1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 /*
12 * Ring initialization rules:
13 * 1. Each segment is initialized to zero, except for link TRBs.
14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
15 * Consumer Cycle State (CCS), depending on ring function.
16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17 *
18 * Ring behavior rules:
19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
20 * least one free TRB in the ring. This is useful if you want to turn that
21 * into a link TRB and expand the ring.
22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23 * link TRB, then load the pointer with the address in the link TRB. If the
24 * link TRB had its toggle bit set, you may need to update the ring cycle
25 * state (see cycle bit rules). You may have to do this multiple times
26 * until you reach a non-link TRB.
27 * 3. A ring is full if enqueue++ (for the definition of increment above)
28 * equals the dequeue pointer.
29 *
30 * Cycle bit rules:
31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32 * in a link TRB, it must toggle the ring cycle state.
33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 *
36 * Producer rules:
37 * 1. Check if ring is full before you enqueue.
38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39 * Update enqueue pointer between each write (which may update the ring
40 * cycle state).
41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
42 * and endpoint rings. If HC is the producer for the event ring,
43 * and it generates an interrupt according to interrupt modulation rules.
44 *
45 * Consumer rules:
46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
47 * the TRB is owned by the consumer.
48 * 2. Update dequeue pointer (which may update the ring cycle state) and
49 * continue processing TRBs until you reach a TRB which is not owned by you.
50 * 3. Notify the producer. SW is the consumer for the event ring, and it
51 * updates event ring dequeue pointer. HC is the consumer for the command and
52 * endpoint rings; it generates events on the event ring for these.
53 */
54
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60 #include "xhci-mtk.h"
61
62 /*
63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64 * address of the TRB.
65 */
xhci_trb_virt_to_dma(struct xhci_segment * seg,union xhci_trb * trb)66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 union xhci_trb *trb)
68 {
69 unsigned long segment_offset;
70
71 if (!seg || !trb || trb < seg->trbs)
72 return 0;
73 /* offset in TRBs */
74 segment_offset = trb - seg->trbs;
75 if (segment_offset >= TRBS_PER_SEGMENT)
76 return 0;
77 return seg->dma + (segment_offset * sizeof(*trb));
78 }
79
trb_is_noop(union xhci_trb * trb)80 static bool trb_is_noop(union xhci_trb *trb)
81 {
82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
83 }
84
trb_is_link(union xhci_trb * trb)85 static bool trb_is_link(union xhci_trb *trb)
86 {
87 return TRB_TYPE_LINK_LE32(trb->link.control);
88 }
89
last_trb_on_seg(struct xhci_segment * seg,union xhci_trb * trb)90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
91 {
92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
93 }
94
last_trb_on_ring(struct xhci_ring * ring,struct xhci_segment * seg,union xhci_trb * trb)95 static bool last_trb_on_ring(struct xhci_ring *ring,
96 struct xhci_segment *seg, union xhci_trb *trb)
97 {
98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
99 }
100
link_trb_toggles_cycle(union xhci_trb * trb)101 static bool link_trb_toggles_cycle(union xhci_trb *trb)
102 {
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
last_td_in_urb(struct xhci_td * td)106 static bool last_td_in_urb(struct xhci_td *td)
107 {
108 struct urb_priv *urb_priv = td->urb->hcpriv;
109
110 return urb_priv->num_tds_done == urb_priv->num_tds;
111 }
112
inc_td_cnt(struct urb * urb)113 static void inc_td_cnt(struct urb *urb)
114 {
115 struct urb_priv *urb_priv = urb->hcpriv;
116
117 urb_priv->num_tds_done++;
118 }
119
trb_to_noop(union xhci_trb * trb,u32 noop_type)120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
121 {
122 if (trb_is_link(trb)) {
123 /* unchain chained link TRBs */
124 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 } else {
126 trb->generic.field[0] = 0;
127 trb->generic.field[1] = 0;
128 trb->generic.field[2] = 0;
129 /* Preserve only the cycle bit of this TRB */
130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
132 }
133 }
134
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
138 */
next_trb(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment ** seg,union xhci_trb ** trb)139 static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
143 {
144 if (trb_is_link(*trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
149 }
150 }
151
152 /*
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
155 */
inc_deq(struct xhci_hcd * xhci,struct xhci_ring * ring)156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 /* event ring doesn't have link trbs, check for last trb */
159 if (ring->type == TYPE_EVENT) {
160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 ring->dequeue++;
162 goto out;
163 }
164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 ring->cycle_state ^= 1;
166 ring->deq_seg = ring->deq_seg->next;
167 ring->dequeue = ring->deq_seg->trbs;
168 goto out;
169 }
170
171 /* All other rings have link trbs */
172 if (!trb_is_link(ring->dequeue)) {
173 ring->dequeue++;
174 ring->num_trbs_free++;
175 }
176 while (trb_is_link(ring->dequeue)) {
177 ring->deq_seg = ring->deq_seg->next;
178 ring->dequeue = ring->deq_seg->trbs;
179 }
180
181 out:
182 trace_xhci_inc_deq(ring);
183
184 return;
185 }
186
187 /*
188 * See Cycle bit rules. SW is the consumer for the event ring only.
189 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
190 *
191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192 * chain bit is set), then set the chain bit in all the following link TRBs.
193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194 * have their chain bit cleared (so that each Link TRB is a separate TD).
195 *
196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197 * set, but other sections talk about dealing with the chain bit set. This was
198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
200 *
201 * @more_trbs_coming: Will you enqueue more TRBs before calling
202 * prepare_transfer()?
203 */
inc_enq(struct xhci_hcd * xhci,struct xhci_ring * ring,bool more_trbs_coming)204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 bool more_trbs_coming)
206 {
207 u32 chain;
208 union xhci_trb *next;
209
210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 /* If this is not event ring, there is one less usable TRB */
212 if (!trb_is_link(ring->enqueue))
213 ring->num_trbs_free--;
214 next = ++(ring->enqueue);
215
216 /* Update the dequeue pointer further if that was a link TRB */
217 while (trb_is_link(next)) {
218
219 /*
220 * If the caller doesn't plan on enqueueing more TDs before
221 * ringing the doorbell, then we don't want to give the link TRB
222 * to the hardware just yet. We'll give the link TRB back in
223 * prepare_ring() just before we enqueue the TD at the top of
224 * the ring.
225 */
226 if (!chain && !more_trbs_coming)
227 break;
228
229 /* If we're not dealing with 0.95 hardware or isoc rings on
230 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 * (which may mean the chain bit is cleared).
232 */
233 if (!(ring->type == TYPE_ISOC &&
234 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 !xhci_link_trb_quirk(xhci)) {
236 next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 next->link.control |= cpu_to_le32(chain);
238 }
239 /* Give this link TRB to the hardware */
240 wmb();
241 next->link.control ^= cpu_to_le32(TRB_CYCLE);
242
243 /* Toggle the cycle bit after the last ring segment. */
244 if (link_trb_toggles_cycle(next))
245 ring->cycle_state ^= 1;
246
247 ring->enq_seg = ring->enq_seg->next;
248 ring->enqueue = ring->enq_seg->trbs;
249 next = ring->enqueue;
250 }
251
252 trace_xhci_inc_enq(ring);
253 }
254
255 /*
256 * Check to see if there's room to enqueue num_trbs on the ring and make sure
257 * enqueue pointer will not advance into dequeue segment. See rules above.
258 */
room_on_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs)259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 unsigned int num_trbs)
261 {
262 int num_trbs_in_deq_seg;
263
264 if (ring->num_trbs_free < num_trbs)
265 return 0;
266
267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 return 0;
271 }
272
273 return 1;
274 }
275
276 /* Ring the host controller doorbell after placing a command on the ring */
xhci_ring_cmd_db(struct xhci_hcd * xhci)277 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
278 {
279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 return;
281
282 xhci_dbg(xhci, "// Ding dong!\n");
283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
284 /* Flush PCI posted writes */
285 readl(&xhci->dba->doorbell[0]);
286 }
287
xhci_mod_cmd_timer(struct xhci_hcd * xhci,unsigned long delay)288 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
289 {
290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
291 }
292
xhci_next_queued_cmd(struct xhci_hcd * xhci)293 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
294 {
295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
296 cmd_list);
297 }
298
299 /*
300 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
301 * If there are other commands waiting then restart the ring and kick the timer.
302 * This must be called with command ring stopped and xhci->lock held.
303 */
xhci_handle_stopped_cmd_ring(struct xhci_hcd * xhci,struct xhci_command * cur_cmd)304 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
305 struct xhci_command *cur_cmd)
306 {
307 struct xhci_command *i_cmd;
308
309 /* Turn all aborted commands in list to no-ops, then restart */
310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
311
312 if (i_cmd->status != COMP_COMMAND_ABORTED)
313 continue;
314
315 i_cmd->status = COMP_COMMAND_RING_STOPPED;
316
317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
318 i_cmd->command_trb);
319
320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
321
322 /*
323 * caller waiting for completion is called when command
324 * completion event is received for these no-op commands
325 */
326 }
327
328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
329
330 /* ring command ring doorbell to restart the command ring */
331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
332 !(xhci->xhc_state & XHCI_STATE_DYING)) {
333 xhci->current_cmd = cur_cmd;
334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
335 xhci_ring_cmd_db(xhci);
336 }
337 }
338
339 /* Must be called with xhci->lock held, releases and aquires lock back */
xhci_abort_cmd_ring(struct xhci_hcd * xhci,unsigned long flags)340 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
341 {
342 u64 temp_64;
343 int ret;
344
345 xhci_dbg(xhci, "Abort command ring\n");
346
347 reinit_completion(&xhci->cmd_ring_stop_completion);
348
349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
351 &xhci->op_regs->cmd_ring);
352
353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
354 * completion of the Command Abort operation. If CRR is not negated in 5
355 * seconds then driver handles it as if host died (-ENODEV).
356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
357 * and try to recover a -ETIMEDOUT with a host controller reset.
358 */
359 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
361 if (ret < 0) {
362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
363 xhci_halt(xhci);
364 xhci_hc_died(xhci);
365 return ret;
366 }
367 /*
368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
370 * but the completion event in never sent. Wait 2 secs (arbitrary
371 * number) to handle those cases after negation of CMD_RING_RUNNING.
372 */
373 spin_unlock_irqrestore(&xhci->lock, flags);
374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
375 msecs_to_jiffies(2000));
376 spin_lock_irqsave(&xhci->lock, flags);
377 if (!ret) {
378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
379 xhci_cleanup_command_queue(xhci);
380 } else {
381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
382 }
383 return 0;
384 }
385
xhci_ring_ep_doorbell(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id)386 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
387 unsigned int slot_id,
388 unsigned int ep_index,
389 unsigned int stream_id)
390 {
391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
393 unsigned int ep_state = ep->ep_state;
394
395 /* Don't ring the doorbell for this endpoint if there are pending
396 * cancellations because we don't want to interrupt processing.
397 * We don't want to restart any stream rings if there's a set dequeue
398 * pointer command pending because the device can choose to start any
399 * stream once the endpoint is on the HW schedule.
400 */
401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
402 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT))
403 return;
404 writel(DB_VALUE(ep_index, stream_id), db_addr);
405 /* The CPU has better things to do at this point than wait for a
406 * write-posting flush. It'll get there soon enough.
407 */
408 }
409
410 /* Ring the doorbell for any rings with pending URBs */
ring_doorbell_for_active_rings(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index)411 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index)
414 {
415 unsigned int stream_id;
416 struct xhci_virt_ep *ep;
417
418 ep = &xhci->devs[slot_id]->eps[ep_index];
419
420 /* A ring has pending URBs if its TD list is not empty */
421 if (!(ep->ep_state & EP_HAS_STREAMS)) {
422 if (ep->ring && !(list_empty(&ep->ring->td_list)))
423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
424 return;
425 }
426
427 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
428 stream_id++) {
429 struct xhci_stream_info *stream_info = ep->stream_info;
430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
432 stream_id);
433 }
434 }
435
xhci_ring_doorbell_for_active_rings(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index)436 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
437 unsigned int slot_id,
438 unsigned int ep_index)
439 {
440 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
441 }
442
443 /* Get the right ring for the given slot_id, ep_index and stream_id.
444 * If the endpoint supports streams, boundary check the URB's stream ID.
445 * If the endpoint doesn't support streams, return the singular endpoint ring.
446 */
xhci_triad_to_transfer_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id)447 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
448 unsigned int slot_id, unsigned int ep_index,
449 unsigned int stream_id)
450 {
451 struct xhci_virt_ep *ep;
452
453 ep = &xhci->devs[slot_id]->eps[ep_index];
454 /* Common case: no streams */
455 if (!(ep->ep_state & EP_HAS_STREAMS))
456 return ep->ring;
457
458 if (stream_id == 0) {
459 xhci_warn(xhci,
460 "WARN: Slot ID %u, ep index %u has streams, "
461 "but URB has no stream ID.\n",
462 slot_id, ep_index);
463 return NULL;
464 }
465
466 if (stream_id < ep->stream_info->num_streams)
467 return ep->stream_info->stream_rings[stream_id];
468
469 xhci_warn(xhci,
470 "WARN: Slot ID %u, ep index %u has "
471 "stream IDs 1 to %u allocated, "
472 "but stream ID %u is requested.\n",
473 slot_id, ep_index,
474 ep->stream_info->num_streams - 1,
475 stream_id);
476 return NULL;
477 }
478
479
480 /*
481 * Get the hw dequeue pointer xHC stopped on, either directly from the
482 * endpoint context, or if streams are in use from the stream context.
483 * The returned hw_dequeue contains the lowest four bits with cycle state
484 * and possbile stream context type.
485 */
xhci_get_hw_deq(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,unsigned int ep_index,unsigned int stream_id)486 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
487 unsigned int ep_index, unsigned int stream_id)
488 {
489 struct xhci_ep_ctx *ep_ctx;
490 struct xhci_stream_ctx *st_ctx;
491 struct xhci_virt_ep *ep;
492
493 ep = &vdev->eps[ep_index];
494
495 if (ep->ep_state & EP_HAS_STREAMS) {
496 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
497 return le64_to_cpu(st_ctx->stream_ring);
498 }
499 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
500 return le64_to_cpu(ep_ctx->deq);
501 }
502
503 /*
504 * Move the xHC's endpoint ring dequeue pointer past cur_td.
505 * Record the new state of the xHC's endpoint ring dequeue segment,
506 * dequeue pointer, stream id, and new consumer cycle state in state.
507 * Update our internal representation of the ring's dequeue pointer.
508 *
509 * We do this in three jumps:
510 * - First we update our new ring state to be the same as when the xHC stopped.
511 * - Then we traverse the ring to find the segment that contains
512 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
513 * any link TRBs with the toggle cycle bit set.
514 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
515 * if we've moved it past a link TRB with the toggle cycle bit set.
516 *
517 * Some of the uses of xhci_generic_trb are grotty, but if they're done
518 * with correct __le32 accesses they should work fine. Only users of this are
519 * in here.
520 */
xhci_find_new_dequeue_state(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * cur_td,struct xhci_dequeue_state * state)521 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
522 unsigned int slot_id, unsigned int ep_index,
523 unsigned int stream_id, struct xhci_td *cur_td,
524 struct xhci_dequeue_state *state)
525 {
526 struct xhci_virt_device *dev = xhci->devs[slot_id];
527 struct xhci_virt_ep *ep = &dev->eps[ep_index];
528 struct xhci_ring *ep_ring;
529 struct xhci_segment *new_seg;
530 union xhci_trb *new_deq;
531 dma_addr_t addr;
532 u64 hw_dequeue;
533 bool cycle_found = false;
534 bool td_last_trb_found = false;
535
536 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
537 ep_index, stream_id);
538 if (!ep_ring) {
539 xhci_warn(xhci, "WARN can't find new dequeue state "
540 "for invalid stream ID %u.\n",
541 stream_id);
542 return;
543 }
544 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
545 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
546 "Finding endpoint context");
547
548 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
549 new_seg = ep_ring->deq_seg;
550 new_deq = ep_ring->dequeue;
551 state->new_cycle_state = hw_dequeue & 0x1;
552 state->stream_id = stream_id;
553
554 /*
555 * We want to find the pointer, segment and cycle state of the new trb
556 * (the one after current TD's last_trb). We know the cycle state at
557 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
558 * found.
559 */
560 do {
561 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
562 == (dma_addr_t)(hw_dequeue & ~0xf)) {
563 cycle_found = true;
564 if (td_last_trb_found)
565 break;
566 }
567 if (new_deq == cur_td->last_trb)
568 td_last_trb_found = true;
569
570 if (cycle_found && trb_is_link(new_deq) &&
571 link_trb_toggles_cycle(new_deq))
572 state->new_cycle_state ^= 0x1;
573
574 next_trb(xhci, ep_ring, &new_seg, &new_deq);
575
576 /* Search wrapped around, bail out */
577 if (new_deq == ep->ring->dequeue) {
578 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
579 state->new_deq_seg = NULL;
580 state->new_deq_ptr = NULL;
581 return;
582 }
583
584 } while (!cycle_found || !td_last_trb_found);
585
586 state->new_deq_seg = new_seg;
587 state->new_deq_ptr = new_deq;
588
589 /* Don't update the ring cycle state for the producer (us). */
590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
591 "Cycle state = 0x%x", state->new_cycle_state);
592
593 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
594 "New dequeue segment = %p (virtual)",
595 state->new_deq_seg);
596 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
598 "New dequeue pointer = 0x%llx (DMA)",
599 (unsigned long long) addr);
600 }
601
602 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
603 * (The last TRB actually points to the ring enqueue pointer, which is not part
604 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
605 */
td_to_noop(struct xhci_hcd * xhci,struct xhci_ring * ep_ring,struct xhci_td * td,bool flip_cycle)606 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
607 struct xhci_td *td, bool flip_cycle)
608 {
609 struct xhci_segment *seg = td->start_seg;
610 union xhci_trb *trb = td->first_trb;
611
612 while (1) {
613 trb_to_noop(trb, TRB_TR_NOOP);
614
615 /* flip cycle if asked to */
616 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
617 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
618
619 if (trb == td->last_trb)
620 break;
621
622 next_trb(xhci, ep_ring, &seg, &trb);
623 }
624 }
625
xhci_stop_watchdog_timer_in_irq(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)626 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
627 struct xhci_virt_ep *ep)
628 {
629 ep->ep_state &= ~EP_STOP_CMD_PENDING;
630 /* Can't del_timer_sync in interrupt */
631 del_timer(&ep->stop_cmd_timer);
632 }
633
634 /*
635 * Must be called with xhci->lock held in interrupt context,
636 * releases and re-acquires xhci->lock
637 */
xhci_giveback_urb_in_irq(struct xhci_hcd * xhci,struct xhci_td * cur_td,int status)638 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
639 struct xhci_td *cur_td, int status)
640 {
641 struct urb *urb = cur_td->urb;
642 struct urb_priv *urb_priv = urb->hcpriv;
643 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
644
645 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
646 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
647 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
648 if (xhci->quirks & XHCI_AMD_PLL_FIX)
649 usb_amd_quirk_pll_enable();
650 }
651 }
652 xhci_urb_free_priv(urb_priv);
653 usb_hcd_unlink_urb_from_ep(hcd, urb);
654 spin_unlock(&xhci->lock);
655 trace_xhci_urb_giveback(urb);
656 usb_hcd_giveback_urb(hcd, urb, status);
657 spin_lock(&xhci->lock);
658 }
659
xhci_unmap_td_bounce_buffer(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_td * td)660 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
661 struct xhci_ring *ring, struct xhci_td *td)
662 {
663 struct device *dev = xhci_to_hcd(xhci)->self.controller;
664 struct xhci_segment *seg = td->bounce_seg;
665 struct urb *urb = td->urb;
666 size_t len;
667
668 if (!ring || !seg || !urb)
669 return;
670
671 if (usb_urb_dir_out(urb)) {
672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
673 DMA_TO_DEVICE);
674 return;
675 }
676
677 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
678 DMA_FROM_DEVICE);
679 /* for in tranfers we need to copy the data from bounce to sg */
680 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf,
681 seg->bounce_len, seg->bounce_offs);
682 if (len != seg->bounce_len)
683 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n",
684 len, seg->bounce_len);
685 seg->bounce_len = 0;
686 seg->bounce_offs = 0;
687 }
688
689 /*
690 * When we get a command completion for a Stop Endpoint Command, we need to
691 * unlink any cancelled TDs from the ring. There are two ways to do that:
692 *
693 * 1. If the HW was in the middle of processing the TD that needs to be
694 * cancelled, then we must move the ring's dequeue pointer past the last TRB
695 * in the TD with a Set Dequeue Pointer Command.
696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
697 * bit cleared) so that the HW will skip over them.
698 */
xhci_handle_cmd_stop_ep(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,struct xhci_event_cmd * event)699 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
700 union xhci_trb *trb, struct xhci_event_cmd *event)
701 {
702 unsigned int ep_index;
703 struct xhci_ring *ep_ring;
704 struct xhci_virt_ep *ep;
705 struct xhci_td *cur_td = NULL;
706 struct xhci_td *last_unlinked_td;
707 struct xhci_ep_ctx *ep_ctx;
708 struct xhci_virt_device *vdev;
709 u64 hw_deq;
710 struct xhci_dequeue_state deq_state;
711
712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
713 if (!xhci->devs[slot_id])
714 xhci_warn(xhci, "Stop endpoint command "
715 "completion for disabled slot %u\n",
716 slot_id);
717 return;
718 }
719
720 memset(&deq_state, 0, sizeof(deq_state));
721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
722
723 vdev = xhci->devs[slot_id];
724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
725 trace_xhci_handle_cmd_stop_ep(ep_ctx);
726
727 ep = &xhci->devs[slot_id]->eps[ep_index];
728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
729 struct xhci_td, cancelled_td_list);
730
731 if (list_empty(&ep->cancelled_td_list)) {
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
734 return;
735 }
736
737 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
738 * We have the xHCI lock, so nothing can modify this list until we drop
739 * it. We're also in the event handler, so we can't get re-interrupted
740 * if another Stop Endpoint command completes
741 */
742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
744 "Removing canceled TD starting at 0x%llx (dma).",
745 (unsigned long long)xhci_trb_virt_to_dma(
746 cur_td->start_seg, cur_td->first_trb));
747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
748 if (!ep_ring) {
749 /* This shouldn't happen unless a driver is mucking
750 * with the stream ID after submission. This will
751 * leave the TD on the hardware ring, and the hardware
752 * will try to execute it, and may access a buffer
753 * that has already been freed. In the best case, the
754 * hardware will execute it, and the event handler will
755 * ignore the completion event for that TD, since it was
756 * removed from the td_list for that endpoint. In
757 * short, don't muck with the stream ID after
758 * submission.
759 */
760 xhci_warn(xhci, "WARN Cancelled URB %p "
761 "has invalid stream ID %u.\n",
762 cur_td->urb,
763 cur_td->urb->stream_id);
764 goto remove_finished_td;
765 }
766 /*
767 * If we stopped on the TD we need to cancel, then we have to
768 * move the xHC endpoint ring dequeue pointer past this TD.
769 */
770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
771 cur_td->urb->stream_id);
772 hw_deq &= ~0xf;
773
774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
775 cur_td->last_trb, hw_deq, false)) {
776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
777 cur_td->urb->stream_id,
778 cur_td, &deq_state);
779 } else {
780 td_to_noop(xhci, ep_ring, cur_td, false);
781 }
782
783 remove_finished_td:
784 /*
785 * The event handler won't see a completion for this TD anymore,
786 * so remove it from the endpoint ring's TD list. Keep it in
787 * the cancelled TD list for URB completion later.
788 */
789 list_del_init(&cur_td->td_list);
790 }
791
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793
794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
797 &deq_state);
798 xhci_ring_cmd_db(xhci);
799 } else {
800 /* Otherwise ring the doorbell(s) to restart queued transfers */
801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
802 }
803
804 /*
805 * Drop the lock and complete the URBs in the cancelled TD list.
806 * New TDs to be cancelled might be added to the end of the list before
807 * we can complete all the URBs for the TDs we already unlinked.
808 * So stop when we've completed the URB for the last TD we unlinked.
809 */
810 do {
811 cur_td = list_first_entry(&ep->cancelled_td_list,
812 struct xhci_td, cancelled_td_list);
813 list_del_init(&cur_td->cancelled_td_list);
814
815 /* Clean up the cancelled URB */
816 /* Doesn't matter what we pass for status, since the core will
817 * just overwrite it (because the URB has been unlinked).
818 */
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
821 inc_td_cnt(cur_td->urb);
822 if (last_td_in_urb(cur_td))
823 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
824
825 /* Stop processing the cancelled list if the watchdog timer is
826 * running.
827 */
828 if (xhci->xhc_state & XHCI_STATE_DYING)
829 return;
830 } while (cur_td != last_unlinked_td);
831
832 /* Return to the event handler with xhci->lock re-acquired */
833 }
834
xhci_kill_ring_urbs(struct xhci_hcd * xhci,struct xhci_ring * ring)835 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
836 {
837 struct xhci_td *cur_td;
838 struct xhci_td *tmp;
839
840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
841 list_del_init(&cur_td->td_list);
842
843 if (!list_empty(&cur_td->cancelled_td_list))
844 list_del_init(&cur_td->cancelled_td_list);
845
846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
847
848 inc_td_cnt(cur_td->urb);
849 if (last_td_in_urb(cur_td))
850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
851 }
852 }
853
xhci_kill_endpoint_urbs(struct xhci_hcd * xhci,int slot_id,int ep_index)854 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
855 int slot_id, int ep_index)
856 {
857 struct xhci_td *cur_td;
858 struct xhci_td *tmp;
859 struct xhci_virt_ep *ep;
860 struct xhci_ring *ring;
861
862 ep = &xhci->devs[slot_id]->eps[ep_index];
863 if ((ep->ep_state & EP_HAS_STREAMS) ||
864 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
865 int stream_id;
866
867 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
868 stream_id++) {
869 ring = ep->stream_info->stream_rings[stream_id];
870 if (!ring)
871 continue;
872
873 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
874 "Killing URBs for slot ID %u, ep index %u, stream %u",
875 slot_id, ep_index, stream_id);
876 xhci_kill_ring_urbs(xhci, ring);
877 }
878 } else {
879 ring = ep->ring;
880 if (!ring)
881 return;
882 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
883 "Killing URBs for slot ID %u, ep index %u",
884 slot_id, ep_index);
885 xhci_kill_ring_urbs(xhci, ring);
886 }
887
888 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
889 cancelled_td_list) {
890 list_del_init(&cur_td->cancelled_td_list);
891 inc_td_cnt(cur_td->urb);
892
893 if (last_td_in_urb(cur_td))
894 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
895 }
896 }
897
898 /*
899 * host controller died, register read returns 0xffffffff
900 * Complete pending commands, mark them ABORTED.
901 * URBs need to be given back as usb core might be waiting with device locks
902 * held for the URBs to finish during device disconnect, blocking host remove.
903 *
904 * Call with xhci->lock held.
905 * lock is relased and re-acquired while giving back urb.
906 */
xhci_hc_died(struct xhci_hcd * xhci)907 void xhci_hc_died(struct xhci_hcd *xhci)
908 {
909 int i, j;
910
911 if (xhci->xhc_state & XHCI_STATE_DYING)
912 return;
913
914 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
915 xhci->xhc_state |= XHCI_STATE_DYING;
916
917 xhci_cleanup_command_queue(xhci);
918
919 /* return any pending urbs, remove may be waiting for them */
920 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
921 if (!xhci->devs[i])
922 continue;
923 for (j = 0; j < 31; j++)
924 xhci_kill_endpoint_urbs(xhci, i, j);
925 }
926
927 /* inform usb core hc died if PCI remove isn't already handling it */
928 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
929 usb_hc_died(xhci_to_hcd(xhci));
930 }
931
932 /* Watchdog timer function for when a stop endpoint command fails to complete.
933 * In this case, we assume the host controller is broken or dying or dead. The
934 * host may still be completing some other events, so we have to be careful to
935 * let the event ring handler and the URB dequeueing/enqueueing functions know
936 * through xhci->state.
937 *
938 * The timer may also fire if the host takes a very long time to respond to the
939 * command, and the stop endpoint command completion handler cannot delete the
940 * timer before the timer function is called. Another endpoint cancellation may
941 * sneak in before the timer function can grab the lock, and that may queue
942 * another stop endpoint command and add the timer back. So we cannot use a
943 * simple flag to say whether there is a pending stop endpoint command for a
944 * particular endpoint.
945 *
946 * Instead we use a combination of that flag and checking if a new timer is
947 * pending.
948 */
xhci_stop_endpoint_command_watchdog(struct timer_list * t)949 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
950 {
951 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
952 struct xhci_hcd *xhci = ep->xhci;
953 unsigned long flags;
954
955 spin_lock_irqsave(&xhci->lock, flags);
956
957 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
958 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
959 timer_pending(&ep->stop_cmd_timer)) {
960 spin_unlock_irqrestore(&xhci->lock, flags);
961 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
962 return;
963 }
964
965 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
966 ep->ep_state &= ~EP_STOP_CMD_PENDING;
967
968 xhci_halt(xhci);
969
970 /*
971 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
972 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
973 * and try to recover a -ETIMEDOUT with a host controller reset
974 */
975 xhci_hc_died(xhci);
976
977 spin_unlock_irqrestore(&xhci->lock, flags);
978 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
979 "xHCI host controller is dead.");
980 }
981
update_ring_for_set_deq_completion(struct xhci_hcd * xhci,struct xhci_virt_device * dev,struct xhci_ring * ep_ring,unsigned int ep_index)982 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
983 struct xhci_virt_device *dev,
984 struct xhci_ring *ep_ring,
985 unsigned int ep_index)
986 {
987 union xhci_trb *dequeue_temp;
988 int num_trbs_free_temp;
989 bool revert = false;
990
991 num_trbs_free_temp = ep_ring->num_trbs_free;
992 dequeue_temp = ep_ring->dequeue;
993
994 /* If we get two back-to-back stalls, and the first stalled transfer
995 * ends just before a link TRB, the dequeue pointer will be left on
996 * the link TRB by the code in the while loop. So we have to update
997 * the dequeue pointer one segment further, or we'll jump off
998 * the segment into la-la-land.
999 */
1000 if (trb_is_link(ep_ring->dequeue)) {
1001 ep_ring->deq_seg = ep_ring->deq_seg->next;
1002 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1003 }
1004
1005 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1006 /* We have more usable TRBs */
1007 ep_ring->num_trbs_free++;
1008 ep_ring->dequeue++;
1009 if (trb_is_link(ep_ring->dequeue)) {
1010 if (ep_ring->dequeue ==
1011 dev->eps[ep_index].queued_deq_ptr)
1012 break;
1013 ep_ring->deq_seg = ep_ring->deq_seg->next;
1014 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1015 }
1016 if (ep_ring->dequeue == dequeue_temp) {
1017 revert = true;
1018 break;
1019 }
1020 }
1021
1022 if (revert) {
1023 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1024 ep_ring->num_trbs_free = num_trbs_free_temp;
1025 }
1026 }
1027
1028 /*
1029 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1030 * we need to clear the set deq pending flag in the endpoint ring state, so that
1031 * the TD queueing code can ring the doorbell again. We also need to ring the
1032 * endpoint doorbell to restart the ring, but only if there aren't more
1033 * cancellations pending.
1034 */
xhci_handle_cmd_set_deq(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,u32 cmd_comp_code)1035 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1036 union xhci_trb *trb, u32 cmd_comp_code)
1037 {
1038 unsigned int ep_index;
1039 unsigned int stream_id;
1040 struct xhci_ring *ep_ring;
1041 struct xhci_virt_device *dev;
1042 struct xhci_virt_ep *ep;
1043 struct xhci_ep_ctx *ep_ctx;
1044 struct xhci_slot_ctx *slot_ctx;
1045
1046 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1047 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1048 dev = xhci->devs[slot_id];
1049 ep = &dev->eps[ep_index];
1050
1051 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1052 if (!ep_ring) {
1053 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1054 stream_id);
1055 /* XXX: Harmless??? */
1056 goto cleanup;
1057 }
1058
1059 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1060 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1061 trace_xhci_handle_cmd_set_deq(slot_ctx);
1062 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1063
1064 if (cmd_comp_code != COMP_SUCCESS) {
1065 unsigned int ep_state;
1066 unsigned int slot_state;
1067
1068 switch (cmd_comp_code) {
1069 case COMP_TRB_ERROR:
1070 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1071 break;
1072 case COMP_CONTEXT_STATE_ERROR:
1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1074 ep_state = GET_EP_CTX_STATE(ep_ctx);
1075 slot_state = le32_to_cpu(slot_ctx->dev_state);
1076 slot_state = GET_SLOT_STATE(slot_state);
1077 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1078 "Slot state = %u, EP state = %u",
1079 slot_state, ep_state);
1080 break;
1081 case COMP_SLOT_NOT_ENABLED_ERROR:
1082 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1083 slot_id);
1084 break;
1085 default:
1086 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1087 cmd_comp_code);
1088 break;
1089 }
1090 /* OK what do we do now? The endpoint state is hosed, and we
1091 * should never get to this point if the synchronization between
1092 * queueing, and endpoint state are correct. This might happen
1093 * if the device gets disconnected after we've finished
1094 * cancelling URBs, which might not be an error...
1095 */
1096 } else {
1097 u64 deq;
1098 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1099 if (ep->ep_state & EP_HAS_STREAMS) {
1100 struct xhci_stream_ctx *ctx =
1101 &ep->stream_info->stream_ctx_array[stream_id];
1102 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1103 } else {
1104 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1105 }
1106 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1107 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1108 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1109 ep->queued_deq_ptr) == deq) {
1110 /* Update the ring's dequeue segment and dequeue pointer
1111 * to reflect the new position.
1112 */
1113 update_ring_for_set_deq_completion(xhci, dev,
1114 ep_ring, ep_index);
1115 } else {
1116 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1117 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1118 ep->queued_deq_seg, ep->queued_deq_ptr);
1119 }
1120 }
1121
1122 cleanup:
1123 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1124 dev->eps[ep_index].queued_deq_seg = NULL;
1125 dev->eps[ep_index].queued_deq_ptr = NULL;
1126 /* Restart any rings with pending URBs */
1127 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1128 }
1129
xhci_handle_cmd_reset_ep(struct xhci_hcd * xhci,int slot_id,union xhci_trb * trb,u32 cmd_comp_code)1130 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1131 union xhci_trb *trb, u32 cmd_comp_code)
1132 {
1133 struct xhci_virt_device *vdev;
1134 struct xhci_ep_ctx *ep_ctx;
1135 unsigned int ep_index;
1136
1137 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1138 vdev = xhci->devs[slot_id];
1139 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1140 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1141
1142 /* This command will only fail if the endpoint wasn't halted,
1143 * but we don't care.
1144 */
1145 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1146 "Ignoring reset ep completion code of %u", cmd_comp_code);
1147
1148 /* HW with the reset endpoint quirk needs to have a configure endpoint
1149 * command complete before the endpoint can be used. Queue that here
1150 * because the HW can't handle two commands being queued in a row.
1151 */
1152 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1153 struct xhci_command *command;
1154
1155 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1156 if (!command)
1157 return;
1158
1159 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1160 "Queueing configure endpoint command");
1161 xhci_queue_configure_endpoint(xhci, command,
1162 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1163 false);
1164 xhci_ring_cmd_db(xhci);
1165 } else {
1166 /* Clear our internal halted state */
1167 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1168 }
1169
1170 /* if this was a soft reset, then restart */
1171 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
1172 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1173 }
1174
xhci_handle_cmd_enable_slot(struct xhci_hcd * xhci,int slot_id,struct xhci_command * command,u32 cmd_comp_code)1175 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1176 struct xhci_command *command, u32 cmd_comp_code)
1177 {
1178 if (cmd_comp_code == COMP_SUCCESS)
1179 command->slot_id = slot_id;
1180 else
1181 command->slot_id = 0;
1182 }
1183
xhci_handle_cmd_disable_slot(struct xhci_hcd * xhci,int slot_id)1184 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1185 {
1186 struct xhci_virt_device *virt_dev;
1187 struct xhci_slot_ctx *slot_ctx;
1188
1189 virt_dev = xhci->devs[slot_id];
1190 if (!virt_dev)
1191 return;
1192
1193 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1194 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1195
1196 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1197 /* Delete default control endpoint resources */
1198 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1199 xhci_free_virt_device(xhci, slot_id);
1200 }
1201
xhci_handle_cmd_config_ep(struct xhci_hcd * xhci,int slot_id,struct xhci_event_cmd * event,u32 cmd_comp_code)1202 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1203 struct xhci_event_cmd *event, u32 cmd_comp_code)
1204 {
1205 struct xhci_virt_device *virt_dev;
1206 struct xhci_input_control_ctx *ctrl_ctx;
1207 struct xhci_ep_ctx *ep_ctx;
1208 unsigned int ep_index;
1209 unsigned int ep_state;
1210 u32 add_flags, drop_flags;
1211
1212 /*
1213 * Configure endpoint commands can come from the USB core
1214 * configuration or alt setting changes, or because the HW
1215 * needed an extra configure endpoint command after a reset
1216 * endpoint command or streams were being configured.
1217 * If the command was for a halted endpoint, the xHCI driver
1218 * is not waiting on the configure endpoint command.
1219 */
1220 virt_dev = xhci->devs[slot_id];
1221 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1222 if (!ctrl_ctx) {
1223 xhci_warn(xhci, "Could not get input context, bad type.\n");
1224 return;
1225 }
1226
1227 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1228 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1229 /* Input ctx add_flags are the endpoint index plus one */
1230 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1231
1232 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1233 trace_xhci_handle_cmd_config_ep(ep_ctx);
1234
1235 /* A usb_set_interface() call directly after clearing a halted
1236 * condition may race on this quirky hardware. Not worth
1237 * worrying about, since this is prototype hardware. Not sure
1238 * if this will work for streams, but streams support was
1239 * untested on this prototype.
1240 */
1241 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1242 ep_index != (unsigned int) -1 &&
1243 add_flags - SLOT_FLAG == drop_flags) {
1244 ep_state = virt_dev->eps[ep_index].ep_state;
1245 if (!(ep_state & EP_HALTED))
1246 return;
1247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1248 "Completed config ep cmd - "
1249 "last ep index = %d, state = %d",
1250 ep_index, ep_state);
1251 /* Clear internal halted state and restart ring(s) */
1252 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1253 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1254 return;
1255 }
1256 return;
1257 }
1258
xhci_handle_cmd_addr_dev(struct xhci_hcd * xhci,int slot_id)1259 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1260 {
1261 struct xhci_virt_device *vdev;
1262 struct xhci_slot_ctx *slot_ctx;
1263
1264 vdev = xhci->devs[slot_id];
1265 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1266 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1267 }
1268
xhci_handle_cmd_reset_dev(struct xhci_hcd * xhci,int slot_id,struct xhci_event_cmd * event)1269 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1270 struct xhci_event_cmd *event)
1271 {
1272 struct xhci_virt_device *vdev;
1273 struct xhci_slot_ctx *slot_ctx;
1274
1275 vdev = xhci->devs[slot_id];
1276 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1277 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1278
1279 xhci_dbg(xhci, "Completed reset device command.\n");
1280 if (!xhci->devs[slot_id])
1281 xhci_warn(xhci, "Reset device command completion "
1282 "for disabled slot %u\n", slot_id);
1283 }
1284
xhci_handle_cmd_nec_get_fw(struct xhci_hcd * xhci,struct xhci_event_cmd * event)1285 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1286 struct xhci_event_cmd *event)
1287 {
1288 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1289 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1290 return;
1291 }
1292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1293 "NEC firmware version %2x.%02x",
1294 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1295 NEC_FW_MINOR(le32_to_cpu(event->status)));
1296 }
1297
xhci_complete_del_and_free_cmd(struct xhci_command * cmd,u32 status)1298 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1299 {
1300 list_del(&cmd->cmd_list);
1301
1302 if (cmd->completion) {
1303 cmd->status = status;
1304 complete(cmd->completion);
1305 } else {
1306 kfree(cmd);
1307 }
1308 }
1309
xhci_cleanup_command_queue(struct xhci_hcd * xhci)1310 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1311 {
1312 struct xhci_command *cur_cmd, *tmp_cmd;
1313 xhci->current_cmd = NULL;
1314 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1315 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1316 }
1317
xhci_handle_command_timeout(struct work_struct * work)1318 void xhci_handle_command_timeout(struct work_struct *work)
1319 {
1320 struct xhci_hcd *xhci;
1321 unsigned long flags;
1322 u64 hw_ring_state;
1323
1324 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1325
1326 spin_lock_irqsave(&xhci->lock, flags);
1327
1328 /*
1329 * If timeout work is pending, or current_cmd is NULL, it means we
1330 * raced with command completion. Command is handled so just return.
1331 */
1332 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1333 spin_unlock_irqrestore(&xhci->lock, flags);
1334 return;
1335 }
1336 /* mark this command to be cancelled */
1337 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1338
1339 /* Make sure command ring is running before aborting it */
1340 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1341 if (hw_ring_state == ~(u64)0) {
1342 xhci_hc_died(xhci);
1343 goto time_out_completed;
1344 }
1345
1346 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1347 (hw_ring_state & CMD_RING_RUNNING)) {
1348 /* Prevent new doorbell, and start command abort */
1349 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1350 xhci_dbg(xhci, "Command timeout\n");
1351 xhci_abort_cmd_ring(xhci, flags);
1352 goto time_out_completed;
1353 }
1354
1355 /* host removed. Bail out */
1356 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1357 xhci_dbg(xhci, "host removed, ring start fail?\n");
1358 xhci_cleanup_command_queue(xhci);
1359
1360 goto time_out_completed;
1361 }
1362
1363 /* command timeout on stopped ring, ring can't be aborted */
1364 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1365 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1366
1367 time_out_completed:
1368 spin_unlock_irqrestore(&xhci->lock, flags);
1369 return;
1370 }
1371
handle_cmd_completion(struct xhci_hcd * xhci,struct xhci_event_cmd * event)1372 static void handle_cmd_completion(struct xhci_hcd *xhci,
1373 struct xhci_event_cmd *event)
1374 {
1375 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1376 u64 cmd_dma;
1377 dma_addr_t cmd_dequeue_dma;
1378 u32 cmd_comp_code;
1379 union xhci_trb *cmd_trb;
1380 struct xhci_command *cmd;
1381 u32 cmd_type;
1382
1383 cmd_dma = le64_to_cpu(event->cmd_trb);
1384 cmd_trb = xhci->cmd_ring->dequeue;
1385
1386 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1387
1388 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1389 cmd_trb);
1390 /*
1391 * Check whether the completion event is for our internal kept
1392 * command.
1393 */
1394 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1395 xhci_warn(xhci,
1396 "ERROR mismatched command completion event\n");
1397 return;
1398 }
1399
1400 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1401
1402 cancel_delayed_work(&xhci->cmd_timer);
1403
1404 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1405
1406 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1407 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1408 complete_all(&xhci->cmd_ring_stop_completion);
1409 return;
1410 }
1411
1412 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1413 xhci_err(xhci,
1414 "Command completion event does not match command\n");
1415 return;
1416 }
1417
1418 /*
1419 * Host aborted the command ring, check if the current command was
1420 * supposed to be aborted, otherwise continue normally.
1421 * The command ring is stopped now, but the xHC will issue a Command
1422 * Ring Stopped event which will cause us to restart it.
1423 */
1424 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1425 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1426 if (cmd->status == COMP_COMMAND_ABORTED) {
1427 if (xhci->current_cmd == cmd)
1428 xhci->current_cmd = NULL;
1429 goto event_handled;
1430 }
1431 }
1432
1433 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1434 switch (cmd_type) {
1435 case TRB_ENABLE_SLOT:
1436 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1437 break;
1438 case TRB_DISABLE_SLOT:
1439 xhci_handle_cmd_disable_slot(xhci, slot_id);
1440 break;
1441 case TRB_CONFIG_EP:
1442 if (!cmd->completion)
1443 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1444 cmd_comp_code);
1445 break;
1446 case TRB_EVAL_CONTEXT:
1447 break;
1448 case TRB_ADDR_DEV:
1449 xhci_handle_cmd_addr_dev(xhci, slot_id);
1450 break;
1451 case TRB_STOP_RING:
1452 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1453 le32_to_cpu(cmd_trb->generic.field[3])));
1454 if (!cmd->completion)
1455 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1456 break;
1457 case TRB_SET_DEQ:
1458 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1459 le32_to_cpu(cmd_trb->generic.field[3])));
1460 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1461 break;
1462 case TRB_CMD_NOOP:
1463 /* Is this an aborted command turned to NO-OP? */
1464 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1465 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1466 break;
1467 case TRB_RESET_EP:
1468 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1469 le32_to_cpu(cmd_trb->generic.field[3])));
1470 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1471 break;
1472 case TRB_RESET_DEV:
1473 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1474 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1475 */
1476 slot_id = TRB_TO_SLOT_ID(
1477 le32_to_cpu(cmd_trb->generic.field[3]));
1478 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1479 break;
1480 case TRB_NEC_GET_FW:
1481 xhci_handle_cmd_nec_get_fw(xhci, event);
1482 break;
1483 default:
1484 /* Skip over unknown commands on the event ring */
1485 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1486 break;
1487 }
1488
1489 /* restart timer if this wasn't the last command */
1490 if (!list_is_singular(&xhci->cmd_list)) {
1491 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1492 struct xhci_command, cmd_list);
1493 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1494 } else if (xhci->current_cmd == cmd) {
1495 xhci->current_cmd = NULL;
1496 }
1497
1498 event_handled:
1499 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1500
1501 inc_deq(xhci, xhci->cmd_ring);
1502 }
1503
handle_vendor_event(struct xhci_hcd * xhci,union xhci_trb * event)1504 static void handle_vendor_event(struct xhci_hcd *xhci,
1505 union xhci_trb *event)
1506 {
1507 u32 trb_type;
1508
1509 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1510 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1511 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1512 handle_cmd_completion(xhci, &event->event_cmd);
1513 }
1514
handle_device_notification(struct xhci_hcd * xhci,union xhci_trb * event)1515 static void handle_device_notification(struct xhci_hcd *xhci,
1516 union xhci_trb *event)
1517 {
1518 u32 slot_id;
1519 struct usb_device *udev;
1520
1521 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1522 if (!xhci->devs[slot_id]) {
1523 xhci_warn(xhci, "Device Notification event for "
1524 "unused slot %u\n", slot_id);
1525 return;
1526 }
1527
1528 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1529 slot_id);
1530 udev = xhci->devs[slot_id]->udev;
1531 if (udev && udev->parent)
1532 usb_wakeup_notification(udev->parent, udev->portnum);
1533 }
1534
1535 /*
1536 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
1537 * Controller.
1538 * As per ThunderX2errata-129 USB 2 device may come up as USB 1
1539 * If a connection to a USB 1 device is followed by another connection
1540 * to a USB 2 device.
1541 *
1542 * Reset the PHY after the USB device is disconnected if device speed
1543 * is less than HCD_USB3.
1544 * Retry the reset sequence max of 4 times checking the PLL lock status.
1545 *
1546 */
xhci_cavium_reset_phy_quirk(struct xhci_hcd * xhci)1547 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
1548 {
1549 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1550 u32 pll_lock_check;
1551 u32 retry_count = 4;
1552
1553 do {
1554 /* Assert PHY reset */
1555 writel(0x6F, hcd->regs + 0x1048);
1556 udelay(10);
1557 /* De-assert the PHY reset */
1558 writel(0x7F, hcd->regs + 0x1048);
1559 udelay(200);
1560 pll_lock_check = readl(hcd->regs + 0x1070);
1561 } while (!(pll_lock_check & 0x1) && --retry_count);
1562 }
1563
handle_port_status(struct xhci_hcd * xhci,union xhci_trb * event)1564 static void handle_port_status(struct xhci_hcd *xhci,
1565 union xhci_trb *event)
1566 {
1567 struct usb_hcd *hcd;
1568 u32 port_id;
1569 u32 portsc, cmd_reg;
1570 int max_ports;
1571 int slot_id;
1572 unsigned int hcd_portnum;
1573 struct xhci_bus_state *bus_state;
1574 bool bogus_port_status = false;
1575 struct xhci_port *port;
1576
1577 /* Port status change events always have a successful completion code */
1578 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1579 xhci_warn(xhci,
1580 "WARN: xHC returned failed port status event\n");
1581
1582 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1583 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1584
1585 if ((port_id <= 0) || (port_id > max_ports)) {
1586 xhci_warn(xhci, "Port change event with invalid port ID %d\n",
1587 port_id);
1588 inc_deq(xhci, xhci->event_ring);
1589 return;
1590 }
1591
1592 port = &xhci->hw_ports[port_id - 1];
1593 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1594 xhci_warn(xhci, "Port change event, no port for port ID %u\n",
1595 port_id);
1596 bogus_port_status = true;
1597 goto cleanup;
1598 }
1599
1600 /* We might get interrupts after shared_hcd is removed */
1601 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
1602 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
1603 bogus_port_status = true;
1604 goto cleanup;
1605 }
1606
1607 hcd = port->rhub->hcd;
1608 bus_state = &port->rhub->bus_state;
1609 hcd_portnum = port->hcd_portnum;
1610 portsc = readl(port->addr);
1611
1612 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n",
1613 hcd->self.busnum, hcd_portnum + 1, port_id, portsc);
1614
1615 trace_xhci_handle_port_status(hcd_portnum, portsc);
1616
1617 if (hcd->state == HC_STATE_SUSPENDED) {
1618 xhci_dbg(xhci, "resume root hub\n");
1619 usb_hcd_resume_root_hub(hcd);
1620 }
1621
1622 if (hcd->speed >= HCD_USB3 &&
1623 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) {
1624 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1625 if (slot_id && xhci->devs[slot_id])
1626 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR;
1627 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1628 }
1629
1630 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1631 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1632
1633 cmd_reg = readl(&xhci->op_regs->command);
1634 if (!(cmd_reg & CMD_RUN)) {
1635 xhci_warn(xhci, "xHC is not running.\n");
1636 goto cleanup;
1637 }
1638
1639 if (DEV_SUPERSPEED_ANY(portsc)) {
1640 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1641 /* Set a flag to say the port signaled remote wakeup,
1642 * so we can tell the difference between the end of
1643 * device and host initiated resume.
1644 */
1645 bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1646 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1647 xhci_set_link_state(xhci, port, XDEV_U0);
1648 /* Need to wait until the next link state change
1649 * indicates the device is actually in U0.
1650 */
1651 bogus_port_status = true;
1652 goto cleanup;
1653 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1654 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1655 bus_state->resume_done[hcd_portnum] = jiffies +
1656 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1657 set_bit(hcd_portnum, &bus_state->resuming_ports);
1658 /* Do the rest in GetPortStatus after resume time delay.
1659 * Avoid polling roothub status before that so that a
1660 * usb device auto-resume latency around ~40ms.
1661 */
1662 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1663 mod_timer(&hcd->rh_timer,
1664 bus_state->resume_done[hcd_portnum]);
1665 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1666 bogus_port_status = true;
1667 }
1668 }
1669
1670 if ((portsc & PORT_PLC) &&
1671 DEV_SUPERSPEED_ANY(portsc) &&
1672 ((portsc & PORT_PLS_MASK) == XDEV_U0 ||
1673 (portsc & PORT_PLS_MASK) == XDEV_U1 ||
1674 (portsc & PORT_PLS_MASK) == XDEV_U2)) {
1675 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1676 /* We've just brought the device into U0/1/2 through either the
1677 * Resume state after a device remote wakeup, or through the
1678 * U3Exit state after a host-initiated resume. If it's a device
1679 * initiated remote wake, don't pass up the link state change,
1680 * so the roothub behavior is consistent with external
1681 * USB 3.0 hub behavior.
1682 */
1683 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1684 if (slot_id && xhci->devs[slot_id])
1685 xhci_ring_device(xhci, slot_id);
1686 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1687 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1688 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1689 usb_wakeup_notification(hcd->self.root_hub,
1690 hcd_portnum + 1);
1691 bogus_port_status = true;
1692 goto cleanup;
1693 }
1694 }
1695
1696 /*
1697 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1698 * RExit to a disconnect state). If so, let the the driver know it's
1699 * out of the RExit state.
1700 */
1701 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 &&
1702 test_and_clear_bit(hcd_portnum,
1703 &bus_state->rexit_ports)) {
1704 complete(&bus_state->rexit_done[hcd_portnum]);
1705 bogus_port_status = true;
1706 goto cleanup;
1707 }
1708
1709 if (hcd->speed < HCD_USB3) {
1710 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1711 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
1712 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
1713 xhci_cavium_reset_phy_quirk(xhci);
1714 }
1715
1716 cleanup:
1717 /* Update event ring dequeue pointer before dropping the lock */
1718 inc_deq(xhci, xhci->event_ring);
1719
1720 /* Don't make the USB core poll the roothub if we got a bad port status
1721 * change event. Besides, at that point we can't tell which roothub
1722 * (USB 2.0 or USB 3.0) to kick.
1723 */
1724 if (bogus_port_status)
1725 return;
1726
1727 /*
1728 * xHCI port-status-change events occur when the "or" of all the
1729 * status-change bits in the portsc register changes from 0 to 1.
1730 * New status changes won't cause an event if any other change
1731 * bits are still set. When an event occurs, switch over to
1732 * polling to avoid losing status changes.
1733 */
1734 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1735 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1736 spin_unlock(&xhci->lock);
1737 /* Pass this up to the core */
1738 usb_hcd_poll_rh_status(hcd);
1739 spin_lock(&xhci->lock);
1740 }
1741
1742 /*
1743 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1744 * at end_trb, which may be in another segment. If the suspect DMA address is a
1745 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1746 * returns 0.
1747 */
trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * start_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t suspect_dma,bool debug)1748 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1749 struct xhci_segment *start_seg,
1750 union xhci_trb *start_trb,
1751 union xhci_trb *end_trb,
1752 dma_addr_t suspect_dma,
1753 bool debug)
1754 {
1755 dma_addr_t start_dma;
1756 dma_addr_t end_seg_dma;
1757 dma_addr_t end_trb_dma;
1758 struct xhci_segment *cur_seg;
1759
1760 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1761 cur_seg = start_seg;
1762
1763 do {
1764 if (start_dma == 0)
1765 return NULL;
1766 /* We may get an event for a Link TRB in the middle of a TD */
1767 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1768 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1769 /* If the end TRB isn't in this segment, this is set to 0 */
1770 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1771
1772 if (debug)
1773 xhci_warn(xhci,
1774 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1775 (unsigned long long)suspect_dma,
1776 (unsigned long long)start_dma,
1777 (unsigned long long)end_trb_dma,
1778 (unsigned long long)cur_seg->dma,
1779 (unsigned long long)end_seg_dma);
1780
1781 if (end_trb_dma > 0) {
1782 /* The end TRB is in this segment, so suspect should be here */
1783 if (start_dma <= end_trb_dma) {
1784 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1785 return cur_seg;
1786 } else {
1787 /* Case for one segment with
1788 * a TD wrapped around to the top
1789 */
1790 if ((suspect_dma >= start_dma &&
1791 suspect_dma <= end_seg_dma) ||
1792 (suspect_dma >= cur_seg->dma &&
1793 suspect_dma <= end_trb_dma))
1794 return cur_seg;
1795 }
1796 return NULL;
1797 } else {
1798 /* Might still be somewhere in this segment */
1799 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1800 return cur_seg;
1801 }
1802 cur_seg = cur_seg->next;
1803 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1804 } while (cur_seg != start_seg);
1805
1806 return NULL;
1807 }
1808
xhci_clear_hub_tt_buffer(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_virt_ep * ep)1809 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td,
1810 struct xhci_virt_ep *ep)
1811 {
1812 /*
1813 * As part of low/full-speed endpoint-halt processing
1814 * we must clear the TT buffer (USB 2.0 specification 11.17.5).
1815 */
1816 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) &&
1817 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) &&
1818 !(ep->ep_state & EP_CLEARING_TT)) {
1819 ep->ep_state |= EP_CLEARING_TT;
1820 td->urb->ep->hcpriv = td->urb->dev;
1821 if (usb_hub_clear_tt_buffer(td->urb))
1822 ep->ep_state &= ~EP_CLEARING_TT;
1823 }
1824 }
1825
xhci_cleanup_halted_endpoint(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * td,enum xhci_ep_reset_type reset_type)1826 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1827 unsigned int slot_id, unsigned int ep_index,
1828 unsigned int stream_id, struct xhci_td *td,
1829 enum xhci_ep_reset_type reset_type)
1830 {
1831 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1832 struct xhci_command *command;
1833
1834 /*
1835 * Avoid resetting endpoint if link is inactive. Can cause host hang.
1836 * Device will be reset soon to recover the link so don't do anything
1837 */
1838 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR)
1839 return;
1840
1841 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1842 if (!command)
1843 return;
1844
1845 ep->ep_state |= EP_HALTED;
1846
1847 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1848
1849 if (reset_type == EP_HARD_RESET) {
1850 ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
1851 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1852 xhci_clear_hub_tt_buffer(xhci, td, ep);
1853 }
1854 xhci_ring_cmd_db(xhci);
1855 }
1856
1857 /* Check if an error has halted the endpoint ring. The class driver will
1858 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1859 * However, a babble and other errors also halt the endpoint ring, and the class
1860 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1861 * Ring Dequeue Pointer command manually.
1862 */
xhci_requires_manual_halt_cleanup(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,unsigned int trb_comp_code)1863 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1864 struct xhci_ep_ctx *ep_ctx,
1865 unsigned int trb_comp_code)
1866 {
1867 /* TRB completion codes that may require a manual halt cleanup */
1868 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1869 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1870 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1871 /* The 0.95 spec says a babbling control endpoint
1872 * is not halted. The 0.96 spec says it is. Some HW
1873 * claims to be 0.95 compliant, but it halts the control
1874 * endpoint anyway. Check if a babble halted the
1875 * endpoint.
1876 */
1877 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1878 return 1;
1879
1880 return 0;
1881 }
1882
xhci_is_vendor_info_code(struct xhci_hcd * xhci,unsigned int trb_comp_code)1883 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1884 {
1885 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1886 /* Vendor defined "informational" completion code,
1887 * treat as not-an-error.
1888 */
1889 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1890 trb_comp_code);
1891 xhci_dbg(xhci, "Treating code as success.\n");
1892 return 1;
1893 }
1894 return 0;
1895 }
1896
xhci_td_cleanup(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_ring * ep_ring,int * status)1897 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1898 struct xhci_ring *ep_ring, int *status)
1899 {
1900 struct urb *urb = NULL;
1901
1902 /* Clean up the endpoint's TD list */
1903 urb = td->urb;
1904
1905 /* if a bounce buffer was used to align this td then unmap it */
1906 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1907
1908 /* Do one last check of the actual transfer length.
1909 * If the host controller said we transferred more data than the buffer
1910 * length, urb->actual_length will be a very big number (since it's
1911 * unsigned). Play it safe and say we didn't transfer anything.
1912 */
1913 if (urb->actual_length > urb->transfer_buffer_length) {
1914 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1915 urb->transfer_buffer_length, urb->actual_length);
1916 urb->actual_length = 0;
1917 *status = 0;
1918 }
1919 list_del_init(&td->td_list);
1920 /* Was this TD slated to be cancelled but completed anyway? */
1921 if (!list_empty(&td->cancelled_td_list))
1922 list_del_init(&td->cancelled_td_list);
1923
1924 inc_td_cnt(urb);
1925 /* Giveback the urb when all the tds are completed */
1926 if (last_td_in_urb(td)) {
1927 if ((urb->actual_length != urb->transfer_buffer_length &&
1928 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1929 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1930 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1931 urb, urb->actual_length,
1932 urb->transfer_buffer_length, *status);
1933
1934 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1935 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1936 *status = 0;
1937 xhci_giveback_urb_in_irq(xhci, td, *status);
1938 }
1939
1940 return 0;
1941 }
1942
finish_td(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)1943 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1944 struct xhci_transfer_event *event,
1945 struct xhci_virt_ep *ep, int *status)
1946 {
1947 struct xhci_virt_device *xdev;
1948 struct xhci_ep_ctx *ep_ctx;
1949 struct xhci_ring *ep_ring;
1950 unsigned int slot_id;
1951 u32 trb_comp_code;
1952 int ep_index;
1953
1954 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1955 xdev = xhci->devs[slot_id];
1956 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1957 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1958 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1959 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1960
1961 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1962 trb_comp_code == COMP_STOPPED ||
1963 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1964 /* The Endpoint Stop Command completion will take care of any
1965 * stopped TDs. A stopped TD may be restarted, so don't update
1966 * the ring dequeue pointer or take this TD off any lists yet.
1967 */
1968 return 0;
1969 }
1970 if (trb_comp_code == COMP_STALL_ERROR ||
1971 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1972 trb_comp_code)) {
1973 /* Issue a reset endpoint command to clear the host side
1974 * halt, followed by a set dequeue command to move the
1975 * dequeue pointer past the TD.
1976 * The class driver clears the device side halt later.
1977 */
1978 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1979 ep_ring->stream_id, td, EP_HARD_RESET);
1980 } else {
1981 /* Update ring dequeue pointer */
1982 while (ep_ring->dequeue != td->last_trb)
1983 inc_deq(xhci, ep_ring);
1984 inc_deq(xhci, ep_ring);
1985 }
1986
1987 return xhci_td_cleanup(xhci, td, ep_ring, status);
1988 }
1989
1990 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
sum_trb_lengths(struct xhci_hcd * xhci,struct xhci_ring * ring,union xhci_trb * stop_trb)1991 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1992 union xhci_trb *stop_trb)
1993 {
1994 u32 sum;
1995 union xhci_trb *trb = ring->dequeue;
1996 struct xhci_segment *seg = ring->deq_seg;
1997
1998 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1999 if (!trb_is_noop(trb) && !trb_is_link(trb))
2000 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
2001 }
2002 return sum;
2003 }
2004
2005 /*
2006 * Process control tds, update urb status and actual_length.
2007 */
process_ctrl_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)2008 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2009 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2010 struct xhci_virt_ep *ep, int *status)
2011 {
2012 struct xhci_virt_device *xdev;
2013 unsigned int slot_id;
2014 int ep_index;
2015 struct xhci_ep_ctx *ep_ctx;
2016 u32 trb_comp_code;
2017 u32 remaining, requested;
2018 u32 trb_type;
2019
2020 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2021 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2022 xdev = xhci->devs[slot_id];
2023 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2024 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2025 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2026 requested = td->urb->transfer_buffer_length;
2027 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2028
2029 switch (trb_comp_code) {
2030 case COMP_SUCCESS:
2031 if (trb_type != TRB_STATUS) {
2032 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2033 (trb_type == TRB_DATA) ? "data" : "setup");
2034 *status = -ESHUTDOWN;
2035 break;
2036 }
2037 *status = 0;
2038 break;
2039 case COMP_SHORT_PACKET:
2040 *status = 0;
2041 break;
2042 case COMP_STOPPED_SHORT_PACKET:
2043 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2044 td->urb->actual_length = remaining;
2045 else
2046 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2047 goto finish_td;
2048 case COMP_STOPPED:
2049 switch (trb_type) {
2050 case TRB_SETUP:
2051 td->urb->actual_length = 0;
2052 goto finish_td;
2053 case TRB_DATA:
2054 case TRB_NORMAL:
2055 td->urb->actual_length = requested - remaining;
2056 goto finish_td;
2057 case TRB_STATUS:
2058 td->urb->actual_length = requested;
2059 goto finish_td;
2060 default:
2061 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2062 trb_type);
2063 goto finish_td;
2064 }
2065 case COMP_STOPPED_LENGTH_INVALID:
2066 goto finish_td;
2067 default:
2068 if (!xhci_requires_manual_halt_cleanup(xhci,
2069 ep_ctx, trb_comp_code))
2070 break;
2071 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2072 trb_comp_code, ep_index);
2073 /* else fall through */
2074 case COMP_STALL_ERROR:
2075 /* Did we transfer part of the data (middle) phase? */
2076 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2077 td->urb->actual_length = requested - remaining;
2078 else if (!td->urb_length_set)
2079 td->urb->actual_length = 0;
2080 goto finish_td;
2081 }
2082
2083 /* stopped at setup stage, no data transferred */
2084 if (trb_type == TRB_SETUP)
2085 goto finish_td;
2086
2087 /*
2088 * if on data stage then update the actual_length of the URB and flag it
2089 * as set, so it won't be overwritten in the event for the last TRB.
2090 */
2091 if (trb_type == TRB_DATA ||
2092 trb_type == TRB_NORMAL) {
2093 td->urb_length_set = true;
2094 td->urb->actual_length = requested - remaining;
2095 xhci_dbg(xhci, "Waiting for status stage event\n");
2096 return 0;
2097 }
2098
2099 /* at status stage */
2100 if (!td->urb_length_set)
2101 td->urb->actual_length = requested;
2102
2103 finish_td:
2104 return finish_td(xhci, td, event, ep, status);
2105 }
2106
2107 /*
2108 * Process isochronous tds, update urb packet status and actual_length.
2109 */
process_isoc_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)2110 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2111 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2112 struct xhci_virt_ep *ep, int *status)
2113 {
2114 struct xhci_ring *ep_ring;
2115 struct urb_priv *urb_priv;
2116 int idx;
2117 struct usb_iso_packet_descriptor *frame;
2118 u32 trb_comp_code;
2119 bool sum_trbs_for_length = false;
2120 u32 remaining, requested, ep_trb_len;
2121 int short_framestatus;
2122
2123 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2124 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2125 urb_priv = td->urb->hcpriv;
2126 idx = urb_priv->num_tds_done;
2127 frame = &td->urb->iso_frame_desc[idx];
2128 requested = frame->length;
2129 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2130 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2131 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2132 -EREMOTEIO : 0;
2133
2134 /* handle completion code */
2135 switch (trb_comp_code) {
2136 case COMP_SUCCESS:
2137 if (remaining) {
2138 frame->status = short_framestatus;
2139 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2140 sum_trbs_for_length = true;
2141 break;
2142 }
2143 frame->status = 0;
2144 break;
2145 case COMP_SHORT_PACKET:
2146 frame->status = short_framestatus;
2147 sum_trbs_for_length = true;
2148 break;
2149 case COMP_BANDWIDTH_OVERRUN_ERROR:
2150 frame->status = -ECOMM;
2151 break;
2152 case COMP_ISOCH_BUFFER_OVERRUN:
2153 case COMP_BABBLE_DETECTED_ERROR:
2154 frame->status = -EOVERFLOW;
2155 break;
2156 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2157 case COMP_STALL_ERROR:
2158 frame->status = -EPROTO;
2159 break;
2160 case COMP_USB_TRANSACTION_ERROR:
2161 frame->status = -EPROTO;
2162 if (ep_trb != td->last_trb)
2163 return 0;
2164 break;
2165 case COMP_STOPPED:
2166 sum_trbs_for_length = true;
2167 break;
2168 case COMP_STOPPED_SHORT_PACKET:
2169 /* field normally containing residue now contains tranferred */
2170 frame->status = short_framestatus;
2171 requested = remaining;
2172 break;
2173 case COMP_STOPPED_LENGTH_INVALID:
2174 requested = 0;
2175 remaining = 0;
2176 break;
2177 default:
2178 sum_trbs_for_length = true;
2179 frame->status = -1;
2180 break;
2181 }
2182
2183 if (sum_trbs_for_length)
2184 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2185 ep_trb_len - remaining;
2186 else
2187 frame->actual_length = requested;
2188
2189 td->urb->actual_length += frame->actual_length;
2190
2191 return finish_td(xhci, td, event, ep, status);
2192 }
2193
skip_isoc_td(struct xhci_hcd * xhci,struct xhci_td * td,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)2194 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2195 struct xhci_transfer_event *event,
2196 struct xhci_virt_ep *ep, int *status)
2197 {
2198 struct xhci_ring *ep_ring;
2199 struct urb_priv *urb_priv;
2200 struct usb_iso_packet_descriptor *frame;
2201 int idx;
2202
2203 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2204 urb_priv = td->urb->hcpriv;
2205 idx = urb_priv->num_tds_done;
2206 frame = &td->urb->iso_frame_desc[idx];
2207
2208 /* The transfer is partly done. */
2209 frame->status = -EXDEV;
2210
2211 /* calc actual length */
2212 frame->actual_length = 0;
2213
2214 /* Update ring dequeue pointer */
2215 while (ep_ring->dequeue != td->last_trb)
2216 inc_deq(xhci, ep_ring);
2217 inc_deq(xhci, ep_ring);
2218
2219 return xhci_td_cleanup(xhci, td, ep_ring, status);
2220 }
2221
2222 /*
2223 * Process bulk and interrupt tds, update urb status and actual_length.
2224 */
process_bulk_intr_td(struct xhci_hcd * xhci,struct xhci_td * td,union xhci_trb * ep_trb,struct xhci_transfer_event * event,struct xhci_virt_ep * ep,int * status)2225 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2226 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2227 struct xhci_virt_ep *ep, int *status)
2228 {
2229 struct xhci_slot_ctx *slot_ctx;
2230 struct xhci_ring *ep_ring;
2231 u32 trb_comp_code;
2232 u32 remaining, requested, ep_trb_len;
2233 unsigned int slot_id;
2234 int ep_index;
2235
2236 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2237 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx);
2238 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2239 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2240 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2241 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2242 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2243 requested = td->urb->transfer_buffer_length;
2244
2245 switch (trb_comp_code) {
2246 case COMP_SUCCESS:
2247 ep_ring->err_count = 0;
2248 /* handle success with untransferred data as short packet */
2249 if (ep_trb != td->last_trb || remaining) {
2250 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2251 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2252 td->urb->ep->desc.bEndpointAddress,
2253 requested, remaining);
2254 }
2255 *status = 0;
2256 break;
2257 case COMP_SHORT_PACKET:
2258 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2259 td->urb->ep->desc.bEndpointAddress,
2260 requested, remaining);
2261 *status = 0;
2262 break;
2263 case COMP_STOPPED_SHORT_PACKET:
2264 td->urb->actual_length = remaining;
2265 goto finish_td;
2266 case COMP_STOPPED_LENGTH_INVALID:
2267 /* stopped on ep trb with invalid length, exclude it */
2268 ep_trb_len = 0;
2269 remaining = 0;
2270 break;
2271 case COMP_USB_TRANSACTION_ERROR:
2272 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) ||
2273 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
2274 break;
2275 *status = 0;
2276 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
2277 ep_ring->stream_id, td, EP_SOFT_RESET);
2278 return 0;
2279 default:
2280 /* do nothing */
2281 break;
2282 }
2283
2284 if (ep_trb == td->last_trb)
2285 td->urb->actual_length = requested - remaining;
2286 else
2287 td->urb->actual_length =
2288 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2289 ep_trb_len - remaining;
2290 finish_td:
2291 if (remaining > requested) {
2292 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2293 remaining);
2294 td->urb->actual_length = 0;
2295 }
2296 return finish_td(xhci, td, event, ep, status);
2297 }
2298
2299 /*
2300 * If this function returns an error condition, it means it got a Transfer
2301 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2302 * At this point, the host controller is probably hosed and should be reset.
2303 */
handle_tx_event(struct xhci_hcd * xhci,struct xhci_transfer_event * event)2304 static int handle_tx_event(struct xhci_hcd *xhci,
2305 struct xhci_transfer_event *event)
2306 {
2307 struct xhci_virt_device *xdev;
2308 struct xhci_virt_ep *ep;
2309 struct xhci_ring *ep_ring;
2310 unsigned int slot_id;
2311 int ep_index;
2312 struct xhci_td *td = NULL;
2313 dma_addr_t ep_trb_dma;
2314 struct xhci_segment *ep_seg;
2315 union xhci_trb *ep_trb;
2316 int status = -EINPROGRESS;
2317 struct xhci_ep_ctx *ep_ctx;
2318 struct list_head *tmp;
2319 u32 trb_comp_code;
2320 int td_num = 0;
2321 bool handling_skipped_tds = false;
2322
2323 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2324 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2325 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2326 ep_trb_dma = le64_to_cpu(event->buffer);
2327
2328 xdev = xhci->devs[slot_id];
2329 if (!xdev) {
2330 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2331 slot_id);
2332 goto err_out;
2333 }
2334
2335 ep = &xdev->eps[ep_index];
2336 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2337 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2338
2339 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2340 xhci_err(xhci,
2341 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2342 slot_id, ep_index);
2343 goto err_out;
2344 }
2345
2346 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2347 if (!ep_ring) {
2348 switch (trb_comp_code) {
2349 case COMP_STALL_ERROR:
2350 case COMP_USB_TRANSACTION_ERROR:
2351 case COMP_INVALID_STREAM_TYPE_ERROR:
2352 case COMP_INVALID_STREAM_ID_ERROR:
2353 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2354 NULL, EP_SOFT_RESET);
2355 goto cleanup;
2356 case COMP_RING_UNDERRUN:
2357 case COMP_RING_OVERRUN:
2358 case COMP_STOPPED_LENGTH_INVALID:
2359 goto cleanup;
2360 default:
2361 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2362 slot_id, ep_index);
2363 goto err_out;
2364 }
2365 }
2366
2367 /* Count current td numbers if ep->skip is set */
2368 if (ep->skip) {
2369 list_for_each(tmp, &ep_ring->td_list)
2370 td_num++;
2371 }
2372
2373 /* Look for common error cases */
2374 switch (trb_comp_code) {
2375 /* Skip codes that require special handling depending on
2376 * transfer type
2377 */
2378 case COMP_SUCCESS:
2379 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2380 break;
2381 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2382 trb_comp_code = COMP_SHORT_PACKET;
2383 else
2384 xhci_warn_ratelimited(xhci,
2385 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2386 slot_id, ep_index);
2387 case COMP_SHORT_PACKET:
2388 break;
2389 /* Completion codes for endpoint stopped state */
2390 case COMP_STOPPED:
2391 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2392 slot_id, ep_index);
2393 break;
2394 case COMP_STOPPED_LENGTH_INVALID:
2395 xhci_dbg(xhci,
2396 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2397 slot_id, ep_index);
2398 break;
2399 case COMP_STOPPED_SHORT_PACKET:
2400 xhci_dbg(xhci,
2401 "Stopped with short packet transfer detected for slot %u ep %u\n",
2402 slot_id, ep_index);
2403 break;
2404 /* Completion codes for endpoint halted state */
2405 case COMP_STALL_ERROR:
2406 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2407 ep_index);
2408 ep->ep_state |= EP_HALTED;
2409 status = -EPIPE;
2410 break;
2411 case COMP_SPLIT_TRANSACTION_ERROR:
2412 case COMP_USB_TRANSACTION_ERROR:
2413 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2414 slot_id, ep_index);
2415 status = -EPROTO;
2416 break;
2417 case COMP_BABBLE_DETECTED_ERROR:
2418 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2419 slot_id, ep_index);
2420 status = -EOVERFLOW;
2421 break;
2422 /* Completion codes for endpoint error state */
2423 case COMP_TRB_ERROR:
2424 xhci_warn(xhci,
2425 "WARN: TRB error for slot %u ep %u on endpoint\n",
2426 slot_id, ep_index);
2427 status = -EILSEQ;
2428 break;
2429 /* completion codes not indicating endpoint state change */
2430 case COMP_DATA_BUFFER_ERROR:
2431 xhci_warn(xhci,
2432 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2433 slot_id, ep_index);
2434 status = -ENOSR;
2435 break;
2436 case COMP_BANDWIDTH_OVERRUN_ERROR:
2437 xhci_warn(xhci,
2438 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2439 slot_id, ep_index);
2440 break;
2441 case COMP_ISOCH_BUFFER_OVERRUN:
2442 xhci_warn(xhci,
2443 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2444 slot_id, ep_index);
2445 break;
2446 case COMP_RING_UNDERRUN:
2447 /*
2448 * When the Isoch ring is empty, the xHC will generate
2449 * a Ring Overrun Event for IN Isoch endpoint or Ring
2450 * Underrun Event for OUT Isoch endpoint.
2451 */
2452 xhci_dbg(xhci, "underrun event on endpoint\n");
2453 if (!list_empty(&ep_ring->td_list))
2454 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2455 "still with TDs queued?\n",
2456 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2457 ep_index);
2458 goto cleanup;
2459 case COMP_RING_OVERRUN:
2460 xhci_dbg(xhci, "overrun event on endpoint\n");
2461 if (!list_empty(&ep_ring->td_list))
2462 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2463 "still with TDs queued?\n",
2464 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2465 ep_index);
2466 goto cleanup;
2467 case COMP_MISSED_SERVICE_ERROR:
2468 /*
2469 * When encounter missed service error, one or more isoc tds
2470 * may be missed by xHC.
2471 * Set skip flag of the ep_ring; Complete the missed tds as
2472 * short transfer when process the ep_ring next time.
2473 */
2474 ep->skip = true;
2475 xhci_dbg(xhci,
2476 "Miss service interval error for slot %u ep %u, set skip flag\n",
2477 slot_id, ep_index);
2478 goto cleanup;
2479 case COMP_NO_PING_RESPONSE_ERROR:
2480 ep->skip = true;
2481 xhci_dbg(xhci,
2482 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2483 slot_id, ep_index);
2484 goto cleanup;
2485
2486 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2487 /* needs disable slot command to recover */
2488 xhci_warn(xhci,
2489 "WARN: detect an incompatible device for slot %u ep %u",
2490 slot_id, ep_index);
2491 status = -EPROTO;
2492 break;
2493 default:
2494 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2495 status = 0;
2496 break;
2497 }
2498 xhci_warn(xhci,
2499 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2500 trb_comp_code, slot_id, ep_index);
2501 goto cleanup;
2502 }
2503
2504 do {
2505 /* This TRB should be in the TD at the head of this ring's
2506 * TD list.
2507 */
2508 if (list_empty(&ep_ring->td_list)) {
2509 /*
2510 * Don't print wanings if it's due to a stopped endpoint
2511 * generating an extra completion event if the device
2512 * was suspended. Or, a event for the last TRB of a
2513 * short TD we already got a short event for.
2514 * The short TD is already removed from the TD list.
2515 */
2516
2517 if (!(trb_comp_code == COMP_STOPPED ||
2518 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2519 ep_ring->last_td_was_short)) {
2520 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2521 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2522 ep_index);
2523 }
2524 if (ep->skip) {
2525 ep->skip = false;
2526 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2527 slot_id, ep_index);
2528 }
2529 goto cleanup;
2530 }
2531
2532 /* We've skipped all the TDs on the ep ring when ep->skip set */
2533 if (ep->skip && td_num == 0) {
2534 ep->skip = false;
2535 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2536 slot_id, ep_index);
2537 goto cleanup;
2538 }
2539
2540 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2541 td_list);
2542 if (ep->skip)
2543 td_num--;
2544
2545 /* Is this a TRB in the currently executing TD? */
2546 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2547 td->last_trb, ep_trb_dma, false);
2548
2549 /*
2550 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2551 * is not in the current TD pointed by ep_ring->dequeue because
2552 * that the hardware dequeue pointer still at the previous TRB
2553 * of the current TD. The previous TRB maybe a Link TD or the
2554 * last TRB of the previous TD. The command completion handle
2555 * will take care the rest.
2556 */
2557 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2558 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2559 goto cleanup;
2560 }
2561
2562 if (!ep_seg) {
2563 if (!ep->skip ||
2564 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2565 /* Some host controllers give a spurious
2566 * successful event after a short transfer.
2567 * Ignore it.
2568 */
2569 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2570 ep_ring->last_td_was_short) {
2571 ep_ring->last_td_was_short = false;
2572 goto cleanup;
2573 }
2574 /* HC is busted, give up! */
2575 xhci_err(xhci,
2576 "ERROR Transfer event TRB DMA ptr not "
2577 "part of current TD ep_index %d "
2578 "comp_code %u\n", ep_index,
2579 trb_comp_code);
2580 trb_in_td(xhci, ep_ring->deq_seg,
2581 ep_ring->dequeue, td->last_trb,
2582 ep_trb_dma, true);
2583 return -ESHUTDOWN;
2584 }
2585
2586 skip_isoc_td(xhci, td, event, ep, &status);
2587 goto cleanup;
2588 }
2589 if (trb_comp_code == COMP_SHORT_PACKET)
2590 ep_ring->last_td_was_short = true;
2591 else
2592 ep_ring->last_td_was_short = false;
2593
2594 if (ep->skip) {
2595 xhci_dbg(xhci,
2596 "Found td. Clear skip flag for slot %u ep %u.\n",
2597 slot_id, ep_index);
2598 ep->skip = false;
2599 }
2600
2601 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2602 sizeof(*ep_trb)];
2603
2604 trace_xhci_handle_transfer(ep_ring,
2605 (struct xhci_generic_trb *) ep_trb);
2606
2607 /*
2608 * No-op TRB could trigger interrupts in a case where
2609 * a URB was killed and a STALL_ERROR happens right
2610 * after the endpoint ring stopped. Reset the halted
2611 * endpoint. Otherwise, the endpoint remains stalled
2612 * indefinitely.
2613 */
2614 if (trb_is_noop(ep_trb)) {
2615 if (trb_comp_code == COMP_STALL_ERROR ||
2616 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2617 trb_comp_code))
2618 xhci_cleanup_halted_endpoint(xhci, slot_id,
2619 ep_index,
2620 ep_ring->stream_id,
2621 td, EP_HARD_RESET);
2622 goto cleanup;
2623 }
2624
2625 /* update the urb's actual_length and give back to the core */
2626 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2627 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2628 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2629 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2630 else
2631 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2632 &status);
2633 cleanup:
2634 handling_skipped_tds = ep->skip &&
2635 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2636 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2637
2638 /*
2639 * Do not update event ring dequeue pointer if we're in a loop
2640 * processing missed tds.
2641 */
2642 if (!handling_skipped_tds)
2643 inc_deq(xhci, xhci->event_ring);
2644
2645 /*
2646 * If ep->skip is set, it means there are missed tds on the
2647 * endpoint ring need to take care of.
2648 * Process them as short transfer until reach the td pointed by
2649 * the event.
2650 */
2651 } while (handling_skipped_tds);
2652
2653 return 0;
2654
2655 err_out:
2656 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2657 (unsigned long long) xhci_trb_virt_to_dma(
2658 xhci->event_ring->deq_seg,
2659 xhci->event_ring->dequeue),
2660 lower_32_bits(le64_to_cpu(event->buffer)),
2661 upper_32_bits(le64_to_cpu(event->buffer)),
2662 le32_to_cpu(event->transfer_len),
2663 le32_to_cpu(event->flags));
2664 return -ENODEV;
2665 }
2666
2667 /*
2668 * This function handles all OS-owned events on the event ring. It may drop
2669 * xhci->lock between event processing (e.g. to pass up port status changes).
2670 * Returns >0 for "possibly more events to process" (caller should call again),
2671 * otherwise 0 if done. In future, <0 returns should indicate error code.
2672 */
xhci_handle_event(struct xhci_hcd * xhci)2673 static int xhci_handle_event(struct xhci_hcd *xhci)
2674 {
2675 union xhci_trb *event;
2676 int update_ptrs = 1;
2677 int ret;
2678
2679 /* Event ring hasn't been allocated yet. */
2680 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2681 xhci_err(xhci, "ERROR event ring not ready\n");
2682 return -ENOMEM;
2683 }
2684
2685 event = xhci->event_ring->dequeue;
2686 /* Does the HC or OS own the TRB? */
2687 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2688 xhci->event_ring->cycle_state)
2689 return 0;
2690
2691 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2692
2693 /*
2694 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2695 * speculative reads of the event's flags/data below.
2696 */
2697 rmb();
2698 /* FIXME: Handle more event types. */
2699 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2700 case TRB_TYPE(TRB_COMPLETION):
2701 handle_cmd_completion(xhci, &event->event_cmd);
2702 break;
2703 case TRB_TYPE(TRB_PORT_STATUS):
2704 handle_port_status(xhci, event);
2705 update_ptrs = 0;
2706 break;
2707 case TRB_TYPE(TRB_TRANSFER):
2708 ret = handle_tx_event(xhci, &event->trans_event);
2709 if (ret >= 0)
2710 update_ptrs = 0;
2711 break;
2712 case TRB_TYPE(TRB_DEV_NOTE):
2713 handle_device_notification(xhci, event);
2714 break;
2715 default:
2716 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2717 TRB_TYPE(48))
2718 handle_vendor_event(xhci, event);
2719 else
2720 xhci_warn(xhci, "ERROR unknown event type %d\n",
2721 TRB_FIELD_TO_TYPE(
2722 le32_to_cpu(event->event_cmd.flags)));
2723 }
2724 /* Any of the above functions may drop and re-acquire the lock, so check
2725 * to make sure a watchdog timer didn't mark the host as non-responsive.
2726 */
2727 if (xhci->xhc_state & XHCI_STATE_DYING) {
2728 xhci_dbg(xhci, "xHCI host dying, returning from "
2729 "event handler.\n");
2730 return 0;
2731 }
2732
2733 if (update_ptrs)
2734 /* Update SW event ring dequeue pointer */
2735 inc_deq(xhci, xhci->event_ring);
2736
2737 /* Are there more items on the event ring? Caller will call us again to
2738 * check.
2739 */
2740 return 1;
2741 }
2742
2743 /*
2744 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2745 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2746 * indicators of an event TRB error, but we check the status *first* to be safe.
2747 */
xhci_irq(struct usb_hcd * hcd)2748 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2749 {
2750 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2751 union xhci_trb *event_ring_deq;
2752 irqreturn_t ret = IRQ_NONE;
2753 unsigned long flags;
2754 dma_addr_t deq;
2755 u64 temp_64;
2756 u32 status;
2757
2758 spin_lock_irqsave(&xhci->lock, flags);
2759 /* Check if the xHC generated the interrupt, or the irq is shared */
2760 status = readl(&xhci->op_regs->status);
2761 if (status == ~(u32)0) {
2762 xhci_hc_died(xhci);
2763 ret = IRQ_HANDLED;
2764 goto out;
2765 }
2766
2767 if (!(status & STS_EINT))
2768 goto out;
2769
2770 if (status & STS_FATAL) {
2771 xhci_warn(xhci, "WARNING: Host System Error\n");
2772 xhci_halt(xhci);
2773 ret = IRQ_HANDLED;
2774 goto out;
2775 }
2776
2777 /*
2778 * Clear the op reg interrupt status first,
2779 * so we can receive interrupts from other MSI-X interrupters.
2780 * Write 1 to clear the interrupt status.
2781 */
2782 status |= STS_EINT;
2783 writel(status, &xhci->op_regs->status);
2784
2785 if (!hcd->msi_enabled) {
2786 u32 irq_pending;
2787 irq_pending = readl(&xhci->ir_set->irq_pending);
2788 irq_pending |= IMAN_IP;
2789 writel(irq_pending, &xhci->ir_set->irq_pending);
2790 }
2791
2792 if (xhci->xhc_state & XHCI_STATE_DYING ||
2793 xhci->xhc_state & XHCI_STATE_HALTED) {
2794 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2795 "Shouldn't IRQs be disabled?\n");
2796 /* Clear the event handler busy flag (RW1C);
2797 * the event ring should be empty.
2798 */
2799 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2800 xhci_write_64(xhci, temp_64 | ERST_EHB,
2801 &xhci->ir_set->erst_dequeue);
2802 ret = IRQ_HANDLED;
2803 goto out;
2804 }
2805
2806 event_ring_deq = xhci->event_ring->dequeue;
2807 /* FIXME this should be a delayed service routine
2808 * that clears the EHB.
2809 */
2810 while (xhci_handle_event(xhci) > 0) {}
2811
2812 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2813 /* If necessary, update the HW's version of the event ring deq ptr. */
2814 if (event_ring_deq != xhci->event_ring->dequeue) {
2815 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2816 xhci->event_ring->dequeue);
2817 if (deq == 0)
2818 xhci_warn(xhci, "WARN something wrong with SW event "
2819 "ring dequeue ptr.\n");
2820 /* Update HC event ring dequeue pointer */
2821 temp_64 &= ERST_PTR_MASK;
2822 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2823 }
2824
2825 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2826 temp_64 |= ERST_EHB;
2827 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2828 ret = IRQ_HANDLED;
2829
2830 out:
2831 spin_unlock_irqrestore(&xhci->lock, flags);
2832
2833 return ret;
2834 }
2835
xhci_msi_irq(int irq,void * hcd)2836 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2837 {
2838 return xhci_irq(hcd);
2839 }
2840
2841 /**** Endpoint Ring Operations ****/
2842
2843 /*
2844 * Generic function for queueing a TRB on a ring.
2845 * The caller must have checked to make sure there's room on the ring.
2846 *
2847 * @more_trbs_coming: Will you enqueue more TRBs before calling
2848 * prepare_transfer()?
2849 */
queue_trb(struct xhci_hcd * xhci,struct xhci_ring * ring,bool more_trbs_coming,u32 field1,u32 field2,u32 field3,u32 field4)2850 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2851 bool more_trbs_coming,
2852 u32 field1, u32 field2, u32 field3, u32 field4)
2853 {
2854 struct xhci_generic_trb *trb;
2855
2856 trb = &ring->enqueue->generic;
2857 trb->field[0] = cpu_to_le32(field1);
2858 trb->field[1] = cpu_to_le32(field2);
2859 trb->field[2] = cpu_to_le32(field3);
2860 trb->field[3] = cpu_to_le32(field4);
2861
2862 trace_xhci_queue_trb(ring, trb);
2863
2864 inc_enq(xhci, ring, more_trbs_coming);
2865 }
2866
2867 /*
2868 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2869 * FIXME allocate segments if the ring is full.
2870 */
prepare_ring(struct xhci_hcd * xhci,struct xhci_ring * ep_ring,u32 ep_state,unsigned int num_trbs,gfp_t mem_flags)2871 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2872 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2873 {
2874 unsigned int num_trbs_needed;
2875
2876 /* Make sure the endpoint has been added to xHC schedule */
2877 switch (ep_state) {
2878 case EP_STATE_DISABLED:
2879 /*
2880 * USB core changed config/interfaces without notifying us,
2881 * or hardware is reporting the wrong state.
2882 */
2883 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2884 return -ENOENT;
2885 case EP_STATE_ERROR:
2886 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2887 /* FIXME event handling code for error needs to clear it */
2888 /* XXX not sure if this should be -ENOENT or not */
2889 return -EINVAL;
2890 case EP_STATE_HALTED:
2891 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2892 case EP_STATE_STOPPED:
2893 case EP_STATE_RUNNING:
2894 break;
2895 default:
2896 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2897 /*
2898 * FIXME issue Configure Endpoint command to try to get the HC
2899 * back into a known state.
2900 */
2901 return -EINVAL;
2902 }
2903
2904 while (1) {
2905 if (room_on_ring(xhci, ep_ring, num_trbs))
2906 break;
2907
2908 if (ep_ring == xhci->cmd_ring) {
2909 xhci_err(xhci, "Do not support expand command ring\n");
2910 return -ENOMEM;
2911 }
2912
2913 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2914 "ERROR no room on ep ring, try ring expansion");
2915 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2916 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2917 mem_flags)) {
2918 xhci_err(xhci, "Ring expansion failed\n");
2919 return -ENOMEM;
2920 }
2921 }
2922
2923 while (trb_is_link(ep_ring->enqueue)) {
2924 /* If we're not dealing with 0.95 hardware or isoc rings
2925 * on AMD 0.96 host, clear the chain bit.
2926 */
2927 if (!xhci_link_trb_quirk(xhci) &&
2928 !(ep_ring->type == TYPE_ISOC &&
2929 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2930 ep_ring->enqueue->link.control &=
2931 cpu_to_le32(~TRB_CHAIN);
2932 else
2933 ep_ring->enqueue->link.control |=
2934 cpu_to_le32(TRB_CHAIN);
2935
2936 wmb();
2937 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2938
2939 /* Toggle the cycle bit after the last ring segment. */
2940 if (link_trb_toggles_cycle(ep_ring->enqueue))
2941 ep_ring->cycle_state ^= 1;
2942
2943 ep_ring->enq_seg = ep_ring->enq_seg->next;
2944 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2945 }
2946 return 0;
2947 }
2948
prepare_transfer(struct xhci_hcd * xhci,struct xhci_virt_device * xdev,unsigned int ep_index,unsigned int stream_id,unsigned int num_trbs,struct urb * urb,unsigned int td_index,gfp_t mem_flags)2949 static int prepare_transfer(struct xhci_hcd *xhci,
2950 struct xhci_virt_device *xdev,
2951 unsigned int ep_index,
2952 unsigned int stream_id,
2953 unsigned int num_trbs,
2954 struct urb *urb,
2955 unsigned int td_index,
2956 gfp_t mem_flags)
2957 {
2958 int ret;
2959 struct urb_priv *urb_priv;
2960 struct xhci_td *td;
2961 struct xhci_ring *ep_ring;
2962 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2963
2964 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2965 if (!ep_ring) {
2966 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2967 stream_id);
2968 return -EINVAL;
2969 }
2970
2971 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2972 num_trbs, mem_flags);
2973 if (ret)
2974 return ret;
2975
2976 urb_priv = urb->hcpriv;
2977 td = &urb_priv->td[td_index];
2978
2979 INIT_LIST_HEAD(&td->td_list);
2980 INIT_LIST_HEAD(&td->cancelled_td_list);
2981
2982 if (td_index == 0) {
2983 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2984 if (unlikely(ret))
2985 return ret;
2986 }
2987
2988 td->urb = urb;
2989 /* Add this TD to the tail of the endpoint ring's TD list */
2990 list_add_tail(&td->td_list, &ep_ring->td_list);
2991 td->start_seg = ep_ring->enq_seg;
2992 td->first_trb = ep_ring->enqueue;
2993
2994 return 0;
2995 }
2996
count_trbs(u64 addr,u64 len)2997 unsigned int count_trbs(u64 addr, u64 len)
2998 {
2999 unsigned int num_trbs;
3000
3001 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3002 TRB_MAX_BUFF_SIZE);
3003 if (num_trbs == 0)
3004 num_trbs++;
3005
3006 return num_trbs;
3007 }
3008
count_trbs_needed(struct urb * urb)3009 static inline unsigned int count_trbs_needed(struct urb *urb)
3010 {
3011 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
3012 }
3013
count_sg_trbs_needed(struct urb * urb)3014 static unsigned int count_sg_trbs_needed(struct urb *urb)
3015 {
3016 struct scatterlist *sg;
3017 unsigned int i, len, full_len, num_trbs = 0;
3018
3019 full_len = urb->transfer_buffer_length;
3020
3021 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3022 len = sg_dma_len(sg);
3023 num_trbs += count_trbs(sg_dma_address(sg), len);
3024 len = min_t(unsigned int, len, full_len);
3025 full_len -= len;
3026 if (full_len == 0)
3027 break;
3028 }
3029
3030 return num_trbs;
3031 }
3032
count_isoc_trbs_needed(struct urb * urb,int i)3033 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3034 {
3035 u64 addr, len;
3036
3037 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3038 len = urb->iso_frame_desc[i].length;
3039
3040 return count_trbs(addr, len);
3041 }
3042
check_trb_math(struct urb * urb,int running_total)3043 static void check_trb_math(struct urb *urb, int running_total)
3044 {
3045 if (unlikely(running_total != urb->transfer_buffer_length))
3046 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3047 "queued %#x (%d), asked for %#x (%d)\n",
3048 __func__,
3049 urb->ep->desc.bEndpointAddress,
3050 running_total, running_total,
3051 urb->transfer_buffer_length,
3052 urb->transfer_buffer_length);
3053 }
3054
giveback_first_trb(struct xhci_hcd * xhci,int slot_id,unsigned int ep_index,unsigned int stream_id,int start_cycle,struct xhci_generic_trb * start_trb)3055 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3056 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3057 struct xhci_generic_trb *start_trb)
3058 {
3059 /*
3060 * Pass all the TRBs to the hardware at once and make sure this write
3061 * isn't reordered.
3062 */
3063 wmb();
3064 if (start_cycle)
3065 start_trb->field[3] |= cpu_to_le32(start_cycle);
3066 else
3067 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3068 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3069 }
3070
check_interval(struct xhci_hcd * xhci,struct urb * urb,struct xhci_ep_ctx * ep_ctx)3071 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3072 struct xhci_ep_ctx *ep_ctx)
3073 {
3074 int xhci_interval;
3075 int ep_interval;
3076
3077 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3078 ep_interval = urb->interval;
3079
3080 /* Convert to microframes */
3081 if (urb->dev->speed == USB_SPEED_LOW ||
3082 urb->dev->speed == USB_SPEED_FULL)
3083 ep_interval *= 8;
3084
3085 /* FIXME change this to a warning and a suggestion to use the new API
3086 * to set the polling interval (once the API is added).
3087 */
3088 if (xhci_interval != ep_interval) {
3089 dev_dbg_ratelimited(&urb->dev->dev,
3090 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3091 ep_interval, ep_interval == 1 ? "" : "s",
3092 xhci_interval, xhci_interval == 1 ? "" : "s");
3093 urb->interval = xhci_interval;
3094 /* Convert back to frames for LS/FS devices */
3095 if (urb->dev->speed == USB_SPEED_LOW ||
3096 urb->dev->speed == USB_SPEED_FULL)
3097 urb->interval /= 8;
3098 }
3099 }
3100
3101 /*
3102 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3103 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3104 * (comprised of sg list entries) can take several service intervals to
3105 * transmit.
3106 */
xhci_queue_intr_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3107 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3108 struct urb *urb, int slot_id, unsigned int ep_index)
3109 {
3110 struct xhci_ep_ctx *ep_ctx;
3111
3112 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3113 check_interval(xhci, urb, ep_ctx);
3114
3115 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3116 }
3117
3118 /*
3119 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3120 * packets remaining in the TD (*not* including this TRB).
3121 *
3122 * Total TD packet count = total_packet_count =
3123 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3124 *
3125 * Packets transferred up to and including this TRB = packets_transferred =
3126 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3127 *
3128 * TD size = total_packet_count - packets_transferred
3129 *
3130 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3131 * including this TRB, right shifted by 10
3132 *
3133 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3134 * This is taken care of in the TRB_TD_SIZE() macro
3135 *
3136 * The last TRB in a TD must have the TD size set to zero.
3137 */
xhci_td_remainder(struct xhci_hcd * xhci,int transferred,int trb_buff_len,unsigned int td_total_len,struct urb * urb,bool more_trbs_coming)3138 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3139 int trb_buff_len, unsigned int td_total_len,
3140 struct urb *urb, bool more_trbs_coming)
3141 {
3142 u32 maxp, total_packet_count;
3143
3144 /* MTK xHCI 0.96 contains some features from 1.0 */
3145 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3146 return ((td_total_len - transferred) >> 10);
3147
3148 /* One TRB with a zero-length data packet. */
3149 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3150 trb_buff_len == td_total_len)
3151 return 0;
3152
3153 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3154 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3155 trb_buff_len = 0;
3156
3157 maxp = usb_endpoint_maxp(&urb->ep->desc);
3158 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3159
3160 /* Queueing functions don't count the current TRB into transferred */
3161 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3162 }
3163
3164
xhci_align_td(struct xhci_hcd * xhci,struct urb * urb,u32 enqd_len,u32 * trb_buff_len,struct xhci_segment * seg)3165 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3166 u32 *trb_buff_len, struct xhci_segment *seg)
3167 {
3168 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3169 unsigned int unalign;
3170 unsigned int max_pkt;
3171 u32 new_buff_len;
3172 size_t len;
3173
3174 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3175 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3176
3177 /* we got lucky, last normal TRB data on segment is packet aligned */
3178 if (unalign == 0)
3179 return 0;
3180
3181 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3182 unalign, *trb_buff_len);
3183
3184 /* is the last nornal TRB alignable by splitting it */
3185 if (*trb_buff_len > unalign) {
3186 *trb_buff_len -= unalign;
3187 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3188 return 0;
3189 }
3190
3191 /*
3192 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3193 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3194 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3195 */
3196 new_buff_len = max_pkt - (enqd_len % max_pkt);
3197
3198 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3199 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3200
3201 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3202 if (usb_urb_dir_out(urb)) {
3203 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
3204 seg->bounce_buf, new_buff_len, enqd_len);
3205 if (len != new_buff_len)
3206 xhci_warn(xhci,
3207 "WARN Wrong bounce buffer write length: %zu != %d\n",
3208 len, new_buff_len);
3209 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3210 max_pkt, DMA_TO_DEVICE);
3211 } else {
3212 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3213 max_pkt, DMA_FROM_DEVICE);
3214 }
3215
3216 if (dma_mapping_error(dev, seg->bounce_dma)) {
3217 /* try without aligning. Some host controllers survive */
3218 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3219 return 0;
3220 }
3221 *trb_buff_len = new_buff_len;
3222 seg->bounce_len = new_buff_len;
3223 seg->bounce_offs = enqd_len;
3224
3225 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3226
3227 return 1;
3228 }
3229
3230 /* This is very similar to what ehci-q.c qtd_fill() does */
xhci_queue_bulk_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3231 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3232 struct urb *urb, int slot_id, unsigned int ep_index)
3233 {
3234 struct xhci_ring *ring;
3235 struct urb_priv *urb_priv;
3236 struct xhci_td *td;
3237 struct xhci_generic_trb *start_trb;
3238 struct scatterlist *sg = NULL;
3239 bool more_trbs_coming = true;
3240 bool need_zero_pkt = false;
3241 bool first_trb = true;
3242 unsigned int num_trbs;
3243 unsigned int start_cycle, num_sgs = 0;
3244 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3245 int sent_len, ret;
3246 u32 field, length_field, remainder;
3247 u64 addr, send_addr;
3248
3249 ring = xhci_urb_to_transfer_ring(xhci, urb);
3250 if (!ring)
3251 return -EINVAL;
3252
3253 full_len = urb->transfer_buffer_length;
3254 /* If we have scatter/gather list, we use it. */
3255 if (urb->num_sgs) {
3256 num_sgs = urb->num_mapped_sgs;
3257 sg = urb->sg;
3258 addr = (u64) sg_dma_address(sg);
3259 block_len = sg_dma_len(sg);
3260 num_trbs = count_sg_trbs_needed(urb);
3261 } else {
3262 num_trbs = count_trbs_needed(urb);
3263 addr = (u64) urb->transfer_dma;
3264 block_len = full_len;
3265 }
3266 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3267 ep_index, urb->stream_id,
3268 num_trbs, urb, 0, mem_flags);
3269 if (unlikely(ret < 0))
3270 return ret;
3271
3272 urb_priv = urb->hcpriv;
3273
3274 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3275 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3276 need_zero_pkt = true;
3277
3278 td = &urb_priv->td[0];
3279
3280 /*
3281 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3282 * until we've finished creating all the other TRBs. The ring's cycle
3283 * state may change as we enqueue the other TRBs, so save it too.
3284 */
3285 start_trb = &ring->enqueue->generic;
3286 start_cycle = ring->cycle_state;
3287 send_addr = addr;
3288
3289 /* Queue the TRBs, even if they are zero-length */
3290 for (enqd_len = 0; first_trb || enqd_len < full_len;
3291 enqd_len += trb_buff_len) {
3292 field = TRB_TYPE(TRB_NORMAL);
3293
3294 /* TRB buffer should not cross 64KB boundaries */
3295 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3296 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3297
3298 if (enqd_len + trb_buff_len > full_len)
3299 trb_buff_len = full_len - enqd_len;
3300
3301 /* Don't change the cycle bit of the first TRB until later */
3302 if (first_trb) {
3303 first_trb = false;
3304 if (start_cycle == 0)
3305 field |= TRB_CYCLE;
3306 } else
3307 field |= ring->cycle_state;
3308
3309 /* Chain all the TRBs together; clear the chain bit in the last
3310 * TRB to indicate it's the last TRB in the chain.
3311 */
3312 if (enqd_len + trb_buff_len < full_len) {
3313 field |= TRB_CHAIN;
3314 if (trb_is_link(ring->enqueue + 1)) {
3315 if (xhci_align_td(xhci, urb, enqd_len,
3316 &trb_buff_len,
3317 ring->enq_seg)) {
3318 send_addr = ring->enq_seg->bounce_dma;
3319 /* assuming TD won't span 2 segs */
3320 td->bounce_seg = ring->enq_seg;
3321 }
3322 }
3323 }
3324 if (enqd_len + trb_buff_len >= full_len) {
3325 field &= ~TRB_CHAIN;
3326 field |= TRB_IOC;
3327 more_trbs_coming = false;
3328 td->last_trb = ring->enqueue;
3329
3330 if (xhci_urb_suitable_for_idt(urb)) {
3331 memcpy(&send_addr, urb->transfer_buffer,
3332 trb_buff_len);
3333 le64_to_cpus(&send_addr);
3334 field |= TRB_IDT;
3335 }
3336 }
3337
3338 /* Only set interrupt on short packet for IN endpoints */
3339 if (usb_urb_dir_in(urb))
3340 field |= TRB_ISP;
3341
3342 /* Set the TRB length, TD size, and interrupter fields. */
3343 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3344 full_len, urb, more_trbs_coming);
3345
3346 length_field = TRB_LEN(trb_buff_len) |
3347 TRB_TD_SIZE(remainder) |
3348 TRB_INTR_TARGET(0);
3349
3350 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3351 lower_32_bits(send_addr),
3352 upper_32_bits(send_addr),
3353 length_field,
3354 field);
3355
3356 addr += trb_buff_len;
3357 sent_len = trb_buff_len;
3358
3359 while (sg && sent_len >= block_len) {
3360 /* New sg entry */
3361 --num_sgs;
3362 sent_len -= block_len;
3363 if (num_sgs != 0) {
3364 sg = sg_next(sg);
3365 block_len = sg_dma_len(sg);
3366 addr = (u64) sg_dma_address(sg);
3367 addr += sent_len;
3368 }
3369 }
3370 block_len -= sent_len;
3371 send_addr = addr;
3372 }
3373
3374 if (need_zero_pkt) {
3375 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3376 ep_index, urb->stream_id,
3377 1, urb, 1, mem_flags);
3378 urb_priv->td[1].last_trb = ring->enqueue;
3379 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3380 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3381 }
3382
3383 check_trb_math(urb, enqd_len);
3384 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3385 start_cycle, start_trb);
3386 return 0;
3387 }
3388
3389 /* Caller must have locked xhci->lock */
xhci_queue_ctrl_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3390 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3391 struct urb *urb, int slot_id, unsigned int ep_index)
3392 {
3393 struct xhci_ring *ep_ring;
3394 int num_trbs;
3395 int ret;
3396 struct usb_ctrlrequest *setup;
3397 struct xhci_generic_trb *start_trb;
3398 int start_cycle;
3399 u32 field;
3400 struct urb_priv *urb_priv;
3401 struct xhci_td *td;
3402
3403 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3404 if (!ep_ring)
3405 return -EINVAL;
3406
3407 /*
3408 * Need to copy setup packet into setup TRB, so we can't use the setup
3409 * DMA address.
3410 */
3411 if (!urb->setup_packet)
3412 return -EINVAL;
3413
3414 /* 1 TRB for setup, 1 for status */
3415 num_trbs = 2;
3416 /*
3417 * Don't need to check if we need additional event data and normal TRBs,
3418 * since data in control transfers will never get bigger than 16MB
3419 * XXX: can we get a buffer that crosses 64KB boundaries?
3420 */
3421 if (urb->transfer_buffer_length > 0)
3422 num_trbs++;
3423 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3424 ep_index, urb->stream_id,
3425 num_trbs, urb, 0, mem_flags);
3426 if (ret < 0)
3427 return ret;
3428
3429 urb_priv = urb->hcpriv;
3430 td = &urb_priv->td[0];
3431
3432 /*
3433 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3434 * until we've finished creating all the other TRBs. The ring's cycle
3435 * state may change as we enqueue the other TRBs, so save it too.
3436 */
3437 start_trb = &ep_ring->enqueue->generic;
3438 start_cycle = ep_ring->cycle_state;
3439
3440 /* Queue setup TRB - see section 6.4.1.2.1 */
3441 /* FIXME better way to translate setup_packet into two u32 fields? */
3442 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3443 field = 0;
3444 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3445 if (start_cycle == 0)
3446 field |= 0x1;
3447
3448 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3449 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3450 if (urb->transfer_buffer_length > 0) {
3451 if (setup->bRequestType & USB_DIR_IN)
3452 field |= TRB_TX_TYPE(TRB_DATA_IN);
3453 else
3454 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3455 }
3456 }
3457
3458 queue_trb(xhci, ep_ring, true,
3459 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3460 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3461 TRB_LEN(8) | TRB_INTR_TARGET(0),
3462 /* Immediate data in pointer */
3463 field);
3464
3465 /* If there's data, queue data TRBs */
3466 /* Only set interrupt on short packet for IN endpoints */
3467 if (usb_urb_dir_in(urb))
3468 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3469 else
3470 field = TRB_TYPE(TRB_DATA);
3471
3472 if (urb->transfer_buffer_length > 0) {
3473 u32 length_field, remainder;
3474 u64 addr;
3475
3476 if (xhci_urb_suitable_for_idt(urb)) {
3477 memcpy(&addr, urb->transfer_buffer,
3478 urb->transfer_buffer_length);
3479 le64_to_cpus(&addr);
3480 field |= TRB_IDT;
3481 } else {
3482 addr = (u64) urb->transfer_dma;
3483 }
3484
3485 remainder = xhci_td_remainder(xhci, 0,
3486 urb->transfer_buffer_length,
3487 urb->transfer_buffer_length,
3488 urb, 1);
3489 length_field = TRB_LEN(urb->transfer_buffer_length) |
3490 TRB_TD_SIZE(remainder) |
3491 TRB_INTR_TARGET(0);
3492 if (setup->bRequestType & USB_DIR_IN)
3493 field |= TRB_DIR_IN;
3494 queue_trb(xhci, ep_ring, true,
3495 lower_32_bits(addr),
3496 upper_32_bits(addr),
3497 length_field,
3498 field | ep_ring->cycle_state);
3499 }
3500
3501 /* Save the DMA address of the last TRB in the TD */
3502 td->last_trb = ep_ring->enqueue;
3503
3504 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3505 /* If the device sent data, the status stage is an OUT transfer */
3506 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3507 field = 0;
3508 else
3509 field = TRB_DIR_IN;
3510 queue_trb(xhci, ep_ring, false,
3511 0,
3512 0,
3513 TRB_INTR_TARGET(0),
3514 /* Event on completion */
3515 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3516
3517 giveback_first_trb(xhci, slot_id, ep_index, 0,
3518 start_cycle, start_trb);
3519 return 0;
3520 }
3521
3522 /*
3523 * The transfer burst count field of the isochronous TRB defines the number of
3524 * bursts that are required to move all packets in this TD. Only SuperSpeed
3525 * devices can burst up to bMaxBurst number of packets per service interval.
3526 * This field is zero based, meaning a value of zero in the field means one
3527 * burst. Basically, for everything but SuperSpeed devices, this field will be
3528 * zero. Only xHCI 1.0 host controllers support this field.
3529 */
xhci_get_burst_count(struct xhci_hcd * xhci,struct urb * urb,unsigned int total_packet_count)3530 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3531 struct urb *urb, unsigned int total_packet_count)
3532 {
3533 unsigned int max_burst;
3534
3535 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3536 return 0;
3537
3538 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3539 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3540 }
3541
3542 /*
3543 * Returns the number of packets in the last "burst" of packets. This field is
3544 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3545 * the last burst packet count is equal to the total number of packets in the
3546 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3547 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3548 * contain 1 to (bMaxBurst + 1) packets.
3549 */
xhci_get_last_burst_packet_count(struct xhci_hcd * xhci,struct urb * urb,unsigned int total_packet_count)3550 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3551 struct urb *urb, unsigned int total_packet_count)
3552 {
3553 unsigned int max_burst;
3554 unsigned int residue;
3555
3556 if (xhci->hci_version < 0x100)
3557 return 0;
3558
3559 if (urb->dev->speed >= USB_SPEED_SUPER) {
3560 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3561 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3562 residue = total_packet_count % (max_burst + 1);
3563 /* If residue is zero, the last burst contains (max_burst + 1)
3564 * number of packets, but the TLBPC field is zero-based.
3565 */
3566 if (residue == 0)
3567 return max_burst;
3568 return residue - 1;
3569 }
3570 if (total_packet_count == 0)
3571 return 0;
3572 return total_packet_count - 1;
3573 }
3574
3575 /*
3576 * Calculates Frame ID field of the isochronous TRB identifies the
3577 * target frame that the Interval associated with this Isochronous
3578 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3579 *
3580 * Returns actual frame id on success, negative value on error.
3581 */
xhci_get_isoc_frame_id(struct xhci_hcd * xhci,struct urb * urb,int index)3582 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3583 struct urb *urb, int index)
3584 {
3585 int start_frame, ist, ret = 0;
3586 int start_frame_id, end_frame_id, current_frame_id;
3587
3588 if (urb->dev->speed == USB_SPEED_LOW ||
3589 urb->dev->speed == USB_SPEED_FULL)
3590 start_frame = urb->start_frame + index * urb->interval;
3591 else
3592 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3593
3594 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3595 *
3596 * If bit [3] of IST is cleared to '0', software can add a TRB no
3597 * later than IST[2:0] Microframes before that TRB is scheduled to
3598 * be executed.
3599 * If bit [3] of IST is set to '1', software can add a TRB no later
3600 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3601 */
3602 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3603 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3604 ist <<= 3;
3605
3606 /* Software shall not schedule an Isoch TD with a Frame ID value that
3607 * is less than the Start Frame ID or greater than the End Frame ID,
3608 * where:
3609 *
3610 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3611 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3612 *
3613 * Both the End Frame ID and Start Frame ID values are calculated
3614 * in microframes. When software determines the valid Frame ID value;
3615 * The End Frame ID value should be rounded down to the nearest Frame
3616 * boundary, and the Start Frame ID value should be rounded up to the
3617 * nearest Frame boundary.
3618 */
3619 current_frame_id = readl(&xhci->run_regs->microframe_index);
3620 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3621 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3622
3623 start_frame &= 0x7ff;
3624 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3625 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3626
3627 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3628 __func__, index, readl(&xhci->run_regs->microframe_index),
3629 start_frame_id, end_frame_id, start_frame);
3630
3631 if (start_frame_id < end_frame_id) {
3632 if (start_frame > end_frame_id ||
3633 start_frame < start_frame_id)
3634 ret = -EINVAL;
3635 } else if (start_frame_id > end_frame_id) {
3636 if ((start_frame > end_frame_id &&
3637 start_frame < start_frame_id))
3638 ret = -EINVAL;
3639 } else {
3640 ret = -EINVAL;
3641 }
3642
3643 if (index == 0) {
3644 if (ret == -EINVAL || start_frame == start_frame_id) {
3645 start_frame = start_frame_id + 1;
3646 if (urb->dev->speed == USB_SPEED_LOW ||
3647 urb->dev->speed == USB_SPEED_FULL)
3648 urb->start_frame = start_frame;
3649 else
3650 urb->start_frame = start_frame << 3;
3651 ret = 0;
3652 }
3653 }
3654
3655 if (ret) {
3656 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3657 start_frame, current_frame_id, index,
3658 start_frame_id, end_frame_id);
3659 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3660 return ret;
3661 }
3662
3663 return start_frame;
3664 }
3665
3666 /* This is for isoc transfer */
xhci_queue_isoc_tx(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3667 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3668 struct urb *urb, int slot_id, unsigned int ep_index)
3669 {
3670 struct xhci_ring *ep_ring;
3671 struct urb_priv *urb_priv;
3672 struct xhci_td *td;
3673 int num_tds, trbs_per_td;
3674 struct xhci_generic_trb *start_trb;
3675 bool first_trb;
3676 int start_cycle;
3677 u32 field, length_field;
3678 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3679 u64 start_addr, addr;
3680 int i, j;
3681 bool more_trbs_coming;
3682 struct xhci_virt_ep *xep;
3683 int frame_id;
3684
3685 xep = &xhci->devs[slot_id]->eps[ep_index];
3686 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3687
3688 num_tds = urb->number_of_packets;
3689 if (num_tds < 1) {
3690 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3691 return -EINVAL;
3692 }
3693 start_addr = (u64) urb->transfer_dma;
3694 start_trb = &ep_ring->enqueue->generic;
3695 start_cycle = ep_ring->cycle_state;
3696
3697 urb_priv = urb->hcpriv;
3698 /* Queue the TRBs for each TD, even if they are zero-length */
3699 for (i = 0; i < num_tds; i++) {
3700 unsigned int total_pkt_count, max_pkt;
3701 unsigned int burst_count, last_burst_pkt_count;
3702 u32 sia_frame_id;
3703
3704 first_trb = true;
3705 running_total = 0;
3706 addr = start_addr + urb->iso_frame_desc[i].offset;
3707 td_len = urb->iso_frame_desc[i].length;
3708 td_remain_len = td_len;
3709 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3710 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3711
3712 /* A zero-length transfer still involves at least one packet. */
3713 if (total_pkt_count == 0)
3714 total_pkt_count++;
3715 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3716 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3717 urb, total_pkt_count);
3718
3719 trbs_per_td = count_isoc_trbs_needed(urb, i);
3720
3721 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3722 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3723 if (ret < 0) {
3724 if (i == 0)
3725 return ret;
3726 goto cleanup;
3727 }
3728 td = &urb_priv->td[i];
3729
3730 /* use SIA as default, if frame id is used overwrite it */
3731 sia_frame_id = TRB_SIA;
3732 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3733 HCC_CFC(xhci->hcc_params)) {
3734 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3735 if (frame_id >= 0)
3736 sia_frame_id = TRB_FRAME_ID(frame_id);
3737 }
3738 /*
3739 * Set isoc specific data for the first TRB in a TD.
3740 * Prevent HW from getting the TRBs by keeping the cycle state
3741 * inverted in the first TDs isoc TRB.
3742 */
3743 field = TRB_TYPE(TRB_ISOC) |
3744 TRB_TLBPC(last_burst_pkt_count) |
3745 sia_frame_id |
3746 (i ? ep_ring->cycle_state : !start_cycle);
3747
3748 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3749 if (!xep->use_extended_tbc)
3750 field |= TRB_TBC(burst_count);
3751
3752 /* fill the rest of the TRB fields, and remaining normal TRBs */
3753 for (j = 0; j < trbs_per_td; j++) {
3754 u32 remainder = 0;
3755
3756 /* only first TRB is isoc, overwrite otherwise */
3757 if (!first_trb)
3758 field = TRB_TYPE(TRB_NORMAL) |
3759 ep_ring->cycle_state;
3760
3761 /* Only set interrupt on short packet for IN EPs */
3762 if (usb_urb_dir_in(urb))
3763 field |= TRB_ISP;
3764
3765 /* Set the chain bit for all except the last TRB */
3766 if (j < trbs_per_td - 1) {
3767 more_trbs_coming = true;
3768 field |= TRB_CHAIN;
3769 } else {
3770 more_trbs_coming = false;
3771 td->last_trb = ep_ring->enqueue;
3772 field |= TRB_IOC;
3773 /* set BEI, except for the last TD */
3774 if (xhci->hci_version >= 0x100 &&
3775 !(xhci->quirks & XHCI_AVOID_BEI) &&
3776 i < num_tds - 1)
3777 field |= TRB_BEI;
3778 }
3779 /* Calculate TRB length */
3780 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3781 if (trb_buff_len > td_remain_len)
3782 trb_buff_len = td_remain_len;
3783
3784 /* Set the TRB length, TD size, & interrupter fields. */
3785 remainder = xhci_td_remainder(xhci, running_total,
3786 trb_buff_len, td_len,
3787 urb, more_trbs_coming);
3788
3789 length_field = TRB_LEN(trb_buff_len) |
3790 TRB_INTR_TARGET(0);
3791
3792 /* xhci 1.1 with ETE uses TD Size field for TBC */
3793 if (first_trb && xep->use_extended_tbc)
3794 length_field |= TRB_TD_SIZE_TBC(burst_count);
3795 else
3796 length_field |= TRB_TD_SIZE(remainder);
3797 first_trb = false;
3798
3799 queue_trb(xhci, ep_ring, more_trbs_coming,
3800 lower_32_bits(addr),
3801 upper_32_bits(addr),
3802 length_field,
3803 field);
3804 running_total += trb_buff_len;
3805
3806 addr += trb_buff_len;
3807 td_remain_len -= trb_buff_len;
3808 }
3809
3810 /* Check TD length */
3811 if (running_total != td_len) {
3812 xhci_err(xhci, "ISOC TD length unmatch\n");
3813 ret = -EINVAL;
3814 goto cleanup;
3815 }
3816 }
3817
3818 /* store the next frame id */
3819 if (HCC_CFC(xhci->hcc_params))
3820 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3821
3822 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3823 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3824 usb_amd_quirk_pll_disable();
3825 }
3826 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3827
3828 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3829 start_cycle, start_trb);
3830 return 0;
3831 cleanup:
3832 /* Clean up a partially enqueued isoc transfer. */
3833
3834 for (i--; i >= 0; i--)
3835 list_del_init(&urb_priv->td[i].td_list);
3836
3837 /* Use the first TD as a temporary variable to turn the TDs we've queued
3838 * into No-ops with a software-owned cycle bit. That way the hardware
3839 * won't accidentally start executing bogus TDs when we partially
3840 * overwrite them. td->first_trb and td->start_seg are already set.
3841 */
3842 urb_priv->td[0].last_trb = ep_ring->enqueue;
3843 /* Every TRB except the first & last will have its cycle bit flipped. */
3844 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3845
3846 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3847 ep_ring->enqueue = urb_priv->td[0].first_trb;
3848 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3849 ep_ring->cycle_state = start_cycle;
3850 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3851 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3852 return ret;
3853 }
3854
3855 /*
3856 * Check transfer ring to guarantee there is enough room for the urb.
3857 * Update ISO URB start_frame and interval.
3858 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3859 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3860 * Contiguous Frame ID is not supported by HC.
3861 */
xhci_queue_isoc_tx_prepare(struct xhci_hcd * xhci,gfp_t mem_flags,struct urb * urb,int slot_id,unsigned int ep_index)3862 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3863 struct urb *urb, int slot_id, unsigned int ep_index)
3864 {
3865 struct xhci_virt_device *xdev;
3866 struct xhci_ring *ep_ring;
3867 struct xhci_ep_ctx *ep_ctx;
3868 int start_frame;
3869 int num_tds, num_trbs, i;
3870 int ret;
3871 struct xhci_virt_ep *xep;
3872 int ist;
3873
3874 xdev = xhci->devs[slot_id];
3875 xep = &xhci->devs[slot_id]->eps[ep_index];
3876 ep_ring = xdev->eps[ep_index].ring;
3877 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3878
3879 num_trbs = 0;
3880 num_tds = urb->number_of_packets;
3881 for (i = 0; i < num_tds; i++)
3882 num_trbs += count_isoc_trbs_needed(urb, i);
3883
3884 /* Check the ring to guarantee there is enough room for the whole urb.
3885 * Do not insert any td of the urb to the ring if the check failed.
3886 */
3887 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3888 num_trbs, mem_flags);
3889 if (ret)
3890 return ret;
3891
3892 /*
3893 * Check interval value. This should be done before we start to
3894 * calculate the start frame value.
3895 */
3896 check_interval(xhci, urb, ep_ctx);
3897
3898 /* Calculate the start frame and put it in urb->start_frame. */
3899 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3900 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3901 urb->start_frame = xep->next_frame_id;
3902 goto skip_start_over;
3903 }
3904 }
3905
3906 start_frame = readl(&xhci->run_regs->microframe_index);
3907 start_frame &= 0x3fff;
3908 /*
3909 * Round up to the next frame and consider the time before trb really
3910 * gets scheduled by hardare.
3911 */
3912 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3913 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3914 ist <<= 3;
3915 start_frame += ist + XHCI_CFC_DELAY;
3916 start_frame = roundup(start_frame, 8);
3917
3918 /*
3919 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3920 * is greate than 8 microframes.
3921 */
3922 if (urb->dev->speed == USB_SPEED_LOW ||
3923 urb->dev->speed == USB_SPEED_FULL) {
3924 start_frame = roundup(start_frame, urb->interval << 3);
3925 urb->start_frame = start_frame >> 3;
3926 } else {
3927 start_frame = roundup(start_frame, urb->interval);
3928 urb->start_frame = start_frame;
3929 }
3930
3931 skip_start_over:
3932 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3933
3934 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3935 }
3936
3937 /**** Command Ring Operations ****/
3938
3939 /* Generic function for queueing a command TRB on the command ring.
3940 * Check to make sure there's room on the command ring for one command TRB.
3941 * Also check that there's room reserved for commands that must not fail.
3942 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3943 * then only check for the number of reserved spots.
3944 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3945 * because the command event handler may want to resubmit a failed command.
3946 */
queue_command(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 field1,u32 field2,u32 field3,u32 field4,bool command_must_succeed)3947 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3948 u32 field1, u32 field2,
3949 u32 field3, u32 field4, bool command_must_succeed)
3950 {
3951 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3952 int ret;
3953
3954 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3955 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3956 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3957 return -ESHUTDOWN;
3958 }
3959
3960 if (!command_must_succeed)
3961 reserved_trbs++;
3962
3963 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3964 reserved_trbs, GFP_ATOMIC);
3965 if (ret < 0) {
3966 xhci_err(xhci, "ERR: No room for command on command ring\n");
3967 if (command_must_succeed)
3968 xhci_err(xhci, "ERR: Reserved TRB counting for "
3969 "unfailable commands failed.\n");
3970 return ret;
3971 }
3972
3973 cmd->command_trb = xhci->cmd_ring->enqueue;
3974
3975 /* if there are no other commands queued we start the timeout timer */
3976 if (list_empty(&xhci->cmd_list)) {
3977 xhci->current_cmd = cmd;
3978 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3979 }
3980
3981 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3982
3983 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3984 field4 | xhci->cmd_ring->cycle_state);
3985 return 0;
3986 }
3987
3988 /* Queue a slot enable or disable request on the command ring */
xhci_queue_slot_control(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 trb_type,u32 slot_id)3989 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3990 u32 trb_type, u32 slot_id)
3991 {
3992 return queue_command(xhci, cmd, 0, 0, 0,
3993 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3994 }
3995
3996 /* Queue an address device command TRB */
xhci_queue_address_device(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,enum xhci_setup_dev setup)3997 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3998 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3999 {
4000 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4001 upper_32_bits(in_ctx_ptr), 0,
4002 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4003 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4004 }
4005
xhci_queue_vendor_command(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 field1,u32 field2,u32 field3,u32 field4)4006 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4007 u32 field1, u32 field2, u32 field3, u32 field4)
4008 {
4009 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4010 }
4011
4012 /* Queue a reset device command TRB */
xhci_queue_reset_device(struct xhci_hcd * xhci,struct xhci_command * cmd,u32 slot_id)4013 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4014 u32 slot_id)
4015 {
4016 return queue_command(xhci, cmd, 0, 0, 0,
4017 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4018 false);
4019 }
4020
4021 /* Queue a configure endpoint command TRB */
xhci_queue_configure_endpoint(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,bool command_must_succeed)4022 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4023 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4024 u32 slot_id, bool command_must_succeed)
4025 {
4026 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4027 upper_32_bits(in_ctx_ptr), 0,
4028 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4029 command_must_succeed);
4030 }
4031
4032 /* Queue an evaluate context command TRB */
xhci_queue_evaluate_context(struct xhci_hcd * xhci,struct xhci_command * cmd,dma_addr_t in_ctx_ptr,u32 slot_id,bool command_must_succeed)4033 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4034 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4035 {
4036 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4037 upper_32_bits(in_ctx_ptr), 0,
4038 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4039 command_must_succeed);
4040 }
4041
4042 /*
4043 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4044 * activity on an endpoint that is about to be suspended.
4045 */
xhci_queue_stop_endpoint(struct xhci_hcd * xhci,struct xhci_command * cmd,int slot_id,unsigned int ep_index,int suspend)4046 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4047 int slot_id, unsigned int ep_index, int suspend)
4048 {
4049 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4050 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4051 u32 type = TRB_TYPE(TRB_STOP_RING);
4052 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4053
4054 return queue_command(xhci, cmd, 0, 0, 0,
4055 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4056 }
4057
4058 /* Set Transfer Ring Dequeue Pointer command */
xhci_queue_new_dequeue_state(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)4059 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4060 unsigned int slot_id, unsigned int ep_index,
4061 struct xhci_dequeue_state *deq_state)
4062 {
4063 dma_addr_t addr;
4064 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4065 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4066 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4067 u32 trb_sct = 0;
4068 u32 type = TRB_TYPE(TRB_SET_DEQ);
4069 struct xhci_virt_ep *ep;
4070 struct xhci_command *cmd;
4071 int ret;
4072
4073 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4074 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4075 deq_state->new_deq_seg,
4076 (unsigned long long)deq_state->new_deq_seg->dma,
4077 deq_state->new_deq_ptr,
4078 (unsigned long long)xhci_trb_virt_to_dma(
4079 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4080 deq_state->new_cycle_state);
4081
4082 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4083 deq_state->new_deq_ptr);
4084 if (addr == 0) {
4085 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4086 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4087 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4088 return;
4089 }
4090 ep = &xhci->devs[slot_id]->eps[ep_index];
4091 if ((ep->ep_state & SET_DEQ_PENDING)) {
4092 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4093 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4094 return;
4095 }
4096
4097 /* This function gets called from contexts where it cannot sleep */
4098 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
4099 if (!cmd)
4100 return;
4101
4102 ep->queued_deq_seg = deq_state->new_deq_seg;
4103 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4104 if (deq_state->stream_id)
4105 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4106 ret = queue_command(xhci, cmd,
4107 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4108 upper_32_bits(addr), trb_stream_id,
4109 trb_slot_id | trb_ep_index | type, false);
4110 if (ret < 0) {
4111 xhci_free_command(xhci, cmd);
4112 return;
4113 }
4114
4115 /* Stop the TD queueing code from ringing the doorbell until
4116 * this command completes. The HC won't set the dequeue pointer
4117 * if the ring is running, and ringing the doorbell starts the
4118 * ring running.
4119 */
4120 ep->ep_state |= SET_DEQ_PENDING;
4121 }
4122
xhci_queue_reset_ep(struct xhci_hcd * xhci,struct xhci_command * cmd,int slot_id,unsigned int ep_index,enum xhci_ep_reset_type reset_type)4123 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4124 int slot_id, unsigned int ep_index,
4125 enum xhci_ep_reset_type reset_type)
4126 {
4127 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4128 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4129 u32 type = TRB_TYPE(TRB_RESET_EP);
4130
4131 if (reset_type == EP_SOFT_RESET)
4132 type |= TRB_TSP;
4133
4134 return queue_command(xhci, cmd, 0, 0, 0,
4135 trb_slot_id | trb_ep_index | type, false);
4136 }
4137