic_state & XLOG_STATE_SYNCING ||
2906 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2907 iclog->ic_state == XLOG_STATE_IOERROR )
2908 break;
2909 iclog = iclog->ic_next;
2910 } while (first_iclog != iclog);
2911 }
2912 #endif
2913
2914 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2915 wake = 1;
2916 spin_unlock(&log->l_icloglock);
2917
2918 if (wake)
2919 wake_up_all(&log->l_flush_wait);
2920 }
2921
2922
2923 /*
2924 * Finish transitioning this iclog to the dirty state.
2925 *
2926 * Make sure that we completely execute this routine only when this is
2927 * the last call to the iclog. There is a good chance that iclog flushes,
2928 * when we reach the end of the physical log, get turned into 2 separate
2929 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2930 * routine. By using the reference count bwritecnt, we guarantee that only
2931 * the second completion goes through.
2932 *
2933 * Callbacks could take time, so they are done outside the scope of the
2934 * global state machine log lock.
2935 */
2936 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2937 xlog_state_done_syncing(
2938 xlog_in_core_t *iclog,
2939 int aborted)
2940 {
2941 struct xlog *log = iclog->ic_log;
2942
2943 spin_lock(&log->l_icloglock);
2944
2945 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2946 iclog->ic_state == XLOG_STATE_IOERROR);
2947 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2948 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2949
2950
2951 /*
2952 * If we got an error, either on the first buffer, or in the case of
2953 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2954 * and none should ever be attempted to be written to disk
2955 * again.
2956 */
2957 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2958 if (--iclog->ic_bwritecnt == 1) {
2959 spin_unlock(&log->l_icloglock);
2960 return;
2961 }
2962 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2963 }
2964
2965 /*
2966 * Someone could be sleeping prior to writing out the next
2967 * iclog buffer, we wake them all, one will get to do the
2968 * I/O, the others get to wait for the result.
2969 */
2970 wake_up_all(&iclog->ic_write_wait);
2971 spin_unlock(&log->l_icloglock);
2972 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2973 } /* xlog_state_done_syncing */
2974
2975
2976 /*
2977 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2978 * sleep. We wait on the flush queue on the head iclog as that should be
2979 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2980 * we will wait here and all new writes will sleep until a sync completes.
2981 *
2982 * The in-core logs are used in a circular fashion. They are not used
2983 * out-of-order even when an iclog past the head is free.
2984 *
2985 * return:
2986 * * log_offset where xlog_write() can start writing into the in-core
2987 * log's data space.
2988 * * in-core log pointer to which xlog_write() should write.
2989 * * boolean indicating this is a continued write to an in-core log.
2990 * If this is the last write, then the in-core log's offset field
2991 * needs to be incremented, depending on the amount of data which
2992 * is copied.
2993 */
2994 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2995 xlog_state_get_iclog_space(
2996 struct xlog *log,
2997 int len,
2998 struct xlog_in_core **iclogp,
2999 struct xlog_ticket *ticket,
3000 int *continued_write,
3001 int *logoffsetp)
3002 {
3003 int log_offset;
3004 xlog_rec_header_t *head;
3005 xlog_in_core_t *iclog;
3006 int error;
3007
3008 restart:
3009 spin_lock(&log->l_icloglock);
3010 if (XLOG_FORCED_SHUTDOWN(log)) {
3011 spin_unlock(&log->l_icloglock);
3012 return -EIO;
3013 }
3014
3015 iclog = log->l_iclog;
3016 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3017 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3018
3019 /* Wait for log writes to have flushed */
3020 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3021 goto restart;
3022 }
3023
3024 head = &iclog->ic_header;
3025
3026 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
3027 log_offset = iclog->ic_offset;
3028
3029 /* On the 1st write to an iclog, figure out lsn. This works
3030 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3031 * committing to. If the offset is set, that's how many blocks
3032 * must be written.
3033 */
3034 if (log_offset == 0) {
3035 ticket->t_curr_res -= log->l_iclog_hsize;
3036 xlog_tic_add_region(ticket,
3037 log->l_iclog_hsize,
3038 XLOG_REG_TYPE_LRHEADER);
3039 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3040 head->h_lsn = cpu_to_be64(
3041 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3042 ASSERT(log->l_curr_block >= 0);
3043 }
3044
3045 /* If there is enough room to write everything, then do it. Otherwise,
3046 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3047 * bit is on, so this will get flushed out. Don't update ic_offset
3048 * until you know exactly how many bytes get copied. Therefore, wait
3049 * until later to update ic_offset.
3050 *
3051 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3052 * can fit into remaining data section.
3053 */
3054 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3055 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3056
3057 /*
3058 * If I'm the only one writing to this iclog, sync it to disk.
3059 * We need to do an atomic compare and decrement here to avoid
3060 * racing with concurrent atomic_dec_and_lock() calls in
3061 * xlog_state_release_iclog() when there is more than one
3062 * reference to the iclog.
3063 */
3064 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3065 /* we are the only one */
3066 spin_unlock(&log->l_icloglock);
3067 error = xlog_state_release_iclog(log, iclog);
3068 if (error)
3069 return error;
3070 } else {
3071 spin_unlock(&log->l_icloglock);
3072 }
3073 goto restart;
3074 }
3075
3076 /* Do we have enough room to write the full amount in the remainder
3077 * of this iclog? Or must we continue a write on the next iclog and
3078 * mark this iclog as completely taken? In the case where we switch
3079 * iclogs (to mark it taken), this particular iclog will release/sync
3080 * to disk in xlog_write().
3081 */
3082 if (len <= iclog->ic_size - iclog->ic_offset) {
3083 *continued_write = 0;
3084 iclog->ic_offset += len;
3085 } else {
3086 *continued_write = 1;
3087 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3088 }
3089 *iclogp = iclog;
3090
3091 ASSERT(iclog->ic_offset <= iclog->ic_size);
3092 spin_unlock(&log->l_icloglock);
3093
3094 *logoffsetp = log_offset;
3095 return 0;
3096 } /* xlog_state_get_iclog_space */
3097
3098 /* The first cnt-1 times through here we don't need to
3099 * move the grant write head because the permanent
3100 * reservation has reserved cnt times the unit amount.
3101 * Release part of current permanent unit reservation and
3102 * reset current reservation to be one units worth. Also
3103 * move grant reservation head forward.
3104 */
3105 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3106 xlog_regrant_reserve_log_space(
3107 struct xlog *log,
3108 struct xlog_ticket *ticket)
3109 {
3110 trace_xfs_log_regrant_reserve_enter(log, ticket);
3111
3112 if (ticket->t_cnt > 0)
3113 ticket->t_cnt--;
3114
3115 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3116 ticket->t_curr_res);
3117 xlog_grant_sub_space(log, &log->l_write_head.grant,
3118 ticket->t_curr_res);
3119 ticket->t_curr_res = ticket->t_unit_res;
3120 xlog_tic_reset_res(ticket);
3121
3122 trace_xfs_log_regrant_reserve_sub(log, ticket);
3123
3124 /* just return if we still have some of the pre-reserved space */
3125 if (ticket->t_cnt > 0)
3126 return;
3127
3128 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3129 ticket->t_unit_res);
3130
3131 trace_xfs_log_regrant_reserve_exit(log, ticket);
3132
3133 ticket->t_curr_res = ticket->t_unit_res;
3134 xlog_tic_reset_res(ticket);
3135 } /* xlog_regrant_reserve_log_space */
3136
3137
3138 /*
3139 * Give back the space left from a reservation.
3140 *
3141 * All the information we need to make a correct determination of space left
3142 * is present. For non-permanent reservations, things are quite easy. The
3143 * count should have been decremented to zero. We only need to deal with the
3144 * space remaining in the current reservation part of the ticket. If the
3145 * ticket contains a permanent reservation, there may be left over space which
3146 * needs to be released. A count of N means that N-1 refills of the current
3147 * reservation can be done before we need to ask for more space. The first
3148 * one goes to fill up the first current reservation. Once we run out of
3149 * space, the count will stay at zero and the only space remaining will be
3150 * in the current reservation field.
3151 */
3152 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3153 xlog_ungrant_log_space(
3154 struct xlog *log,
3155 struct xlog_ticket *ticket)
3156 {
3157 int bytes;
3158
3159 if (ticket->t_cnt > 0)
3160 ticket->t_cnt--;
3161
3162 trace_xfs_log_ungrant_enter(log, ticket);
3163 trace_xfs_log_ungrant_sub(log, ticket);
3164
3165 /*
3166 * If this is a permanent reservation ticket, we may be able to free
3167 * up more space based on the remaining count.
3168 */
3169 bytes = ticket->t_curr_res;
3170 if (ticket->t_cnt > 0) {
3171 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3172 bytes += ticket->t_unit_res*ticket->t_cnt;
3173 }
3174
3175 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3176 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3177
3178 trace_xfs_log_ungrant_exit(log, ticket);
3179
3180 xfs_log_space_wake(log->l_mp);
3181 }
3182
3183 /*
3184 * Flush iclog to disk if this is the last reference to the given iclog and
3185 * the WANT_SYNC bit is set.
3186 *
3187 * When this function is entered, the iclog is not necessarily in the
3188 * WANT_SYNC state. It may be sitting around waiting to get filled.
3189 *
3190 *
3191 */
3192 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3193 xlog_state_release_iclog(
3194 struct xlog *log,
3195 struct xlog_in_core *iclog)
3196 {
3197 int sync = 0; /* do we sync? */
3198
3199 if (iclog->ic_state & XLOG_STATE_IOERROR)
3200 return -EIO;
3201
3202 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3203 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3204 return 0;
3205
3206 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3207 spin_unlock(&log->l_icloglock);
3208 return -EIO;
3209 }
3210 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3211 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3212
3213 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3214 /* update tail before writing to iclog */
3215 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3216 sync++;
3217 iclog->ic_state = XLOG_STATE_SYNCING;
3218 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3219 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3220 /* cycle incremented when incrementing curr_block */
3221 }
3222 spin_unlock(&log->l_icloglock);
3223
3224 /*
3225 * We let the log lock go, so it's possible that we hit a log I/O
3226 * error or some other SHUTDOWN condition that marks the iclog
3227 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3228 * this iclog has consistent data, so we ignore IOERROR
3229 * flags after this point.
3230 */
3231 if (sync)
3232 return xlog_sync(log, iclog);
3233 return 0;
3234 } /* xlog_state_release_iclog */
3235
3236
3237 /*
3238 * This routine will mark the current iclog in the ring as WANT_SYNC
3239 * and move the current iclog pointer to the next iclog in the ring.
3240 * When this routine is called from xlog_state_get_iclog_space(), the
3241 * exact size of the iclog has not yet been determined. All we know is
3242 * that every data block. We have run out of space in this log record.
3243 */
3244 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3245 xlog_state_switch_iclogs(
3246 struct xlog *log,
3247 struct xlog_in_core *iclog,
3248 int eventual_size)
3249 {
3250 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3251 if (!eventual_size)
3252 eventual_size = iclog->ic_offset;
3253 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3254 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3255 log->l_prev_block = log->l_curr_block;
3256 log->l_prev_cycle = log->l_curr_cycle;
3257
3258 /* roll log?: ic_offset changed later */
3259 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3260
3261 /* Round up to next log-sunit */
3262 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3263 log->l_mp->m_sb.sb_logsunit > 1) {
3264 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3265 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3266 }
3267
3268 if (log->l_curr_block >= log->l_logBBsize) {
3269 /*
3270 * Rewind the current block before the cycle is bumped to make
3271 * sure that the combined LSN never transiently moves forward
3272 * when the log wraps to the next cycle. This is to support the
3273 * unlocked sample of these fields from xlog_valid_lsn(). Most
3274 * other cases should acquire l_icloglock.
3275 */
3276 log->l_curr_block -= log->l_logBBsize;
3277 ASSERT(log->l_curr_block >= 0);
3278 smp_wmb();
3279 log->l_curr_cycle++;
3280 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3281 log->l_curr_cycle++;
3282 }
3283 ASSERT(iclog == log->l_iclog);
3284 log->l_iclog = iclog->ic_next;
3285 } /* xlog_state_switch_iclogs */
3286
3287 /*
3288 * Write out all data in the in-core log as of this exact moment in time.
3289 *
3290 * Data may be written to the in-core log during this call. However,
3291 * we don't guarantee this data will be written out. A change from past
3292 * implementation means this routine will *not* write out zero length LRs.
3293 *
3294 * Basically, we try and perform an intelligent scan of the in-core logs.
3295 * If we determine there is no flushable data, we just return. There is no
3296 * flushable data if:
3297 *
3298 * 1. the current iclog is active and has no data; the previous iclog
3299 * is in the active or dirty state.
3300 * 2. the current iclog is drity, and the previous iclog is in the
3301 * active or dirty state.
3302 *
3303 * We may sleep if:
3304 *
3305 * 1. the current iclog is not in the active nor dirty state.
3306 * 2. the current iclog dirty, and the previous iclog is not in the
3307 * active nor dirty state.
3308 * 3. the current iclog is active, and there is another thread writing
3309 * to this particular iclog.
3310 * 4. a) the current iclog is active and has no other writers
3311 * b) when we return from flushing out this iclog, it is still
3312 * not in the active nor dirty state.
3313 */
3314 int
xfs_log_force(struct xfs_mount * mp,uint flags)3315 xfs_log_force(
3316 struct xfs_mount *mp,
3317 uint flags)
3318 {
3319 struct xlog *log = mp->m_log;
3320 struct xlog_in_core *iclog;
3321 xfs_lsn_t lsn;
3322
3323 XFS_STATS_INC(mp, xs_log_force);
3324 trace_xfs_log_force(mp, 0, _RET_IP_);
3325
3326 xlog_cil_force(log);
3327
3328 spin_lock(&log->l_icloglock);
3329 iclog = log->l_iclog;
3330 if (iclog->ic_state & XLOG_STATE_IOERROR)
3331 goto out_error;
3332
3333 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3334 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3335 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3336 /*
3337 * If the head is dirty or (active and empty), then we need to
3338 * look at the previous iclog.
3339 *
3340 * If the previous iclog is active or dirty we are done. There
3341 * is nothing to sync out. Otherwise, we attach ourselves to the
3342 * previous iclog and go to sleep.
3343 */
3344 iclog = iclog->ic_prev;
3345 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3346 iclog->ic_state == XLOG_STATE_DIRTY)
3347 goto out_unlock;
3348 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3349 if (atomic_read(&iclog->ic_refcnt) == 0) {
3350 /*
3351 * We are the only one with access to this iclog.
3352 *
3353 * Flush it out now. There should be a roundoff of zero
3354 * to show that someone has already taken care of the
3355 * roundoff from the previous sync.
3356 */
3357 atomic_inc(&iclog->ic_refcnt);
3358 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3359 xlog_state_switch_iclogs(log, iclog, 0);
3360 spin_unlock(&log->l_icloglock);
3361
3362 if (xlog_state_release_iclog(log, iclog))
3363 return -EIO;
3364
3365 spin_lock(&log->l_icloglock);
3366 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3367 iclog->ic_state == XLOG_STATE_DIRTY)
3368 goto out_unlock;
3369 } else {
3370 /*
3371 * Someone else is writing to this iclog.
3372 *
3373 * Use its call to flush out the data. However, the
3374 * other thread may not force out this LR, so we mark
3375 * it WANT_SYNC.
3376 */
3377 xlog_state_switch_iclogs(log, iclog, 0);
3378 }
3379 } else {
3380 /*
3381 * If the head iclog is not active nor dirty, we just attach
3382 * ourselves to the head and go to sleep if necessary.
3383 */
3384 ;
3385 }
3386
3387 if (!(flags & XFS_LOG_SYNC))
3388 goto out_unlock;
3389
3390 if (iclog->ic_state & XLOG_STATE_IOERROR)
3391 goto out_error;
3392 XFS_STATS_INC(mp, xs_log_force_sleep);
3393 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3394 if (iclog->ic_state & XLOG_STATE_IOERROR)
3395 return -EIO;
3396 return 0;
3397
3398 out_unlock:
3399 spin_unlock(&log->l_icloglock);
3400 return 0;
3401 out_error:
3402 spin_unlock(&log->l_icloglock);
3403 return -EIO;
3404 }
3405
3406 static int
__xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3407 __xfs_log_force_lsn(
3408 struct xfs_mount *mp,
3409 xfs_lsn_t lsn,
3410 uint flags,
3411 int *log_flushed,
3412 bool already_slept)
3413 {
3414 struct xlog *log = mp->m_log;
3415 struct xlog_in_core *iclog;
3416
3417 spin_lock(&log->l_icloglock);
3418 iclog = log->l_iclog;
3419 if (iclog->ic_state & XLOG_STATE_IOERROR)
3420 goto out_error;
3421
3422 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3423 iclog = iclog->ic_next;
3424 if (iclog == log->l_iclog)
3425 goto out_unlock;
3426 }
3427
3428 if (iclog->ic_state == XLOG_STATE_DIRTY)
3429 goto out_unlock;
3430
3431 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3432 /*
3433 * We sleep here if we haven't already slept (e.g. this is the
3434 * first time we've looked at the correct iclog buf) and the
3435 * buffer before us is going to be sync'ed. The reason for this
3436 * is that if we are doing sync transactions here, by waiting
3437 * for the previous I/O to complete, we can allow a few more
3438 * transactions into this iclog before we close it down.
3439 *
3440 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3441 * refcnt so we can release the log (which drops the ref count).
3442 * The state switch keeps new transaction commits from using
3443 * this buffer. When the current commits finish writing into
3444 * the buffer, the refcount will drop to zero and the buffer
3445 * will go out then.
3446 */
3447 if (!already_slept &&
3448 (iclog->ic_prev->ic_state &
3449 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3450 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3451
3452 XFS_STATS_INC(mp, xs_log_force_sleep);
3453
3454 xlog_wait(&iclog->ic_prev->ic_write_wait,
3455 &log->l_icloglock);
3456 return -EAGAIN;
3457 }
3458 atomic_inc(&iclog->ic_refcnt);
3459 xlog_state_switch_iclogs(log, iclog, 0);
3460 spin_unlock(&log->l_icloglock);
3461 if (xlog_state_release_iclog(log, iclog))
3462 return -EIO;
3463 if (log_flushed)
3464 *log_flushed = 1;
3465 spin_lock(&log->l_icloglock);
3466 }
3467
3468 if (!(flags & XFS_LOG_SYNC) ||
3469 (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3470 goto out_unlock;
3471
3472 if (iclog->ic_state & XLOG_STATE_IOERROR)
3473 goto out_error;
3474
3475 XFS_STATS_INC(mp, xs_log_force_sleep);
3476 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3477 if (iclog->ic_state & XLOG_STATE_IOERROR)
3478 return -EIO;
3479 return 0;
3480
3481 out_unlock:
3482 spin_unlock(&log->l_icloglock);
3483 return 0;
3484 out_error:
3485 spin_unlock(&log->l_icloglock);
3486 return -EIO;
3487 }
3488
3489 /*
3490 * Force the in-core log to disk for a specific LSN.
3491 *
3492 * Find in-core log with lsn.
3493 * If it is in the DIRTY state, just return.
3494 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3495 * state and go to sleep or return.
3496 * If it is in any other state, go to sleep or return.
3497 *
3498 * Synchronous forces are implemented with a wait queue. All callers trying
3499 * to force a given lsn to disk must wait on the queue attached to the
3500 * specific in-core log. When given in-core log finally completes its write
3501 * to disk, that thread will wake up all threads waiting on the queue.
3502 */
3503 int
xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3504 xfs_log_force_lsn(
3505 struct xfs_mount *mp,
3506 xfs_lsn_t lsn,
3507 uint flags,
3508 int *log_flushed)
3509 {
3510 int ret;
3511 ASSERT(lsn != 0);
3512
3513 XFS_STATS_INC(mp, xs_log_force);
3514 trace_xfs_log_force(mp, lsn, _RET_IP_);
3515
3516 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3517 if (lsn == NULLCOMMITLSN)
3518 return 0;
3519
3520 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3521 if (ret == -EAGAIN)
3522 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3523 return ret;
3524 }
3525
3526 /*
3527 * Called when we want to mark the current iclog as being ready to sync to
3528 * disk.
3529 */
3530 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3531 xlog_state_want_sync(
3532 struct xlog *log,
3533 struct xlog_in_core *iclog)
3534 {
3535 assert_spin_locked(&log->l_icloglock);
3536
3537 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3538 xlog_state_switch_iclogs(log, iclog, 0);
3539 } else {
3540 ASSERT(iclog->ic_state &
3541 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3542 }
3543 }
3544
3545
3546 /*****************************************************************************
3547 *
3548 * TICKET functions
3549 *
3550 *****************************************************************************
3551 */
3552
3553 /*
3554 * Free a used ticket when its refcount falls to zero.
3555 */
3556 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3557 xfs_log_ticket_put(
3558 xlog_ticket_t *ticket)
3559 {
3560 ASSERT(atomic_read(&ticket->t_ref) > 0);
3561 if (atomic_dec_and_test(&ticket->t_ref))
3562 kmem_zone_free(xfs_log_ticket_zone, ticket);
3563 }
3564
3565 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3566 xfs_log_ticket_get(
3567 xlog_ticket_t *ticket)
3568 {
3569 ASSERT(atomic_read(&ticket->t_ref) > 0);
3570 atomic_inc(&ticket->t_ref);
3571 return ticket;
3572 }
3573
3574 /*
3575 * Figure out the total log space unit (in bytes) that would be
3576 * required for a log ticket.
3577 */
3578 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3579 xfs_log_calc_unit_res(
3580 struct xfs_mount *mp,
3581 int unit_bytes)
3582 {
3583 struct xlog *log = mp->m_log;
3584 int iclog_space;
3585 uint num_headers;
3586
3587 /*
3588 * Permanent reservations have up to 'cnt'-1 active log operations
3589 * in the log. A unit in this case is the amount of space for one
3590 * of these log operations. Normal reservations have a cnt of 1
3591 * and their unit amount is the total amount of space required.
3592 *
3593 * The following lines of code account for non-transaction data
3594 * which occupy space in the on-disk log.
3595 *
3596 * Normal form of a transaction is:
3597 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3598 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3599 *
3600 * We need to account for all the leadup data and trailer data
3601 * around the transaction data.
3602 * And then we need to account for the worst case in terms of using
3603 * more space.
3604 * The worst case will happen if:
3605 * - the placement of the transaction happens to be such that the
3606 * roundoff is at its maximum
3607 * - the transaction data is synced before the commit record is synced
3608 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3609 * Therefore the commit record is in its own Log Record.
3610 * This can happen as the commit record is called with its
3611 * own region to xlog_write().
3612 * This then means that in the worst case, roundoff can happen for
3613 * the commit-rec as well.
3614 * The commit-rec is smaller than padding in this scenario and so it is
3615 * not added separately.
3616 */
3617
3618 /* for trans header */
3619 unit_bytes += sizeof(xlog_op_header_t);
3620 unit_bytes += sizeof(xfs_trans_header_t);
3621
3622 /* for start-rec */
3623 unit_bytes += sizeof(xlog_op_header_t);
3624
3625 /*
3626 * for LR headers - the space for data in an iclog is the size minus
3627 * the space used for the headers. If we use the iclog size, then we
3628 * undercalculate the number of headers required.
3629 *
3630 * Furthermore - the addition of op headers for split-recs might
3631 * increase the space required enough to require more log and op
3632 * headers, so take that into account too.
3633 *
3634 * IMPORTANT: This reservation makes the assumption that if this
3635 * transaction is the first in an iclog and hence has the LR headers
3636 * accounted to it, then the remaining space in the iclog is
3637 * exclusively for this transaction. i.e. if the transaction is larger
3638 * than the iclog, it will be the only thing in that iclog.
3639 * Fundamentally, this means we must pass the entire log vector to
3640 * xlog_write to guarantee this.
3641 */
3642 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3643 num_headers = howmany(unit_bytes, iclog_space);
3644
3645 /* for split-recs - ophdrs added when data split over LRs */
3646 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3647
3648 /* add extra header reservations if we overrun */
3649 while (!num_headers ||
3650 howmany(unit_bytes, iclog_space) > num_headers) {
3651 unit_bytes += sizeof(xlog_op_header_t);
3652 num_headers++;
3653 }
3654 unit_bytes += log->l_iclog_hsize * num_headers;
3655
3656 /* for commit-rec LR header - note: padding will subsume the ophdr */
3657 unit_bytes += log->l_iclog_hsize;
3658
3659 /* for roundoff padding for transaction data and one for commit record */
3660 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3661 /* log su roundoff */
3662 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3663 } else {
3664 /* BB roundoff */
3665 unit_bytes += 2 * BBSIZE;
3666 }
3667
3668 return unit_bytes;
3669 }
3670
3671 /*
3672 * Allocate and initialise a new log ticket.
3673 */
3674 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3675 xlog_ticket_alloc(
3676 struct xlog *log,
3677 int unit_bytes,
3678 int cnt,
3679 char client,
3680 bool permanent,
3681 xfs_km_flags_t alloc_flags)
3682 {
3683 struct xlog_ticket *tic;
3684 int unit_res;
3685
3686 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3687 if (!tic)
3688 return NULL;
3689
3690 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3691
3692 atomic_set(&tic->t_ref, 1);
3693 tic->t_task = current;
3694 INIT_LIST_HEAD(&tic->t_queue);
3695 tic->t_unit_res = unit_res;
3696 tic->t_curr_res = unit_res;
3697 tic->t_cnt = cnt;
3698 tic->t_ocnt = cnt;
3699 tic->t_tid = prandom_u32();
3700 tic->t_clientid = client;
3701 tic->t_flags = XLOG_TIC_INITED;
3702 if (permanent)
3703 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3704
3705 xlog_tic_reset_res(tic);
3706
3707 return tic;
3708 }
3709
3710
3711 /******************************************************************************
3712 *
3713 * Log debug routines
3714 *
3715 ******************************************************************************
3716 */
3717 #if defined(DEBUG)
3718 /*
3719 * Make sure that the destination ptr is within the valid data region of
3720 * one of the iclogs. This uses backup pointers stored in a different
3721 * part of the log in case we trash the log structure.
3722 */
3723 STATIC void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3724 xlog_verify_dest_ptr(
3725 struct xlog *log,
3726 void *ptr)
3727 {
3728 int i;
3729 int good_ptr = 0;
3730
3731 for (i = 0; i < log->l_iclog_bufs; i++) {
3732 if (ptr >= log->l_iclog_bak[i] &&
3733 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3734 good_ptr++;
3735 }
3736
3737 if (!good_ptr)
3738 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3739 }
3740
3741 /*
3742 * Check to make sure the grant write head didn't just over lap the tail. If
3743 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3744 * the cycles differ by exactly one and check the byte count.
3745 *
3746 * This check is run unlocked, so can give false positives. Rather than assert
3747 * on failures, use a warn-once flag and a panic tag to allow the admin to
3748 * determine if they want to panic the machine when such an error occurs. For
3749 * debug kernels this will have the same effect as using an assert but, unlinke
3750 * an assert, it can be turned off at runtime.
3751 */
3752 STATIC void
xlog_verify_grant_tail(struct xlog * log)3753 xlog_verify_grant_tail(
3754 struct xlog *log)
3755 {
3756 int tail_cycle, tail_blocks;
3757 int cycle, space;
3758
3759 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3760 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3761 if (tail_cycle != cycle) {
3762 if (cycle - 1 != tail_cycle &&
3763 !(log->l_flags & XLOG_TAIL_WARN)) {
3764 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3765 "%s: cycle - 1 != tail_cycle", __func__);
3766 log->l_flags |= XLOG_TAIL_WARN;
3767 }
3768
3769 if (space > BBTOB(tail_blocks) &&
3770 !(log->l_flags & XLOG_TAIL_WARN)) {
3771 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3772 "%s: space > BBTOB(tail_blocks)", __func__);
3773 log->l_flags |= XLOG_TAIL_WARN;
3774 }
3775 }
3776 }
3777
3778 /* check if it will fit */
3779 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3780 xlog_verify_tail_lsn(
3781 struct xlog *log,
3782 struct xlog_in_core *iclog,
3783 xfs_lsn_t tail_lsn)
3784 {
3785 int blocks;
3786
3787 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3788 blocks =
3789 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3790 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3791 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3792 } else {
3793 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3794
3795 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3796 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3797
3798 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3799 if (blocks < BTOBB(iclog->ic_offset) + 1)
3800 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3801 }
3802 } /* xlog_verify_tail_lsn */
3803
3804 /*
3805 * Perform a number of checks on the iclog before writing to disk.
3806 *
3807 * 1. Make sure the iclogs are still circular
3808 * 2. Make sure we have a good magic number
3809 * 3. Make sure we don't have magic numbers in the data
3810 * 4. Check fields of each log operation header for:
3811 * A. Valid client identifier
3812 * B. tid ptr value falls in valid ptr space (user space code)
3813 * C. Length in log record header is correct according to the
3814 * individual operation headers within record.
3815 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3816 * log, check the preceding blocks of the physical log to make sure all
3817 * the cycle numbers agree with the current cycle number.
3818 */
3819 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count,bool syncing)3820 xlog_verify_iclog(
3821 struct xlog *log,
3822 struct xlog_in_core *iclog,
3823 int count,
3824 bool syncing)
3825 {
3826 xlog_op_header_t *ophead;
3827 xlog_in_core_t *icptr;
3828 xlog_in_core_2_t *xhdr;
3829 void *base_ptr, *ptr, *p;
3830 ptrdiff_t field_offset;
3831 uint8_t clientid;
3832 int len, i, j, k, op_len;
3833 int idx;
3834
3835 /* check validity of iclog pointers */
3836 spin_lock(&log->l_icloglock);
3837 icptr = log->l_iclog;
3838 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3839 ASSERT(icptr);
3840
3841 if (icptr != log->l_iclog)
3842 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3843 spin_unlock(&log->l_icloglock);
3844
3845 /* check log magic numbers */
3846 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3847 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3848
3849 base_ptr = ptr = &iclog->ic_header;
3850 p = &iclog->ic_header;
3851 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3852 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3853 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3854 __func__);
3855 }
3856
3857 /* check fields */
3858 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3859 base_ptr = ptr = iclog->ic_datap;
3860 ophead = ptr;
3861 xhdr = iclog->ic_data;
3862 for (i = 0; i < len; i++) {
3863 ophead = ptr;
3864
3865 /* clientid is only 1 byte */
3866 p = &ophead->oh_clientid;
3867 field_offset = p - base_ptr;
3868 if (!syncing || (field_offset & 0x1ff)) {
3869 clientid = ophead->oh_clientid;
3870 } else {
3871 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3872 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3873 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3874 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3875 clientid = xlog_get_client_id(
3876 xhdr[j].hic_xheader.xh_cycle_data[k]);
3877 } else {
3878 clientid = xlog_get_client_id(
3879 iclog->ic_header.h_cycle_data[idx]);
3880 }
3881 }
3882 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3883 xfs_warn(log->l_mp,
3884 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3885 __func__, clientid, ophead,
3886 (unsigned long)field_offset);
3887
3888 /* check length */
3889 p = &ophead->oh_len;
3890 field_offset = p - base_ptr;
3891 if (!syncing || (field_offset & 0x1ff)) {
3892 op_len = be32_to_cpu(ophead->oh_len);
3893 } else {
3894 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3895 (uintptr_t)iclog->ic_datap);
3896 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3897 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3898 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3899 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3900 } else {
3901 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3902 }
3903 }
3904 ptr += sizeof(xlog_op_header_t) + op_len;
3905 }
3906 } /* xlog_verify_iclog */
3907 #endif
3908
3909 /*
3910 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3911 */
3912 STATIC int
xlog_state_ioerror(struct xlog * log)3913 xlog_state_ioerror(
3914 struct xlog *log)
3915 {
3916 xlog_in_core_t *iclog, *ic;
3917
3918 iclog = log->l_iclog;
3919 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3920 /*
3921 * Mark all the incore logs IOERROR.
3922 * From now on, no log flushes will result.
3923 */
3924 ic = iclog;
3925 do {
3926 ic->ic_state = XLOG_STATE_IOERROR;
3927 ic = ic->ic_next;
3928 } while (ic != iclog);
3929 return 0;
3930 }
3931 /*
3932 * Return non-zero, if state transition has already happened.
3933 */
3934 return 1;
3935 }
3936
3937 /*
3938 * This is called from xfs_force_shutdown, when we're forcibly
3939 * shutting down the filesystem, typically because of an IO error.
3940 * Our main objectives here are to make sure that:
3941 * a. if !logerror, flush the logs to disk. Anything modified
3942 * after this is ignored.
3943 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3944 * parties to find out, 'atomically'.
3945 * c. those who're sleeping on log reservations, pinned objects and
3946 * other resources get woken up, and be told the bad news.
3947 * d. nothing new gets queued up after (b) and (c) are done.
3948 *
3949 * Note: for the !logerror case we need to flush the regions held in memory out
3950 * to disk first. This needs to be done before the log is marked as shutdown,
3951 * otherwise the iclog writes will fail.
3952 */
3953 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3954 xfs_log_force_umount(
3955 struct xfs_mount *mp,
3956 int logerror)
3957 {
3958 struct xlog *log;
3959 int retval;
3960
3961 log = mp->m_log;
3962
3963 /*
3964 * If this happens during log recovery, don't worry about
3965 * locking; the log isn't open for business yet.
3966 */
3967 if (!log ||
3968 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3969 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3970 if (mp->m_sb_bp)
3971 mp->m_sb_bp->b_flags |= XBF_DONE;
3972 return 0;
3973 }
3974
3975 /*
3976 * Somebody could've already done the hard work for us.
3977 * No need to get locks for this.
3978 */
3979 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3980 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3981 return 1;
3982 }
3983
3984 /*
3985 * Flush all the completed transactions to disk before marking the log
3986 * being shut down. We need to do it in this order to ensure that
3987 * completed operations are safely on disk before we shut down, and that
3988 * we don't have to issue any buffer IO after the shutdown flags are set
3989 * to guarantee this.
3990 */
3991 if (!logerror)
3992 xfs_log_force(mp, XFS_LOG_SYNC);
3993
3994 /*
3995 * mark the filesystem and the as in a shutdown state and wake
3996 * everybody up to tell them the bad news.
3997 */
3998 spin_lock(&log->l_icloglock);
3999 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4000 if (mp->m_sb_bp)
4001 mp->m_sb_bp->b_flags |= XBF_DONE;
4002
4003 /*
4004 * Mark the log and the iclogs with IO error flags to prevent any
4005 * further log IO from being issued or completed.
4006 */
4007 log->l_flags |= XLOG_IO_ERROR;
4008 retval = xlog_state_ioerror(log);
4009 spin_unlock(&log->l_icloglock);
4010
4011 /*
4012 * We don't want anybody waiting for log reservations after this. That
4013 * means we have to wake up everybody queued up on reserveq as well as
4014 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4015 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4016 * action is protected by the grant locks.
4017 */
4018 xlog_grant_head_wake_all(&log->l_reserve_head);
4019 xlog_grant_head_wake_all(&log->l_write_head);
4020
4021 /*
4022 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4023 * as if the log writes were completed. The abort handling in the log
4024 * item committed callback functions will do this again under lock to
4025 * avoid races.
4026 */
4027 wake_up_all(&log->l_cilp->xc_commit_wait);
4028 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4029
4030 #ifdef XFSERRORDEBUG
4031 {
4032 xlog_in_core_t *iclog;
4033
4034 spin_lock(&log->l_icloglock);
4035 iclog = log->l_iclog;
4036 do {
4037 ASSERT(iclog->ic_callback == 0);
4038 iclog = iclog->ic_next;
4039 } while (iclog != log->l_iclog);
4040 spin_unlock(&log->l_icloglock);
4041 }
4042 #endif
4043 /* return non-zero if log IOERROR transition had already happened */
4044 return retval;
4045 }
4046
4047 STATIC int
xlog_iclogs_empty(struct xlog * log)4048 xlog_iclogs_empty(
4049 struct xlog *log)
4050 {
4051 xlog_in_core_t *iclog;
4052
4053 iclog = log->l_iclog;
4054 do {
4055 /* endianness does not matter here, zero is zero in
4056 * any language.
4057 */
4058 if (iclog->ic_header.h_num_logops)
4059 return 0;
4060 iclog = iclog->ic_next;
4061 } while (iclog != log->l_iclog);
4062 return 1;
4063 }
4064
4065 /*
4066 * Verify that an LSN stamped into a piece of metadata is valid. This is
4067 * intended for use in read verifiers on v5 superblocks.
4068 */
4069 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4070 xfs_log_check_lsn(
4071 struct xfs_mount *mp,
4072 xfs_lsn_t lsn)
4073 {
4074 struct xlog *log = mp->m_log;
4075 bool valid;
4076
4077 /*
4078 * norecovery mode skips mount-time log processing and unconditionally
4079 * resets the in-core LSN. We can't validate in this mode, but
4080 * modifications are not allowed anyways so just return true.
4081 */
4082 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4083 return true;
4084
4085 /*
4086 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4087 * handled by recovery and thus safe to ignore here.
4088 */
4089 if (lsn == NULLCOMMITLSN)
4090 return true;
4091
4092 valid = xlog_valid_lsn(mp->m_log, lsn);
4093
4094 /* warn the user about what's gone wrong before verifier failure */
4095 if (!valid) {
4096 spin_lock(&log->l_icloglock);
4097 xfs_warn(mp,
4098 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4099 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4100 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4101 log->l_curr_cycle, log->l_curr_block);
4102 spin_unlock(&log->l_icloglock);
4103 }
4104
4105 return valid;
4106 }
4107
4108 bool
xfs_log_in_recovery(struct xfs_mount * mp)4109 xfs_log_in_recovery(
4110 struct xfs_mount *mp)
4111 {
4112 struct xlog *log = mp->m_log;
4113
4114 return log->l_flags & XLOG_ACTIVE_RECOVERY;
4115 }
4116