1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 /*
12 * Ring initialization rules:
13 * 1. Each segment is initialized to zero, except for link TRBs.
14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
15 * Consumer Cycle State (CCS), depending on ring function.
16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17 *
18 * Ring behavior rules:
19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
20 * least one free TRB in the ring. This is useful if you want to turn that
21 * into a link TRB and expand the ring.
22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23 * link TRB, then load the pointer with the address in the link TRB. If the
24 * link TRB had its toggle bit set, you may need to update the ring cycle
25 * state (see cycle bit rules). You may have to do this multiple times
26 * until you reach a non-link TRB.
27 * 3. A ring is full if enqueue++ (for the definition of increment above)
28 * equals the dequeue pointer.
29 *
30 * Cycle bit rules:
31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32 * in a link TRB, it must toggle the ring cycle state.
33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 *
36 * Producer rules:
37 * 1. Check if ring is full before you enqueue.
38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39 * Update enqueue pointer between each write (which may update the ring
40 * cycle state).
41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
42 * and endpoint rings. If HC is the producer for the event ring,
43 * and it generates an interrupt according to interrupt modulation rules.
44 *
45 * Consumer rules:
46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
47 * the TRB is owned by the consumer.
48 * 2. Update dequeue pointer (which may update the ring cycle state) and
49 * continue processing TRBs until you reach a TRB which is not owned by you.
50 * 3. Notify the producer. SW is the consumer for the event ring, and it
51 * updates event ring dequeue pointer. HC is the consumer for the command and
52 * endpoint rings; it generates events on the event ring for these.
53 */
54
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60 #include "xhci-mtk.h"
61
62 /*
63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64 * address of the TRB.
65 */
xhci_trb_virt_to_dma(struct xhci_segment * seg,union xhci_trb * trb)66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 union xhci_trb *trb)
68 {
69 unsigned long segment_offset;
70
71 if (!seg || !trb || trb < seg->trbs)
72 return 0;
73 /* offset in TRBs */
74 segment_offset = trb - seg->trbs;
75 if (segment_offset >= TRBS_PER_SEGMENT)
76 return 0;
77 return seg->dma + (segment_offset * sizeof(*trb));
78 }
79
trb_is_noop(union xhci_trb * trb)80 static bool trb_is_noop(union xhci_trb *trb)
81 {
82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
83 }
84
trb_is_link(union xhci_trb * trb)85 static bool trb_is_link(union xhci_trb *trb)
86 {
87 return TRB_TYPE_LINK_LE32(trb->link.control);
88 }
89
last_trb_on_seg(struct xhci_segment * seg,union xhci_trb * trb)90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
91 {
92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
93 }
94
last_trb_on_ring(struct xhci_ring * ring,struct xhci_segment * seg,union xhci_trb * trb)95 static bool last_trb_on_ring(struct xhci_ring *ring,
96 struct xhci_segment *seg, union xhci_trb *trb)
97 {
98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
99 }
100
link_trb_toggles_cycle(union xhci_trb * trb)101 static bool link_trb_toggles_cycle(union xhci_trb *trb)
102 {
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
last_td_in_urb(struct xhci_td * td)106 static bool last_td_in_urb(struct xhci_td *td)
107 {
108 struct urb_priv *urb_priv = td->urb->hcpriv;
109
110 return urb_priv->num_tds_done == urb_priv->num_tds;
111 }
112
inc_td_cnt(struct urb * urb)113 static void inc_td_cnt(struct urb *urb)
114 {
115 struct urb_priv *urb_priv = urb->hcpriv;
116
117 urb_priv->num_tds_done++;
118 }
119
trb_to_noop(union xhci_trb * trb,u32 noop_type)120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
121 {
122 if (trb_is_link(trb)) {
123 /* unchain chained link TRBs */
124 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 } else {
126 trb->generic.field[0] = 0;
127 trb->generic.field[1] = 0;
128 trb->generic.field[2] = 0;
129 /* Preserve only the cycle bit of this TRB */
130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
132 }
133 }
134
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
138 */
next_trb(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment ** seg,union xhci_trb ** trb)139 static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
143 {
144 if (trb_is_link(*trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
149 }
150 }
151
152 /*
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
155 */
inc_deq(struct xhci_hcd * xhci,struct xhci_ring * ring)156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 /* event ring doesn't have link trbs, check for last trb */
159 if (ring->type == TYPE_EVENT) {
160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 ring->dequeue++;
162 goto out;
163 }
164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 ring->cycle_state ^= 1;
166 ring->deq_seg = ring->deq_seg->next;
167 ring->dequeue = ring->deq_seg->trbs;
168 goto out;
169 }
170
171 /* All other rings have link trbs */
172 if (!trb_is_link(ring->dequeue)) {
173 ring->dequeue++;
174 ring->num_trbs_free++;
175 }
176 while (trb_is_link(ring->dequeue)) {
177 ring->deq_seg = ring->deq_seg->next;
178 ring->dequeue = ring->deq_seg->trbs;
179 }
180
181 out:
182 trace_xhci_inc_deq(ring);
183
184 return;
185 }
186
187 /*
188 * See Cycle bit rules. SW is the consumer for the event ring only.
189 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
190 *
191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192 * chain bit is set), then set the chain bit in all the following link TRBs.
193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194 * have their chain bit cleared (so that each Link TRB is a separate TD).
195 *
196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197 * set, but other sections talk about dealing with the chain bit set. This was
198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
200 *
201 * @more_trbs_coming: Will you enqueue more TRBs before calling
202 * prepare_transfer()?
203 */
inc_enq(struct xhci_hcd * xhci,struct xhci_ring * ring,bool more_trbs_coming)204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 bool more_trbs_coming)
206 {
207 u32 chain;
208 union xhci_trb *next;
209
210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 /* If this is not event ring, there is one less usable TRB */
212 if (!trb_is_link(ring->enqueue))
213 ring->num_trbs_free--;
214 next = ++(ring->enqueue);
215
216 /* Update the dequeue pointer further if that was a link TRB */
217 while (trb_is_link(next)) {
218
219 /*
220 * If the caller doesn't plan on enqueueing more TDs before
221 * ringing the doorbell, then we don't want to give the link TRB
222 * to the hardware just yet. We'll give the link TRB back in
223 * prepare_ring() just before we enqueue the TD at the top of
224 * the ring.
225 */
226 if (!chain && !more_trbs_coming)
227 break;
228
229 /* If we're not dealing with 0.95 hardware or isoc rings on
230 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 * (which may mean the chain bit is cleared).
232 */
233 if (!(ring->type == TYPE_ISOC &&
234 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 !xhci_link_trb_quirk(xhci)) {
236 next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 next->link.control |= cpu_to_le32(chain);
238 }
239 /* Give this link TRB to the hardware */
240 wmb();
241 next->link.control ^= cpu_to_le32(TRB_CYCLE);
242
243 /* Toggle the cycle bit after the last ring segment. */
244 if (link_trb_toggles_cycle(next))
245 ring->cycle_state ^= 1;
246
247 ring->enq_seg = ring->enq_seg->next;
248 ring->enqueue = ring->enq_seg->trbs;
249 next = ring->enqueue;
250 }
251
252 trace_xhci_inc_enq(ring);
253 }
254
255 /*
256 * Check to see if there's room to enqueue num_trbs on the ring and make sure
257 * enqueue pointer will not advance into dequeue segment. See rules above.
258 */
room_on_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs)259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 unsigned int num_trbs)
261 {
262 int num_trbs_in_deq_seg;
263
264 if (ring->num_trbs_free < num_trbs)
265 return 0;
266
267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 return 0;
271 }
272
273 return 1;
274 }
275
276 /* Ring the host controller doorbell after placing a command on the ring */
xhci_ring_cmd_db(struct xhci_hcd * xhci)277 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
278 {
279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 return;
281
282 xhci_dbg(xhci, "// Ding dong!\n");
283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
284 /* Flush PCI posted writes */
285 readl(&xhci->dba->doorbell[0]);
286 }
287
xhci_mod_cmd_timer(struct xhci_hcd * xhci,unsigned long delay)288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
289 {
290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
291 }
292
xhci_next_queued_cmd(struct xhci_hcd * xhci)293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
294 {
295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
296 cmd_list);
297 }
298
299 /*
300 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
301 * If there are other commands waiting then restart the ring and kick the timer.
302 * This must be called with command ring stopped and xhci->lock held.
303 */
xhci_handle_stopped_cmd_ring(struct xhci_hcd * xhci,struct xhci_command * cur_cmd)304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
305 struct xhci_command *cur_cmd)
306 {
307 struct xhci_command *i_cmd;
308
309 /* Turn all aborted commands in list to no-ops, then restart */
310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
311
312 if (i_cmd->status != COMP_COMMAND_ABORTED)
313 continue;
314
315 i_cmd->status = COMP_COMMAND_RING_STOPPED;
316
317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
318 i_cmd->command_trb);
319
320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
321
322 /*
323 * caller waiting for completion is called when command
324 * completion event is received for these no-op commands
325 */
326 }
327
328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
329
330 /* ring command ring doorbell to restart the command ring */
331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
332 !(xhci->xhc_state & XHCI_STATE_DYING)) {
333 xhci->current_cmd = cur_cmd;
334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
335 xhci_ring_cmd_db(xhci);
336 }
337 }
338
339 /* Must be called with xhci->lock held, releases and aquires lock back */
xhci_abort_cmd_ring(struct xhci_hcd * xhci,unsigned long flags)340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
341 {
342 u64 temp_64;
343 int ret;
344
345 xhci_dbg(xhci, "Abort command ring\n");
346
347 reinit_completion(&xhci->cmd_ring_stop_completion);
348
349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
351 &xhci->op_regs->cmd_ring);
352
353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
354 * completion of the Command Abort operation. If CRR is not negated in 5
355 * seconds then driver handles it as if host died (-ENODEV).
356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
357 * and try to recover a -ETIMEDOUT with a host controller reset.
358 */
359 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
361 if (ret < 0) {
362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
363 xhci_halt(xhci);
364 xhci_hc_died(xhci);
365 return ret;
366 }
367 /*
368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
370 * but the completion event in never sent. Wait 2 secs (arbitrary
371 * number) to handle those cases after negation of CMD_RING_RUNNING.
372 */
373 spin_unlock_irqrestore(&xhci->lock, flags);
374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
375 msecs_to_jiffies(2000));
376 spin_lock_irqsave(&xhci->lock, flags);
377 if (!ret) {
378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
379 xhci_cleanup_command_queue(xhci);
380 } else {
381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
382 }
383 return 0;
384 }
385
xhci_ring_ep_doorbell(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id)386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
387 unsigned int slot_id,
388 unsigned int ep_index,
389 unsigned int stream_id)
390 {
391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
393 unsigned int ep_state = ep->ep_state;
394
395 /* Don't ring the doorbell for this endpoint if there are pending
396 * cancellations because we don't want to interrupt processing.
397 * We don't want to restart any stream rings if there's a set dequeue
398 * pointer command pending because the device can choose to start any
399 * stream once the endpoint is on the HW schedule.
400 */
401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
402 (ep_state & EP_HALTED))
403 return;
404 writel(DB_VALUE(ep_index, stream_id), db_addr);
405 /* The CPU has better things to do at this point than wait for a
406 * write-posting flush. It'll get there soon enough.
407 */
408 }
409
410 /* Ring the doorbell for any rings with pending URBs */
ring_doorbell_for_active_rings(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index)411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index)
414 {
415 unsigned int stream_id;
416 struct xhci_virt_ep *ep;
417
418 ep = &xhci->devs[slot_id]->eps[ep_index];
419
420 /* A ring has pending URBs if its TD list is not empty */
421 if (!(ep->ep_state & EP_HAS_STREAMS)) {
422 if (ep->ring && !(list_empty(&ep->ring->td_list)))
423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
424 return;
425 }
426
427 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
428 stream_id++) {
429 struct xhci_stream_info *stream_info = ep->stream_info;
430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
432 stream_id);
433 }
434 }
435
436 /* Get the right ring for the given slot_id, ep_index and stream_id.
437 * If the endpoint supports streams, boundary check the URB's stream ID.
438 * If the endpoint doesn't support streams, return the singular endpoint ring.
439 */
xhci_triad_to_transfer_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id)440 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
441 unsigned int slot_id, unsigned int ep_index,
442 unsigned int stream_id)
443 {
444 struct xhci_virt_ep *ep;
445
446 ep = &xhci->devs[slot_id]->eps[ep_index];
447 /* Common case: no streams */
448 if (!(ep->ep_state & EP_HAS_STREAMS))
449 return ep->ring;
450
451 if (stream_id == 0) {
452 xhci_warn(xhci,
453 "WARN: Slot ID %u, ep index %u has streams, "
454 "but URB has no stream ID.\n",
455 slot_id, ep_index);
456 return NULL;
457 }
458
459 if (stream_id < ep->stream_info->num_streams)
460 return ep->stream_info->stream_rings[stream_id];
461
462 xhci_warn(xhci,
463 "WARN: Slot ID %u, ep index %u has "
464 "stream IDs 1 to %u allocated, "
465 "but stream ID %u is requested.\n",
466 slot_id, ep_index,
467 ep->stream_info->num_streams - 1,
468 stream_id);
469 return NULL;
470 }
471
472
473 /*
474 * Get the hw dequeue pointer xHC stopped on, either directly from the
475 * endpoint context, or if streams are in use from the stream context.
476 * The returned hw_dequeue contains the lowest four bits with cycle state
477 * and possbile stream context type.
478 */
xhci_get_hw_deq(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,unsigned int ep_index,unsigned int stream_id)479 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
480 unsigned int ep_index, unsigned int stream_id)
481 {
482 struct xhci_ep_ctx *ep_ctx;
483 struct xhci_stream_ctx *st_ctx;
484 struct xhci_virt_ep *ep;
485
486 ep = &vdev->eps[ep_index];
487
488 if (ep->ep_state & EP_HAS_STREAMS) {
489 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
490 return le64_to_cpu(st_ctx->stream_ring);
491 }
492 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
493 return le64_to_cpu(ep_ctx->deq);
494 }
495
496 /*
497 * Move the xHC's endpoint ring dequeue pointer past cur_td.
498 * Record the new state of the xHC's endpoint ring dequeue segment,
499 * dequeue pointer, stream id, and new consumer cycle state in state.
500 * Update our internal representation of the ring's dequeue pointer.
501 *
502 * We do this in three jumps:
503 * - First we update our new ring state to be the same as when the xHC stopped.
504 * - Then we traverse the ring to find the segment that contains
505 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
506 * any link TRBs with the toggle cycle bit set.
507 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
508 * if we've moved it past a link TRB with the toggle cycle bit set.
509 *
510 * Some of the uses of xhci_generic_trb are grotty, but if they're done
511 * with correct __le32 accesses they should work fine. Only users of this are
512 * in here.
513 */
xhci_find_new_dequeue_state(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * cur_td,struct xhci_dequeue_state * state)514 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
515 unsigned int slot_id, unsigned int ep_index,
516 unsigned int stream_id, struct xhci_td *cur_td,
517 struct xhci_dequeue_state *state)
518 {
519 struct xhci_virt_device *dev = xhci->devs[slot_id];
520 struct xhci_virt_ep *ep = &dev->eps[ep_index];
521 struct xhci_ring *ep_ring;
522 struct xhci_segment *new_seg;
523 union xhci_trb *new_deq;
524 dma_addr_t addr;
525 u64 hw_dequeue;
526 bool cycle_found = false;
527 bool td_last_trb_found = false;
528
529 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
530 ep_index, stream_id);
531 if (!ep_ring) {
532 xhci_warn(xhci, "WARN can't find new dequeue state "
533 "for invalid stream ID %u.\n",
534 stream_id);
535 return;
536 }
537 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
539 "Finding endpoint context");
540
541 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
542 new_seg = ep_ring->deq_seg;
543 new_deq = ep_ring->dequeue;
544 state->new_cycle_state = hw_dequeue & 0x1;
545 state->stream_id = stream_id;
546
547 /*
548 * We want to find the pointer, segment and cycle state of the new trb
549 * (the one after current TD's last_trb). We know the cycle state at
550 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
551 * found.
552 */
553 do {
554 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
555 == (dma_addr_t)(hw_dequeue & ~0xf)) {
556 cycle_found = true;
557 if (td_last_trb_found)
558 break;
559 }
560 if (new_deq == cur_td->last_trb)
561 td_last_trb_found = true;
562
563 if (cycle_found && trb_is_link(new_deq) &&
564 link_trb_toggles_cycle(new_deq))
565 state->new_cycle_state ^= 0x1;
566
567 next_trb(xhci, ep_ring, &new_seg, &new_deq);
568
569 /* Search wrapped around, bail out */
570 if (new_deq == ep->ring->dequeue) {
571 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
572 state->new_deq_seg = NULL;
573 state->new_deq_ptr = NULL;
574 return;
575 }
576
577 } while (!cycle_found || !td_last_trb_found);
578
579 state->new_deq_seg = new_seg;
580 state->new_deq_ptr = new_deq;
581
582 /* Don't update the ring cycle state for the producer (us). */
583 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
584 "Cycle state = 0x%x", state->new_cycle_state);
585
586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 "New dequeue segment = %p (virtual)",
588 state->new_deq_seg);
589 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
591 "New dequeue pointer = 0x%llx (DMA)",
592 (unsigned long long) addr);
593 }
594
595 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
596 * (The last TRB actually points to the ring enqueue pointer, which is not part
597 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
598 */
td_to_noop(struct xhci_hcd * xhci,struct xhci_ring * ep_ring,struct xhci_td * td,bool flip_cycle)599 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
600 struct xhci_td *td, bool flip_cycle)
601 {
602 struct xhci_segment *seg = td->start_seg;
603 union xhci_trb *trb = td->first_trb;
604
605 while (1) {
606 trb_to_noop(trb, TRB_TR_NOOP);
607
608 /* flip cycle if asked to */
609 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
610 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
611
612 if (trb == td->last_trb)
613 break;
614
615 next_trb(xhci, ep_ring, &seg, &trb);
616 }
617 }
618
xhci_stop_watchdog_timer_in_irq(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)619 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
620 struct xhci_virt_ep *ep)
621 {
622 ep->ep_state &= ~EP_STOP_CMD_PENDING;
623 /* Can't del_timer_sync in interrupt */
624 del_timer(&ep->stop_cmd_timer);
625 }
626
627 /*
628 * Must be called with xhci->lock held in interrupt context,
629 * releases and re-acquires xhci->lock
630 */
xhci_giveback_urb_in_irq(struct xhci_hcd * xhci,struct xhci_td * cur_td,int status)631 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
632 struct xhci_td *cur_td, int status)
633 {
634 struct urb *urb = cur_td->urb;
635 struct urb_priv *urb_priv = urb->hcpriv;
636 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
637
638 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
639 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
640 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
641 if (xhci->quirks & XHCI_AMD_PLL_FIX)
642 usb_amd_quirk_pll_enable();
643 }
644 }
645 xhci_urb_free_priv(urb_priv);
646 usb_hcd_unlink_urb_from_ep(hcd, urb);
647 spin_unlock(&xhci->lock);
648 trace_xhci_urb_giveback(urb);
649 usb_hcd_giveback_urb(hcd, urb, status);
650 spin_lock(&xhci->lock);
651 }
652
xhci_unmap_td_bounce_buffer(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_td * td)653 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
654 struct xhci_ring *ring, struct xhci_td *td)
655 {
656 struct device *dev = xhci_to_hcd(xhci)->self.controller;
657 struct xhci_segment *seg = td->bounce_seg;
658 struct urb *urb = td->urb;
659
660 if (!ring || !seg || !urb)
661 return;
662
663 if (usb_urb_dir_out(urb)) {
664 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
665 DMA_TO_DEVICE);
666 return;
667 }
668
669 /* for in tranfers we need to copy the data from bounce to sg */
670 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
671 seg->bounce_len, seg->bounce_offs);
672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
673 DMA_FROM_DEVICE);
674 seg->bounce_len = 0;
675 seg->bounce_offs = 0;
676 }
677
678 /*
679 * When we get a command completion for a Stop Endpoint Command, we need to
680 * unlink any cancelled TDs from the ring. There are two ways to do that:
681 *
682 * 1. If the HW was in the middle of processing the TD that needs to be
683 * cancelled, then we must move the ring's dequeue pointer past the last TRB
684 * in the TD with a Set Dequeue Pointer Command.
685 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
686 * bit cleared) so that the HW will skip over them.
687 */
xhci_handle_cmd_stop_ep(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,struct xhci_event_cmd * event)688 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
689 union xhci_trb *trb, struct xhci_event_cmd *event)
690 {
691 unsigned int ep_index;
692 struct xhci_ring *ep_ring;
693 struct xhci_virt_ep *ep;
694 struct xhci_td *cur_td = NULL;
695 struct xhci_td *last_unlinked_td;
696 struct xhci_ep_ctx *ep_ctx;
697 struct xhci_virt_device *vdev;
698 u64 hw_deq;
699 struct xhci_dequeue_state deq_state;
700
701 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
702 if (!xhci->devs[slot_id])
703 xhci_warn(xhci, "Stop endpoint command "
704 "completion for disabled slot %u\n",
705 slot_id);
706 return;
707 }
708
709 memset(&deq_state, 0, sizeof(deq_state));
710 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
711
712 vdev = xhci->devs[slot_id];
713 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
714 trace_xhci_handle_cmd_stop_ep(ep_ctx);
715
716 ep = &xhci->devs[slot_id]->eps[ep_index];
717 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
718 struct xhci_td, cancelled_td_list);
719
720 if (list_empty(&ep->cancelled_td_list)) {
721 xhci_stop_watchdog_timer_in_irq(xhci, ep);
722 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
723 return;
724 }
725
726 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
727 * We have the xHCI lock, so nothing can modify this list until we drop
728 * it. We're also in the event handler, so we can't get re-interrupted
729 * if another Stop Endpoint command completes
730 */
731 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
732 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
733 "Removing canceled TD starting at 0x%llx (dma).",
734 (unsigned long long)xhci_trb_virt_to_dma(
735 cur_td->start_seg, cur_td->first_trb));
736 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
737 if (!ep_ring) {
738 /* This shouldn't happen unless a driver is mucking
739 * with the stream ID after submission. This will
740 * leave the TD on the hardware ring, and the hardware
741 * will try to execute it, and may access a buffer
742 * that has already been freed. In the best case, the
743 * hardware will execute it, and the event handler will
744 * ignore the completion event for that TD, since it was
745 * removed from the td_list for that endpoint. In
746 * short, don't muck with the stream ID after
747 * submission.
748 */
749 xhci_warn(xhci, "WARN Cancelled URB %p "
750 "has invalid stream ID %u.\n",
751 cur_td->urb,
752 cur_td->urb->stream_id);
753 goto remove_finished_td;
754 }
755 /*
756 * If we stopped on the TD we need to cancel, then we have to
757 * move the xHC endpoint ring dequeue pointer past this TD.
758 */
759 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
760 cur_td->urb->stream_id);
761 hw_deq &= ~0xf;
762
763 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
764 cur_td->last_trb, hw_deq, false)) {
765 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
766 cur_td->urb->stream_id,
767 cur_td, &deq_state);
768 } else {
769 td_to_noop(xhci, ep_ring, cur_td, false);
770 }
771
772 remove_finished_td:
773 /*
774 * The event handler won't see a completion for this TD anymore,
775 * so remove it from the endpoint ring's TD list. Keep it in
776 * the cancelled TD list for URB completion later.
777 */
778 list_del_init(&cur_td->td_list);
779 }
780
781 xhci_stop_watchdog_timer_in_irq(xhci, ep);
782
783 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
784 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
785 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
786 &deq_state);
787 xhci_ring_cmd_db(xhci);
788 } else {
789 /* Otherwise ring the doorbell(s) to restart queued transfers */
790 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
791 }
792
793 /*
794 * Drop the lock and complete the URBs in the cancelled TD list.
795 * New TDs to be cancelled might be added to the end of the list before
796 * we can complete all the URBs for the TDs we already unlinked.
797 * So stop when we've completed the URB for the last TD we unlinked.
798 */
799 do {
800 cur_td = list_first_entry(&ep->cancelled_td_list,
801 struct xhci_td, cancelled_td_list);
802 list_del_init(&cur_td->cancelled_td_list);
803
804 /* Clean up the cancelled URB */
805 /* Doesn't matter what we pass for status, since the core will
806 * just overwrite it (because the URB has been unlinked).
807 */
808 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
809 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
810 inc_td_cnt(cur_td->urb);
811 if (last_td_in_urb(cur_td))
812 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
813
814 /* Stop processing the cancelled list if the watchdog timer is
815 * running.
816 */
817 if (xhci->xhc_state & XHCI_STATE_DYING)
818 return;
819 } while (cur_td != last_unlinked_td);
820
821 /* Return to the event handler with xhci->lock re-acquired */
822 }
823
xhci_kill_ring_urbs(struct xhci_hcd * xhci,struct xhci_ring * ring)824 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
825 {
826 struct xhci_td *cur_td;
827 struct xhci_td *tmp;
828
829 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
830 list_del_init(&cur_td->td_list);
831
832 if (!list_empty(&cur_td->cancelled_td_list))
833 list_del_init(&cur_td->cancelled_td_list);
834
835 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
836
837 inc_td_cnt(cur_td->urb);
838 if (last_td_in_urb(cur_td))
839 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
840 }
841 }
842
xhci_kill_endpoint_urbs(struct xhci_hcd * xhci,int slot_id,int ep_index)843 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
844 int slot_id, int ep_index)
845 {
846 struct xhci_td *cur_td;
847 struct xhci_td *tmp;
848 struct xhci_virt_ep *ep;
849 struct xhci_ring *ring;
850
851 ep = &xhci->devs[slot_id]->eps[ep_index];
852 if ((ep->ep_state & EP_HAS_STREAMS) ||
853 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
854 int stream_id;
855
856 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
857 stream_id++) {
858 ring = ep->stream_info->stream_rings[stream_id];
859 if (!ring)
860 continue;
861
862 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
863 "Killing URBs for slot ID %u, ep index %u, stream %u",
864 slot_id, ep_index, stream_id);
865 xhci_kill_ring_urbs(xhci, ring);
866 }
867 } else {
868 ring = ep->ring;
869 if (!ring)
870 return;
871 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
872 "Killing URBs for slot ID %u, ep index %u",
873 slot_id, ep_index);
874 xhci_kill_ring_urbs(xhci, ring);
875 }
876
877 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
878 cancelled_td_list) {
879 list_del_init(&cur_td->cancelled_td_list);
880 inc_td_cnt(cur_td->urb);
881
882 if (last_td_in_urb(cur_td))
883 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
884 }
885 }
886
887 /*
888 * host controller died, register read returns 0xffffffff
889 * Complete pending commands, mark them ABORTED.
890 * URBs need to be given back as usb core might be waiting with device locks
891 * held for the URBs to finish during device disconnect, blocking host remove.
892 *
893 * Call with xhci->lock held.
894 * lock is relased and re-acquired while giving back urb.
895 */
xhci_hc_died(struct xhci_hcd * xhci)896 void xhci_hc_died(struct xhci_hcd *xhci)
897 {
898 int i, j;
899
900 if (xhci->xhc_state & XHCI_STATE_DYING)
901 return;
902
903 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
904 xhci->xhc_state |= XHCI_STATE_DYING;
905
906 xhci_cleanup_command_queue(xhci);
907
908 /* return any pending urbs, remove may be waiting for them */
909 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
910 if (!xhci->devs[i])
911 continue;
912 for (j = 0; j < 31; j++)
913 xhci_kill_endpoint_urbs(xhci, i, j);
914 }
915
916 /* inform usb core hc died if PCI remove isn't already handling it */
917 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
918 usb_hc_died(xhci_to_hcd(xhci));
919 }
920
921 /* Watchdog timer function for when a stop endpoint command fails to complete.
922 * In this case, we assume the host controller is broken or dying or dead. The
923 * host may still be completing some other events, so we have to be careful to
924 * let the event ring handler and the URB dequeueing/enqueueing functions know
925 * through xhci->state.
926 *
927 * The timer may also fire if the host takes a very long time to respond to the
928 * command, and the stop endpoint command completion handler cannot delete the
929 * timer before the timer function is called. Another endpoint cancellation may
930 * sneak in before the timer function can grab the lock, and that may queue
931 * another stop endpoint command and add the timer back. So we cannot use a
932 * simple flag to say whether there is a pending stop endpoint command for a
933 * particular endpoint.
934 *
935 * Instead we use a combination of that flag and checking if a new timer is
936 * pending.
937 */
xhci_stop_endpoint_command_watchdog(struct timer_list * t)938 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
939 {
940 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
941 struct xhci_hcd *xhci = ep->xhci;
942 unsigned long flags;
943
944 spin_lock_irqsave(&xhci->lock, flags);
945
946 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
947 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
948 timer_pending(&ep->stop_cmd_timer)) {
949 spin_unlock_irqrestore(&xhci->lock, flags);
950 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
951 return;
952 }
953
954 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
955 ep->ep_state &= ~EP_STOP_CMD_PENDING;
956
957 xhci_halt(xhci);
958
959 /*
960 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
961 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
962 * and try to recover a -ETIMEDOUT with a host controller reset
963 */
964 xhci_hc_died(xhci);
965
966 spin_unlock_irqrestore(&xhci->lock, flags);
967 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
968 "xHCI host controller is dead.");
969 }
970
update_ring_for_set_deq_completion(struct xhci_hcd * xhci,struct xhci_virt_device * dev,struct xhci_ring * ep_ring,unsigned int ep_index)971 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
972 struct xhci_virt_device *dev,
973 struct xhci_ring *ep_ring,
974 unsigned int ep_index)
975 {
976 union xhci_trb *dequeue_temp;
977 int num_trbs_free_temp;
978 bool revert = false;
979
980 num_trbs_free_temp = ep_ring->num_trbs_free;
981 dequeue_temp = ep_ring->dequeue;
982
983 /* If we get two back-to-back stalls, and the first stalled transfer
984 * ends just before a link TRB, the dequeue pointer will be left on
985 * the link TRB by the code in the while loop. So we have to update
986 * the dequeue pointer one segment further, or we'll jump off
987 * the segment into la-la-land.
988 */
989 if (trb_is_link(ep_ring->dequeue)) {
990 ep_ring->deq_seg = ep_ring->deq_seg->next;
991 ep_ring->dequeue = ep_ring->deq_seg->trbs;
992 }
993
994 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
995 /* We have more usable TRBs */
996 ep_ring->num_trbs_free++;
997 ep_ring->dequeue++;
998 if (trb_is_link(ep_ring->dequeue)) {
999 if (ep_ring->dequeue ==
1000 dev->eps[ep_index].queued_deq_ptr)
1001 break;
1002 ep_ring->deq_seg = ep_ring->deq_seg->next;
1003 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1004 }
1005 if (ep_ring->dequeue == dequeue_temp) {
1006 revert = true;
1007 break;
1008 }
1009 }
1010
1011 if (revert) {
1012 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1013 ep_ring->num_trbs_free = num_trbs_free_temp;
1014 }
1015 }
1016
1017 /*
1018 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1019 * we need to clear the set deq pending flag in the endpoint ring state, so that
1020 * the TD queueing code can ring the doorbell again. We also need to ring the
1021 * endpoint doorbell to restart the ring, but only if there aren't more
1022 * cancellations pending.
1023 */
xhci_handle_cmd_set_deq(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,u32 cmd_comp_code)1024 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1025 union xhci_trb *trb, u32 cmd_comp_code)
1026 {
1027 unsigned int ep_index;
1028 unsigned int stream_id;
1029 struct xhci_ring *ep_ring;
1030 struct xhci_virt_device *dev;
1031 struct xhci_virt_ep *ep;
1032 struct xhci_ep_ctx *ep_ctx;
1033 struct xhci_slot_ctx *slot_ctx;
1034
1035 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1036 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1037 dev = xhci->devs[slot_id];
1038 ep = &dev->eps[ep_index];
1039
1040 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1041 if (!ep_ring) {
1042 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1043 stream_id);
1044 /* XXX: Harmless??? */
1045 goto cleanup;
1046 }
1047
1048 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1049 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1050 trace_xhci_handle_cmd_set_deq(slot_ctx);
1051 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1052
1053 if (cmd_comp_code != COMP_SUCCESS) {
1054 unsigned int ep_state;
1055 unsigned int slot_state;
1056
1057 switch (cmd_comp_code) {
1058 case COMP_TRB_ERROR:
1059 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1060 break;
1061 case COMP_CONTEXT_STATE_ERROR:
1062 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1063 ep_state = GET_EP_CTX_STATE(ep_ctx);
1064 slot_state = le32_to_cpu(slot_ctx->dev_state);
1065 slot_state = GET_SLOT_STATE(slot_state);
1066 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1067 "Slot state = %u, EP state = %u",
1068 slot_state, ep_state);
1069 break;
1070 case COMP_SLOT_NOT_ENABLED_ERROR:
1071 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1072 slot_id);
1073 break;
1074 default:
1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1076 cmd_comp_code);
1077 break;
1078 }
1079 /* OK what do we do now? The endpoint state is hosed, and we
1080 * should never get to this point if the synchronization between
1081 * queueing, and endpoint state are correct. This might happen
1082 * if the device gets disconnected after we've finished
1083 * cancelling URBs, which might not be an error...
1084 */
1085 } else {
1086 u64 deq;
1087 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1088 if (ep->ep_state & EP_HAS_STREAMS) {
1089 struct xhci_stream_ctx *ctx =
1090 &ep->stream_info->stream_ctx_array[stream_id];
1091 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1092 } else {
1093 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1094 }
1095 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1096 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1097 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1098 ep->queued_deq_ptr) == deq) {
1099 /* Update the ring's dequeue segment and dequeue pointer
1100 * to reflect the new position.
1101 */
1102 update_ring_for_set_deq_completion(xhci, dev,
1103 ep_ring, ep_index);
1104 } else {
1105 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1106 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1107 ep->queued_deq_seg, ep->queued_deq_ptr);
1108 }
1109 }
1110
1111 cleanup:
1112 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1113 dev->eps[ep_index].queued_deq_seg = NULL;
1114 dev->eps[ep_index].queued_deq_ptr = NULL;
1115 /* Restart any rings with pending URBs */
1116 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1117 }
1118
xhci_handle_cmd_reset_ep(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,u32 cmd_comp_code)1119 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1120 union xhci_trb *trb, u32 cmd_comp_code)
1121 {
1122 struct xhci_virt_device *vdev;
1123 struct xhci_ep_ctx *ep_ctx;
1124 unsigned int ep_index;
1125
1126 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1127 vdev = xhci->devs[slot_id];
1128 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1129 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1130
1131 /* This command will only fail if the endpoint wasn't halted,
1132 * but we don't care.
1133 */
1134 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1135 "Ignoring reset ep completion code of %u", cmd_comp_code);
1136
1137 /* HW with the reset endpoint quirk needs to have a configure endpoint
1138 * command complete before the endpoint can be used. Queue that here
1139 * because the HW can't handle two commands being queued in a row.
1140 */
1141 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1142 struct xhci_command *command;
1143
1144 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1145 if (!command)
1146 return;
1147
1148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1149 "Queueing configure endpoint command");
1150 xhci_queue_configure_endpoint(xhci, command,
1151 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1152 false);
1153 xhci_ring_cmd_db(xhci);
1154 } else {
1155 /* Clear our internal halted state */
1156 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1157 }
1158 }
1159
xhci_handle_cmd_enable_slot(struct xhci_hcd * xhci,int slot_id,struct xhci_command * command,u32 cmd_comp_code)1160 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1161 struct xhci_command *command, u32 cmd_comp_code)
1162 {
1163 if (cmd_comp_code == COMP_SUCCESS)
1164 command->slot_id = slot_id;
1165 else
1166 command->slot_id = 0;
1167 }
1168
xhci_handle_cmd_disable_slot(struct xhci_hcd * xhci,int slot_id)1169 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1170 {
1171 struct xhci_virt_device *virt_dev;
1172 struct xhci_slot_ctx *slot_ctx;
1173
1174 virt_dev = xhci->devs[slot_id];
1175 if (!virt_dev)
1176 return;
1177
1178 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1179 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1180
1181 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1182 /* Delete default control endpoint resources */
1183 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1184 xhci_free_virt_device(xhci, slot_id);
1185 }
1186
xhci_handle_cmd_config_ep(struct xhci_hcd * xhci,int slot_id,struct xhci_event_cmd * event,u32 cmd_comp_code)1187 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1188 struct xhci_event_cmd *event, u32 cmd_comp_code)
1189 {
1190 struct xhci_virt_device *virt_dev;
1191 struct xhci_input_control_ctx *ctrl_ctx;
1192 struct xhci_ep_ctx *ep_ctx;
1193 unsigned int ep_index;
1194 unsigned int ep_state;
1195 u32 add_flags, drop_flags;
1196
1197 /*
1198 * Configure endpoint commands can come from the USB core
1199 * configuration or alt setting changes, or because the HW
1200 * needed an extra configure endpoint command after a reset
1201 * endpoint command or streams were being configured.
1202 * If the command was for a halted endpoint, the xHCI driver
1203 * is not waiting on the configure endpoint command.
1204 */
1205 virt_dev = xhci->devs[slot_id];
1206 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1207 if (!ctrl_ctx) {
1208 xhci_warn(xhci, "Could not get input context, bad type.\n");
1209 return;
1210 }
1211
1212 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1213 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1214 /* Input ctx add_flags are the endpoint index plus one */
1215 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1216
1217 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1218 trace_xhci_handle_cmd_config_ep(ep_ctx);
1219
1220 /* A usb_set_interface() call directly after clearing a halted
1221 * condition may race on this quirky hardware. Not worth
1222 * worrying about, since this is prototype hardware. Not sure
1223 * if this will work for streams, but streams support was
1224 * untested on this prototype.
1225 */
1226 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1227 ep_index != (unsigned int) -1 &&
1228 add_flags - SLOT_FLAG == drop_flags) {
1229 ep_state = virt_dev->eps[ep_index].ep_state;
1230 if (!(ep_state & EP_HALTED))
1231 return;
1232 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1233 "Completed config ep cmd - "
1234 "last ep index = %d, state = %d",
1235 ep_index, ep_state);
1236 /* Clear internal halted state and restart ring(s) */
1237 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1238 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1239 return;
1240 }
1241 return;
1242 }
1243
xhci_handle_cmd_addr_dev(struct xhci_hcd * xhci,int slot_id)1244 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1245 {
1246 struct xhci_virt_device *vdev;
1247 struct xhci_slot_ctx *slot_ctx;
1248
1249 vdev = xhci->devs[slot_id];
1250 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1251 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1252 }
1253
xhci_handle_cmd_reset_dev(struct xhci_hcd * xhci,int slot_id,struct xhci_event_cmd * event)1254 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1255 struct xhci_event_cmd *event)
1256 {
1257 struct xhci_virt_device *vdev;
1258 struct xhci_slot_ctx *slot_ctx;
1259
1260 vdev = xhci->devs[slot_id];
1261 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1262 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1263
1264 xhci_dbg(xhci, "Completed reset device command.\n");
1265 if (!xhci->devs[slot_id])
1266 xhci_warn(xhci, "Reset device command completion "
1267 "for disabled slot %u\n", slot_id);
1268 }
1269
xhci_handle_cmd_nec_get_fw(struct xhci_hcd * xhci,struct xhci_event_cmd * event)1270 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1271 struct xhci_event_cmd *event)
1272 {
1273 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1274 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1275 return;
1276 }
1277 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1278 "NEC firmware version %2x.%02x",
1279 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1280 NEC_FW_MINOR(le32_to_cpu(event->status)));
1281 }
1282
xhci_complete_del_and_free_cmd(struct xhci_command * cmd,u32 status)1283 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1284 {
1285 list_del(&cmd->cmd_list);
1286
1287 if (cmd->completion) {
1288 cmd->status = status;
1289 complete(cmd->completion);
1290 } else {
1291 kfree(cmd);
1292 }
1293 }
1294
xhci_cleanup_command_queue(struct xhci_hcd * xhci)1295 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1296 {
1297 struct xhci_command *cur_cmd, *tmp_cmd;
1298 xhci->current_cmd = NULL;
1299 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1300 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1301 }
1302
xhci_handle_command_timeout(struct work_struct * work)1303 void xhci_handle_command_timeout(struct work_struct *work)
1304 {
1305 struct xhci_hcd *xhci;
1306 unsigned long flags;
1307 u64 hw_ring_state;
1308
1309 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1310
1311 spin_lock_irqsave(&xhci->lock, flags);
1312
1313 /*
1314 * If timeout work is pending, or current_cmd is NULL, it means we
1315 * raced with command completion. Command is handled so just return.
1316 */
1317 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1318 spin_unlock_irqrestore(&xhci->lock, flags);
1319 return;
1320 }
1321 /* mark this command to be cancelled */
1322 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1323
1324 /* Make sure command ring is running before aborting it */
1325 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1326 if (hw_ring_state == ~(u64)0) {
1327 xhci_hc_died(xhci);
1328 goto time_out_completed;
1329 }
1330
1331 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1332 (hw_ring_state & CMD_RING_RUNNING)) {
1333 /* Prevent new doorbell, and start command abort */
1334 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1335 xhci_dbg(xhci, "Command timeout\n");
1336 xhci_abort_cmd_ring(xhci, flags);
1337 goto time_out_completed;
1338 }
1339
1340 /* host removed. Bail out */
1341 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1342 xhci_dbg(xhci, "host removed, ring start fail?\n");
1343 xhci_cleanup_command_queue(xhci);
1344
1345 goto time_out_completed;
1346 }
1347
1348 /* command timeout on stopped ring, ring can't be aborted */
1349 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1350 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1351
1352 time_out_completed:
1353 spin_unlock_irqrestore(&xhci->lock, flags);
1354 return;
1355 }
1356
handle_cmd_completion(struct xhci_hcd * xhci,struct xhci_event_cmd * event)1357 static void handle_cmd_completion(struct xhci_hcd *xhci,
1358 struct xhci_event_cmd *event)
1359 {
1360 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1361 u64 cmd_dma;
1362 dma_addr_t cmd_dequeue_dma;
1363 u32 cmd_comp_code;
1364 union xhci_trb *cmd_trb;
1365 struct xhci_command *cmd;
1366 u32 cmd_type;
1367
1368 cmd_dma = le64_to_cpu(event->cmd_trb);
1369 cmd_trb = xhci->cmd_ring->dequeue;
1370
1371 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1372
1373 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1374 cmd_trb);
1375 /*
1376 * Check whether the completion event is for our internal kept
1377 * command.
1378 */
1379 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1380 xhci_warn(xhci,
1381 "ERROR mismatched command completion event\n");
1382 return;
1383 }
1384
1385 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1386
1387 cancel_delayed_work(&xhci->cmd_timer);
1388
1389 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1390
1391 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1392 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1393 complete_all(&xhci->cmd_ring_stop_completion);
1394 return;
1395 }
1396
1397 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1398 xhci_err(xhci,
1399 "Command completion event does not match command\n");
1400 return;
1401 }
1402
1403 /*
1404 * Host aborted the command ring, check if the current command was
1405 * supposed to be aborted, otherwise continue normally.
1406 * The command ring is stopped now, but the xHC will issue a Command
1407 * Ring Stopped event which will cause us to restart it.
1408 */
1409 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1410 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1411 if (cmd->status == COMP_COMMAND_ABORTED) {
1412 if (xhci->current_cmd == cmd)
1413 xhci->current_cmd = NULL;
1414 goto event_handled;
1415 }
1416 }
1417
1418 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1419 switch (cmd_type) {
1420 case TRB_ENABLE_SLOT:
1421 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1422 break;
1423 case TRB_DISABLE_SLOT:
1424 xhci_handle_cmd_disable_slot(xhci, slot_id);
1425 break;
1426 case TRB_CONFIG_EP:
1427 if (!cmd->completion)
1428 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1429 cmd_comp_code);
1430 break;
1431 case TRB_EVAL_CONTEXT:
1432 break;
1433 case TRB_ADDR_DEV:
1434 xhci_handle_cmd_addr_dev(xhci, slot_id);
1435 break;
1436 case TRB_STOP_RING:
1437 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1438 le32_to_cpu(cmd_trb->generic.field[3])));
1439 if (!cmd->completion)
1440 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1441 break;
1442 case TRB_SET_DEQ:
1443 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1444 le32_to_cpu(cmd_trb->generic.field[3])));
1445 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1446 break;
1447 case TRB_CMD_NOOP:
1448 /* Is this an aborted command turned to NO-OP? */
1449 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1450 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1451 break;
1452 case TRB_RESET_EP:
1453 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1454 le32_to_cpu(cmd_trb->generic.field[3])));
1455 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1456 break;
1457 case TRB_RESET_DEV:
1458 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1459 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1460 */
1461 slot_id = TRB_TO_SLOT_ID(
1462 le32_to_cpu(cmd_trb->generic.field[3]));
1463 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1464 break;
1465 case TRB_NEC_GET_FW:
1466 xhci_handle_cmd_nec_get_fw(xhci, event);
1467 break;
1468 default:
1469 /* Skip over unknown commands on the event ring */
1470 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1471 break;
1472 }
1473
1474 /* restart timer if this wasn't the last command */
1475 if (!list_is_singular(&xhci->cmd_list)) {
1476 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1477 struct xhci_command, cmd_list);
1478 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1479 } else if (xhci->current_cmd == cmd) {
1480 xhci->current_cmd = NULL;
1481 }
1482
1483 event_handled:
1484 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1485
1486 inc_deq(xhci, xhci->cmd_ring);
1487 }
1488
handle_vendor_event(struct xhci_hcd * xhci,union xhci_trb * event)1489 static void handle_vendor_event(struct xhci_hcd *xhci,
1490 union xhci_trb *event)
1491 {
1492 u32 trb_type;
1493
1494 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1495 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1496 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1497 handle_cmd_completion(xhci, &event->event_cmd);
1498 }
1499
handle_device_notification(struct xhci_hcd * xhci,union xhci_trb * event)1500 static void handle_device_notification(struct xhci_hcd *xhci,
1501 union xhci_trb *event)
1502 {
1503 u32 slot_id;
1504 struct usb_device *udev;
1505
1506 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1507 if (!xhci->devs[slot_id]) {
1508 xhci_warn(xhci, "Device Notification event for "
1509 "unused slot %u\n", slot_id);
1510 return;
1511 }
1512
1513 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1514 slot_id);
1515 udev = xhci->devs[slot_id]->udev;
1516 if (udev && udev->parent)
1517 usb_wakeup_notification(udev->parent, udev->portnum);
1518 }
1519
handle_port_status(struct xhci_hcd * xhci,union xhci_trb * event)1520 static void handle_port_status(struct xhci_hcd *xhci,
1521 union xhci_trb *event)
1522 {
1523 struct usb_hcd *hcd;
1524 u32 port_id;
1525 u32 portsc, cmd_reg;
1526 int max_ports;
1527 int slot_id;
1528 unsigned int hcd_portnum;
1529 struct xhci_bus_state *bus_state;
1530 bool bogus_port_status = false;
1531 struct xhci_port *port;
1532
1533 /* Port status change events always have a successful completion code */
1534 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1535 xhci_warn(xhci,
1536 "WARN: xHC returned failed port status event\n");
1537
1538 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1539 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1540
1541 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1542 if ((port_id <= 0) || (port_id > max_ports)) {
1543 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1544 inc_deq(xhci, xhci->event_ring);
1545 return;
1546 }
1547
1548 port = &xhci->hw_ports[port_id - 1];
1549 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1550 xhci_warn(xhci, "Event for invalid port %u\n", port_id);
1551 bogus_port_status = true;
1552 goto cleanup;
1553 }
1554
1555 hcd = port->rhub->hcd;
1556 bus_state = &xhci->bus_state[hcd_index(hcd)];
1557 hcd_portnum = port->hcd_portnum;
1558 portsc = readl(port->addr);
1559
1560 trace_xhci_handle_port_status(hcd_portnum, portsc);
1561
1562 if (hcd->state == HC_STATE_SUSPENDED) {
1563 xhci_dbg(xhci, "resume root hub\n");
1564 usb_hcd_resume_root_hub(hcd);
1565 }
1566
1567 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
1568 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1569
1570 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1571 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1572
1573 cmd_reg = readl(&xhci->op_regs->command);
1574 if (!(cmd_reg & CMD_RUN)) {
1575 xhci_warn(xhci, "xHC is not running.\n");
1576 goto cleanup;
1577 }
1578
1579 if (DEV_SUPERSPEED_ANY(portsc)) {
1580 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1581 /* Set a flag to say the port signaled remote wakeup,
1582 * so we can tell the difference between the end of
1583 * device and host initiated resume.
1584 */
1585 bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1586 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1587 xhci_set_link_state(xhci, port, XDEV_U0);
1588 /* Need to wait until the next link state change
1589 * indicates the device is actually in U0.
1590 */
1591 bogus_port_status = true;
1592 goto cleanup;
1593 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1594 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1595 bus_state->resume_done[hcd_portnum] = jiffies +
1596 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1597 set_bit(hcd_portnum, &bus_state->resuming_ports);
1598 /* Do the rest in GetPortStatus after resume time delay.
1599 * Avoid polling roothub status before that so that a
1600 * usb device auto-resume latency around ~40ms.
1601 */
1602 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1603 mod_timer(&hcd->rh_timer,
1604 bus_state->resume_done[hcd_portnum]);
1605 bogus_port_status = true;
1606 }
1607 }
1608
1609 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
1610 DEV_SUPERSPEED_ANY(portsc)) {
1611 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1612 /* We've just brought the device into U0 through either the
1613 * Resume state after a device remote wakeup, or through the
1614 * U3Exit state after a host-initiated resume. If it's a device
1615 * initiated remote wake, don't pass up the link state change,
1616 * so the roothub behavior is consistent with external
1617 * USB 3.0 hub behavior.
1618 */
1619 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1620 if (slot_id && xhci->devs[slot_id])
1621 xhci_ring_device(xhci, slot_id);
1622 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1623 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1624 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1625 usb_wakeup_notification(hcd->self.root_hub,
1626 hcd_portnum + 1);
1627 bogus_port_status = true;
1628 goto cleanup;
1629 }
1630 }
1631
1632 /*
1633 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1634 * RExit to a disconnect state). If so, let the the driver know it's
1635 * out of the RExit state.
1636 */
1637 if (!DEV_SUPERSPEED_ANY(portsc) &&
1638 test_and_clear_bit(hcd_portnum,
1639 &bus_state->rexit_ports)) {
1640 complete(&bus_state->rexit_done[hcd_portnum]);
1641 bogus_port_status = true;
1642 goto cleanup;
1643 }
1644
1645 if (hcd->speed < HCD_USB3)
1646 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1647
1648 cleanup:
1649 /* Update event ring dequeue pointer before dropping the lock */
1650 inc_deq(xhci, xhci->event_ring);
1651
1652 /* Don't make the USB core poll the roothub if we got a bad port status
1653 * change event. Besides, at that point we can't tell which roothub
1654 * (USB 2.0 or USB 3.0) to kick.
1655 */
1656 if (bogus_port_status)
1657 return;
1658
1659 /*
1660 * xHCI port-status-change events occur when the "or" of all the
1661 * status-change bits in the portsc register changes from 0 to 1.
1662 * New status changes won't cause an event if any other change
1663 * bits are still set. When an event occurs, switch over to
1664 * polling to avoid losing status changes.
1665 */
1666 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1667 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1668 spin_unlock(&xhci->lock);
1669 /* Pass this up to the core */
1670 usb_hcd_poll_rh_status(hcd);
1671 spin_lock(&xhci->lock);
1672 }
1673
1674 /*
1675 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1676 * at end_trb, which may be in another segment. If the suspect DMA address is a
1677 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1678 * returns 0.
1679 */
trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * start_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t suspect_dma,bool debug)1680 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1681 struct xhci_segment *start_seg,
1682 union xhci_trb *start_trb,
1683 union xhci_trb *end_trb,
1684 dma_addr_t suspect_dma,
1685 bool debug)
1686 {
1687 dma_addr_t start_dma;
1688 dma_addr_t end_seg_dma;
1689 dma_addr_t end_trb_dma;
1690 struct xhci_segment *cur_seg;
1691
1692 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1693 cur_seg = start_seg;
1694
1695 do {
1696 if (start_dma == 0)
1697 return NULL;
1698 /* We may get an event for a Link TRB in the middle of a TD */
1699 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1700 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1701 /* If the end TRB isn't in this segment, this is set to 0 */
1702 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1703
1704 if (debug)
1705 xhci_warn(xhci,
1706 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1707 (unsigned long long)suspect_dma,
1708 (unsigned long long)start_dma,
1709 (unsigned long long)end_trb_dma,
1710 (unsigned long long)cur_seg->dma,
1711 (unsigned long long)end_seg_dma);
1712
1713 if (end_trb_dma > 0) {
1714 /* The end TRB is in this segment, so suspect should be here */
1715 if (start_dma <= end_trb_dma) {
1716 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1717 return cur_seg;
1718 } else {
1719 /* Case for one segment with
1720 * a TD wrapped around to the top
1721 */
1722 if ((suspect_dma >= start_dma &&
1723 suspect_dma <= end_seg_dma) ||
1724 (suspect_dma >= cur_seg->dma &&
1725 suspect_dma <= end_trb_dma))
1726 return cur_seg;
1727 }
1728 return NULL;
1729 } else {
1730 /* Might still be somewhere in this segment */
1731 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1732 return cur_seg;
1733 }
1734 cur_seg = cur_seg->next;
1735 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1736 } while (cur_seg != start_seg);
1737
1738 return NULL;
1739 }
1740
xhci_cleanup_halted_endpoint(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * td,enum xhci_ep_reset_type reset_type)1741 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1742 unsigned int slot_id, unsigned int ep_index,
1743 unsigned int stream_id, struct xhci_td *td,
1744 enum xhci_ep_reset_type reset_type)
1745 {
1746 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1747 struct xhci_command *command;
1748 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1749 if (!command)
1750 return;
1751
1752 ep->ep_state |= EP_HALTED;
1753
1754 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1755
1756 if (reset_type == EP_HARD_RESET) {
1757 ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
1758 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1759 }
1760 xhci_ring_cmd_db(xhci);
1761 }
1762
1763 /* Check if an error has halted the endpoint ring. The class driver will
1764 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1765 * However, a babble and other errors also halt the endpoint ring, and the class
1766 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1767 * Ring Dequeue Pointer command manually.
1768 */
xhci_requires_manual_halt_cleanup(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,unsigned int trb_comp_code)1769 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1770 struct xhci_ep_ctx *ep_ctx,
1771 unsigned int trb_comp_code)
1772 {
1773 /* TRB completion codes that may require a manual halt cleanup */
1774 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1775 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1776 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1777 /* The 0.95 spec says a babbling control endpoint
1778 * is not halted. The 0.96 spec says it is. Some HW
1779 * claims to be 0.95 compliant, but it halts the control
1780 * endpoint anyway. Check if a babble halted the
1781 * endpoint.
1782 */
1783 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1784 return 1;
1785
1786 return 0;
1787 }
1788
xhci_is_vendor_info_code(struct xhci_hcd * xhci,unsigned int trb_comp_code)1789 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1790 {
1791 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1792 /* Vendor defined "informational" completion code,
1793 * treat as not-an-error.
1794 */
1795 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1796 trb_comp_code);
1797 xhci_dbg(xhci, "Treating code as success.\n");
1798 return 1;
1799 }
1800 return 0;
1801 }
1802
xhci_td_cleanup(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_ring * ep_ring,int * status)1803 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1804 struct xhci_ring *ep_ring, int *status)
1805 {
1806 struct urb *urb = NULL;
1807
1808 /* Clean up the endpoint's TD list */
1809 urb = td->urb;
1810
1811 /* if a bounce buffer was used to align this td then unmap it */
1812 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1813
1814 /* Do one last check of the actual transfer length.
1815 * If the host controller said we transferred more data than the buffer
1816 * length, urb->actual_length will be a very big number (since it's
1817 * unsigned). Play it safe and say we didn't transfer anything.
1818 */
1819 if (urb->actual_length > urb->transfer_buffer_length) {
1820 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1821 urb->transfer_buffer_length, urb->actual_length);
1822 urb->actual_length = 0;
1823 *status = 0;
1824 }
1825 list_del_init(&td->td_list);
1826 /* Was this TD slated to be cancelled but completed anyway? */
1827 if (!list_empty(&td->cancelled_td_list))
1828 list_del_init(&td->cancelled_td_list);
1829
1830 inc_td_cnt(urb);
1831 /* Giveback the urb when all the tds are completed */
1832 if (last_td_in_urb(td)) {
1833 if ((urb->actual_length != urb->transfer_buffer_length &&
1834 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1835 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1836 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1837 urb, urb->actual_length,
1838 urb->transfer_buffer_length, *status);
1839
1840 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1841 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1842 *status = 0;
1843 xhci_giveback_urb_in_irq(xhci, td, *status);
1844 }
1845
1846 return 0;
1847 }
1848
finish_td(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)1849 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1850 struct xhci_transfer_event *event,
1851 struct xhci_virt_ep *ep, int *status)
1852 {
1853 struct xhci_virt_device *xdev;
1854 struct xhci_ep_ctx *ep_ctx;
1855 struct xhci_ring *ep_ring;
1856 unsigned int slot_id;
1857 u32 trb_comp_code;
1858 int ep_index;
1859
1860 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1861 xdev = xhci->devs[slot_id];
1862 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1863 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1864 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1865 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1866
1867 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1868 trb_comp_code == COMP_STOPPED ||
1869 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1870 /* The Endpoint Stop Command completion will take care of any
1871 * stopped TDs. A stopped TD may be restarted, so don't update
1872 * the ring dequeue pointer or take this TD off any lists yet.
1873 */
1874 return 0;
1875 }
1876 if (trb_comp_code == COMP_STALL_ERROR ||
1877 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1878 trb_comp_code)) {
1879 /* Issue a reset endpoint command to clear the host side
1880 * halt, followed by a set dequeue command to move the
1881 * dequeue pointer past the TD.
1882 * The class driver clears the device side halt later.
1883 */
1884 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1885 ep_ring->stream_id, td, EP_HARD_RESET);
1886 } else {
1887 /* Update ring dequeue pointer */
1888 while (ep_ring->dequeue != td->last_trb)
1889 inc_deq(xhci, ep_ring);
1890 inc_deq(xhci, ep_ring);
1891 }
1892
1893 return xhci_td_cleanup(xhci, td, ep_ring, status);
1894 }
1895
1896 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
sum_trb_lengths(struct xhci_hcd * xhci,struct xhci_ring * ring,union xhci_trb * stop_trb)1897 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1898 union xhci_trb *stop_trb)
1899 {
1900 u32 sum;
1901 union xhci_trb *trb = ring->dequeue;
1902 struct xhci_segment *seg = ring->deq_seg;
1903
1904 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1905 if (!trb_is_noop(trb) && !trb_is_link(trb))
1906 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1907 }
1908 return sum;
1909 }
1910
1911 /*
1912 * Process control tds, update urb status and actual_length.
1913 */
process_ctrl_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)1914 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1915 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1916 struct xhci_virt_ep *ep, int *status)
1917 {
1918 struct xhci_virt_device *xdev;
1919 unsigned int slot_id;
1920 int ep_index;
1921 struct xhci_ep_ctx *ep_ctx;
1922 u32 trb_comp_code;
1923 u32 remaining, requested;
1924 u32 trb_type;
1925
1926 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
1927 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1928 xdev = xhci->devs[slot_id];
1929 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1930 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1931 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1932 requested = td->urb->transfer_buffer_length;
1933 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1934
1935 switch (trb_comp_code) {
1936 case COMP_SUCCESS:
1937 if (trb_type != TRB_STATUS) {
1938 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
1939 (trb_type == TRB_DATA) ? "data" : "setup");
1940 *status = -ESHUTDOWN;
1941 break;
1942 }
1943 *status = 0;
1944 break;
1945 case COMP_SHORT_PACKET:
1946 *status = 0;
1947 break;
1948 case COMP_STOPPED_SHORT_PACKET:
1949 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
1950 td->urb->actual_length = remaining;
1951 else
1952 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1953 goto finish_td;
1954 case COMP_STOPPED:
1955 switch (trb_type) {
1956 case TRB_SETUP:
1957 td->urb->actual_length = 0;
1958 goto finish_td;
1959 case TRB_DATA:
1960 case TRB_NORMAL:
1961 td->urb->actual_length = requested - remaining;
1962 goto finish_td;
1963 case TRB_STATUS:
1964 td->urb->actual_length = requested;
1965 goto finish_td;
1966 default:
1967 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
1968 trb_type);
1969 goto finish_td;
1970 }
1971 case COMP_STOPPED_LENGTH_INVALID:
1972 goto finish_td;
1973 default:
1974 if (!xhci_requires_manual_halt_cleanup(xhci,
1975 ep_ctx, trb_comp_code))
1976 break;
1977 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
1978 trb_comp_code, ep_index);
1979 /* else fall through */
1980 case COMP_STALL_ERROR:
1981 /* Did we transfer part of the data (middle) phase? */
1982 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
1983 td->urb->actual_length = requested - remaining;
1984 else if (!td->urb_length_set)
1985 td->urb->actual_length = 0;
1986 goto finish_td;
1987 }
1988
1989 /* stopped at setup stage, no data transferred */
1990 if (trb_type == TRB_SETUP)
1991 goto finish_td;
1992
1993 /*
1994 * if on data stage then update the actual_length of the URB and flag it
1995 * as set, so it won't be overwritten in the event for the last TRB.
1996 */
1997 if (trb_type == TRB_DATA ||
1998 trb_type == TRB_NORMAL) {
1999 td->urb_length_set = true;
2000 td->urb->actual_length = requested - remaining;
2001 xhci_dbg(xhci, "Waiting for status stage event\n");
2002 return 0;
2003 }
2004
2005 /* at status stage */
2006 if (!td->urb_length_set)
2007 td->urb->actual_length = requested;
2008
2009 finish_td:
2010 return finish_td(xhci, td, event, ep, status);
2011 }
2012
2013 /*
2014 * Process isochronous tds, update urb packet status and actual_length.
2015 */
process_isoc_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)2016 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2017 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2018 struct xhci_virt_ep *ep, int *status)
2019 {
2020 struct xhci_ring *ep_ring;
2021 struct urb_priv *urb_priv;
2022 int idx;
2023 struct usb_iso_packet_descriptor *frame;
2024 u32 trb_comp_code;
2025 bool sum_trbs_for_length = false;
2026 u32 remaining, requested, ep_trb_len;
2027 int short_framestatus;
2028
2029 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2030 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2031 urb_priv = td->urb->hcpriv;
2032 idx = urb_priv->num_tds_done;
2033 frame = &td->urb->iso_frame_desc[idx];
2034 requested = frame->length;
2035 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2036 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2037 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2038 -EREMOTEIO : 0;
2039
2040 /* handle completion code */
2041 switch (trb_comp_code) {
2042 case COMP_SUCCESS:
2043 if (remaining) {
2044 frame->status = short_framestatus;
2045 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2046 sum_trbs_for_length = true;
2047 break;
2048 }
2049 frame->status = 0;
2050 break;
2051 case COMP_SHORT_PACKET:
2052 frame->status = short_framestatus;
2053 sum_trbs_for_length = true;
2054 break;
2055 case COMP_BANDWIDTH_OVERRUN_ERROR:
2056 frame->status = -ECOMM;
2057 break;
2058 case COMP_ISOCH_BUFFER_OVERRUN:
2059 case COMP_BABBLE_DETECTED_ERROR:
2060 frame->status = -EOVERFLOW;
2061 break;
2062 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2063 case COMP_STALL_ERROR:
2064 frame->status = -EPROTO;
2065 break;
2066 case COMP_USB_TRANSACTION_ERROR:
2067 frame->status = -EPROTO;
2068 if (ep_trb != td->last_trb)
2069 return 0;
2070 break;
2071 case COMP_STOPPED:
2072 sum_trbs_for_length = true;
2073 break;
2074 case COMP_STOPPED_SHORT_PACKET:
2075 /* field normally containing residue now contains tranferred */
2076 frame->status = short_framestatus;
2077 requested = remaining;
2078 break;
2079 case COMP_STOPPED_LENGTH_INVALID:
2080 requested = 0;
2081 remaining = 0;
2082 break;
2083 default:
2084 sum_trbs_for_length = true;
2085 frame->status = -1;
2086 break;
2087 }
2088
2089 if (sum_trbs_for_length)
2090 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2091 ep_trb_len - remaining;
2092 else
2093 frame->actual_length = requested;
2094
2095 td->urb->actual_length += frame->actual_length;
2096
2097 return finish_td(xhci, td, event, ep, status);
2098 }
2099
skip_isoc_td(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)2100 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2101 struct xhci_transfer_event *event,
2102 struct xhci_virt_ep *ep, int *status)
2103 {
2104 struct xhci_ring *ep_ring;
2105 struct urb_priv *urb_priv;
2106 struct usb_iso_packet_descriptor *frame;
2107 int idx;
2108
2109 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2110 urb_priv = td->urb->hcpriv;
2111 idx = urb_priv->num_tds_done;
2112 frame = &td->urb->iso_frame_desc[idx];
2113
2114 /* The transfer is partly done. */
2115 frame->status = -EXDEV;
2116
2117 /* calc actual length */
2118 frame->actual_length = 0;
2119
2120 /* Update ring dequeue pointer */
2121 while (ep_ring->dequeue != td->last_trb)
2122 inc_deq(xhci, ep_ring);
2123 inc_deq(xhci, ep_ring);
2124
2125 return xhci_td_cleanup(xhci, td, ep_ring, status);
2126 }
2127
2128 /*
2129 * Process bulk and interrupt tds, update urb status and actual_length.
2130 */
process_bulk_intr_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)2131 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2132 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2133 struct xhci_virt_ep *ep, int *status)
2134 {
2135 struct xhci_ring *ep_ring;
2136 u32 trb_comp_code;
2137 u32 remaining, requested, ep_trb_len;
2138
2139 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2140 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2141 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2142 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2143 requested = td->urb->transfer_buffer_length;
2144
2145 switch (trb_comp_code) {
2146 case COMP_SUCCESS:
2147 /* handle success with untransferred data as short packet */
2148 if (ep_trb != td->last_trb || remaining) {
2149 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2150 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2151 td->urb->ep->desc.bEndpointAddress,
2152 requested, remaining);
2153 }
2154 *status = 0;
2155 break;
2156 case COMP_SHORT_PACKET:
2157 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2158 td->urb->ep->desc.bEndpointAddress,
2159 requested, remaining);
2160 *status = 0;
2161 break;
2162 case COMP_STOPPED_SHORT_PACKET:
2163 td->urb->actual_length = remaining;
2164 goto finish_td;
2165 case COMP_STOPPED_LENGTH_INVALID:
2166 /* stopped on ep trb with invalid length, exclude it */
2167 ep_trb_len = 0;
2168 remaining = 0;
2169 break;
2170 default:
2171 /* do nothing */
2172 break;
2173 }
2174
2175 if (ep_trb == td->last_trb)
2176 td->urb->actual_length = requested - remaining;
2177 else
2178 td->urb->actual_length =
2179 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2180 ep_trb_len - remaining;
2181 finish_td:
2182 if (remaining > requested) {
2183 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2184 remaining);
2185 td->urb->actual_length = 0;
2186 }
2187 return finish_td(xhci, td, event, ep, status);
2188 }
2189
2190 /*
2191 * If this function returns an error condition, it means it got a Transfer
2192 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2193 * At this point, the host controller is probably hosed and should be reset.
2194 */
handle_tx_event(struct xhci_hcd * xhci,struct xhci_transfer_event * event)2195 static int handle_tx_event(struct xhci_hcd *xhci,
2196 struct xhci_transfer_event *event)
2197 {
2198 struct xhci_virt_device *xdev;
2199 struct xhci_virt_ep *ep;
2200 struct xhci_ring *ep_ring;
2201 unsigned int slot_id;
2202 int ep_index;
2203 struct xhci_td *td = NULL;
2204 dma_addr_t ep_trb_dma;
2205 struct xhci_segment *ep_seg;
2206 union xhci_trb *ep_trb;
2207 int status = -EINPROGRESS;
2208 struct xhci_ep_ctx *ep_ctx;
2209 struct list_head *tmp;
2210 u32 trb_comp_code;
2211 int td_num = 0;
2212 bool handling_skipped_tds = false;
2213
2214 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2215 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2216 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2217 ep_trb_dma = le64_to_cpu(event->buffer);
2218
2219 xdev = xhci->devs[slot_id];
2220 if (!xdev) {
2221 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2222 slot_id);
2223 goto err_out;
2224 }
2225
2226 ep = &xdev->eps[ep_index];
2227 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2228 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2229
2230 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2231 xhci_err(xhci,
2232 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2233 slot_id, ep_index);
2234 goto err_out;
2235 }
2236
2237 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2238 if (!ep_ring) {
2239 switch (trb_comp_code) {
2240 case COMP_STALL_ERROR:
2241 case COMP_USB_TRANSACTION_ERROR:
2242 case COMP_INVALID_STREAM_TYPE_ERROR:
2243 case COMP_INVALID_STREAM_ID_ERROR:
2244 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2245 NULL, EP_SOFT_RESET);
2246 goto cleanup;
2247 case COMP_RING_UNDERRUN:
2248 case COMP_RING_OVERRUN:
2249 goto cleanup;
2250 default:
2251 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2252 slot_id, ep_index);
2253 goto err_out;
2254 }
2255 }
2256
2257 /* Count current td numbers if ep->skip is set */
2258 if (ep->skip) {
2259 list_for_each(tmp, &ep_ring->td_list)
2260 td_num++;
2261 }
2262
2263 /* Look for common error cases */
2264 switch (trb_comp_code) {
2265 /* Skip codes that require special handling depending on
2266 * transfer type
2267 */
2268 case COMP_SUCCESS:
2269 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2270 break;
2271 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2272 trb_comp_code = COMP_SHORT_PACKET;
2273 else
2274 xhci_warn_ratelimited(xhci,
2275 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2276 slot_id, ep_index);
2277 case COMP_SHORT_PACKET:
2278 break;
2279 /* Completion codes for endpoint stopped state */
2280 case COMP_STOPPED:
2281 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2282 slot_id, ep_index);
2283 break;
2284 case COMP_STOPPED_LENGTH_INVALID:
2285 xhci_dbg(xhci,
2286 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2287 slot_id, ep_index);
2288 break;
2289 case COMP_STOPPED_SHORT_PACKET:
2290 xhci_dbg(xhci,
2291 "Stopped with short packet transfer detected for slot %u ep %u\n",
2292 slot_id, ep_index);
2293 break;
2294 /* Completion codes for endpoint halted state */
2295 case COMP_STALL_ERROR:
2296 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2297 ep_index);
2298 ep->ep_state |= EP_HALTED;
2299 status = -EPIPE;
2300 break;
2301 case COMP_SPLIT_TRANSACTION_ERROR:
2302 case COMP_USB_TRANSACTION_ERROR:
2303 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2304 slot_id, ep_index);
2305 status = -EPROTO;
2306 break;
2307 case COMP_BABBLE_DETECTED_ERROR:
2308 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2309 slot_id, ep_index);
2310 status = -EOVERFLOW;
2311 break;
2312 /* Completion codes for endpoint error state */
2313 case COMP_TRB_ERROR:
2314 xhci_warn(xhci,
2315 "WARN: TRB error for slot %u ep %u on endpoint\n",
2316 slot_id, ep_index);
2317 status = -EILSEQ;
2318 break;
2319 /* completion codes not indicating endpoint state change */
2320 case COMP_DATA_BUFFER_ERROR:
2321 xhci_warn(xhci,
2322 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2323 slot_id, ep_index);
2324 status = -ENOSR;
2325 break;
2326 case COMP_BANDWIDTH_OVERRUN_ERROR:
2327 xhci_warn(xhci,
2328 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2329 slot_id, ep_index);
2330 break;
2331 case COMP_ISOCH_BUFFER_OVERRUN:
2332 xhci_warn(xhci,
2333 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2334 slot_id, ep_index);
2335 break;
2336 case COMP_RING_UNDERRUN:
2337 /*
2338 * When the Isoch ring is empty, the xHC will generate
2339 * a Ring Overrun Event for IN Isoch endpoint or Ring
2340 * Underrun Event for OUT Isoch endpoint.
2341 */
2342 xhci_dbg(xhci, "underrun event on endpoint\n");
2343 if (!list_empty(&ep_ring->td_list))
2344 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2345 "still with TDs queued?\n",
2346 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2347 ep_index);
2348 goto cleanup;
2349 case COMP_RING_OVERRUN:
2350 xhci_dbg(xhci, "overrun event on endpoint\n");
2351 if (!list_empty(&ep_ring->td_list))
2352 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2353 "still with TDs queued?\n",
2354 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2355 ep_index);
2356 goto cleanup;
2357 case COMP_MISSED_SERVICE_ERROR:
2358 /*
2359 * When encounter missed service error, one or more isoc tds
2360 * may be missed by xHC.
2361 * Set skip flag of the ep_ring; Complete the missed tds as
2362 * short transfer when process the ep_ring next time.
2363 */
2364 ep->skip = true;
2365 xhci_dbg(xhci,
2366 "Miss service interval error for slot %u ep %u, set skip flag\n",
2367 slot_id, ep_index);
2368 goto cleanup;
2369 case COMP_NO_PING_RESPONSE_ERROR:
2370 ep->skip = true;
2371 xhci_dbg(xhci,
2372 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2373 slot_id, ep_index);
2374 goto cleanup;
2375
2376 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2377 /* needs disable slot command to recover */
2378 xhci_warn(xhci,
2379 "WARN: detect an incompatible device for slot %u ep %u",
2380 slot_id, ep_index);
2381 status = -EPROTO;
2382 break;
2383 default:
2384 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2385 status = 0;
2386 break;
2387 }
2388 xhci_warn(xhci,
2389 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2390 trb_comp_code, slot_id, ep_index);
2391 goto cleanup;
2392 }
2393
2394 do {
2395 /* This TRB should be in the TD at the head of this ring's
2396 * TD list.
2397 */
2398 if (list_empty(&ep_ring->td_list)) {
2399 /*
2400 * Don't print wanings if it's due to a stopped endpoint
2401 * generating an extra completion event if the device
2402 * was suspended. Or, a event for the last TRB of a
2403 * short TD we already got a short event for.
2404 * The short TD is already removed from the TD list.
2405 */
2406
2407 if (!(trb_comp_code == COMP_STOPPED ||
2408 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2409 ep_ring->last_td_was_short)) {
2410 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2411 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2412 ep_index);
2413 }
2414 if (ep->skip) {
2415 ep->skip = false;
2416 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2417 slot_id, ep_index);
2418 }
2419 goto cleanup;
2420 }
2421
2422 /* We've skipped all the TDs on the ep ring when ep->skip set */
2423 if (ep->skip && td_num == 0) {
2424 ep->skip = false;
2425 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2426 slot_id, ep_index);
2427 goto cleanup;
2428 }
2429
2430 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2431 td_list);
2432 if (ep->skip)
2433 td_num--;
2434
2435 /* Is this a TRB in the currently executing TD? */
2436 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2437 td->last_trb, ep_trb_dma, false);
2438
2439 /*
2440 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2441 * is not in the current TD pointed by ep_ring->dequeue because
2442 * that the hardware dequeue pointer still at the previous TRB
2443 * of the current TD. The previous TRB maybe a Link TD or the
2444 * last TRB of the previous TD. The command completion handle
2445 * will take care the rest.
2446 */
2447 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2448 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2449 goto cleanup;
2450 }
2451
2452 if (!ep_seg) {
2453 if (!ep->skip ||
2454 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2455 /* Some host controllers give a spurious
2456 * successful event after a short transfer.
2457 * Ignore it.
2458 */
2459 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2460 ep_ring->last_td_was_short) {
2461 ep_ring->last_td_was_short = false;
2462 goto cleanup;
2463 }
2464 /* HC is busted, give up! */
2465 xhci_err(xhci,
2466 "ERROR Transfer event TRB DMA ptr not "
2467 "part of current TD ep_index %d "
2468 "comp_code %u\n", ep_index,
2469 trb_comp_code);
2470 trb_in_td(xhci, ep_ring->deq_seg,
2471 ep_ring->dequeue, td->last_trb,
2472 ep_trb_dma, true);
2473 return -ESHUTDOWN;
2474 }
2475
2476 skip_isoc_td(xhci, td, event, ep, &status);
2477 goto cleanup;
2478 }
2479 if (trb_comp_code == COMP_SHORT_PACKET)
2480 ep_ring->last_td_was_short = true;
2481 else
2482 ep_ring->last_td_was_short = false;
2483
2484 if (ep->skip) {
2485 xhci_dbg(xhci,
2486 "Found td. Clear skip flag for slot %u ep %u.\n",
2487 slot_id, ep_index);
2488 ep->skip = false;
2489 }
2490
2491 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2492 sizeof(*ep_trb)];
2493
2494 trace_xhci_handle_transfer(ep_ring,
2495 (struct xhci_generic_trb *) ep_trb);
2496
2497 /*
2498 * No-op TRB could trigger interrupts in a case where
2499 * a URB was killed and a STALL_ERROR happens right
2500 * after the endpoint ring stopped. Reset the halted
2501 * endpoint. Otherwise, the endpoint remains stalled
2502 * indefinitely.
2503 */
2504 if (trb_is_noop(ep_trb)) {
2505 if (trb_comp_code == COMP_STALL_ERROR ||
2506 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2507 trb_comp_code))
2508 xhci_cleanup_halted_endpoint(xhci, slot_id,
2509 ep_index,
2510 ep_ring->stream_id,
2511 td, EP_HARD_RESET);
2512 goto cleanup;
2513 }
2514
2515 /* update the urb's actual_length and give back to the core */
2516 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2517 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2518 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2519 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2520 else
2521 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2522 &status);
2523 cleanup:
2524 handling_skipped_tds = ep->skip &&
2525 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2526 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2527
2528 /*
2529 * Do not update event ring dequeue pointer if we're in a loop
2530 * processing missed tds.
2531 */
2532 if (!handling_skipped_tds)
2533 inc_deq(xhci, xhci->event_ring);
2534
2535 /*
2536 * If ep->skip is set, it means there are missed tds on the
2537 * endpoint ring need to take care of.
2538 * Process them as short transfer until reach the td pointed by
2539 * the event.
2540 */
2541 } while (handling_skipped_tds);
2542
2543 return 0;
2544
2545 err_out:
2546 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2547 (unsigned long long) xhci_trb_virt_to_dma(
2548 xhci->event_ring->deq_seg,
2549 xhci->event_ring->dequeue),
2550 lower_32_bits(le64_to_cpu(event->buffer)),
2551 upper_32_bits(le64_to_cpu(event->buffer)),
2552 le32_to_cpu(event->transfer_len),
2553 le32_to_cpu(event->flags));
2554 return -ENODEV;
2555 }
2556
2557 /*
2558 * This function handles all OS-owned events on the event ring. It may drop
2559 * xhci->lock between event processing (e.g. to pass up port status changes).
2560 * Returns >0 for "possibly more events to process" (caller should call again),
2561 * otherwise 0 if done. In future, <0 returns should indicate error code.
2562 */
xhci_handle_event(struct xhci_hcd * xhci)2563 static int xhci_handle_event(struct xhci_hcd *xhci)
2564 {
2565 union xhci_trb *event;
2566 int update_ptrs = 1;
2567 int ret;
2568
2569 /* Event ring hasn't been allocated yet. */
2570 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2571 xhci_err(xhci, "ERROR event ring not ready\n");
2572 return -ENOMEM;
2573 }
2574
2575 event = xhci->event_ring->dequeue;
2576 /* Does the HC or OS own the TRB? */
2577 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2578 xhci->event_ring->cycle_state)
2579 return 0;
2580
2581 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2582
2583 /*
2584 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2585 * speculative reads of the event's flags/data below.
2586 */
2587 rmb();
2588 /* FIXME: Handle more event types. */
2589 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2590 case TRB_TYPE(TRB_COMPLETION):
2591 handle_cmd_completion(xhci, &event->event_cmd);
2592 break;
2593 case TRB_TYPE(TRB_PORT_STATUS):
2594 handle_port_status(xhci, event);
2595 update_ptrs = 0;
2596 break;
2597 case TRB_TYPE(TRB_TRANSFER):
2598 ret = handle_tx_event(xhci, &event->trans_event);
2599 if (ret >= 0)
2600 update_ptrs = 0;
2601 break;
2602 case TRB_TYPE(TRB_DEV_NOTE):
2603 handle_device_notification(xhci, event);
2604 break;
2605 default:
2606 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2607 TRB_TYPE(48))
2608 handle_vendor_event(xhci, event);
2609 else
2610 xhci_warn(xhci, "ERROR unknown event type %d\n",
2611 TRB_FIELD_TO_TYPE(
2612 le32_to_cpu(event->event_cmd.flags)));
2613 }
2614 /* Any of the above functions may drop and re-acquire the lock, so check
2615 * to make sure a watchdog timer didn't mark the host as non-responsive.
2616 */
2617 if (xhci->xhc_state & XHCI_STATE_DYING) {
2618 xhci_dbg(xhci, "xHCI host dying, returning from "
2619 "event handler.\n");
2620 return 0;
2621 }
2622
2623 if (update_ptrs)
2624 /* Update SW event ring dequeue pointer */
2625 inc_deq(xhci, xhci->event_ring);
2626
2627 /* Are there more items on the event ring? Caller will call us again to
2628 * check.
2629 */
2630 return 1;
2631 }
2632
2633 /*
2634 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2635 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2636 * indicators of an event TRB error, but we check the status *first* to be safe.
2637 */
xhci_irq(struct usb_hcd * hcd)2638 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2639 {
2640 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2641 union xhci_trb *event_ring_deq;
2642 irqreturn_t ret = IRQ_NONE;
2643 unsigned long flags;
2644 dma_addr_t deq;
2645 u64 temp_64;
2646 u32 status;
2647
2648 spin_lock_irqsave(&xhci->lock, flags);
2649 /* Check if the xHC generated the interrupt, or the irq is shared */
2650 status = readl(&xhci->op_regs->status);
2651 if (status == ~(u32)0) {
2652 xhci_hc_died(xhci);
2653 ret = IRQ_HANDLED;
2654 goto out;
2655 }
2656
2657 if (!(status & STS_EINT))
2658 goto out;
2659
2660 if (status & STS_FATAL) {
2661 xhci_warn(xhci, "WARNING: Host System Error\n");
2662 xhci_halt(xhci);
2663 ret = IRQ_HANDLED;
2664 goto out;
2665 }
2666
2667 /*
2668 * Clear the op reg interrupt status first,
2669 * so we can receive interrupts from other MSI-X interrupters.
2670 * Write 1 to clear the interrupt status.
2671 */
2672 status |= STS_EINT;
2673 writel(status, &xhci->op_regs->status);
2674
2675 if (!hcd->msi_enabled) {
2676 u32 irq_pending;
2677 irq_pending = readl(&xhci->ir_set->irq_pending);
2678 irq_pending |= IMAN_IP;
2679 writel(irq_pending, &xhci->ir_set->irq_pending);
2680 }
2681
2682 if (xhci->xhc_state & XHCI_STATE_DYING ||
2683 xhci->xhc_state & XHCI_STATE_HALTED) {
2684 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2685 "Shouldn't IRQs be disabled?\n");
2686 /* Clear the event handler busy flag (RW1C);
2687 * the event ring should be empty.
2688 */
2689 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2690 xhci_write_64(xhci, temp_64 | ERST_EHB,
2691 &xhci->ir_set->erst_dequeue);
2692 ret = IRQ_HANDLED;
2693 goto out;
2694 }
2695
2696 event_ring_deq = xhci->event_ring->dequeue;
2697 /* FIXME this should be a delayed service routine
2698 * that clears the EHB.
2699 */
2700 while (xhci_handle_event(xhci) > 0) {}
2701
2702 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2703 /* If necessary, update the HW's version of the event ring deq ptr. */
2704 if (event_ring_deq != xhci->event_ring->dequeue) {
2705 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2706 xhci->event_ring->dequeue);
2707 if (deq == 0)
2708 xhci_warn(xhci, "WARN something wrong with SW event "
2709 "ring dequeue ptr.\n");
2710 /* Update HC event ring dequeue pointer */
2711 temp_64 &= ERST_PTR_MASK;
2712 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2713 }
2714
2715 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2716 temp_64 |= ERST_EHB;
2717 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2718 ret = IRQ_HANDLED;
2719
2720 out:
2721 spin_unlock_irqrestore(&xhci->lock, flags);
2722
2723 return ret;
2724 }
2725
xhci_msi_irq(int irq,void * hcd)2726 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2727 {
2728 return xhci_irq(hcd);
2729 }
2730
2731 /**** Endpoint Ring Operations ****/
2732
2733 /*
2734 * Generic function for queueing a TRB on a ring.
2735 * The caller must have checked to make sure there's room on the ring.
2736 *
2737 * @more_trbs_coming: Will you enqueue more TRBs before calling
2738 * prepare_transfer()?
2739 */
queue_trb(struct xhci_hcd * xhci,struct xhci_ring * ring,bool more_trbs_coming,u32 field1,u32 field2,u32 field3,u32 field4)2740 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2741 bool more_trbs_coming,
2742 u32 field1, u32 field2, u32 field3, u32 field4)
2743 {
2744 struct xhci_generic_trb *trb;
2745
2746 trb = &ring->enqueue->generic;
2747 trb->field[0] = cpu_to_le32(field1);
2748 trb->field[1] = cpu_to_le32(field2);
2749 trb->field[2] = cpu_to_le32(field3);
2750 trb->field[3] = cpu_to_le32(field4);
2751
2752 trace_xhci_queue_trb(ring, trb);
2753
2754 inc_enq(xhci, ring, more_trbs_coming);
2755 }
2756
2757 /*
2758 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2759 * FIXME allocate segments if the ring is full.
2760 */
prepare_ring(struct xhci_hcd * xhci,struct xhci_ring * ep_ring,u32 ep_state,unsigned int num_trbs,gfp_t mem_flags)2761 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2762 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2763 {
2764 unsigned int num_trbs_needed;
2765
2766 /* Make sure the endpoint has been added to xHC schedule */
2767 switch (ep_state) {
2768 case EP_STATE_DISABLED:
2769 /*
2770 * USB core changed config/interfaces without notifying us,
2771 * or hardware is reporting the wrong state.
2772 */
2773 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2774 return -ENOENT;
2775 case EP_STATE_ERROR:
2776 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2777 /* FIXME event handling code for error needs to clear it */
2778 /* XXX not sure if this should be -ENOENT or not */
2779 return -EINVAL;
2780 case EP_STATE_HALTED:
2781 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2782 case EP_STATE_STOPPED:
2783 case EP_STATE_RUNNING:
2784 break;
2785 default:
2786 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2787 /*
2788 * FIXME issue Configure Endpoint command to try to get the HC
2789 * back into a known state.
2790 */
2791 return -EINVAL;
2792 }
2793
2794 while (1) {
2795 if (room_on_ring(xhci, ep_ring, num_trbs))
2796 break;
2797
2798 if (ep_ring == xhci->cmd_ring) {
2799 xhci_err(xhci, "Do not support expand command ring\n");
2800 return -ENOMEM;
2801 }
2802
2803 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2804 "ERROR no room on ep ring, try ring expansion");
2805 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2806 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2807 mem_flags)) {
2808 xhci_err(xhci, "Ring expansion failed\n");
2809 return -ENOMEM;
2810 }
2811 }
2812
2813 while (trb_is_link(ep_ring->enqueue)) {
2814 /* If we're not dealing with 0.95 hardware or isoc rings
2815 * on AMD 0.96 host, clear the chain bit.
2816 */
2817 if (!xhci_link_trb_quirk(xhci) &&
2818 !(ep_ring->type == TYPE_ISOC &&
2819 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2820 ep_ring->enqueue->link.control &=
2821 cpu_to_le32(~TRB_CHAIN);
2822 else
2823 ep_ring->enqueue->link.control |=
2824 cpu_to_le32(TRB_CHAIN);
2825
2826 wmb();
2827 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2828
2829 /* Toggle the cycle bit after the last ring segment. */
2830 if (link_trb_toggles_cycle(ep_ring->enqueue))
2831 ep_ring->cycle_state ^= 1;
2832
2833 ep_ring->enq_seg = ep_ring->enq_seg->next;
2834 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2835 }
2836 return 0;
2837 }
2838
prepare_transfer(struct xhci_hcd * xhci,struct xhci_virt_device * xdev,unsigned int ep_index,unsigned int stream_id,unsigned int num_trbs,struct urb * urb,unsigned int td_index,gfp_t mem_flags)2839 static int prepare_transfer(struct xhci_hcd *xhci,
2840 struct xhci_virt_device *xdev,
2841 unsigned int ep_index,
2842 unsigned int stream_id,
2843 unsigned int num_trbs,
2844 struct urb *urb,
2845 unsigned int td_index,
2846 gfp_t mem_flags)
2847 {
2848 int ret;
2849 struct urb_priv *urb_priv;
2850 struct xhci_td *td;
2851 struct xhci_ring *ep_ring;
2852 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2853
2854 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2855 if (!ep_ring) {
2856 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2857 stream_id);
2858 return -EINVAL;
2859 }
2860
2861 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2862 num_trbs, mem_flags);
2863 if (ret)
2864 return ret;
2865
2866 urb_priv = urb->hcpriv;
2867 td = &urb_priv->td[td_index];
2868
2869 INIT_LIST_HEAD(&td->td_list);
2870 INIT_LIST_HEAD(&td->cancelled_td_list);
2871
2872 if (td_index == 0) {
2873 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2874 if (unlikely(ret))
2875 return ret;
2876 }
2877
2878 td->urb = urb;
2879 /* Add this TD to the tail of the endpoint ring's TD list */
2880 list_add_tail(&td->td_list, &ep_ring->td_list);
2881 td->start_seg = ep_ring->enq_seg;
2882 td->first_trb = ep_ring->enqueue;
2883
2884 return 0;
2885 }
2886
count_trbs(u64 addr,u64 len)2887 unsigned int count_trbs(u64 addr, u64 len)
2888 {
2889 unsigned int num_trbs;
2890
2891 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2892 TRB_MAX_BUFF_SIZE);
2893 if (num_trbs == 0)
2894 num_trbs++;
2895
2896 return num_trbs;
2897 }
2898
count_trbs_needed(struct urb * urb)2899 static inline unsigned int count_trbs_needed(struct urb *urb)
2900 {
2901 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2902 }
2903
count_sg_trbs_needed(struct urb * urb)2904 static unsigned int count_sg_trbs_needed(struct urb *urb)
2905 {
2906 struct scatterlist *sg;
2907 unsigned int i, len, full_len, num_trbs = 0;
2908
2909 full_len = urb->transfer_buffer_length;
2910
2911 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2912 len = sg_dma_len(sg);
2913 num_trbs += count_trbs(sg_dma_address(sg), len);
2914 len = min_t(unsigned int, len, full_len);
2915 full_len -= len;
2916 if (full_len == 0)
2917 break;
2918 }
2919
2920 return num_trbs;
2921 }
2922
count_isoc_trbs_needed(struct urb * urb,int i)2923 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2924 {
2925 u64 addr, len;
2926
2927 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2928 len = urb->iso_frame_desc[i].length;
2929
2930 return count_trbs(addr, len);
2931 }
2932
check_trb_math(struct urb * urb,int running_total)2933 static void check_trb_math(struct urb *urb, int running_total)
2934 {
2935 if (unlikely(running_total != urb->transfer_buffer_length))
2936 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2937 "queued %#x (%d), asked for %#x (%d)\n",
2938 __func__,
2939 urb->ep->desc.bEndpointAddress,
2940 running_total, running_total,
2941 urb->transfer_buffer_length,
2942 urb->transfer_buffer_length);
2943 }
2944
giveback_first_trb(struct xhci_hcd * xhci,int slot_id,unsigned int ep_index,unsigned int stream_id,int start_cycle,struct xhci_generic_trb * start_trb)2945 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2946 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2947 struct xhci_generic_trb *start_trb)
2948 {
2949 /*
2950 * Pass all the TRBs to the hardware at once and make sure this write
2951 * isn't reordered.
2952 */
2953 wmb();
2954 if (start_cycle)
2955 start_trb->field[3] |= cpu_to_le32(start_cycle);
2956 else
2957 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2958 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2959 }
2960
check_interval(struct xhci_hcd * xhci,struct urb * urb,struct xhci_ep_ctx * ep_ctx)2961 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
2962 struct xhci_ep_ctx *ep_ctx)
2963 {
2964 int xhci_interval;
2965 int ep_interval;
2966
2967 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2968 ep_interval = urb->interval;
2969
2970 /* Convert to microframes */
2971 if (urb->dev->speed == USB_SPEED_LOW ||
2972 urb->dev->speed == USB_SPEED_FULL)
2973 ep_interval *= 8;
2974
2975 /* FIXME change this to a warning and a suggestion to use the new API
2976 * to set the polling interval (once the API is added).
2977 */
2978 if (xhci_interval != ep_interval) {
2979 dev_dbg_ratelimited(&urb->dev->dev,
2980 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
2981 ep_interval, ep_interval == 1 ? "" : "s",
2982 xhci_interval, xhci_interval == 1 ? "" : "s");
2983 urb->interval = xhci_interval;
2984 /* Convert back to frames for LS/FS devices */
2985 if (urb->dev->speed == USB_SPEED_LOW ||
2986 urb->dev->speed == USB_SPEED_FULL)
2987 urb->interval /= 8;
2988 }
2989 }
2990
2991 /*
2992 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2993 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2994 * (comprised of sg list entries) can take several service intervals to
2995 * transmit.
2996 */
xhci_queue_intr_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)2997 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2998 struct urb *urb, int slot_id, unsigned int ep_index)
2999 {
3000 struct xhci_ep_ctx *ep_ctx;
3001
3002 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3003 check_interval(xhci, urb, ep_ctx);
3004
3005 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3006 }
3007
3008 /*
3009 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3010 * packets remaining in the TD (*not* including this TRB).
3011 *
3012 * Total TD packet count = total_packet_count =
3013 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3014 *
3015 * Packets transferred up to and including this TRB = packets_transferred =
3016 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3017 *
3018 * TD size = total_packet_count - packets_transferred
3019 *
3020 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3021 * including this TRB, right shifted by 10
3022 *
3023 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3024 * This is taken care of in the TRB_TD_SIZE() macro
3025 *
3026 * The last TRB in a TD must have the TD size set to zero.
3027 */
xhci_td_remainder(struct xhci_hcd * xhci,int transferred,int trb_buff_len,unsigned int td_total_len,struct urb * urb,bool more_trbs_coming)3028 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3029 int trb_buff_len, unsigned int td_total_len,
3030 struct urb *urb, bool more_trbs_coming)
3031 {
3032 u32 maxp, total_packet_count;
3033
3034 /* MTK xHCI 0.96 contains some features from 1.0 */
3035 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3036 return ((td_total_len - transferred) >> 10);
3037
3038 /* One TRB with a zero-length data packet. */
3039 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3040 trb_buff_len == td_total_len)
3041 return 0;
3042
3043 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3044 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3045 trb_buff_len = 0;
3046
3047 maxp = usb_endpoint_maxp(&urb->ep->desc);
3048 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3049
3050 /* Queueing functions don't count the current TRB into transferred */
3051 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3052 }
3053
3054
xhci_align_td(struct xhci_hcd * xhci,struct urb * urb,u32 enqd_len,u32 * trb_buff_len,struct xhci_segment * seg)3055 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3056 u32 *trb_buff_len, struct xhci_segment *seg)
3057 {
3058 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3059 unsigned int unalign;
3060 unsigned int max_pkt;
3061 u32 new_buff_len;
3062
3063 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3064 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3065
3066 /* we got lucky, last normal TRB data on segment is packet aligned */
3067 if (unalign == 0)
3068 return 0;
3069
3070 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3071 unalign, *trb_buff_len);
3072
3073 /* is the last nornal TRB alignable by splitting it */
3074 if (*trb_buff_len > unalign) {
3075 *trb_buff_len -= unalign;
3076 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3077 return 0;
3078 }
3079
3080 /*
3081 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3082 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3083 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3084 */
3085 new_buff_len = max_pkt - (enqd_len % max_pkt);
3086
3087 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3088 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3089
3090 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3091 if (usb_urb_dir_out(urb)) {
3092 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3093 seg->bounce_buf, new_buff_len, enqd_len);
3094 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3095 max_pkt, DMA_TO_DEVICE);
3096 } else {
3097 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3098 max_pkt, DMA_FROM_DEVICE);
3099 }
3100
3101 if (dma_mapping_error(dev, seg->bounce_dma)) {
3102 /* try without aligning. Some host controllers survive */
3103 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3104 return 0;
3105 }
3106 *trb_buff_len = new_buff_len;
3107 seg->bounce_len = new_buff_len;
3108 seg->bounce_offs = enqd_len;
3109
3110 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3111
3112 return 1;
3113 }
3114
3115 /* This is very similar to what ehci-q.c qtd_fill() does */
xhci_queue_bulk_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3116 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3117 struct urb *urb, int slot_id, unsigned int ep_index)
3118 {
3119 struct xhci_ring *ring;
3120 struct urb_priv *urb_priv;
3121 struct xhci_td *td;
3122 struct xhci_generic_trb *start_trb;
3123 struct scatterlist *sg = NULL;
3124 bool more_trbs_coming = true;
3125 bool need_zero_pkt = false;
3126 bool first_trb = true;
3127 unsigned int num_trbs;
3128 unsigned int start_cycle, num_sgs = 0;
3129 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3130 int sent_len, ret;
3131 u32 field, length_field, remainder;
3132 u64 addr, send_addr;
3133
3134 ring = xhci_urb_to_transfer_ring(xhci, urb);
3135 if (!ring)
3136 return -EINVAL;
3137
3138 full_len = urb->transfer_buffer_length;
3139 /* If we have scatter/gather list, we use it. */
3140 if (urb->num_sgs) {
3141 num_sgs = urb->num_mapped_sgs;
3142 sg = urb->sg;
3143 addr = (u64) sg_dma_address(sg);
3144 block_len = sg_dma_len(sg);
3145 num_trbs = count_sg_trbs_needed(urb);
3146 } else {
3147 num_trbs = count_trbs_needed(urb);
3148 addr = (u64) urb->transfer_dma;
3149 block_len = full_len;
3150 }
3151 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3152 ep_index, urb->stream_id,
3153 num_trbs, urb, 0, mem_flags);
3154 if (unlikely(ret < 0))
3155 return ret;
3156
3157 urb_priv = urb->hcpriv;
3158
3159 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3160 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3161 need_zero_pkt = true;
3162
3163 td = &urb_priv->td[0];
3164
3165 /*
3166 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3167 * until we've finished creating all the other TRBs. The ring's cycle
3168 * state may change as we enqueue the other TRBs, so save it too.
3169 */
3170 start_trb = &ring->enqueue->generic;
3171 start_cycle = ring->cycle_state;
3172 send_addr = addr;
3173
3174 /* Queue the TRBs, even if they are zero-length */
3175 for (enqd_len = 0; first_trb || enqd_len < full_len;
3176 enqd_len += trb_buff_len) {
3177 field = TRB_TYPE(TRB_NORMAL);
3178
3179 /* TRB buffer should not cross 64KB boundaries */
3180 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3181 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3182
3183 if (enqd_len + trb_buff_len > full_len)
3184 trb_buff_len = full_len - enqd_len;
3185
3186 /* Don't change the cycle bit of the first TRB until later */
3187 if (first_trb) {
3188 first_trb = false;
3189 if (start_cycle == 0)
3190 field |= TRB_CYCLE;
3191 } else
3192 field |= ring->cycle_state;
3193
3194 /* Chain all the TRBs together; clear the chain bit in the last
3195 * TRB to indicate it's the last TRB in the chain.
3196 */
3197 if (enqd_len + trb_buff_len < full_len) {
3198 field |= TRB_CHAIN;
3199 if (trb_is_link(ring->enqueue + 1)) {
3200 if (xhci_align_td(xhci, urb, enqd_len,
3201 &trb_buff_len,
3202 ring->enq_seg)) {
3203 send_addr = ring->enq_seg->bounce_dma;
3204 /* assuming TD won't span 2 segs */
3205 td->bounce_seg = ring->enq_seg;
3206 }
3207 }
3208 }
3209 if (enqd_len + trb_buff_len >= full_len) {
3210 field &= ~TRB_CHAIN;
3211 field |= TRB_IOC;
3212 more_trbs_coming = false;
3213 td->last_trb = ring->enqueue;
3214 }
3215
3216 /* Only set interrupt on short packet for IN endpoints */
3217 if (usb_urb_dir_in(urb))
3218 field |= TRB_ISP;
3219
3220 /* Set the TRB length, TD size, and interrupter fields. */
3221 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3222 full_len, urb, more_trbs_coming);
3223
3224 length_field = TRB_LEN(trb_buff_len) |
3225 TRB_TD_SIZE(remainder) |
3226 TRB_INTR_TARGET(0);
3227
3228 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3229 lower_32_bits(send_addr),
3230 upper_32_bits(send_addr),
3231 length_field,
3232 field);
3233
3234 addr += trb_buff_len;
3235 sent_len = trb_buff_len;
3236
3237 while (sg && sent_len >= block_len) {
3238 /* New sg entry */
3239 --num_sgs;
3240 sent_len -= block_len;
3241 if (num_sgs != 0) {
3242 sg = sg_next(sg);
3243 block_len = sg_dma_len(sg);
3244 addr = (u64) sg_dma_address(sg);
3245 addr += sent_len;
3246 }
3247 }
3248 block_len -= sent_len;
3249 send_addr = addr;
3250 }
3251
3252 if (need_zero_pkt) {
3253 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3254 ep_index, urb->stream_id,
3255 1, urb, 1, mem_flags);
3256 urb_priv->td[1].last_trb = ring->enqueue;
3257 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3258 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3259 }
3260
3261 check_trb_math(urb, enqd_len);
3262 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3263 start_cycle, start_trb);
3264 return 0;
3265 }
3266
3267 /* Caller must have locked xhci->lock */
xhci_queue_ctrl_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3268 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3269 struct urb *urb, int slot_id, unsigned int ep_index)
3270 {
3271 struct xhci_ring *ep_ring;
3272 int num_trbs;
3273 int ret;
3274 struct usb_ctrlrequest *setup;
3275 struct xhci_generic_trb *start_trb;
3276 int start_cycle;
3277 u32 field;
3278 struct urb_priv *urb_priv;
3279 struct xhci_td *td;
3280
3281 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3282 if (!ep_ring)
3283 return -EINVAL;
3284
3285 /*
3286 * Need to copy setup packet into setup TRB, so we can't use the setup
3287 * DMA address.
3288 */
3289 if (!urb->setup_packet)
3290 return -EINVAL;
3291
3292 /* 1 TRB for setup, 1 for status */
3293 num_trbs = 2;
3294 /*
3295 * Don't need to check if we need additional event data and normal TRBs,
3296 * since data in control transfers will never get bigger than 16MB
3297 * XXX: can we get a buffer that crosses 64KB boundaries?
3298 */
3299 if (urb->transfer_buffer_length > 0)
3300 num_trbs++;
3301 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3302 ep_index, urb->stream_id,
3303 num_trbs, urb, 0, mem_flags);
3304 if (ret < 0)
3305 return ret;
3306
3307 urb_priv = urb->hcpriv;
3308 td = &urb_priv->td[0];
3309
3310 /*
3311 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3312 * until we've finished creating all the other TRBs. The ring's cycle
3313 * state may change as we enqueue the other TRBs, so save it too.
3314 */
3315 start_trb = &ep_ring->enqueue->generic;
3316 start_cycle = ep_ring->cycle_state;
3317
3318 /* Queue setup TRB - see section 6.4.1.2.1 */
3319 /* FIXME better way to translate setup_packet into two u32 fields? */
3320 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3321 field = 0;
3322 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3323 if (start_cycle == 0)
3324 field |= 0x1;
3325
3326 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3327 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3328 if (urb->transfer_buffer_length > 0) {
3329 if (setup->bRequestType & USB_DIR_IN)
3330 field |= TRB_TX_TYPE(TRB_DATA_IN);
3331 else
3332 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3333 }
3334 }
3335
3336 queue_trb(xhci, ep_ring, true,
3337 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3338 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3339 TRB_LEN(8) | TRB_INTR_TARGET(0),
3340 /* Immediate data in pointer */
3341 field);
3342
3343 /* If there's data, queue data TRBs */
3344 /* Only set interrupt on short packet for IN endpoints */
3345 if (usb_urb_dir_in(urb))
3346 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3347 else
3348 field = TRB_TYPE(TRB_DATA);
3349
3350 if (urb->transfer_buffer_length > 0) {
3351 u32 length_field, remainder;
3352
3353 remainder = xhci_td_remainder(xhci, 0,
3354 urb->transfer_buffer_length,
3355 urb->transfer_buffer_length,
3356 urb, 1);
3357 length_field = TRB_LEN(urb->transfer_buffer_length) |
3358 TRB_TD_SIZE(remainder) |
3359 TRB_INTR_TARGET(0);
3360 if (setup->bRequestType & USB_DIR_IN)
3361 field |= TRB_DIR_IN;
3362 queue_trb(xhci, ep_ring, true,
3363 lower_32_bits(urb->transfer_dma),
3364 upper_32_bits(urb->transfer_dma),
3365 length_field,
3366 field | ep_ring->cycle_state);
3367 }
3368
3369 /* Save the DMA address of the last TRB in the TD */
3370 td->last_trb = ep_ring->enqueue;
3371
3372 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3373 /* If the device sent data, the status stage is an OUT transfer */
3374 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3375 field = 0;
3376 else
3377 field = TRB_DIR_IN;
3378 queue_trb(xhci, ep_ring, false,
3379 0,
3380 0,
3381 TRB_INTR_TARGET(0),
3382 /* Event on completion */
3383 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3384
3385 giveback_first_trb(xhci, slot_id, ep_index, 0,
3386 start_cycle, start_trb);
3387 return 0;
3388 }
3389
3390 /*
3391 * The transfer burst count field of the isochronous TRB defines the number of
3392 * bursts that are required to move all packets in this TD. Only SuperSpeed
3393 * devices can burst up to bMaxBurst number of packets per service interval.
3394 * This field is zero based, meaning a value of zero in the field means one
3395 * burst. Basically, for everything but SuperSpeed devices, this field will be
3396 * zero. Only xHCI 1.0 host controllers support this field.
3397 */
xhci_get_burst_count(struct xhci_hcd * xhci,struct urb * urb,unsigned int total_packet_count)3398 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3399 struct urb *urb, unsigned int total_packet_count)
3400 {
3401 unsigned int max_burst;
3402
3403 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3404 return 0;
3405
3406 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3407 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3408 }
3409
3410 /*
3411 * Returns the number of packets in the last "burst" of packets. This field is
3412 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3413 * the last burst packet count is equal to the total number of packets in the
3414 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3415 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3416 * contain 1 to (bMaxBurst + 1) packets.
3417 */
xhci_get_last_burst_packet_count(struct xhci_hcd * xhci,struct urb * urb,unsigned int total_packet_count)3418 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3419 struct urb *urb, unsigned int total_packet_count)
3420 {
3421 unsigned int max_burst;
3422 unsigned int residue;
3423
3424 if (xhci->hci_version < 0x100)
3425 return 0;
3426
3427 if (urb->dev->speed >= USB_SPEED_SUPER) {
3428 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3429 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3430 residue = total_packet_count % (max_burst + 1);
3431 /* If residue is zero, the last burst contains (max_burst + 1)
3432 * number of packets, but the TLBPC field is zero-based.
3433 */
3434 if (residue == 0)
3435 return max_burst;
3436 return residue - 1;
3437 }
3438 if (total_packet_count == 0)
3439 return 0;
3440 return total_packet_count - 1;
3441 }
3442
3443 /*
3444 * Calculates Frame ID field of the isochronous TRB identifies the
3445 * target frame that the Interval associated with this Isochronous
3446 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3447 *
3448 * Returns actual frame id on success, negative value on error.
3449 */
xhci_get_isoc_frame_id(struct xhci_hcd * xhci,struct urb * urb,int index)3450 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3451 struct urb *urb, int index)
3452 {
3453 int start_frame, ist, ret = 0;
3454 int start_frame_id, end_frame_id, current_frame_id;
3455
3456 if (urb->dev->speed == USB_SPEED_LOW ||
3457 urb->dev->speed == USB_SPEED_FULL)
3458 start_frame = urb->start_frame + index * urb->interval;
3459 else
3460 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3461
3462 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3463 *
3464 * If bit [3] of IST is cleared to '0', software can add a TRB no
3465 * later than IST[2:0] Microframes before that TRB is scheduled to
3466 * be executed.
3467 * If bit [3] of IST is set to '1', software can add a TRB no later
3468 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3469 */
3470 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3471 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3472 ist <<= 3;
3473
3474 /* Software shall not schedule an Isoch TD with a Frame ID value that
3475 * is less than the Start Frame ID or greater than the End Frame ID,
3476 * where:
3477 *
3478 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3479 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3480 *
3481 * Both the End Frame ID and Start Frame ID values are calculated
3482 * in microframes. When software determines the valid Frame ID value;
3483 * The End Frame ID value should be rounded down to the nearest Frame
3484 * boundary, and the Start Frame ID value should be rounded up to the
3485 * nearest Frame boundary.
3486 */
3487 current_frame_id = readl(&xhci->run_regs->microframe_index);
3488 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3489 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3490
3491 start_frame &= 0x7ff;
3492 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3493 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3494
3495 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3496 __func__, index, readl(&xhci->run_regs->microframe_index),
3497 start_frame_id, end_frame_id, start_frame);
3498
3499 if (start_frame_id < end_frame_id) {
3500 if (start_frame > end_frame_id ||
3501 start_frame < start_frame_id)
3502 ret = -EINVAL;
3503 } else if (start_frame_id > end_frame_id) {
3504 if ((start_frame > end_frame_id &&
3505 start_frame < start_frame_id))
3506 ret = -EINVAL;
3507 } else {
3508 ret = -EINVAL;
3509 }
3510
3511 if (index == 0) {
3512 if (ret == -EINVAL || start_frame == start_frame_id) {
3513 start_frame = start_frame_id + 1;
3514 if (urb->dev->speed == USB_SPEED_LOW ||
3515 urb->dev->speed == USB_SPEED_FULL)
3516 urb->start_frame = start_frame;
3517 else
3518 urb->start_frame = start_frame << 3;
3519 ret = 0;
3520 }
3521 }
3522
3523 if (ret) {
3524 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3525 start_frame, current_frame_id, index,
3526 start_frame_id, end_frame_id);
3527 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3528 return ret;
3529 }
3530
3531 return start_frame;
3532 }
3533
3534 /* This is for isoc transfer */
xhci_queue_isoc_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3535 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3536 struct urb *urb, int slot_id, unsigned int ep_index)
3537 {
3538 struct xhci_ring *ep_ring;
3539 struct urb_priv *urb_priv;
3540 struct xhci_td *td;
3541 int num_tds, trbs_per_td;
3542 struct xhci_generic_trb *start_trb;
3543 bool first_trb;
3544 int start_cycle;
3545 u32 field, length_field;
3546 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3547 u64 start_addr, addr;
3548 int i, j;
3549 bool more_trbs_coming;
3550 struct xhci_virt_ep *xep;
3551 int frame_id;
3552
3553 xep = &xhci->devs[slot_id]->eps[ep_index];
3554 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3555
3556 num_tds = urb->number_of_packets;
3557 if (num_tds < 1) {
3558 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3559 return -EINVAL;
3560 }
3561 start_addr = (u64) urb->transfer_dma;
3562 start_trb = &ep_ring->enqueue->generic;
3563 start_cycle = ep_ring->cycle_state;
3564
3565 urb_priv = urb->hcpriv;
3566 /* Queue the TRBs for each TD, even if they are zero-length */
3567 for (i = 0; i < num_tds; i++) {
3568 unsigned int total_pkt_count, max_pkt;
3569 unsigned int burst_count, last_burst_pkt_count;
3570 u32 sia_frame_id;
3571
3572 first_trb = true;
3573 running_total = 0;
3574 addr = start_addr + urb->iso_frame_desc[i].offset;
3575 td_len = urb->iso_frame_desc[i].length;
3576 td_remain_len = td_len;
3577 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3578 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3579
3580 /* A zero-length transfer still involves at least one packet. */
3581 if (total_pkt_count == 0)
3582 total_pkt_count++;
3583 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3584 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3585 urb, total_pkt_count);
3586
3587 trbs_per_td = count_isoc_trbs_needed(urb, i);
3588
3589 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3590 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3591 if (ret < 0) {
3592 if (i == 0)
3593 return ret;
3594 goto cleanup;
3595 }
3596 td = &urb_priv->td[i];
3597
3598 /* use SIA as default, if frame id is used overwrite it */
3599 sia_frame_id = TRB_SIA;
3600 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3601 HCC_CFC(xhci->hcc_params)) {
3602 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3603 if (frame_id >= 0)
3604 sia_frame_id = TRB_FRAME_ID(frame_id);
3605 }
3606 /*
3607 * Set isoc specific data for the first TRB in a TD.
3608 * Prevent HW from getting the TRBs by keeping the cycle state
3609 * inverted in the first TDs isoc TRB.
3610 */
3611 field = TRB_TYPE(TRB_ISOC) |
3612 TRB_TLBPC(last_burst_pkt_count) |
3613 sia_frame_id |
3614 (i ? ep_ring->cycle_state : !start_cycle);
3615
3616 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3617 if (!xep->use_extended_tbc)
3618 field |= TRB_TBC(burst_count);
3619
3620 /* fill the rest of the TRB fields, and remaining normal TRBs */
3621 for (j = 0; j < trbs_per_td; j++) {
3622 u32 remainder = 0;
3623
3624 /* only first TRB is isoc, overwrite otherwise */
3625 if (!first_trb)
3626 field = TRB_TYPE(TRB_NORMAL) |
3627 ep_ring->cycle_state;
3628
3629 /* Only set interrupt on short packet for IN EPs */
3630 if (usb_urb_dir_in(urb))
3631 field |= TRB_ISP;
3632
3633 /* Set the chain bit for all except the last TRB */
3634 if (j < trbs_per_td - 1) {
3635 more_trbs_coming = true;
3636 field |= TRB_CHAIN;
3637 } else {
3638 more_trbs_coming = false;
3639 td->last_trb = ep_ring->enqueue;
3640 field |= TRB_IOC;
3641 /* set BEI, except for the last TD */
3642 if (xhci->hci_version >= 0x100 &&
3643 !(xhci->quirks & XHCI_AVOID_BEI) &&
3644 i < num_tds - 1)
3645 field |= TRB_BEI;
3646 }
3647 /* Calculate TRB length */
3648 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3649 if (trb_buff_len > td_remain_len)
3650 trb_buff_len = td_remain_len;
3651
3652 /* Set the TRB length, TD size, & interrupter fields. */
3653 remainder = xhci_td_remainder(xhci, running_total,
3654 trb_buff_len, td_len,
3655 urb, more_trbs_coming);
3656
3657 length_field = TRB_LEN(trb_buff_len) |
3658 TRB_INTR_TARGET(0);
3659
3660 /* xhci 1.1 with ETE uses TD Size field for TBC */
3661 if (first_trb && xep->use_extended_tbc)
3662 length_field |= TRB_TD_SIZE_TBC(burst_count);
3663 else
3664 length_field |= TRB_TD_SIZE(remainder);
3665 first_trb = false;
3666
3667 queue_trb(xhci, ep_ring, more_trbs_coming,
3668 lower_32_bits(addr),
3669 upper_32_bits(addr),
3670 length_field,
3671 field);
3672 running_total += trb_buff_len;
3673
3674 addr += trb_buff_len;
3675 td_remain_len -= trb_buff_len;
3676 }
3677
3678 /* Check TD length */
3679 if (running_total != td_len) {
3680 xhci_err(xhci, "ISOC TD length unmatch\n");
3681 ret = -EINVAL;
3682 goto cleanup;
3683 }
3684 }
3685
3686 /* store the next frame id */
3687 if (HCC_CFC(xhci->hcc_params))
3688 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3689
3690 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3691 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3692 usb_amd_quirk_pll_disable();
3693 }
3694 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3695
3696 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3697 start_cycle, start_trb);
3698 return 0;
3699 cleanup:
3700 /* Clean up a partially enqueued isoc transfer. */
3701
3702 for (i--; i >= 0; i--)
3703 list_del_init(&urb_priv->td[i].td_list);
3704
3705 /* Use the first TD as a temporary variable to turn the TDs we've queued
3706 * into No-ops with a software-owned cycle bit. That way the hardware
3707 * won't accidentally start executing bogus TDs when we partially
3708 * overwrite them. td->first_trb and td->start_seg are already set.
3709 */
3710 urb_priv->td[0].last_trb = ep_ring->enqueue;
3711 /* Every TRB except the first & last will have its cycle bit flipped. */
3712 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3713
3714 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3715 ep_ring->enqueue = urb_priv->td[0].first_trb;
3716 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3717 ep_ring->cycle_state = start_cycle;
3718 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3719 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3720 return ret;
3721 }
3722
3723 /*
3724 * Check transfer ring to guarantee there is enough room for the urb.
3725 * Update ISO URB start_frame and interval.
3726 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3727 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3728 * Contiguous Frame ID is not supported by HC.
3729 */
xhci_queue_isoc_tx_prepare(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3730 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3731 struct urb *urb, int slot_id, unsigned int ep_index)
3732 {
3733 struct xhci_virt_device *xdev;
3734 struct xhci_ring *ep_ring;
3735 struct xhci_ep_ctx *ep_ctx;
3736 int start_frame;
3737 int num_tds, num_trbs, i;
3738 int ret;
3739 struct xhci_virt_ep *xep;
3740 int ist;
3741
3742 xdev = xhci->devs[slot_id];
3743 xep = &xhci->devs[slot_id]->eps[ep_index];
3744 ep_ring = xdev->eps[ep_index].ring;
3745 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3746
3747 num_trbs = 0;
3748 num_tds = urb->number_of_packets;
3749 for (i = 0; i < num_tds; i++)
3750 num_trbs += count_isoc_trbs_needed(urb, i);
3751
3752 /* Check the ring to guarantee there is enough room for the whole urb.
3753 * Do not insert any td of the urb to the ring if the check failed.
3754 */
3755 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3756 num_trbs, mem_flags);
3757 if (ret)
3758 return ret;
3759
3760 /*
3761 * Check interval value. This should be done before we start to
3762 * calculate the start frame value.
3763 */
3764 check_interval(xhci, urb, ep_ctx);
3765
3766 /* Calculate the start frame and put it in urb->start_frame. */
3767 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3768 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3769 urb->start_frame = xep->next_frame_id;
3770 goto skip_start_over;
3771 }
3772 }
3773
3774 start_frame = readl(&xhci->run_regs->microframe_index);
3775 start_frame &= 0x3fff;
3776 /*
3777 * Round up to the next frame and consider the time before trb really
3778 * gets scheduled by hardare.
3779 */
3780 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3781 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3782 ist <<= 3;
3783 start_frame += ist + XHCI_CFC_DELAY;
3784 start_frame = roundup(start_frame, 8);
3785
3786 /*
3787 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3788 * is greate than 8 microframes.
3789 */
3790 if (urb->dev->speed == USB_SPEED_LOW ||
3791 urb->dev->speed == USB_SPEED_FULL) {
3792 start_frame = roundup(start_frame, urb->interval << 3);
3793 urb->start_frame = start_frame >> 3;
3794 } else {
3795 start_frame = roundup(start_frame, urb->interval);
3796 urb->start_frame = start_frame;
3797 }
3798
3799 skip_start_over:
3800 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3801
3802 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3803 }
3804
3805 /**** Command Ring Operations ****/
3806
3807 /* Generic function for queueing a command TRB on the command ring.
3808 * Check to make sure there's room on the command ring for one command TRB.
3809 * Also check that there's room reserved for commands that must not fail.
3810 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3811 * then only check for the number of reserved spots.
3812 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3813 * because the command event handler may want to resubmit a failed command.
3814 */
queue_command(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 field1,u32 field2,u32 field3,u32 field4,bool command_must_succeed)3815 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3816 u32 field1, u32 field2,
3817 u32 field3, u32 field4, bool command_must_succeed)
3818 {
3819 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3820 int ret;
3821
3822 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3823 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3824 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3825 return -ESHUTDOWN;
3826 }
3827
3828 if (!command_must_succeed)
3829 reserved_trbs++;
3830
3831 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3832 reserved_trbs, GFP_ATOMIC);
3833 if (ret < 0) {
3834 xhci_err(xhci, "ERR: No room for command on command ring\n");
3835 if (command_must_succeed)
3836 xhci_err(xhci, "ERR: Reserved TRB counting for "
3837 "unfailable commands failed.\n");
3838 return ret;
3839 }
3840
3841 cmd->command_trb = xhci->cmd_ring->enqueue;
3842
3843 /* if there are no other commands queued we start the timeout timer */
3844 if (list_empty(&xhci->cmd_list)) {
3845 xhci->current_cmd = cmd;
3846 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3847 }
3848
3849 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3850
3851 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3852 field4 | xhci->cmd_ring->cycle_state);
3853 return 0;
3854 }
3855
3856 /* Queue a slot enable or disable request on the command ring */
xhci_queue_slot_control(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 trb_type,u32 slot_id)3857 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3858 u32 trb_type, u32 slot_id)
3859 {
3860 return queue_command(xhci, cmd, 0, 0, 0,
3861 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3862 }
3863
3864 /* Queue an address device command TRB */
xhci_queue_address_device(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,enum xhci_setup_dev setup)3865 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3866 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3867 {
3868 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3869 upper_32_bits(in_ctx_ptr), 0,
3870 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3871 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3872 }
3873
xhci_queue_vendor_command(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 field1,u32 field2,u32 field3,u32 field4)3874 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3875 u32 field1, u32 field2, u32 field3, u32 field4)
3876 {
3877 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3878 }
3879
3880 /* Queue a reset device command TRB */
xhci_queue_reset_device(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 slot_id)3881 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3882 u32 slot_id)
3883 {
3884 return queue_command(xhci, cmd, 0, 0, 0,
3885 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3886 false);
3887 }
3888
3889 /* Queue a configure endpoint command TRB */
xhci_queue_configure_endpoint(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,bool command_must_succeed)3890 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3891 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3892 u32 slot_id, bool command_must_succeed)
3893 {
3894 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3895 upper_32_bits(in_ctx_ptr), 0,
3896 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3897 command_must_succeed);
3898 }
3899
3900 /* Queue an evaluate context command TRB */
xhci_queue_evaluate_context(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,bool command_must_succeed)3901 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3902 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3903 {
3904 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3905 upper_32_bits(in_ctx_ptr), 0,
3906 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3907 command_must_succeed);
3908 }
3909
3910 /*
3911 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3912 * activity on an endpoint that is about to be suspended.
3913 */
xhci_queue_stop_endpoint(struct xhci_hcd * xhci,struct xhci_command * cmd,int slot_id,unsigned int ep_index,int suspend)3914 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3915 int slot_id, unsigned int ep_index, int suspend)
3916 {
3917 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3918 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3919 u32 type = TRB_TYPE(TRB_STOP_RING);
3920 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3921
3922 return queue_command(xhci, cmd, 0, 0, 0,
3923 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3924 }
3925
3926 /* Set Transfer Ring Dequeue Pointer command */
xhci_queue_new_dequeue_state(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)3927 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3928 unsigned int slot_id, unsigned int ep_index,
3929 struct xhci_dequeue_state *deq_state)
3930 {
3931 dma_addr_t addr;
3932 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3933 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3934 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
3935 u32 trb_sct = 0;
3936 u32 type = TRB_TYPE(TRB_SET_DEQ);
3937 struct xhci_virt_ep *ep;
3938 struct xhci_command *cmd;
3939 int ret;
3940
3941 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3942 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3943 deq_state->new_deq_seg,
3944 (unsigned long long)deq_state->new_deq_seg->dma,
3945 deq_state->new_deq_ptr,
3946 (unsigned long long)xhci_trb_virt_to_dma(
3947 deq_state->new_deq_seg, deq_state->new_deq_ptr),
3948 deq_state->new_cycle_state);
3949
3950 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3951 deq_state->new_deq_ptr);
3952 if (addr == 0) {
3953 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3954 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3955 deq_state->new_deq_seg, deq_state->new_deq_ptr);
3956 return;
3957 }
3958 ep = &xhci->devs[slot_id]->eps[ep_index];
3959 if ((ep->ep_state & SET_DEQ_PENDING)) {
3960 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3961 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3962 return;
3963 }
3964
3965 /* This function gets called from contexts where it cannot sleep */
3966 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
3967 if (!cmd)
3968 return;
3969
3970 ep->queued_deq_seg = deq_state->new_deq_seg;
3971 ep->queued_deq_ptr = deq_state->new_deq_ptr;
3972 if (deq_state->stream_id)
3973 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3974 ret = queue_command(xhci, cmd,
3975 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3976 upper_32_bits(addr), trb_stream_id,
3977 trb_slot_id | trb_ep_index | type, false);
3978 if (ret < 0) {
3979 xhci_free_command(xhci, cmd);
3980 return;
3981 }
3982
3983 /* Stop the TD queueing code from ringing the doorbell until
3984 * this command completes. The HC won't set the dequeue pointer
3985 * if the ring is running, and ringing the doorbell starts the
3986 * ring running.
3987 */
3988 ep->ep_state |= SET_DEQ_PENDING;
3989 }
3990
xhci_queue_reset_ep(struct xhci_hcd * xhci,struct xhci_command * cmd,int slot_id,unsigned int ep_index,enum xhci_ep_reset_type reset_type)3991 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
3992 int slot_id, unsigned int ep_index,
3993 enum xhci_ep_reset_type reset_type)
3994 {
3995 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3996 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3997 u32 type = TRB_TYPE(TRB_RESET_EP);
3998
3999 if (reset_type == EP_SOFT_RESET)
4000 type |= TRB_TSP;
4001
4002 return queue_command(xhci, cmd, 0, 0, 0,
4003 trb_slot_id | trb_ep_index | type, false);
4004 }
4005