1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, usec);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
116
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
122 }
123 xhci->xhc_state |= XHCI_STATE_HALTED;
124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 return ret;
126 }
127
128 /*
129 * Set the run bit and wait for the host to be running.
130 */
xhci_start(struct xhci_hcd * xhci)131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 u32 temp;
134 int ret;
135
136 temp = readl(&xhci->op_regs->command);
137 temp |= (CMD_RUN);
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 temp);
140 writel(temp, &xhci->op_regs->command);
141
142 /*
143 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 * running.
145 */
146 ret = xhci_handshake(&xhci->op_regs->status,
147 STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 if (ret == -ETIMEDOUT)
149 xhci_err(xhci, "Host took too long to start, "
150 "waited %u microseconds.\n",
151 XHCI_MAX_HALT_USEC);
152 if (!ret)
153 /* clear state flags. Including dying, halted or removing */
154 xhci->xhc_state = 0;
155
156 return ret;
157 }
158
159 /*
160 * Reset a halted HC.
161 *
162 * This resets pipelines, timers, counters, state machines, etc.
163 * Transactions will be terminated immediately, and operational registers
164 * will be set to their defaults.
165 */
xhci_reset(struct xhci_hcd * xhci)166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 u32 command;
169 u32 state;
170 int ret;
171
172 state = readl(&xhci->op_regs->status);
173
174 if (state == ~(u32)0) {
175 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 return -ENODEV;
177 }
178
179 if ((state & STS_HALT) == 0) {
180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 return 0;
182 }
183
184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 command = readl(&xhci->op_regs->command);
186 command |= CMD_RESET;
187 writel(command, &xhci->op_regs->command);
188
189 /* Existing Intel xHCI controllers require a delay of 1 mS,
190 * after setting the CMD_RESET bit, and before accessing any
191 * HC registers. This allows the HC to complete the
192 * reset operation and be ready for HC register access.
193 * Without this delay, the subsequent HC register access,
194 * may result in a system hang very rarely.
195 */
196 if (xhci->quirks & XHCI_INTEL_HOST)
197 udelay(1000);
198
199 ret = xhci_handshake(&xhci->op_regs->command,
200 CMD_RESET, 0, 10 * 1000 * 1000);
201 if (ret)
202 return ret;
203
204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 "Wait for controller to be ready for doorbell rings");
209 /*
210 * xHCI cannot write to any doorbells or operational registers other
211 * than status until the "Controller Not Ready" flag is cleared.
212 */
213 ret = xhci_handshake(&xhci->op_regs->status,
214 STS_CNR, 0, 10 * 1000 * 1000);
215
216 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223 return ret;
224 }
225
xhci_zero_64b_regs(struct xhci_hcd * xhci)226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 int err, i;
230 u64 val;
231
232 /*
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
241 *
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
244 * unsafe...
245 */
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 return;
248
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
253 val &= ~CMD_HSEIE;
254 writel(val, &xhci->op_regs->command);
255
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
258 val |= STS_FATAL;
259 writel(val, &xhci->op_regs->status);
260
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 struct xhci_intr_reg __iomem *ir;
271
272 ir = &xhci->run_regs->ir_set[i];
273 val = xhci_read_64(xhci, &ir->erst_base);
274 if (upper_32_bits(val))
275 xhci_write_64(xhci, 0, &ir->erst_base);
276 val= xhci_read_64(xhci, &ir->erst_dequeue);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 }
280
281 /* Wait for the fault to appear. It will be cleared on reset */
282 err = xhci_handshake(&xhci->op_regs->status,
283 STS_FATAL, STS_FATAL,
284 XHCI_MAX_HALT_USEC);
285 if (!err)
286 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291 * Set up MSI
292 */
xhci_setup_msi(struct xhci_hcd * xhci)293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 int ret;
296 /*
297 * TODO:Check with MSI Soc for sysdev
298 */
299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 if (ret < 0) {
303 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 "failed to allocate MSI entry");
305 return ret;
306 }
307
308 ret = request_irq(pdev->irq, xhci_msi_irq,
309 0, "xhci_hcd", xhci_to_hcd(xhci));
310 if (ret) {
311 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 "disable MSI interrupt");
313 pci_free_irq_vectors(pdev);
314 }
315
316 return ret;
317 }
318
319 /*
320 * Set up MSI-X
321 */
xhci_setup_msix(struct xhci_hcd * xhci)322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 int i, ret = 0;
325 struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328 /*
329 * calculate number of msi-x vectors supported.
330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 * with max number of interrupters based on the xhci HCSPARAMS1.
332 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 * Add additional 1 vector to ensure always available interrupt.
334 */
335 xhci->msix_count = min(num_online_cpus() + 1,
336 HCS_MAX_INTRS(xhci->hcs_params1));
337
338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 PCI_IRQ_MSIX);
340 if (ret < 0) {
341 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 "Failed to enable MSI-X");
343 return ret;
344 }
345
346 for (i = 0; i < xhci->msix_count; i++) {
347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 "xhci_hcd", xhci_to_hcd(xhci));
349 if (ret)
350 goto disable_msix;
351 }
352
353 hcd->msix_enabled = 1;
354 return ret;
355
356 disable_msix:
357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 while (--i >= 0)
359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 pci_free_irq_vectors(pdev);
361 return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370 if (xhci->quirks & XHCI_PLAT)
371 return;
372
373 /* return if using legacy interrupt */
374 if (hcd->irq > 0)
375 return;
376
377 if (hcd->msix_enabled) {
378 int i;
379
380 for (i = 0; i < xhci->msix_count; i++)
381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 } else {
383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 }
385
386 pci_free_irq_vectors(pdev);
387 hcd->msix_enabled = 0;
388 }
389
xhci_msix_sync_irqs(struct xhci_hcd * xhci)390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394 if (hcd->msix_enabled) {
395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 int i;
397
398 for (i = 0; i < xhci->msix_count; i++)
399 synchronize_irq(pci_irq_vector(pdev, i));
400 }
401 }
402
xhci_try_enable_msi(struct usb_hcd * hcd)403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 struct pci_dev *pdev;
407 int ret;
408
409 /* The xhci platform device has set up IRQs through usb_add_hcd. */
410 if (xhci->quirks & XHCI_PLAT)
411 return 0;
412
413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 /*
415 * Some Fresco Logic host controllers advertise MSI, but fail to
416 * generate interrupts. Don't even try to enable MSI.
417 */
418 if (xhci->quirks & XHCI_BROKEN_MSI)
419 goto legacy_irq;
420
421 /* unregister the legacy interrupt */
422 if (hcd->irq)
423 free_irq(hcd->irq, hcd);
424 hcd->irq = 0;
425
426 ret = xhci_setup_msix(xhci);
427 if (ret)
428 /* fall back to msi*/
429 ret = xhci_setup_msi(xhci);
430
431 if (!ret) {
432 hcd->msi_enabled = 1;
433 return 0;
434 }
435
436 if (!pdev->irq) {
437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 return -EINVAL;
439 }
440
441 legacy_irq:
442 if (!strlen(hcd->irq_descr))
443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 hcd->driver->description, hcd->self.busnum);
445
446 /* fall back to legacy interrupt*/
447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 hcd->irq_descr, hcd);
449 if (ret) {
450 xhci_err(xhci, "request interrupt %d failed\n",
451 pdev->irq);
452 return ret;
453 }
454 hcd->irq = pdev->irq;
455 return 0;
456 }
457
458 #else
459
xhci_try_enable_msi(struct usb_hcd * hcd)460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 return 0;
463 }
464
xhci_cleanup_msix(struct xhci_hcd * xhci)465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
xhci_msix_sync_irqs(struct xhci_hcd * xhci)469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
compliance_mode_recovery(struct timer_list * t)475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 struct xhci_hcd *xhci;
478 struct usb_hcd *hcd;
479 struct xhci_hub *rhub;
480 u32 temp;
481 int i;
482
483 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 rhub = &xhci->usb3_rhub;
485
486 for (i = 0; i < rhub->num_ports; i++) {
487 temp = readl(rhub->ports[i]->addr);
488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 /*
490 * Compliance Mode Detected. Letting USB Core
491 * handle the Warm Reset
492 */
493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 "Compliance mode detected->port %d",
495 i + 1);
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Attempting compliance mode recovery");
498 hcd = xhci->shared_hcd;
499
500 if (hcd->state == HC_STATE_SUSPENDED)
501 usb_hcd_resume_root_hub(hcd);
502
503 usb_hcd_poll_rh_status(hcd);
504 }
505 }
506
507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 mod_timer(&xhci->comp_mode_recovery_timer,
509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514 * that causes ports behind that hardware to enter compliance mode sometimes.
515 * The quirk creates a timer that polls every 2 seconds the link state of
516 * each host controller's port and recovers it by issuing a Warm reset
517 * if Compliance mode is detected, otherwise the port will become "dead" (no
518 * device connections or disconnections will be detected anymore). Becasue no
519 * status event is generated when entering compliance mode (per xhci spec),
520 * this quirk is needed on systems that have the failing hardware installed.
521 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 xhci->port_status_u0 = 0;
525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 0);
527 xhci->comp_mode_recovery_timer.expires = jiffies +
528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530 add_timer(&xhci->comp_mode_recovery_timer);
531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 "Compliance mode recovery timer initialized");
533 }
534
535 /*
536 * This function identifies the systems that have installed the SN65LVPE502CP
537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
538 * Systems:
539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540 */
xhci_compliance_mode_recovery_timer_quirk_check(void)541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 const char *dmi_product_name, *dmi_sys_vendor;
544
545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 if (!dmi_product_name || !dmi_sys_vendor)
548 return false;
549
550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 return false;
552
553 if (strstr(dmi_product_name, "Z420") ||
554 strstr(dmi_product_name, "Z620") ||
555 strstr(dmi_product_name, "Z820") ||
556 strstr(dmi_product_name, "Z1 Workstation"))
557 return true;
558
559 return false;
560 }
561
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569 * Initialize memory for HCD and xHC (one-time init).
570 *
571 * Program the PAGESIZE register, initialize the device context array, create
572 * device contexts (?), set up a command ring segment (or two?), create event
573 * ring (one for now).
574 */
xhci_init(struct usb_hcd * hcd)575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 int retval = 0;
579
580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 spin_lock_init(&xhci->lock);
582 if (xhci->hci_version == 0x95 && link_quirk) {
583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 "QUIRK: Not clearing Link TRB chain bits.");
585 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 } else {
587 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 "xHCI doesn't need link TRB QUIRK");
589 }
590 retval = xhci_mem_init(xhci, GFP_KERNEL);
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593 /* Initializing Compliance Mode Recovery Data If Needed */
594 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 compliance_mode_recovery_timer_init(xhci);
597 }
598
599 return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
xhci_run_finished(struct xhci_hcd * xhci)605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 if (xhci_start(xhci)) {
608 xhci_halt(xhci);
609 return -ENODEV;
610 }
611 xhci->shared_hcd->state = HC_STATE_RUNNING;
612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614 if (xhci->quirks & XHCI_NEC_HOST)
615 xhci_ring_cmd_db(xhci);
616
617 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 "Finished xhci_run for USB3 roothub");
619 return 0;
620 }
621
622 /*
623 * Start the HC after it was halted.
624 *
625 * This function is called by the USB core when the HC driver is added.
626 * Its opposite is xhci_stop().
627 *
628 * xhci_init() must be called once before this function can be called.
629 * Reset the HC, enable device slot contexts, program DCBAAP, and
630 * set command ring pointer and event ring pointer.
631 *
632 * Setup MSI-X vectors and enable interrupts.
633 */
xhci_run(struct usb_hcd * hcd)634 int xhci_run(struct usb_hcd *hcd)
635 {
636 u32 temp;
637 u64 temp_64;
638 int ret;
639 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641 /* Start the xHCI host controller running only after the USB 2.0 roothub
642 * is setup.
643 */
644
645 hcd->uses_new_polling = 1;
646 if (!usb_hcd_is_primary_hcd(hcd))
647 return xhci_run_finished(xhci);
648
649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651 ret = xhci_try_enable_msi(hcd);
652 if (ret)
653 return ret;
654
655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 temp_64 &= ~ERST_PTR_MASK;
657 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "// Set the interrupt modulation register");
662 temp = readl(&xhci->ir_set->irq_control);
663 temp &= ~ER_IRQ_INTERVAL_MASK;
664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 writel(temp, &xhci->ir_set->irq_control);
666
667 /* Set the HCD state before we enable the irqs */
668 temp = readl(&xhci->op_regs->command);
669 temp |= (CMD_EIE);
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "// Enable interrupts, cmd = 0x%x.", temp);
672 writel(temp, &xhci->op_regs->command);
673
674 temp = readl(&xhci->ir_set->irq_pending);
675 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680 if (xhci->quirks & XHCI_NEC_HOST) {
681 struct xhci_command *command;
682
683 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 if (!command)
685 return -ENOMEM;
686
687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 TRB_TYPE(TRB_NEC_GET_FW));
689 if (ret)
690 xhci_free_command(xhci, command);
691 }
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 "Finished xhci_run for USB2 roothub");
694
695 xhci_dbc_init(xhci);
696
697 xhci_debugfs_init(xhci);
698
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704 * Stop xHCI driver.
705 *
706 * This function is called by the USB core when the HC driver is removed.
707 * Its opposite is xhci_run().
708 *
709 * Disable device contexts, disable IRQs, and quiesce the HC.
710 * Reset the HC, finish any completed transactions, and cleanup memory.
711 */
xhci_stop(struct usb_hcd * hcd)712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 u32 temp;
715 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717 mutex_lock(&xhci->mutex);
718
719 /* Only halt host and free memory after both hcds are removed */
720 if (!usb_hcd_is_primary_hcd(hcd)) {
721 mutex_unlock(&xhci->mutex);
722 return;
723 }
724
725 xhci_dbc_exit(xhci);
726
727 spin_lock_irq(&xhci->lock);
728 xhci->xhc_state |= XHCI_STATE_HALTED;
729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 xhci_halt(xhci);
731 xhci_reset(xhci);
732 spin_unlock_irq(&xhci->lock);
733
734 xhci_cleanup_msix(xhci);
735
736 /* Deleting Compliance Mode Recovery Timer */
737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 (!(xhci_all_ports_seen_u0(xhci)))) {
739 del_timer_sync(&xhci->comp_mode_recovery_timer);
740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 "%s: compliance mode recovery timer deleted",
742 __func__);
743 }
744
745 if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 usb_amd_dev_put();
747
748 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 "// Disabling event ring interrupts");
750 temp = readl(&xhci->op_regs->status);
751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 temp = readl(&xhci->ir_set->irq_pending);
753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 xhci_mem_cleanup(xhci);
757 xhci_debugfs_exit(xhci);
758 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 "xhci_stop completed - status = %x",
760 readl(&xhci->op_regs->status));
761 mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765 * Shutdown HC (not bus-specific)
766 *
767 * This is called when the machine is rebooting or halting. We assume that the
768 * machine will be powered off, and the HC's internal state will be reset.
769 * Don't bother to free memory.
770 *
771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
772 */
xhci_shutdown(struct usb_hcd * hcd)773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780 spin_lock_irq(&xhci->lock);
781 xhci_halt(xhci);
782 /* Workaround for spurious wakeups at shutdown with HSW */
783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 xhci_reset(xhci);
785 spin_unlock_irq(&xhci->lock);
786
787 xhci_cleanup_msix(xhci);
788
789 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 "xhci_shutdown completed - status = %x",
791 readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 xhci->s3.command = readl(&xhci->op_regs->command);
799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
xhci_restore_registers(struct xhci_hcd * xhci)809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 writel(xhci->s3.command, &xhci->op_regs->command);
812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 u64 val_64;
825
826 /* step 2: initialize command ring buffer */
827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 xhci->cmd_ring->dequeue) &
831 (u64) ~CMD_RING_RSVD_BITS) |
832 xhci->cmd_ring->cycle_state;
833 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 "// Setting command ring address to 0x%llx",
835 (long unsigned long) val_64);
836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840 * The whole command ring must be cleared to zero when we suspend the host.
841 *
842 * The host doesn't save the command ring pointer in the suspend well, so we
843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
844 * aligned, because of the reserved bits in the command ring dequeue pointer
845 * register. Therefore, we can't just set the dequeue pointer back in the
846 * middle of the ring (TRBs are 16-byte aligned).
847 */
xhci_clear_command_ring(struct xhci_hcd * xhci)848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 struct xhci_ring *ring;
851 struct xhci_segment *seg;
852
853 ring = xhci->cmd_ring;
854 seg = ring->deq_seg;
855 do {
856 memset(seg->trbs, 0,
857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 cpu_to_le32(~TRB_CYCLE);
860 seg = seg->next;
861 } while (seg != ring->deq_seg);
862
863 /* Reset the software enqueue and dequeue pointers */
864 ring->deq_seg = ring->first_seg;
865 ring->dequeue = ring->first_seg->trbs;
866 ring->enq_seg = ring->deq_seg;
867 ring->enqueue = ring->dequeue;
868
869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 /*
871 * Ring is now zeroed, so the HW should look for change of ownership
872 * when the cycle bit is set to 1.
873 */
874 ring->cycle_state = 1;
875
876 /*
877 * Reset the hardware dequeue pointer.
878 * Yes, this will need to be re-written after resume, but we're paranoid
879 * and want to make sure the hardware doesn't access bogus memory
880 * because, say, the BIOS or an SMI started the host without changing
881 * the command ring pointers.
882 */
883 xhci_set_cmd_ring_deq(xhci);
884 }
885
xhci_disable_port_wake_on_bits(struct xhci_hcd * xhci)886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 struct xhci_port **ports;
889 int port_index;
890 unsigned long flags;
891 u32 t1, t2, portsc;
892
893 spin_lock_irqsave(&xhci->lock, flags);
894
895 /* disable usb3 ports Wake bits */
896 port_index = xhci->usb3_rhub.num_ports;
897 ports = xhci->usb3_rhub.ports;
898 while (port_index--) {
899 t1 = readl(ports[port_index]->addr);
900 portsc = t1;
901 t1 = xhci_port_state_to_neutral(t1);
902 t2 = t1 & ~PORT_WAKE_BITS;
903 if (t1 != t2) {
904 writel(t2, ports[port_index]->addr);
905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 xhci->usb3_rhub.hcd->self.busnum,
907 port_index + 1, portsc, t2);
908 }
909 }
910
911 /* disable usb2 ports Wake bits */
912 port_index = xhci->usb2_rhub.num_ports;
913 ports = xhci->usb2_rhub.ports;
914 while (port_index--) {
915 t1 = readl(ports[port_index]->addr);
916 portsc = t1;
917 t1 = xhci_port_state_to_neutral(t1);
918 t2 = t1 & ~PORT_WAKE_BITS;
919 if (t1 != t2) {
920 writel(t2, ports[port_index]->addr);
921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 xhci->usb2_rhub.hcd->self.busnum,
923 port_index + 1, portsc, t2);
924 }
925 }
926 spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
xhci_pending_portevent(struct xhci_hcd * xhci)929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 struct xhci_port **ports;
932 int port_index;
933 u32 status;
934 u32 portsc;
935
936 status = readl(&xhci->op_regs->status);
937 if (status & STS_EINT)
938 return true;
939 /*
940 * Checking STS_EINT is not enough as there is a lag between a change
941 * bit being set and the Port Status Change Event that it generated
942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 */
944
945 port_index = xhci->usb2_rhub.num_ports;
946 ports = xhci->usb2_rhub.ports;
947 while (port_index--) {
948 portsc = readl(ports[port_index]->addr);
949 if (portsc & PORT_CHANGE_MASK ||
950 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 return true;
952 }
953 port_index = xhci->usb3_rhub.num_ports;
954 ports = xhci->usb3_rhub.ports;
955 while (port_index--) {
956 portsc = readl(ports[port_index]->addr);
957 if (portsc & PORT_CHANGE_MASK ||
958 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 return true;
960 }
961 return false;
962 }
963
964 /*
965 * Stop HC (not bus-specific)
966 *
967 * This is called when the machine transition into S3/S4 mode.
968 *
969 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 int rc = 0;
973 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
974 struct usb_hcd *hcd = xhci_to_hcd(xhci);
975 u32 command;
976 u32 res;
977
978 if (!hcd->state)
979 return 0;
980
981 if (hcd->state != HC_STATE_SUSPENDED ||
982 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 return -EINVAL;
984
985 /* Clear root port wake on bits if wakeup not allowed. */
986 if (!do_wakeup)
987 xhci_disable_port_wake_on_bits(xhci);
988
989 if (!HCD_HW_ACCESSIBLE(hcd))
990 return 0;
991
992 xhci_dbc_suspend(xhci);
993
994 /* Don't poll the roothubs on bus suspend. */
995 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 del_timer_sync(&hcd->rh_timer);
998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 usleep_range(1000, 1500);
1003
1004 spin_lock_irq(&xhci->lock);
1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 /* step 1: stop endpoint */
1008 /* skipped assuming that port suspend has done */
1009
1010 /* step 2: clear Run/Stop bit */
1011 command = readl(&xhci->op_regs->command);
1012 command &= ~CMD_RUN;
1013 writel(command, &xhci->op_regs->command);
1014
1015 /* Some chips from Fresco Logic need an extraordinary delay */
1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018 if (xhci_handshake(&xhci->op_regs->status,
1019 STS_HALT, STS_HALT, delay)) {
1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 spin_unlock_irq(&xhci->lock);
1022 return -ETIMEDOUT;
1023 }
1024 xhci_clear_command_ring(xhci);
1025
1026 /* step 3: save registers */
1027 xhci_save_registers(xhci);
1028
1029 /* step 4: set CSS flag */
1030 command = readl(&xhci->op_regs->command);
1031 command |= CMD_CSS;
1032 writel(command, &xhci->op_regs->command);
1033 xhci->broken_suspend = 0;
1034 if (xhci_handshake(&xhci->op_regs->status,
1035 STS_SAVE, 0, 20 * 1000)) {
1036 /*
1037 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 * SSS bit of USBSTS and when driver tries to poll
1039 * to see if the xHC clears BIT(8) which never happens
1040 * and driver assumes that controller is not responding
1041 * and times out. To workaround this, its good to check
1042 * if SRE and HCE bits are not set (as per xhci
1043 * Section 5.4.2) and bypass the timeout.
1044 */
1045 res = readl(&xhci->op_regs->status);
1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 (((res & STS_SRE) == 0) &&
1048 ((res & STS_HCE) == 0))) {
1049 xhci->broken_suspend = 1;
1050 } else {
1051 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 spin_unlock_irq(&xhci->lock);
1053 return -ETIMEDOUT;
1054 }
1055 }
1056 spin_unlock_irq(&xhci->lock);
1057
1058 /*
1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 * is about to be suspended.
1061 */
1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 (!(xhci_all_ports_seen_u0(xhci)))) {
1064 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 "%s: compliance mode recovery timer deleted",
1067 __func__);
1068 }
1069
1070 /* step 5: remove core well power */
1071 /* synchronize irq when using MSI-X */
1072 xhci_msix_sync_irqs(xhci);
1073
1074 return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078 /*
1079 * start xHC (not bus-specific)
1080 *
1081 * This is called when the machine transition from S3/S4 mode.
1082 *
1083 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 u32 command, temp = 0;
1087 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1088 struct usb_hcd *secondary_hcd;
1089 int retval = 0;
1090 bool comp_timer_running = false;
1091
1092 if (!hcd->state)
1093 return 0;
1094
1095 /* Wait a bit if either of the roothubs need to settle from the
1096 * transition into bus suspend.
1097 */
1098
1099 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 msleep(100);
1102
1103 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106 spin_lock_irq(&xhci->lock);
1107 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 hibernated = true;
1109
1110 if (!hibernated) {
1111 /*
1112 * Some controllers might lose power during suspend, so wait
1113 * for controller not ready bit to clear, just as in xHC init.
1114 */
1115 retval = xhci_handshake(&xhci->op_regs->status,
1116 STS_CNR, 0, 10 * 1000 * 1000);
1117 if (retval) {
1118 xhci_warn(xhci, "Controller not ready at resume %d\n",
1119 retval);
1120 spin_unlock_irq(&xhci->lock);
1121 return retval;
1122 }
1123 /* step 1: restore register */
1124 xhci_restore_registers(xhci);
1125 /* step 2: initialize command ring buffer */
1126 xhci_set_cmd_ring_deq(xhci);
1127 /* step 3: restore state and start state*/
1128 /* step 3: set CRS flag */
1129 command = readl(&xhci->op_regs->command);
1130 command |= CMD_CRS;
1131 writel(command, &xhci->op_regs->command);
1132 /*
1133 * Some controllers take up to 55+ ms to complete the controller
1134 * restore so setting the timeout to 100ms. Xhci specification
1135 * doesn't mention any timeout value.
1136 */
1137 if (xhci_handshake(&xhci->op_regs->status,
1138 STS_RESTORE, 0, 100 * 1000)) {
1139 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140 spin_unlock_irq(&xhci->lock);
1141 return -ETIMEDOUT;
1142 }
1143 temp = readl(&xhci->op_regs->status);
1144 }
1145
1146 /* If restore operation fails, re-initialize the HC during resume */
1147 if ((temp & STS_SRE) || hibernated) {
1148
1149 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150 !(xhci_all_ports_seen_u0(xhci))) {
1151 del_timer_sync(&xhci->comp_mode_recovery_timer);
1152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153 "Compliance Mode Recovery Timer deleted!");
1154 }
1155
1156 /* Let the USB core know _both_ roothubs lost power. */
1157 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160 xhci_dbg(xhci, "Stop HCD\n");
1161 xhci_halt(xhci);
1162 xhci_zero_64b_regs(xhci);
1163 retval = xhci_reset(xhci);
1164 spin_unlock_irq(&xhci->lock);
1165 if (retval)
1166 return retval;
1167 xhci_cleanup_msix(xhci);
1168
1169 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170 temp = readl(&xhci->op_regs->status);
1171 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172 temp = readl(&xhci->ir_set->irq_pending);
1173 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174
1175 xhci_dbg(xhci, "cleaning up memory\n");
1176 xhci_mem_cleanup(xhci);
1177 xhci_debugfs_exit(xhci);
1178 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179 readl(&xhci->op_regs->status));
1180
1181 /* USB core calls the PCI reinit and start functions twice:
1182 * first with the primary HCD, and then with the secondary HCD.
1183 * If we don't do the same, the host will never be started.
1184 */
1185 if (!usb_hcd_is_primary_hcd(hcd))
1186 secondary_hcd = hcd;
1187 else
1188 secondary_hcd = xhci->shared_hcd;
1189
1190 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191 retval = xhci_init(hcd->primary_hcd);
1192 if (retval)
1193 return retval;
1194 comp_timer_running = true;
1195
1196 xhci_dbg(xhci, "Start the primary HCD\n");
1197 retval = xhci_run(hcd->primary_hcd);
1198 if (!retval) {
1199 xhci_dbg(xhci, "Start the secondary HCD\n");
1200 retval = xhci_run(secondary_hcd);
1201 }
1202 hcd->state = HC_STATE_SUSPENDED;
1203 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204 goto done;
1205 }
1206
1207 /* step 4: set Run/Stop bit */
1208 command = readl(&xhci->op_regs->command);
1209 command |= CMD_RUN;
1210 writel(command, &xhci->op_regs->command);
1211 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212 0, 250 * 1000);
1213
1214 /* step 5: walk topology and initialize portsc,
1215 * portpmsc and portli
1216 */
1217 /* this is done in bus_resume */
1218
1219 /* step 6: restart each of the previously
1220 * Running endpoints by ringing their doorbells
1221 */
1222
1223 spin_unlock_irq(&xhci->lock);
1224
1225 xhci_dbc_resume(xhci);
1226
1227 done:
1228 if (retval == 0) {
1229 /* Resume root hubs only when have pending events. */
1230 if (xhci_pending_portevent(xhci)) {
1231 usb_hcd_resume_root_hub(xhci->shared_hcd);
1232 usb_hcd_resume_root_hub(hcd);
1233 }
1234 }
1235
1236 /*
1237 * If system is subject to the Quirk, Compliance Mode Timer needs to
1238 * be re-initialized Always after a system resume. Ports are subject
1239 * to suffer the Compliance Mode issue again. It doesn't matter if
1240 * ports have entered previously to U0 before system's suspension.
1241 */
1242 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243 compliance_mode_recovery_timer_init(xhci);
1244
1245 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247
1248 /* Re-enable port polling. */
1249 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251 usb_hcd_poll_rh_status(xhci->shared_hcd);
1252 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253 usb_hcd_poll_rh_status(hcd);
1254
1255 return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif /* CONFIG_PM */
1259
1260 /*-------------------------------------------------------------------------*/
1261
1262 /*
1263 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1264 * we'll copy the actual data into the TRB address register. This is limited to
1265 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1266 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1267 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1268 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1269 gfp_t mem_flags)
1270 {
1271 if (xhci_urb_suitable_for_idt(urb))
1272 return 0;
1273
1274 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1275 }
1276
1277 /*
1278 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1279 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1280 * value to right shift 1 for the bitmask.
1281 *
1282 * Index = (epnum * 2) + direction - 1,
1283 * where direction = 0 for OUT, 1 for IN.
1284 * For control endpoints, the IN index is used (OUT index is unused), so
1285 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1286 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1287 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1288 {
1289 unsigned int index;
1290 if (usb_endpoint_xfer_control(desc))
1291 index = (unsigned int) (usb_endpoint_num(desc)*2);
1292 else
1293 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1294 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1295 return index;
1296 }
1297
1298 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1299 * address from the XHCI endpoint index.
1300 */
xhci_get_endpoint_address(unsigned int ep_index)1301 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1302 {
1303 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1304 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1305 return direction | number;
1306 }
1307
1308 /* Find the flag for this endpoint (for use in the control context). Use the
1309 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1310 * bit 1, etc.
1311 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1312 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1313 {
1314 return 1 << (xhci_get_endpoint_index(desc) + 1);
1315 }
1316
1317 /* Find the flag for this endpoint (for use in the control context). Use the
1318 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1319 * bit 1, etc.
1320 */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1321 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1322 {
1323 return 1 << (ep_index + 1);
1324 }
1325
1326 /* Compute the last valid endpoint context index. Basically, this is the
1327 * endpoint index plus one. For slot contexts with more than valid endpoint,
1328 * we find the most significant bit set in the added contexts flags.
1329 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1330 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1331 */
xhci_last_valid_endpoint(u32 added_ctxs)1332 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1333 {
1334 return fls(added_ctxs) - 1;
1335 }
1336
1337 /* Returns 1 if the arguments are OK;
1338 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1339 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1340 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1341 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1342 const char *func) {
1343 struct xhci_hcd *xhci;
1344 struct xhci_virt_device *virt_dev;
1345
1346 if (!hcd || (check_ep && !ep) || !udev) {
1347 pr_debug("xHCI %s called with invalid args\n", func);
1348 return -EINVAL;
1349 }
1350 if (!udev->parent) {
1351 pr_debug("xHCI %s called for root hub\n", func);
1352 return 0;
1353 }
1354
1355 xhci = hcd_to_xhci(hcd);
1356 if (check_virt_dev) {
1357 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1358 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1359 func);
1360 return -EINVAL;
1361 }
1362
1363 virt_dev = xhci->devs[udev->slot_id];
1364 if (virt_dev->udev != udev) {
1365 xhci_dbg(xhci, "xHCI %s called with udev and "
1366 "virt_dev does not match\n", func);
1367 return -EINVAL;
1368 }
1369 }
1370
1371 if (xhci->xhc_state & XHCI_STATE_HALTED)
1372 return -ENODEV;
1373
1374 return 1;
1375 }
1376
1377 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1378 struct usb_device *udev, struct xhci_command *command,
1379 bool ctx_change, bool must_succeed);
1380
1381 /*
1382 * Full speed devices may have a max packet size greater than 8 bytes, but the
1383 * USB core doesn't know that until it reads the first 8 bytes of the
1384 * descriptor. If the usb_device's max packet size changes after that point,
1385 * we need to issue an evaluate context command and wait on it.
1386 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1387 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1388 unsigned int ep_index, struct urb *urb)
1389 {
1390 struct xhci_container_ctx *out_ctx;
1391 struct xhci_input_control_ctx *ctrl_ctx;
1392 struct xhci_ep_ctx *ep_ctx;
1393 struct xhci_command *command;
1394 int max_packet_size;
1395 int hw_max_packet_size;
1396 int ret = 0;
1397
1398 out_ctx = xhci->devs[slot_id]->out_ctx;
1399 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1400 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1401 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1402 if (hw_max_packet_size != max_packet_size) {
1403 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1404 "Max Packet Size for ep 0 changed.");
1405 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1406 "Max packet size in usb_device = %d",
1407 max_packet_size);
1408 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1409 "Max packet size in xHCI HW = %d",
1410 hw_max_packet_size);
1411 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1412 "Issuing evaluate context command.");
1413
1414 /* Set up the input context flags for the command */
1415 /* FIXME: This won't work if a non-default control endpoint
1416 * changes max packet sizes.
1417 */
1418
1419 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1420 if (!command)
1421 return -ENOMEM;
1422
1423 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1424 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1425 if (!ctrl_ctx) {
1426 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1427 __func__);
1428 ret = -ENOMEM;
1429 goto command_cleanup;
1430 }
1431 /* Set up the modified control endpoint 0 */
1432 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1433 xhci->devs[slot_id]->out_ctx, ep_index);
1434
1435 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1436 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1437 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1438 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1439
1440 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1441 ctrl_ctx->drop_flags = 0;
1442
1443 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1444 true, false);
1445
1446 /* Clean up the input context for later use by bandwidth
1447 * functions.
1448 */
1449 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1450 command_cleanup:
1451 kfree(command->completion);
1452 kfree(command);
1453 }
1454 return ret;
1455 }
1456
1457 /*
1458 * non-error returns are a promise to giveback() the urb later
1459 * we drop ownership so next owner (or urb unlink) can get it
1460 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1461 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1462 {
1463 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1464 unsigned long flags;
1465 int ret = 0;
1466 unsigned int slot_id, ep_index;
1467 unsigned int *ep_state;
1468 struct urb_priv *urb_priv;
1469 int num_tds;
1470
1471 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1472 true, true, __func__) <= 0)
1473 return -EINVAL;
1474
1475 slot_id = urb->dev->slot_id;
1476 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1477 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1478
1479 if (!HCD_HW_ACCESSIBLE(hcd)) {
1480 if (!in_interrupt())
1481 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1482 return -ESHUTDOWN;
1483 }
1484 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1485 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1486 return -ENODEV;
1487 }
1488
1489 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1490 num_tds = urb->number_of_packets;
1491 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1492 urb->transfer_buffer_length > 0 &&
1493 urb->transfer_flags & URB_ZERO_PACKET &&
1494 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1495 num_tds = 2;
1496 else
1497 num_tds = 1;
1498
1499 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1500 if (!urb_priv)
1501 return -ENOMEM;
1502
1503 urb_priv->num_tds = num_tds;
1504 urb_priv->num_tds_done = 0;
1505 urb->hcpriv = urb_priv;
1506
1507 trace_xhci_urb_enqueue(urb);
1508
1509 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1510 /* Check to see if the max packet size for the default control
1511 * endpoint changed during FS device enumeration
1512 */
1513 if (urb->dev->speed == USB_SPEED_FULL) {
1514 ret = xhci_check_maxpacket(xhci, slot_id,
1515 ep_index, urb);
1516 if (ret < 0) {
1517 xhci_urb_free_priv(urb_priv);
1518 urb->hcpriv = NULL;
1519 return ret;
1520 }
1521 }
1522 }
1523
1524 spin_lock_irqsave(&xhci->lock, flags);
1525
1526 if (xhci->xhc_state & XHCI_STATE_DYING) {
1527 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1528 urb->ep->desc.bEndpointAddress, urb);
1529 ret = -ESHUTDOWN;
1530 goto free_priv;
1531 }
1532 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1533 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1534 *ep_state);
1535 ret = -EINVAL;
1536 goto free_priv;
1537 }
1538 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1539 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1540 ret = -EINVAL;
1541 goto free_priv;
1542 }
1543
1544 switch (usb_endpoint_type(&urb->ep->desc)) {
1545
1546 case USB_ENDPOINT_XFER_CONTROL:
1547 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1548 slot_id, ep_index);
1549 break;
1550 case USB_ENDPOINT_XFER_BULK:
1551 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1552 slot_id, ep_index);
1553 break;
1554 case USB_ENDPOINT_XFER_INT:
1555 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1556 slot_id, ep_index);
1557 break;
1558 case USB_ENDPOINT_XFER_ISOC:
1559 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1560 slot_id, ep_index);
1561 }
1562
1563 if (ret) {
1564 free_priv:
1565 xhci_urb_free_priv(urb_priv);
1566 urb->hcpriv = NULL;
1567 }
1568 spin_unlock_irqrestore(&xhci->lock, flags);
1569 return ret;
1570 }
1571
1572 /*
1573 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1574 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1575 * should pick up where it left off in the TD, unless a Set Transfer Ring
1576 * Dequeue Pointer is issued.
1577 *
1578 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1579 * the ring. Since the ring is a contiguous structure, they can't be physically
1580 * removed. Instead, there are two options:
1581 *
1582 * 1) If the HC is in the middle of processing the URB to be canceled, we
1583 * simply move the ring's dequeue pointer past those TRBs using the Set
1584 * Transfer Ring Dequeue Pointer command. This will be the common case,
1585 * when drivers timeout on the last submitted URB and attempt to cancel.
1586 *
1587 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1588 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1589 * HC will need to invalidate the any TRBs it has cached after the stop
1590 * endpoint command, as noted in the xHCI 0.95 errata.
1591 *
1592 * 3) The TD may have completed by the time the Stop Endpoint Command
1593 * completes, so software needs to handle that case too.
1594 *
1595 * This function should protect against the TD enqueueing code ringing the
1596 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1597 * It also needs to account for multiple cancellations on happening at the same
1598 * time for the same endpoint.
1599 *
1600 * Note that this function can be called in any context, or so says
1601 * usb_hcd_unlink_urb()
1602 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1603 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1604 {
1605 unsigned long flags;
1606 int ret, i;
1607 u32 temp;
1608 struct xhci_hcd *xhci;
1609 struct urb_priv *urb_priv;
1610 struct xhci_td *td;
1611 unsigned int ep_index;
1612 struct xhci_ring *ep_ring;
1613 struct xhci_virt_ep *ep;
1614 struct xhci_command *command;
1615 struct xhci_virt_device *vdev;
1616
1617 xhci = hcd_to_xhci(hcd);
1618 spin_lock_irqsave(&xhci->lock, flags);
1619
1620 trace_xhci_urb_dequeue(urb);
1621
1622 /* Make sure the URB hasn't completed or been unlinked already */
1623 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1624 if (ret)
1625 goto done;
1626
1627 /* give back URB now if we can't queue it for cancel */
1628 vdev = xhci->devs[urb->dev->slot_id];
1629 urb_priv = urb->hcpriv;
1630 if (!vdev || !urb_priv)
1631 goto err_giveback;
1632
1633 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1634 ep = &vdev->eps[ep_index];
1635 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1636 if (!ep || !ep_ring)
1637 goto err_giveback;
1638
1639 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1640 temp = readl(&xhci->op_regs->status);
1641 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1642 xhci_hc_died(xhci);
1643 goto done;
1644 }
1645
1646 /*
1647 * check ring is not re-allocated since URB was enqueued. If it is, then
1648 * make sure none of the ring related pointers in this URB private data
1649 * are touched, such as td_list, otherwise we overwrite freed data
1650 */
1651 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1652 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1653 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1654 td = &urb_priv->td[i];
1655 if (!list_empty(&td->cancelled_td_list))
1656 list_del_init(&td->cancelled_td_list);
1657 }
1658 goto err_giveback;
1659 }
1660
1661 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1662 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1663 "HC halted, freeing TD manually.");
1664 for (i = urb_priv->num_tds_done;
1665 i < urb_priv->num_tds;
1666 i++) {
1667 td = &urb_priv->td[i];
1668 if (!list_empty(&td->td_list))
1669 list_del_init(&td->td_list);
1670 if (!list_empty(&td->cancelled_td_list))
1671 list_del_init(&td->cancelled_td_list);
1672 }
1673 goto err_giveback;
1674 }
1675
1676 i = urb_priv->num_tds_done;
1677 if (i < urb_priv->num_tds)
1678 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1679 "Cancel URB %p, dev %s, ep 0x%x, "
1680 "starting at offset 0x%llx",
1681 urb, urb->dev->devpath,
1682 urb->ep->desc.bEndpointAddress,
1683 (unsigned long long) xhci_trb_virt_to_dma(
1684 urb_priv->td[i].start_seg,
1685 urb_priv->td[i].first_trb));
1686
1687 for (; i < urb_priv->num_tds; i++) {
1688 td = &urb_priv->td[i];
1689 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1690 }
1691
1692 /* Queue a stop endpoint command, but only if this is
1693 * the first cancellation to be handled.
1694 */
1695 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1696 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1697 if (!command) {
1698 ret = -ENOMEM;
1699 goto done;
1700 }
1701 ep->ep_state |= EP_STOP_CMD_PENDING;
1702 ep->stop_cmd_timer.expires = jiffies +
1703 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1704 add_timer(&ep->stop_cmd_timer);
1705 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1706 ep_index, 0);
1707 xhci_ring_cmd_db(xhci);
1708 }
1709 done:
1710 spin_unlock_irqrestore(&xhci->lock, flags);
1711 return ret;
1712
1713 err_giveback:
1714 if (urb_priv)
1715 xhci_urb_free_priv(urb_priv);
1716 usb_hcd_unlink_urb_from_ep(hcd, urb);
1717 spin_unlock_irqrestore(&xhci->lock, flags);
1718 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1719 return ret;
1720 }
1721
1722 /* Drop an endpoint from a new bandwidth configuration for this device.
1723 * Only one call to this function is allowed per endpoint before
1724 * check_bandwidth() or reset_bandwidth() must be called.
1725 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1726 * add the endpoint to the schedule with possibly new parameters denoted by a
1727 * different endpoint descriptor in usb_host_endpoint.
1728 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1729 * not allowed.
1730 *
1731 * The USB core will not allow URBs to be queued to an endpoint that is being
1732 * disabled, so there's no need for mutual exclusion to protect
1733 * the xhci->devs[slot_id] structure.
1734 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1735 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1736 struct usb_host_endpoint *ep)
1737 {
1738 struct xhci_hcd *xhci;
1739 struct xhci_container_ctx *in_ctx, *out_ctx;
1740 struct xhci_input_control_ctx *ctrl_ctx;
1741 unsigned int ep_index;
1742 struct xhci_ep_ctx *ep_ctx;
1743 u32 drop_flag;
1744 u32 new_add_flags, new_drop_flags;
1745 int ret;
1746
1747 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1748 if (ret <= 0)
1749 return ret;
1750 xhci = hcd_to_xhci(hcd);
1751 if (xhci->xhc_state & XHCI_STATE_DYING)
1752 return -ENODEV;
1753
1754 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1755 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1756 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1757 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1758 __func__, drop_flag);
1759 return 0;
1760 }
1761
1762 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1763 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1764 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1765 if (!ctrl_ctx) {
1766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1767 __func__);
1768 return 0;
1769 }
1770
1771 ep_index = xhci_get_endpoint_index(&ep->desc);
1772 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1773 /* If the HC already knows the endpoint is disabled,
1774 * or the HCD has noted it is disabled, ignore this request
1775 */
1776 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1777 le32_to_cpu(ctrl_ctx->drop_flags) &
1778 xhci_get_endpoint_flag(&ep->desc)) {
1779 /* Do not warn when called after a usb_device_reset */
1780 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1781 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1782 __func__, ep);
1783 return 0;
1784 }
1785
1786 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1787 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1788
1789 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1790 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1791
1792 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1793
1794 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1795
1796 if (xhci->quirks & XHCI_MTK_HOST)
1797 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1798
1799 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1800 (unsigned int) ep->desc.bEndpointAddress,
1801 udev->slot_id,
1802 (unsigned int) new_drop_flags,
1803 (unsigned int) new_add_flags);
1804 return 0;
1805 }
1806
1807 /* Add an endpoint to a new possible bandwidth configuration for this device.
1808 * Only one call to this function is allowed per endpoint before
1809 * check_bandwidth() or reset_bandwidth() must be called.
1810 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1811 * add the endpoint to the schedule with possibly new parameters denoted by a
1812 * different endpoint descriptor in usb_host_endpoint.
1813 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1814 * not allowed.
1815 *
1816 * The USB core will not allow URBs to be queued to an endpoint until the
1817 * configuration or alt setting is installed in the device, so there's no need
1818 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1819 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1820 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1821 struct usb_host_endpoint *ep)
1822 {
1823 struct xhci_hcd *xhci;
1824 struct xhci_container_ctx *in_ctx;
1825 unsigned int ep_index;
1826 struct xhci_input_control_ctx *ctrl_ctx;
1827 struct xhci_ep_ctx *ep_ctx;
1828 u32 added_ctxs;
1829 u32 new_add_flags, new_drop_flags;
1830 struct xhci_virt_device *virt_dev;
1831 int ret = 0;
1832
1833 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1834 if (ret <= 0) {
1835 /* So we won't queue a reset ep command for a root hub */
1836 ep->hcpriv = NULL;
1837 return ret;
1838 }
1839 xhci = hcd_to_xhci(hcd);
1840 if (xhci->xhc_state & XHCI_STATE_DYING)
1841 return -ENODEV;
1842
1843 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1844 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1845 /* FIXME when we have to issue an evaluate endpoint command to
1846 * deal with ep0 max packet size changing once we get the
1847 * descriptors
1848 */
1849 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1850 __func__, added_ctxs);
1851 return 0;
1852 }
1853
1854 virt_dev = xhci->devs[udev->slot_id];
1855 in_ctx = virt_dev->in_ctx;
1856 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1857 if (!ctrl_ctx) {
1858 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1859 __func__);
1860 return 0;
1861 }
1862
1863 ep_index = xhci_get_endpoint_index(&ep->desc);
1864 /* If this endpoint is already in use, and the upper layers are trying
1865 * to add it again without dropping it, reject the addition.
1866 */
1867 if (virt_dev->eps[ep_index].ring &&
1868 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1869 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1870 "without dropping it.\n",
1871 (unsigned int) ep->desc.bEndpointAddress);
1872 return -EINVAL;
1873 }
1874
1875 /* If the HCD has already noted the endpoint is enabled,
1876 * ignore this request.
1877 */
1878 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1879 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1880 __func__, ep);
1881 return 0;
1882 }
1883
1884 /*
1885 * Configuration and alternate setting changes must be done in
1886 * process context, not interrupt context (or so documenation
1887 * for usb_set_interface() and usb_set_configuration() claim).
1888 */
1889 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1890 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1891 __func__, ep->desc.bEndpointAddress);
1892 return -ENOMEM;
1893 }
1894
1895 if (xhci->quirks & XHCI_MTK_HOST) {
1896 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1897 if (ret < 0) {
1898 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1899 virt_dev->eps[ep_index].new_ring = NULL;
1900 return ret;
1901 }
1902 }
1903
1904 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1905 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1906
1907 /* If xhci_endpoint_disable() was called for this endpoint, but the
1908 * xHC hasn't been notified yet through the check_bandwidth() call,
1909 * this re-adds a new state for the endpoint from the new endpoint
1910 * descriptors. We must drop and re-add this endpoint, so we leave the
1911 * drop flags alone.
1912 */
1913 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1914
1915 /* Store the usb_device pointer for later use */
1916 ep->hcpriv = udev;
1917
1918 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1919 trace_xhci_add_endpoint(ep_ctx);
1920
1921 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1922 (unsigned int) ep->desc.bEndpointAddress,
1923 udev->slot_id,
1924 (unsigned int) new_drop_flags,
1925 (unsigned int) new_add_flags);
1926 return 0;
1927 }
1928
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1929 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1930 {
1931 struct xhci_input_control_ctx *ctrl_ctx;
1932 struct xhci_ep_ctx *ep_ctx;
1933 struct xhci_slot_ctx *slot_ctx;
1934 int i;
1935
1936 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1937 if (!ctrl_ctx) {
1938 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1939 __func__);
1940 return;
1941 }
1942
1943 /* When a device's add flag and drop flag are zero, any subsequent
1944 * configure endpoint command will leave that endpoint's state
1945 * untouched. Make sure we don't leave any old state in the input
1946 * endpoint contexts.
1947 */
1948 ctrl_ctx->drop_flags = 0;
1949 ctrl_ctx->add_flags = 0;
1950 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1951 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1952 /* Endpoint 0 is always valid */
1953 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1954 for (i = 1; i < 31; i++) {
1955 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1956 ep_ctx->ep_info = 0;
1957 ep_ctx->ep_info2 = 0;
1958 ep_ctx->deq = 0;
1959 ep_ctx->tx_info = 0;
1960 }
1961 }
1962
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1963 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1964 struct usb_device *udev, u32 *cmd_status)
1965 {
1966 int ret;
1967
1968 switch (*cmd_status) {
1969 case COMP_COMMAND_ABORTED:
1970 case COMP_COMMAND_RING_STOPPED:
1971 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1972 ret = -ETIME;
1973 break;
1974 case COMP_RESOURCE_ERROR:
1975 dev_warn(&udev->dev,
1976 "Not enough host controller resources for new device state.\n");
1977 ret = -ENOMEM;
1978 /* FIXME: can we allocate more resources for the HC? */
1979 break;
1980 case COMP_BANDWIDTH_ERROR:
1981 case COMP_SECONDARY_BANDWIDTH_ERROR:
1982 dev_warn(&udev->dev,
1983 "Not enough bandwidth for new device state.\n");
1984 ret = -ENOSPC;
1985 /* FIXME: can we go back to the old state? */
1986 break;
1987 case COMP_TRB_ERROR:
1988 /* the HCD set up something wrong */
1989 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1990 "add flag = 1, "
1991 "and endpoint is not disabled.\n");
1992 ret = -EINVAL;
1993 break;
1994 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1995 dev_warn(&udev->dev,
1996 "ERROR: Incompatible device for endpoint configure command.\n");
1997 ret = -ENODEV;
1998 break;
1999 case COMP_SUCCESS:
2000 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2001 "Successful Endpoint Configure command");
2002 ret = 0;
2003 break;
2004 default:
2005 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2006 *cmd_status);
2007 ret = -EINVAL;
2008 break;
2009 }
2010 return ret;
2011 }
2012
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2013 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2014 struct usb_device *udev, u32 *cmd_status)
2015 {
2016 int ret;
2017
2018 switch (*cmd_status) {
2019 case COMP_COMMAND_ABORTED:
2020 case COMP_COMMAND_RING_STOPPED:
2021 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2022 ret = -ETIME;
2023 break;
2024 case COMP_PARAMETER_ERROR:
2025 dev_warn(&udev->dev,
2026 "WARN: xHCI driver setup invalid evaluate context command.\n");
2027 ret = -EINVAL;
2028 break;
2029 case COMP_SLOT_NOT_ENABLED_ERROR:
2030 dev_warn(&udev->dev,
2031 "WARN: slot not enabled for evaluate context command.\n");
2032 ret = -EINVAL;
2033 break;
2034 case COMP_CONTEXT_STATE_ERROR:
2035 dev_warn(&udev->dev,
2036 "WARN: invalid context state for evaluate context command.\n");
2037 ret = -EINVAL;
2038 break;
2039 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2040 dev_warn(&udev->dev,
2041 "ERROR: Incompatible device for evaluate context command.\n");
2042 ret = -ENODEV;
2043 break;
2044 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2045 /* Max Exit Latency too large error */
2046 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2047 ret = -EINVAL;
2048 break;
2049 case COMP_SUCCESS:
2050 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2051 "Successful evaluate context command");
2052 ret = 0;
2053 break;
2054 default:
2055 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2056 *cmd_status);
2057 ret = -EINVAL;
2058 break;
2059 }
2060 return ret;
2061 }
2062
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2063 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2064 struct xhci_input_control_ctx *ctrl_ctx)
2065 {
2066 u32 valid_add_flags;
2067 u32 valid_drop_flags;
2068
2069 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2070 * (bit 1). The default control endpoint is added during the Address
2071 * Device command and is never removed until the slot is disabled.
2072 */
2073 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2074 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2075
2076 /* Use hweight32 to count the number of ones in the add flags, or
2077 * number of endpoints added. Don't count endpoints that are changed
2078 * (both added and dropped).
2079 */
2080 return hweight32(valid_add_flags) -
2081 hweight32(valid_add_flags & valid_drop_flags);
2082 }
2083
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2084 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2085 struct xhci_input_control_ctx *ctrl_ctx)
2086 {
2087 u32 valid_add_flags;
2088 u32 valid_drop_flags;
2089
2090 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2091 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2092
2093 return hweight32(valid_drop_flags) -
2094 hweight32(valid_add_flags & valid_drop_flags);
2095 }
2096
2097 /*
2098 * We need to reserve the new number of endpoints before the configure endpoint
2099 * command completes. We can't subtract the dropped endpoints from the number
2100 * of active endpoints until the command completes because we can oversubscribe
2101 * the host in this case:
2102 *
2103 * - the first configure endpoint command drops more endpoints than it adds
2104 * - a second configure endpoint command that adds more endpoints is queued
2105 * - the first configure endpoint command fails, so the config is unchanged
2106 * - the second command may succeed, even though there isn't enough resources
2107 *
2108 * Must be called with xhci->lock held.
2109 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2110 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2111 struct xhci_input_control_ctx *ctrl_ctx)
2112 {
2113 u32 added_eps;
2114
2115 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2116 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2117 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2118 "Not enough ep ctxs: "
2119 "%u active, need to add %u, limit is %u.",
2120 xhci->num_active_eps, added_eps,
2121 xhci->limit_active_eps);
2122 return -ENOMEM;
2123 }
2124 xhci->num_active_eps += added_eps;
2125 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2126 "Adding %u ep ctxs, %u now active.", added_eps,
2127 xhci->num_active_eps);
2128 return 0;
2129 }
2130
2131 /*
2132 * The configure endpoint was failed by the xHC for some other reason, so we
2133 * need to revert the resources that failed configuration would have used.
2134 *
2135 * Must be called with xhci->lock held.
2136 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2137 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2138 struct xhci_input_control_ctx *ctrl_ctx)
2139 {
2140 u32 num_failed_eps;
2141
2142 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2143 xhci->num_active_eps -= num_failed_eps;
2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 "Removing %u failed ep ctxs, %u now active.",
2146 num_failed_eps,
2147 xhci->num_active_eps);
2148 }
2149
2150 /*
2151 * Now that the command has completed, clean up the active endpoint count by
2152 * subtracting out the endpoints that were dropped (but not changed).
2153 *
2154 * Must be called with xhci->lock held.
2155 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2156 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2157 struct xhci_input_control_ctx *ctrl_ctx)
2158 {
2159 u32 num_dropped_eps;
2160
2161 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2162 xhci->num_active_eps -= num_dropped_eps;
2163 if (num_dropped_eps)
2164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165 "Removing %u dropped ep ctxs, %u now active.",
2166 num_dropped_eps,
2167 xhci->num_active_eps);
2168 }
2169
xhci_get_block_size(struct usb_device * udev)2170 static unsigned int xhci_get_block_size(struct usb_device *udev)
2171 {
2172 switch (udev->speed) {
2173 case USB_SPEED_LOW:
2174 case USB_SPEED_FULL:
2175 return FS_BLOCK;
2176 case USB_SPEED_HIGH:
2177 return HS_BLOCK;
2178 case USB_SPEED_SUPER:
2179 case USB_SPEED_SUPER_PLUS:
2180 return SS_BLOCK;
2181 case USB_SPEED_UNKNOWN:
2182 case USB_SPEED_WIRELESS:
2183 default:
2184 /* Should never happen */
2185 return 1;
2186 }
2187 }
2188
2189 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2190 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2191 {
2192 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2193 return LS_OVERHEAD;
2194 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2195 return FS_OVERHEAD;
2196 return HS_OVERHEAD;
2197 }
2198
2199 /* If we are changing a LS/FS device under a HS hub,
2200 * make sure (if we are activating a new TT) that the HS bus has enough
2201 * bandwidth for this new TT.
2202 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2203 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2204 struct xhci_virt_device *virt_dev,
2205 int old_active_eps)
2206 {
2207 struct xhci_interval_bw_table *bw_table;
2208 struct xhci_tt_bw_info *tt_info;
2209
2210 /* Find the bandwidth table for the root port this TT is attached to. */
2211 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2212 tt_info = virt_dev->tt_info;
2213 /* If this TT already had active endpoints, the bandwidth for this TT
2214 * has already been added. Removing all periodic endpoints (and thus
2215 * making the TT enactive) will only decrease the bandwidth used.
2216 */
2217 if (old_active_eps)
2218 return 0;
2219 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2220 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2221 return -ENOMEM;
2222 return 0;
2223 }
2224 /* Not sure why we would have no new active endpoints...
2225 *
2226 * Maybe because of an Evaluate Context change for a hub update or a
2227 * control endpoint 0 max packet size change?
2228 * FIXME: skip the bandwidth calculation in that case.
2229 */
2230 return 0;
2231 }
2232
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2233 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2234 struct xhci_virt_device *virt_dev)
2235 {
2236 unsigned int bw_reserved;
2237
2238 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2239 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2240 return -ENOMEM;
2241
2242 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2243 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2244 return -ENOMEM;
2245
2246 return 0;
2247 }
2248
2249 /*
2250 * This algorithm is a very conservative estimate of the worst-case scheduling
2251 * scenario for any one interval. The hardware dynamically schedules the
2252 * packets, so we can't tell which microframe could be the limiting factor in
2253 * the bandwidth scheduling. This only takes into account periodic endpoints.
2254 *
2255 * Obviously, we can't solve an NP complete problem to find the minimum worst
2256 * case scenario. Instead, we come up with an estimate that is no less than
2257 * the worst case bandwidth used for any one microframe, but may be an
2258 * over-estimate.
2259 *
2260 * We walk the requirements for each endpoint by interval, starting with the
2261 * smallest interval, and place packets in the schedule where there is only one
2262 * possible way to schedule packets for that interval. In order to simplify
2263 * this algorithm, we record the largest max packet size for each interval, and
2264 * assume all packets will be that size.
2265 *
2266 * For interval 0, we obviously must schedule all packets for each interval.
2267 * The bandwidth for interval 0 is just the amount of data to be transmitted
2268 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2269 * the number of packets).
2270 *
2271 * For interval 1, we have two possible microframes to schedule those packets
2272 * in. For this algorithm, if we can schedule the same number of packets for
2273 * each possible scheduling opportunity (each microframe), we will do so. The
2274 * remaining number of packets will be saved to be transmitted in the gaps in
2275 * the next interval's scheduling sequence.
2276 *
2277 * As we move those remaining packets to be scheduled with interval 2 packets,
2278 * we have to double the number of remaining packets to transmit. This is
2279 * because the intervals are actually powers of 2, and we would be transmitting
2280 * the previous interval's packets twice in this interval. We also have to be
2281 * sure that when we look at the largest max packet size for this interval, we
2282 * also look at the largest max packet size for the remaining packets and take
2283 * the greater of the two.
2284 *
2285 * The algorithm continues to evenly distribute packets in each scheduling
2286 * opportunity, and push the remaining packets out, until we get to the last
2287 * interval. Then those packets and their associated overhead are just added
2288 * to the bandwidth used.
2289 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2290 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2291 struct xhci_virt_device *virt_dev,
2292 int old_active_eps)
2293 {
2294 unsigned int bw_reserved;
2295 unsigned int max_bandwidth;
2296 unsigned int bw_used;
2297 unsigned int block_size;
2298 struct xhci_interval_bw_table *bw_table;
2299 unsigned int packet_size = 0;
2300 unsigned int overhead = 0;
2301 unsigned int packets_transmitted = 0;
2302 unsigned int packets_remaining = 0;
2303 unsigned int i;
2304
2305 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2306 return xhci_check_ss_bw(xhci, virt_dev);
2307
2308 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2309 max_bandwidth = HS_BW_LIMIT;
2310 /* Convert percent of bus BW reserved to blocks reserved */
2311 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2312 } else {
2313 max_bandwidth = FS_BW_LIMIT;
2314 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2315 }
2316
2317 bw_table = virt_dev->bw_table;
2318 /* We need to translate the max packet size and max ESIT payloads into
2319 * the units the hardware uses.
2320 */
2321 block_size = xhci_get_block_size(virt_dev->udev);
2322
2323 /* If we are manipulating a LS/FS device under a HS hub, double check
2324 * that the HS bus has enough bandwidth if we are activing a new TT.
2325 */
2326 if (virt_dev->tt_info) {
2327 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2328 "Recalculating BW for rootport %u",
2329 virt_dev->real_port);
2330 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2331 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2332 "newly activated TT.\n");
2333 return -ENOMEM;
2334 }
2335 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2336 "Recalculating BW for TT slot %u port %u",
2337 virt_dev->tt_info->slot_id,
2338 virt_dev->tt_info->ttport);
2339 } else {
2340 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2341 "Recalculating BW for rootport %u",
2342 virt_dev->real_port);
2343 }
2344
2345 /* Add in how much bandwidth will be used for interval zero, or the
2346 * rounded max ESIT payload + number of packets * largest overhead.
2347 */
2348 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2349 bw_table->interval_bw[0].num_packets *
2350 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2351
2352 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2353 unsigned int bw_added;
2354 unsigned int largest_mps;
2355 unsigned int interval_overhead;
2356
2357 /*
2358 * How many packets could we transmit in this interval?
2359 * If packets didn't fit in the previous interval, we will need
2360 * to transmit that many packets twice within this interval.
2361 */
2362 packets_remaining = 2 * packets_remaining +
2363 bw_table->interval_bw[i].num_packets;
2364
2365 /* Find the largest max packet size of this or the previous
2366 * interval.
2367 */
2368 if (list_empty(&bw_table->interval_bw[i].endpoints))
2369 largest_mps = 0;
2370 else {
2371 struct xhci_virt_ep *virt_ep;
2372 struct list_head *ep_entry;
2373
2374 ep_entry = bw_table->interval_bw[i].endpoints.next;
2375 virt_ep = list_entry(ep_entry,
2376 struct xhci_virt_ep, bw_endpoint_list);
2377 /* Convert to blocks, rounding up */
2378 largest_mps = DIV_ROUND_UP(
2379 virt_ep->bw_info.max_packet_size,
2380 block_size);
2381 }
2382 if (largest_mps > packet_size)
2383 packet_size = largest_mps;
2384
2385 /* Use the larger overhead of this or the previous interval. */
2386 interval_overhead = xhci_get_largest_overhead(
2387 &bw_table->interval_bw[i]);
2388 if (interval_overhead > overhead)
2389 overhead = interval_overhead;
2390
2391 /* How many packets can we evenly distribute across
2392 * (1 << (i + 1)) possible scheduling opportunities?
2393 */
2394 packets_transmitted = packets_remaining >> (i + 1);
2395
2396 /* Add in the bandwidth used for those scheduled packets */
2397 bw_added = packets_transmitted * (overhead + packet_size);
2398
2399 /* How many packets do we have remaining to transmit? */
2400 packets_remaining = packets_remaining % (1 << (i + 1));
2401
2402 /* What largest max packet size should those packets have? */
2403 /* If we've transmitted all packets, don't carry over the
2404 * largest packet size.
2405 */
2406 if (packets_remaining == 0) {
2407 packet_size = 0;
2408 overhead = 0;
2409 } else if (packets_transmitted > 0) {
2410 /* Otherwise if we do have remaining packets, and we've
2411 * scheduled some packets in this interval, take the
2412 * largest max packet size from endpoints with this
2413 * interval.
2414 */
2415 packet_size = largest_mps;
2416 overhead = interval_overhead;
2417 }
2418 /* Otherwise carry over packet_size and overhead from the last
2419 * time we had a remainder.
2420 */
2421 bw_used += bw_added;
2422 if (bw_used > max_bandwidth) {
2423 xhci_warn(xhci, "Not enough bandwidth. "
2424 "Proposed: %u, Max: %u\n",
2425 bw_used, max_bandwidth);
2426 return -ENOMEM;
2427 }
2428 }
2429 /*
2430 * Ok, we know we have some packets left over after even-handedly
2431 * scheduling interval 15. We don't know which microframes they will
2432 * fit into, so we over-schedule and say they will be scheduled every
2433 * microframe.
2434 */
2435 if (packets_remaining > 0)
2436 bw_used += overhead + packet_size;
2437
2438 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2439 unsigned int port_index = virt_dev->real_port - 1;
2440
2441 /* OK, we're manipulating a HS device attached to a
2442 * root port bandwidth domain. Include the number of active TTs
2443 * in the bandwidth used.
2444 */
2445 bw_used += TT_HS_OVERHEAD *
2446 xhci->rh_bw[port_index].num_active_tts;
2447 }
2448
2449 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2450 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2451 "Available: %u " "percent",
2452 bw_used, max_bandwidth, bw_reserved,
2453 (max_bandwidth - bw_used - bw_reserved) * 100 /
2454 max_bandwidth);
2455
2456 bw_used += bw_reserved;
2457 if (bw_used > max_bandwidth) {
2458 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2459 bw_used, max_bandwidth);
2460 return -ENOMEM;
2461 }
2462
2463 bw_table->bw_used = bw_used;
2464 return 0;
2465 }
2466
xhci_is_async_ep(unsigned int ep_type)2467 static bool xhci_is_async_ep(unsigned int ep_type)
2468 {
2469 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2470 ep_type != ISOC_IN_EP &&
2471 ep_type != INT_IN_EP);
2472 }
2473
xhci_is_sync_in_ep(unsigned int ep_type)2474 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2475 {
2476 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2477 }
2478
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2479 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2480 {
2481 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2482
2483 if (ep_bw->ep_interval == 0)
2484 return SS_OVERHEAD_BURST +
2485 (ep_bw->mult * ep_bw->num_packets *
2486 (SS_OVERHEAD + mps));
2487 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2488 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2489 1 << ep_bw->ep_interval);
2490
2491 }
2492
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2493 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2494 struct xhci_bw_info *ep_bw,
2495 struct xhci_interval_bw_table *bw_table,
2496 struct usb_device *udev,
2497 struct xhci_virt_ep *virt_ep,
2498 struct xhci_tt_bw_info *tt_info)
2499 {
2500 struct xhci_interval_bw *interval_bw;
2501 int normalized_interval;
2502
2503 if (xhci_is_async_ep(ep_bw->type))
2504 return;
2505
2506 if (udev->speed >= USB_SPEED_SUPER) {
2507 if (xhci_is_sync_in_ep(ep_bw->type))
2508 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2509 xhci_get_ss_bw_consumed(ep_bw);
2510 else
2511 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2512 xhci_get_ss_bw_consumed(ep_bw);
2513 return;
2514 }
2515
2516 /* SuperSpeed endpoints never get added to intervals in the table, so
2517 * this check is only valid for HS/FS/LS devices.
2518 */
2519 if (list_empty(&virt_ep->bw_endpoint_list))
2520 return;
2521 /* For LS/FS devices, we need to translate the interval expressed in
2522 * microframes to frames.
2523 */
2524 if (udev->speed == USB_SPEED_HIGH)
2525 normalized_interval = ep_bw->ep_interval;
2526 else
2527 normalized_interval = ep_bw->ep_interval - 3;
2528
2529 if (normalized_interval == 0)
2530 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2531 interval_bw = &bw_table->interval_bw[normalized_interval];
2532 interval_bw->num_packets -= ep_bw->num_packets;
2533 switch (udev->speed) {
2534 case USB_SPEED_LOW:
2535 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2536 break;
2537 case USB_SPEED_FULL:
2538 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2539 break;
2540 case USB_SPEED_HIGH:
2541 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2542 break;
2543 case USB_SPEED_SUPER:
2544 case USB_SPEED_SUPER_PLUS:
2545 case USB_SPEED_UNKNOWN:
2546 case USB_SPEED_WIRELESS:
2547 /* Should never happen because only LS/FS/HS endpoints will get
2548 * added to the endpoint list.
2549 */
2550 return;
2551 }
2552 if (tt_info)
2553 tt_info->active_eps -= 1;
2554 list_del_init(&virt_ep->bw_endpoint_list);
2555 }
2556
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2557 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2558 struct xhci_bw_info *ep_bw,
2559 struct xhci_interval_bw_table *bw_table,
2560 struct usb_device *udev,
2561 struct xhci_virt_ep *virt_ep,
2562 struct xhci_tt_bw_info *tt_info)
2563 {
2564 struct xhci_interval_bw *interval_bw;
2565 struct xhci_virt_ep *smaller_ep;
2566 int normalized_interval;
2567
2568 if (xhci_is_async_ep(ep_bw->type))
2569 return;
2570
2571 if (udev->speed == USB_SPEED_SUPER) {
2572 if (xhci_is_sync_in_ep(ep_bw->type))
2573 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2574 xhci_get_ss_bw_consumed(ep_bw);
2575 else
2576 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2577 xhci_get_ss_bw_consumed(ep_bw);
2578 return;
2579 }
2580
2581 /* For LS/FS devices, we need to translate the interval expressed in
2582 * microframes to frames.
2583 */
2584 if (udev->speed == USB_SPEED_HIGH)
2585 normalized_interval = ep_bw->ep_interval;
2586 else
2587 normalized_interval = ep_bw->ep_interval - 3;
2588
2589 if (normalized_interval == 0)
2590 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2591 interval_bw = &bw_table->interval_bw[normalized_interval];
2592 interval_bw->num_packets += ep_bw->num_packets;
2593 switch (udev->speed) {
2594 case USB_SPEED_LOW:
2595 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2596 break;
2597 case USB_SPEED_FULL:
2598 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2599 break;
2600 case USB_SPEED_HIGH:
2601 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2602 break;
2603 case USB_SPEED_SUPER:
2604 case USB_SPEED_SUPER_PLUS:
2605 case USB_SPEED_UNKNOWN:
2606 case USB_SPEED_WIRELESS:
2607 /* Should never happen because only LS/FS/HS endpoints will get
2608 * added to the endpoint list.
2609 */
2610 return;
2611 }
2612
2613 if (tt_info)
2614 tt_info->active_eps += 1;
2615 /* Insert the endpoint into the list, largest max packet size first. */
2616 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2617 bw_endpoint_list) {
2618 if (ep_bw->max_packet_size >=
2619 smaller_ep->bw_info.max_packet_size) {
2620 /* Add the new ep before the smaller endpoint */
2621 list_add_tail(&virt_ep->bw_endpoint_list,
2622 &smaller_ep->bw_endpoint_list);
2623 return;
2624 }
2625 }
2626 /* Add the new endpoint at the end of the list. */
2627 list_add_tail(&virt_ep->bw_endpoint_list,
2628 &interval_bw->endpoints);
2629 }
2630
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2631 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2632 struct xhci_virt_device *virt_dev,
2633 int old_active_eps)
2634 {
2635 struct xhci_root_port_bw_info *rh_bw_info;
2636 if (!virt_dev->tt_info)
2637 return;
2638
2639 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2640 if (old_active_eps == 0 &&
2641 virt_dev->tt_info->active_eps != 0) {
2642 rh_bw_info->num_active_tts += 1;
2643 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2644 } else if (old_active_eps != 0 &&
2645 virt_dev->tt_info->active_eps == 0) {
2646 rh_bw_info->num_active_tts -= 1;
2647 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2648 }
2649 }
2650
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2651 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2652 struct xhci_virt_device *virt_dev,
2653 struct xhci_container_ctx *in_ctx)
2654 {
2655 struct xhci_bw_info ep_bw_info[31];
2656 int i;
2657 struct xhci_input_control_ctx *ctrl_ctx;
2658 int old_active_eps = 0;
2659
2660 if (virt_dev->tt_info)
2661 old_active_eps = virt_dev->tt_info->active_eps;
2662
2663 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2664 if (!ctrl_ctx) {
2665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2666 __func__);
2667 return -ENOMEM;
2668 }
2669
2670 for (i = 0; i < 31; i++) {
2671 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2672 continue;
2673
2674 /* Make a copy of the BW info in case we need to revert this */
2675 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2676 sizeof(ep_bw_info[i]));
2677 /* Drop the endpoint from the interval table if the endpoint is
2678 * being dropped or changed.
2679 */
2680 if (EP_IS_DROPPED(ctrl_ctx, i))
2681 xhci_drop_ep_from_interval_table(xhci,
2682 &virt_dev->eps[i].bw_info,
2683 virt_dev->bw_table,
2684 virt_dev->udev,
2685 &virt_dev->eps[i],
2686 virt_dev->tt_info);
2687 }
2688 /* Overwrite the information stored in the endpoints' bw_info */
2689 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2690 for (i = 0; i < 31; i++) {
2691 /* Add any changed or added endpoints to the interval table */
2692 if (EP_IS_ADDED(ctrl_ctx, i))
2693 xhci_add_ep_to_interval_table(xhci,
2694 &virt_dev->eps[i].bw_info,
2695 virt_dev->bw_table,
2696 virt_dev->udev,
2697 &virt_dev->eps[i],
2698 virt_dev->tt_info);
2699 }
2700
2701 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2702 /* Ok, this fits in the bandwidth we have.
2703 * Update the number of active TTs.
2704 */
2705 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2706 return 0;
2707 }
2708
2709 /* We don't have enough bandwidth for this, revert the stored info. */
2710 for (i = 0; i < 31; i++) {
2711 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712 continue;
2713
2714 /* Drop the new copies of any added or changed endpoints from
2715 * the interval table.
2716 */
2717 if (EP_IS_ADDED(ctrl_ctx, i)) {
2718 xhci_drop_ep_from_interval_table(xhci,
2719 &virt_dev->eps[i].bw_info,
2720 virt_dev->bw_table,
2721 virt_dev->udev,
2722 &virt_dev->eps[i],
2723 virt_dev->tt_info);
2724 }
2725 /* Revert the endpoint back to its old information */
2726 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2727 sizeof(ep_bw_info[i]));
2728 /* Add any changed or dropped endpoints back into the table */
2729 if (EP_IS_DROPPED(ctrl_ctx, i))
2730 xhci_add_ep_to_interval_table(xhci,
2731 &virt_dev->eps[i].bw_info,
2732 virt_dev->bw_table,
2733 virt_dev->udev,
2734 &virt_dev->eps[i],
2735 virt_dev->tt_info);
2736 }
2737 return -ENOMEM;
2738 }
2739
2740
2741 /* Issue a configure endpoint command or evaluate context command
2742 * and wait for it to finish.
2743 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2744 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2745 struct usb_device *udev,
2746 struct xhci_command *command,
2747 bool ctx_change, bool must_succeed)
2748 {
2749 int ret;
2750 unsigned long flags;
2751 struct xhci_input_control_ctx *ctrl_ctx;
2752 struct xhci_virt_device *virt_dev;
2753 struct xhci_slot_ctx *slot_ctx;
2754
2755 if (!command)
2756 return -EINVAL;
2757
2758 spin_lock_irqsave(&xhci->lock, flags);
2759
2760 if (xhci->xhc_state & XHCI_STATE_DYING) {
2761 spin_unlock_irqrestore(&xhci->lock, flags);
2762 return -ESHUTDOWN;
2763 }
2764
2765 virt_dev = xhci->devs[udev->slot_id];
2766
2767 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2768 if (!ctrl_ctx) {
2769 spin_unlock_irqrestore(&xhci->lock, flags);
2770 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2771 __func__);
2772 return -ENOMEM;
2773 }
2774
2775 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2776 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2777 spin_unlock_irqrestore(&xhci->lock, flags);
2778 xhci_warn(xhci, "Not enough host resources, "
2779 "active endpoint contexts = %u\n",
2780 xhci->num_active_eps);
2781 return -ENOMEM;
2782 }
2783 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2784 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2785 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2786 xhci_free_host_resources(xhci, ctrl_ctx);
2787 spin_unlock_irqrestore(&xhci->lock, flags);
2788 xhci_warn(xhci, "Not enough bandwidth\n");
2789 return -ENOMEM;
2790 }
2791
2792 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2793
2794 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2795 trace_xhci_configure_endpoint(slot_ctx);
2796
2797 if (!ctx_change)
2798 ret = xhci_queue_configure_endpoint(xhci, command,
2799 command->in_ctx->dma,
2800 udev->slot_id, must_succeed);
2801 else
2802 ret = xhci_queue_evaluate_context(xhci, command,
2803 command->in_ctx->dma,
2804 udev->slot_id, must_succeed);
2805 if (ret < 0) {
2806 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2807 xhci_free_host_resources(xhci, ctrl_ctx);
2808 spin_unlock_irqrestore(&xhci->lock, flags);
2809 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2810 "FIXME allocate a new ring segment");
2811 return -ENOMEM;
2812 }
2813 xhci_ring_cmd_db(xhci);
2814 spin_unlock_irqrestore(&xhci->lock, flags);
2815
2816 /* Wait for the configure endpoint command to complete */
2817 wait_for_completion(command->completion);
2818
2819 if (!ctx_change)
2820 ret = xhci_configure_endpoint_result(xhci, udev,
2821 &command->status);
2822 else
2823 ret = xhci_evaluate_context_result(xhci, udev,
2824 &command->status);
2825
2826 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2827 spin_lock_irqsave(&xhci->lock, flags);
2828 /* If the command failed, remove the reserved resources.
2829 * Otherwise, clean up the estimate to include dropped eps.
2830 */
2831 if (ret)
2832 xhci_free_host_resources(xhci, ctrl_ctx);
2833 else
2834 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2835 spin_unlock_irqrestore(&xhci->lock, flags);
2836 }
2837 return ret;
2838 }
2839
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2840 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2841 struct xhci_virt_device *vdev, int i)
2842 {
2843 struct xhci_virt_ep *ep = &vdev->eps[i];
2844
2845 if (ep->ep_state & EP_HAS_STREAMS) {
2846 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2847 xhci_get_endpoint_address(i));
2848 xhci_free_stream_info(xhci, ep->stream_info);
2849 ep->stream_info = NULL;
2850 ep->ep_state &= ~EP_HAS_STREAMS;
2851 }
2852 }
2853
2854 /* Called after one or more calls to xhci_add_endpoint() or
2855 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2856 * to call xhci_reset_bandwidth().
2857 *
2858 * Since we are in the middle of changing either configuration or
2859 * installing a new alt setting, the USB core won't allow URBs to be
2860 * enqueued for any endpoint on the old config or interface. Nothing
2861 * else should be touching the xhci->devs[slot_id] structure, so we
2862 * don't need to take the xhci->lock for manipulating that.
2863 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2864 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2865 {
2866 int i;
2867 int ret = 0;
2868 struct xhci_hcd *xhci;
2869 struct xhci_virt_device *virt_dev;
2870 struct xhci_input_control_ctx *ctrl_ctx;
2871 struct xhci_slot_ctx *slot_ctx;
2872 struct xhci_command *command;
2873
2874 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2875 if (ret <= 0)
2876 return ret;
2877 xhci = hcd_to_xhci(hcd);
2878 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2879 (xhci->xhc_state & XHCI_STATE_REMOVING))
2880 return -ENODEV;
2881
2882 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2883 virt_dev = xhci->devs[udev->slot_id];
2884
2885 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2886 if (!command)
2887 return -ENOMEM;
2888
2889 command->in_ctx = virt_dev->in_ctx;
2890
2891 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2892 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2893 if (!ctrl_ctx) {
2894 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895 __func__);
2896 ret = -ENOMEM;
2897 goto command_cleanup;
2898 }
2899 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2901 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2902
2903 /* Don't issue the command if there's no endpoints to update. */
2904 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2905 ctrl_ctx->drop_flags == 0) {
2906 ret = 0;
2907 goto command_cleanup;
2908 }
2909 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2910 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2911 for (i = 31; i >= 1; i--) {
2912 __le32 le32 = cpu_to_le32(BIT(i));
2913
2914 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2915 || (ctrl_ctx->add_flags & le32) || i == 1) {
2916 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2917 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2918 break;
2919 }
2920 }
2921
2922 ret = xhci_configure_endpoint(xhci, udev, command,
2923 false, false);
2924 if (ret)
2925 /* Callee should call reset_bandwidth() */
2926 goto command_cleanup;
2927
2928 /* Free any rings that were dropped, but not changed. */
2929 for (i = 1; i < 31; i++) {
2930 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2931 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2932 xhci_free_endpoint_ring(xhci, virt_dev, i);
2933 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2934 }
2935 }
2936 xhci_zero_in_ctx(xhci, virt_dev);
2937 /*
2938 * Install any rings for completely new endpoints or changed endpoints,
2939 * and free any old rings from changed endpoints.
2940 */
2941 for (i = 1; i < 31; i++) {
2942 if (!virt_dev->eps[i].new_ring)
2943 continue;
2944 /* Only free the old ring if it exists.
2945 * It may not if this is the first add of an endpoint.
2946 */
2947 if (virt_dev->eps[i].ring) {
2948 xhci_free_endpoint_ring(xhci, virt_dev, i);
2949 }
2950 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2951 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2952 virt_dev->eps[i].new_ring = NULL;
2953 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2954 }
2955 command_cleanup:
2956 kfree(command->completion);
2957 kfree(command);
2958
2959 return ret;
2960 }
2961
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2962 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2963 {
2964 struct xhci_hcd *xhci;
2965 struct xhci_virt_device *virt_dev;
2966 int i, ret;
2967
2968 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2969 if (ret <= 0)
2970 return;
2971 xhci = hcd_to_xhci(hcd);
2972
2973 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2974 virt_dev = xhci->devs[udev->slot_id];
2975 /* Free any rings allocated for added endpoints */
2976 for (i = 0; i < 31; i++) {
2977 if (virt_dev->eps[i].new_ring) {
2978 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2979 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2980 virt_dev->eps[i].new_ring = NULL;
2981 }
2982 }
2983 xhci_zero_in_ctx(xhci, virt_dev);
2984 }
2985
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2986 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2987 struct xhci_container_ctx *in_ctx,
2988 struct xhci_container_ctx *out_ctx,
2989 struct xhci_input_control_ctx *ctrl_ctx,
2990 u32 add_flags, u32 drop_flags)
2991 {
2992 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2993 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2994 xhci_slot_copy(xhci, in_ctx, out_ctx);
2995 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2996 }
2997
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2998 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2999 unsigned int slot_id, unsigned int ep_index,
3000 struct xhci_dequeue_state *deq_state)
3001 {
3002 struct xhci_input_control_ctx *ctrl_ctx;
3003 struct xhci_container_ctx *in_ctx;
3004 struct xhci_ep_ctx *ep_ctx;
3005 u32 added_ctxs;
3006 dma_addr_t addr;
3007
3008 in_ctx = xhci->devs[slot_id]->in_ctx;
3009 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3010 if (!ctrl_ctx) {
3011 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3012 __func__);
3013 return;
3014 }
3015
3016 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3017 xhci->devs[slot_id]->out_ctx, ep_index);
3018 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3019 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3020 deq_state->new_deq_ptr);
3021 if (addr == 0) {
3022 xhci_warn(xhci, "WARN Cannot submit config ep after "
3023 "reset ep command\n");
3024 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3025 deq_state->new_deq_seg,
3026 deq_state->new_deq_ptr);
3027 return;
3028 }
3029 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3030
3031 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3032 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3033 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3034 added_ctxs, added_ctxs);
3035 }
3036
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * td)3037 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3038 unsigned int ep_index, unsigned int stream_id,
3039 struct xhci_td *td)
3040 {
3041 struct xhci_dequeue_state deq_state;
3042
3043 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3044 "Cleaning up stalled endpoint ring");
3045 /* We need to move the HW's dequeue pointer past this TD,
3046 * or it will attempt to resend it on the next doorbell ring.
3047 */
3048 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3049 &deq_state);
3050
3051 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3052 return;
3053
3054 /* HW with the reset endpoint quirk will use the saved dequeue state to
3055 * issue a configure endpoint command later.
3056 */
3057 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3058 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3059 "Queueing new dequeue state");
3060 xhci_queue_new_dequeue_state(xhci, slot_id,
3061 ep_index, &deq_state);
3062 } else {
3063 /* Better hope no one uses the input context between now and the
3064 * reset endpoint completion!
3065 * XXX: No idea how this hardware will react when stream rings
3066 * are enabled.
3067 */
3068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3069 "Setting up input context for "
3070 "configure endpoint command");
3071 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3072 ep_index, &deq_state);
3073 }
3074 }
3075
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3076 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3077 struct usb_host_endpoint *host_ep)
3078 {
3079 struct xhci_hcd *xhci;
3080 struct xhci_virt_device *vdev;
3081 struct xhci_virt_ep *ep;
3082 struct usb_device *udev;
3083 unsigned long flags;
3084 unsigned int ep_index;
3085
3086 xhci = hcd_to_xhci(hcd);
3087 rescan:
3088 spin_lock_irqsave(&xhci->lock, flags);
3089
3090 udev = (struct usb_device *)host_ep->hcpriv;
3091 if (!udev || !udev->slot_id)
3092 goto done;
3093
3094 vdev = xhci->devs[udev->slot_id];
3095 if (!vdev)
3096 goto done;
3097
3098 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3099 ep = &vdev->eps[ep_index];
3100 if (!ep)
3101 goto done;
3102
3103 /* wait for hub_tt_work to finish clearing hub TT */
3104 if (ep->ep_state & EP_CLEARING_TT) {
3105 spin_unlock_irqrestore(&xhci->lock, flags);
3106 schedule_timeout_uninterruptible(1);
3107 goto rescan;
3108 }
3109
3110 if (ep->ep_state)
3111 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3112 ep->ep_state);
3113 done:
3114 host_ep->hcpriv = NULL;
3115 spin_unlock_irqrestore(&xhci->lock, flags);
3116 }
3117
3118 /*
3119 * Called after usb core issues a clear halt control message.
3120 * The host side of the halt should already be cleared by a reset endpoint
3121 * command issued when the STALL event was received.
3122 *
3123 * The reset endpoint command may only be issued to endpoints in the halted
3124 * state. For software that wishes to reset the data toggle or sequence number
3125 * of an endpoint that isn't in the halted state this function will issue a
3126 * configure endpoint command with the Drop and Add bits set for the target
3127 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3128 */
3129
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3130 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3131 struct usb_host_endpoint *host_ep)
3132 {
3133 struct xhci_hcd *xhci;
3134 struct usb_device *udev;
3135 struct xhci_virt_device *vdev;
3136 struct xhci_virt_ep *ep;
3137 struct xhci_input_control_ctx *ctrl_ctx;
3138 struct xhci_command *stop_cmd, *cfg_cmd;
3139 unsigned int ep_index;
3140 unsigned long flags;
3141 u32 ep_flag;
3142 int err;
3143
3144 xhci = hcd_to_xhci(hcd);
3145 if (!host_ep->hcpriv)
3146 return;
3147 udev = (struct usb_device *) host_ep->hcpriv;
3148 vdev = xhci->devs[udev->slot_id];
3149
3150 /*
3151 * vdev may be lost due to xHC restore error and re-initialization
3152 * during S3/S4 resume. A new vdev will be allocated later by
3153 * xhci_discover_or_reset_device()
3154 */
3155 if (!udev->slot_id || !vdev)
3156 return;
3157 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3158 ep = &vdev->eps[ep_index];
3159 if (!ep)
3160 return;
3161
3162 /* Bail out if toggle is already being cleared by a endpoint reset */
3163 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3164 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3165 return;
3166 }
3167 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3168 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3169 usb_endpoint_xfer_isoc(&host_ep->desc))
3170 return;
3171
3172 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3173
3174 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3175 return;
3176
3177 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3178 if (!stop_cmd)
3179 return;
3180
3181 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3182 if (!cfg_cmd)
3183 goto cleanup;
3184
3185 spin_lock_irqsave(&xhci->lock, flags);
3186
3187 /* block queuing new trbs and ringing ep doorbell */
3188 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3189
3190 /*
3191 * Make sure endpoint ring is empty before resetting the toggle/seq.
3192 * Driver is required to synchronously cancel all transfer request.
3193 * Stop the endpoint to force xHC to update the output context
3194 */
3195
3196 if (!list_empty(&ep->ring->td_list)) {
3197 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3198 spin_unlock_irqrestore(&xhci->lock, flags);
3199 xhci_free_command(xhci, cfg_cmd);
3200 goto cleanup;
3201 }
3202
3203 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3204 ep_index, 0);
3205 if (err < 0) {
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3207 xhci_free_command(xhci, cfg_cmd);
3208 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3209 __func__, err);
3210 goto cleanup;
3211 }
3212
3213 xhci_ring_cmd_db(xhci);
3214 spin_unlock_irqrestore(&xhci->lock, flags);
3215
3216 wait_for_completion(stop_cmd->completion);
3217
3218 spin_lock_irqsave(&xhci->lock, flags);
3219
3220 /* config ep command clears toggle if add and drop ep flags are set */
3221 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3222 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3223 ctrl_ctx, ep_flag, ep_flag);
3224 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3225
3226 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3227 udev->slot_id, false);
3228 if (err < 0) {
3229 spin_unlock_irqrestore(&xhci->lock, flags);
3230 xhci_free_command(xhci, cfg_cmd);
3231 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3232 __func__, err);
3233 goto cleanup;
3234 }
3235
3236 xhci_ring_cmd_db(xhci);
3237 spin_unlock_irqrestore(&xhci->lock, flags);
3238
3239 wait_for_completion(cfg_cmd->completion);
3240
3241 xhci_free_command(xhci, cfg_cmd);
3242 cleanup:
3243 xhci_free_command(xhci, stop_cmd);
3244 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246 }
3247
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3248 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3249 struct usb_device *udev, struct usb_host_endpoint *ep,
3250 unsigned int slot_id)
3251 {
3252 int ret;
3253 unsigned int ep_index;
3254 unsigned int ep_state;
3255
3256 if (!ep)
3257 return -EINVAL;
3258 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3259 if (ret <= 0)
3260 return -EINVAL;
3261 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3262 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3263 " descriptor for ep 0x%x does not support streams\n",
3264 ep->desc.bEndpointAddress);
3265 return -EINVAL;
3266 }
3267
3268 ep_index = xhci_get_endpoint_index(&ep->desc);
3269 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3270 if (ep_state & EP_HAS_STREAMS ||
3271 ep_state & EP_GETTING_STREAMS) {
3272 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3273 "already has streams set up.\n",
3274 ep->desc.bEndpointAddress);
3275 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3276 "dynamic stream context array reallocation.\n");
3277 return -EINVAL;
3278 }
3279 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3280 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3281 "endpoint 0x%x; URBs are pending.\n",
3282 ep->desc.bEndpointAddress);
3283 return -EINVAL;
3284 }
3285 return 0;
3286 }
3287
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3288 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3289 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3290 {
3291 unsigned int max_streams;
3292
3293 /* The stream context array size must be a power of two */
3294 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3295 /*
3296 * Find out how many primary stream array entries the host controller
3297 * supports. Later we may use secondary stream arrays (similar to 2nd
3298 * level page entries), but that's an optional feature for xHCI host
3299 * controllers. xHCs must support at least 4 stream IDs.
3300 */
3301 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3302 if (*num_stream_ctxs > max_streams) {
3303 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3304 max_streams);
3305 *num_stream_ctxs = max_streams;
3306 *num_streams = max_streams;
3307 }
3308 }
3309
3310 /* Returns an error code if one of the endpoint already has streams.
3311 * This does not change any data structures, it only checks and gathers
3312 * information.
3313 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3314 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3315 struct usb_device *udev,
3316 struct usb_host_endpoint **eps, unsigned int num_eps,
3317 unsigned int *num_streams, u32 *changed_ep_bitmask)
3318 {
3319 unsigned int max_streams;
3320 unsigned int endpoint_flag;
3321 int i;
3322 int ret;
3323
3324 for (i = 0; i < num_eps; i++) {
3325 ret = xhci_check_streams_endpoint(xhci, udev,
3326 eps[i], udev->slot_id);
3327 if (ret < 0)
3328 return ret;
3329
3330 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3331 if (max_streams < (*num_streams - 1)) {
3332 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3333 eps[i]->desc.bEndpointAddress,
3334 max_streams);
3335 *num_streams = max_streams+1;
3336 }
3337
3338 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3339 if (*changed_ep_bitmask & endpoint_flag)
3340 return -EINVAL;
3341 *changed_ep_bitmask |= endpoint_flag;
3342 }
3343 return 0;
3344 }
3345
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3346 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3347 struct usb_device *udev,
3348 struct usb_host_endpoint **eps, unsigned int num_eps)
3349 {
3350 u32 changed_ep_bitmask = 0;
3351 unsigned int slot_id;
3352 unsigned int ep_index;
3353 unsigned int ep_state;
3354 int i;
3355
3356 slot_id = udev->slot_id;
3357 if (!xhci->devs[slot_id])
3358 return 0;
3359
3360 for (i = 0; i < num_eps; i++) {
3361 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3362 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3363 /* Are streams already being freed for the endpoint? */
3364 if (ep_state & EP_GETTING_NO_STREAMS) {
3365 xhci_warn(xhci, "WARN Can't disable streams for "
3366 "endpoint 0x%x, "
3367 "streams are being disabled already\n",
3368 eps[i]->desc.bEndpointAddress);
3369 return 0;
3370 }
3371 /* Are there actually any streams to free? */
3372 if (!(ep_state & EP_HAS_STREAMS) &&
3373 !(ep_state & EP_GETTING_STREAMS)) {
3374 xhci_warn(xhci, "WARN Can't disable streams for "
3375 "endpoint 0x%x, "
3376 "streams are already disabled!\n",
3377 eps[i]->desc.bEndpointAddress);
3378 xhci_warn(xhci, "WARN xhci_free_streams() called "
3379 "with non-streams endpoint\n");
3380 return 0;
3381 }
3382 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3383 }
3384 return changed_ep_bitmask;
3385 }
3386
3387 /*
3388 * The USB device drivers use this function (through the HCD interface in USB
3389 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3390 * coordinate mass storage command queueing across multiple endpoints (basically
3391 * a stream ID == a task ID).
3392 *
3393 * Setting up streams involves allocating the same size stream context array
3394 * for each endpoint and issuing a configure endpoint command for all endpoints.
3395 *
3396 * Don't allow the call to succeed if one endpoint only supports one stream
3397 * (which means it doesn't support streams at all).
3398 *
3399 * Drivers may get less stream IDs than they asked for, if the host controller
3400 * hardware or endpoints claim they can't support the number of requested
3401 * stream IDs.
3402 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3403 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3404 struct usb_host_endpoint **eps, unsigned int num_eps,
3405 unsigned int num_streams, gfp_t mem_flags)
3406 {
3407 int i, ret;
3408 struct xhci_hcd *xhci;
3409 struct xhci_virt_device *vdev;
3410 struct xhci_command *config_cmd;
3411 struct xhci_input_control_ctx *ctrl_ctx;
3412 unsigned int ep_index;
3413 unsigned int num_stream_ctxs;
3414 unsigned int max_packet;
3415 unsigned long flags;
3416 u32 changed_ep_bitmask = 0;
3417
3418 if (!eps)
3419 return -EINVAL;
3420
3421 /* Add one to the number of streams requested to account for
3422 * stream 0 that is reserved for xHCI usage.
3423 */
3424 num_streams += 1;
3425 xhci = hcd_to_xhci(hcd);
3426 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3427 num_streams);
3428
3429 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3430 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3431 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3432 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3433 return -ENOSYS;
3434 }
3435
3436 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3437 if (!config_cmd)
3438 return -ENOMEM;
3439
3440 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3441 if (!ctrl_ctx) {
3442 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3443 __func__);
3444 xhci_free_command(xhci, config_cmd);
3445 return -ENOMEM;
3446 }
3447
3448 /* Check to make sure all endpoints are not already configured for
3449 * streams. While we're at it, find the maximum number of streams that
3450 * all the endpoints will support and check for duplicate endpoints.
3451 */
3452 spin_lock_irqsave(&xhci->lock, flags);
3453 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3454 num_eps, &num_streams, &changed_ep_bitmask);
3455 if (ret < 0) {
3456 xhci_free_command(xhci, config_cmd);
3457 spin_unlock_irqrestore(&xhci->lock, flags);
3458 return ret;
3459 }
3460 if (num_streams <= 1) {
3461 xhci_warn(xhci, "WARN: endpoints can't handle "
3462 "more than one stream.\n");
3463 xhci_free_command(xhci, config_cmd);
3464 spin_unlock_irqrestore(&xhci->lock, flags);
3465 return -EINVAL;
3466 }
3467 vdev = xhci->devs[udev->slot_id];
3468 /* Mark each endpoint as being in transition, so
3469 * xhci_urb_enqueue() will reject all URBs.
3470 */
3471 for (i = 0; i < num_eps; i++) {
3472 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3473 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3474 }
3475 spin_unlock_irqrestore(&xhci->lock, flags);
3476
3477 /* Setup internal data structures and allocate HW data structures for
3478 * streams (but don't install the HW structures in the input context
3479 * until we're sure all memory allocation succeeded).
3480 */
3481 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3482 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3483 num_stream_ctxs, num_streams);
3484
3485 for (i = 0; i < num_eps; i++) {
3486 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3487 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3488 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3489 num_stream_ctxs,
3490 num_streams,
3491 max_packet, mem_flags);
3492 if (!vdev->eps[ep_index].stream_info)
3493 goto cleanup;
3494 /* Set maxPstreams in endpoint context and update deq ptr to
3495 * point to stream context array. FIXME
3496 */
3497 }
3498
3499 /* Set up the input context for a configure endpoint command. */
3500 for (i = 0; i < num_eps; i++) {
3501 struct xhci_ep_ctx *ep_ctx;
3502
3503 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3504 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3505
3506 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3507 vdev->out_ctx, ep_index);
3508 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3509 vdev->eps[ep_index].stream_info);
3510 }
3511 /* Tell the HW to drop its old copy of the endpoint context info
3512 * and add the updated copy from the input context.
3513 */
3514 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3515 vdev->out_ctx, ctrl_ctx,
3516 changed_ep_bitmask, changed_ep_bitmask);
3517
3518 /* Issue and wait for the configure endpoint command */
3519 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3520 false, false);
3521
3522 /* xHC rejected the configure endpoint command for some reason, so we
3523 * leave the old ring intact and free our internal streams data
3524 * structure.
3525 */
3526 if (ret < 0)
3527 goto cleanup;
3528
3529 spin_lock_irqsave(&xhci->lock, flags);
3530 for (i = 0; i < num_eps; i++) {
3531 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3532 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3533 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3534 udev->slot_id, ep_index);
3535 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3536 }
3537 xhci_free_command(xhci, config_cmd);
3538 spin_unlock_irqrestore(&xhci->lock, flags);
3539
3540 for (i = 0; i < num_eps; i++) {
3541 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3542 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3543 }
3544 /* Subtract 1 for stream 0, which drivers can't use */
3545 return num_streams - 1;
3546
3547 cleanup:
3548 /* If it didn't work, free the streams! */
3549 for (i = 0; i < num_eps; i++) {
3550 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3551 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3552 vdev->eps[ep_index].stream_info = NULL;
3553 /* FIXME Unset maxPstreams in endpoint context and
3554 * update deq ptr to point to normal string ring.
3555 */
3556 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3557 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3558 xhci_endpoint_zero(xhci, vdev, eps[i]);
3559 }
3560 xhci_free_command(xhci, config_cmd);
3561 return -ENOMEM;
3562 }
3563
3564 /* Transition the endpoint from using streams to being a "normal" endpoint
3565 * without streams.
3566 *
3567 * Modify the endpoint context state, submit a configure endpoint command,
3568 * and free all endpoint rings for streams if that completes successfully.
3569 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3570 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3571 struct usb_host_endpoint **eps, unsigned int num_eps,
3572 gfp_t mem_flags)
3573 {
3574 int i, ret;
3575 struct xhci_hcd *xhci;
3576 struct xhci_virt_device *vdev;
3577 struct xhci_command *command;
3578 struct xhci_input_control_ctx *ctrl_ctx;
3579 unsigned int ep_index;
3580 unsigned long flags;
3581 u32 changed_ep_bitmask;
3582
3583 xhci = hcd_to_xhci(hcd);
3584 vdev = xhci->devs[udev->slot_id];
3585
3586 /* Set up a configure endpoint command to remove the streams rings */
3587 spin_lock_irqsave(&xhci->lock, flags);
3588 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3589 udev, eps, num_eps);
3590 if (changed_ep_bitmask == 0) {
3591 spin_unlock_irqrestore(&xhci->lock, flags);
3592 return -EINVAL;
3593 }
3594
3595 /* Use the xhci_command structure from the first endpoint. We may have
3596 * allocated too many, but the driver may call xhci_free_streams() for
3597 * each endpoint it grouped into one call to xhci_alloc_streams().
3598 */
3599 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3600 command = vdev->eps[ep_index].stream_info->free_streams_command;
3601 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3602 if (!ctrl_ctx) {
3603 spin_unlock_irqrestore(&xhci->lock, flags);
3604 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3605 __func__);
3606 return -EINVAL;
3607 }
3608
3609 for (i = 0; i < num_eps; i++) {
3610 struct xhci_ep_ctx *ep_ctx;
3611
3612 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3613 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3614 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3615 EP_GETTING_NO_STREAMS;
3616
3617 xhci_endpoint_copy(xhci, command->in_ctx,
3618 vdev->out_ctx, ep_index);
3619 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3620 &vdev->eps[ep_index]);
3621 }
3622 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3623 vdev->out_ctx, ctrl_ctx,
3624 changed_ep_bitmask, changed_ep_bitmask);
3625 spin_unlock_irqrestore(&xhci->lock, flags);
3626
3627 /* Issue and wait for the configure endpoint command,
3628 * which must succeed.
3629 */
3630 ret = xhci_configure_endpoint(xhci, udev, command,
3631 false, true);
3632
3633 /* xHC rejected the configure endpoint command for some reason, so we
3634 * leave the streams rings intact.
3635 */
3636 if (ret < 0)
3637 return ret;
3638
3639 spin_lock_irqsave(&xhci->lock, flags);
3640 for (i = 0; i < num_eps; i++) {
3641 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3642 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3643 vdev->eps[ep_index].stream_info = NULL;
3644 /* FIXME Unset maxPstreams in endpoint context and
3645 * update deq ptr to point to normal string ring.
3646 */
3647 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3648 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3649 }
3650 spin_unlock_irqrestore(&xhci->lock, flags);
3651
3652 return 0;
3653 }
3654
3655 /*
3656 * Deletes endpoint resources for endpoints that were active before a Reset
3657 * Device command, or a Disable Slot command. The Reset Device command leaves
3658 * the control endpoint intact, whereas the Disable Slot command deletes it.
3659 *
3660 * Must be called with xhci->lock held.
3661 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3662 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3663 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3664 {
3665 int i;
3666 unsigned int num_dropped_eps = 0;
3667 unsigned int drop_flags = 0;
3668
3669 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3670 if (virt_dev->eps[i].ring) {
3671 drop_flags |= 1 << i;
3672 num_dropped_eps++;
3673 }
3674 }
3675 xhci->num_active_eps -= num_dropped_eps;
3676 if (num_dropped_eps)
3677 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3678 "Dropped %u ep ctxs, flags = 0x%x, "
3679 "%u now active.",
3680 num_dropped_eps, drop_flags,
3681 xhci->num_active_eps);
3682 }
3683
3684 /*
3685 * This submits a Reset Device Command, which will set the device state to 0,
3686 * set the device address to 0, and disable all the endpoints except the default
3687 * control endpoint. The USB core should come back and call
3688 * xhci_address_device(), and then re-set up the configuration. If this is
3689 * called because of a usb_reset_and_verify_device(), then the old alternate
3690 * settings will be re-installed through the normal bandwidth allocation
3691 * functions.
3692 *
3693 * Wait for the Reset Device command to finish. Remove all structures
3694 * associated with the endpoints that were disabled. Clear the input device
3695 * structure? Reset the control endpoint 0 max packet size?
3696 *
3697 * If the virt_dev to be reset does not exist or does not match the udev,
3698 * it means the device is lost, possibly due to the xHC restore error and
3699 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3700 * re-allocate the device.
3701 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3702 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3703 struct usb_device *udev)
3704 {
3705 int ret, i;
3706 unsigned long flags;
3707 struct xhci_hcd *xhci;
3708 unsigned int slot_id;
3709 struct xhci_virt_device *virt_dev;
3710 struct xhci_command *reset_device_cmd;
3711 struct xhci_slot_ctx *slot_ctx;
3712 int old_active_eps = 0;
3713
3714 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3715 if (ret <= 0)
3716 return ret;
3717 xhci = hcd_to_xhci(hcd);
3718 slot_id = udev->slot_id;
3719 virt_dev = xhci->devs[slot_id];
3720 if (!virt_dev) {
3721 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3722 "not exist. Re-allocate the device\n", slot_id);
3723 ret = xhci_alloc_dev(hcd, udev);
3724 if (ret == 1)
3725 return 0;
3726 else
3727 return -EINVAL;
3728 }
3729
3730 if (virt_dev->tt_info)
3731 old_active_eps = virt_dev->tt_info->active_eps;
3732
3733 if (virt_dev->udev != udev) {
3734 /* If the virt_dev and the udev does not match, this virt_dev
3735 * may belong to another udev.
3736 * Re-allocate the device.
3737 */
3738 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3739 "not match the udev. Re-allocate the device\n",
3740 slot_id);
3741 ret = xhci_alloc_dev(hcd, udev);
3742 if (ret == 1)
3743 return 0;
3744 else
3745 return -EINVAL;
3746 }
3747
3748 /* If device is not setup, there is no point in resetting it */
3749 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3750 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3751 SLOT_STATE_DISABLED)
3752 return 0;
3753
3754 trace_xhci_discover_or_reset_device(slot_ctx);
3755
3756 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3757 /* Allocate the command structure that holds the struct completion.
3758 * Assume we're in process context, since the normal device reset
3759 * process has to wait for the device anyway. Storage devices are
3760 * reset as part of error handling, so use GFP_NOIO instead of
3761 * GFP_KERNEL.
3762 */
3763 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3764 if (!reset_device_cmd) {
3765 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3766 return -ENOMEM;
3767 }
3768
3769 /* Attempt to submit the Reset Device command to the command ring */
3770 spin_lock_irqsave(&xhci->lock, flags);
3771
3772 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3773 if (ret) {
3774 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3775 spin_unlock_irqrestore(&xhci->lock, flags);
3776 goto command_cleanup;
3777 }
3778 xhci_ring_cmd_db(xhci);
3779 spin_unlock_irqrestore(&xhci->lock, flags);
3780
3781 /* Wait for the Reset Device command to finish */
3782 wait_for_completion(reset_device_cmd->completion);
3783
3784 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3785 * unless we tried to reset a slot ID that wasn't enabled,
3786 * or the device wasn't in the addressed or configured state.
3787 */
3788 ret = reset_device_cmd->status;
3789 switch (ret) {
3790 case COMP_COMMAND_ABORTED:
3791 case COMP_COMMAND_RING_STOPPED:
3792 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3793 ret = -ETIME;
3794 goto command_cleanup;
3795 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3796 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3797 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3798 slot_id,
3799 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3800 xhci_dbg(xhci, "Not freeing device rings.\n");
3801 /* Don't treat this as an error. May change my mind later. */
3802 ret = 0;
3803 goto command_cleanup;
3804 case COMP_SUCCESS:
3805 xhci_dbg(xhci, "Successful reset device command.\n");
3806 break;
3807 default:
3808 if (xhci_is_vendor_info_code(xhci, ret))
3809 break;
3810 xhci_warn(xhci, "Unknown completion code %u for "
3811 "reset device command.\n", ret);
3812 ret = -EINVAL;
3813 goto command_cleanup;
3814 }
3815
3816 /* Free up host controller endpoint resources */
3817 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3818 spin_lock_irqsave(&xhci->lock, flags);
3819 /* Don't delete the default control endpoint resources */
3820 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3821 spin_unlock_irqrestore(&xhci->lock, flags);
3822 }
3823
3824 /* Everything but endpoint 0 is disabled, so free the rings. */
3825 for (i = 1; i < 31; i++) {
3826 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3827
3828 if (ep->ep_state & EP_HAS_STREAMS) {
3829 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3830 xhci_get_endpoint_address(i));
3831 xhci_free_stream_info(xhci, ep->stream_info);
3832 ep->stream_info = NULL;
3833 ep->ep_state &= ~EP_HAS_STREAMS;
3834 }
3835
3836 if (ep->ring) {
3837 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3838 xhci_free_endpoint_ring(xhci, virt_dev, i);
3839 }
3840 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3841 xhci_drop_ep_from_interval_table(xhci,
3842 &virt_dev->eps[i].bw_info,
3843 virt_dev->bw_table,
3844 udev,
3845 &virt_dev->eps[i],
3846 virt_dev->tt_info);
3847 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3848 }
3849 /* If necessary, update the number of active TTs on this root port */
3850 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3851 virt_dev->flags = 0;
3852 ret = 0;
3853
3854 command_cleanup:
3855 xhci_free_command(xhci, reset_device_cmd);
3856 return ret;
3857 }
3858
3859 /*
3860 * At this point, the struct usb_device is about to go away, the device has
3861 * disconnected, and all traffic has been stopped and the endpoints have been
3862 * disabled. Free any HC data structures associated with that device.
3863 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3864 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3865 {
3866 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3867 struct xhci_virt_device *virt_dev;
3868 struct xhci_slot_ctx *slot_ctx;
3869 int i, ret;
3870
3871 #ifndef CONFIG_USB_DEFAULT_PERSIST
3872 /*
3873 * We called pm_runtime_get_noresume when the device was attached.
3874 * Decrement the counter here to allow controller to runtime suspend
3875 * if no devices remain.
3876 */
3877 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3878 pm_runtime_put_noidle(hcd->self.controller);
3879 #endif
3880
3881 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3882 /* If the host is halted due to driver unload, we still need to free the
3883 * device.
3884 */
3885 if (ret <= 0 && ret != -ENODEV)
3886 return;
3887
3888 virt_dev = xhci->devs[udev->slot_id];
3889 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3890 trace_xhci_free_dev(slot_ctx);
3891
3892 /* Stop any wayward timer functions (which may grab the lock) */
3893 for (i = 0; i < 31; i++) {
3894 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3895 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3896 }
3897 virt_dev->udev = NULL;
3898 ret = xhci_disable_slot(xhci, udev->slot_id);
3899 if (ret)
3900 xhci_free_virt_device(xhci, udev->slot_id);
3901 }
3902
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3903 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3904 {
3905 struct xhci_command *command;
3906 unsigned long flags;
3907 u32 state;
3908 int ret = 0;
3909
3910 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3911 if (!command)
3912 return -ENOMEM;
3913
3914 xhci_debugfs_remove_slot(xhci, slot_id);
3915
3916 spin_lock_irqsave(&xhci->lock, flags);
3917 /* Don't disable the slot if the host controller is dead. */
3918 state = readl(&xhci->op_regs->status);
3919 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3920 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3921 spin_unlock_irqrestore(&xhci->lock, flags);
3922 kfree(command);
3923 return -ENODEV;
3924 }
3925
3926 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3927 slot_id);
3928 if (ret) {
3929 spin_unlock_irqrestore(&xhci->lock, flags);
3930 kfree(command);
3931 return ret;
3932 }
3933 xhci_ring_cmd_db(xhci);
3934 spin_unlock_irqrestore(&xhci->lock, flags);
3935 return ret;
3936 }
3937
3938 /*
3939 * Checks if we have enough host controller resources for the default control
3940 * endpoint.
3941 *
3942 * Must be called with xhci->lock held.
3943 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3944 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3945 {
3946 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948 "Not enough ep ctxs: "
3949 "%u active, need to add 1, limit is %u.",
3950 xhci->num_active_eps, xhci->limit_active_eps);
3951 return -ENOMEM;
3952 }
3953 xhci->num_active_eps += 1;
3954 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3955 "Adding 1 ep ctx, %u now active.",
3956 xhci->num_active_eps);
3957 return 0;
3958 }
3959
3960
3961 /*
3962 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3963 * timed out, or allocating memory failed. Returns 1 on success.
3964 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3965 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968 struct xhci_virt_device *vdev;
3969 struct xhci_slot_ctx *slot_ctx;
3970 unsigned long flags;
3971 int ret, slot_id;
3972 struct xhci_command *command;
3973
3974 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3975 if (!command)
3976 return 0;
3977
3978 spin_lock_irqsave(&xhci->lock, flags);
3979 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3980 if (ret) {
3981 spin_unlock_irqrestore(&xhci->lock, flags);
3982 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3983 xhci_free_command(xhci, command);
3984 return 0;
3985 }
3986 xhci_ring_cmd_db(xhci);
3987 spin_unlock_irqrestore(&xhci->lock, flags);
3988
3989 wait_for_completion(command->completion);
3990 slot_id = command->slot_id;
3991
3992 if (!slot_id || command->status != COMP_SUCCESS) {
3993 xhci_err(xhci, "Error while assigning device slot ID\n");
3994 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3995 HCS_MAX_SLOTS(
3996 readl(&xhci->cap_regs->hcs_params1)));
3997 xhci_free_command(xhci, command);
3998 return 0;
3999 }
4000
4001 xhci_free_command(xhci, command);
4002
4003 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4004 spin_lock_irqsave(&xhci->lock, flags);
4005 ret = xhci_reserve_host_control_ep_resources(xhci);
4006 if (ret) {
4007 spin_unlock_irqrestore(&xhci->lock, flags);
4008 xhci_warn(xhci, "Not enough host resources, "
4009 "active endpoint contexts = %u\n",
4010 xhci->num_active_eps);
4011 goto disable_slot;
4012 }
4013 spin_unlock_irqrestore(&xhci->lock, flags);
4014 }
4015 /* Use GFP_NOIO, since this function can be called from
4016 * xhci_discover_or_reset_device(), which may be called as part of
4017 * mass storage driver error handling.
4018 */
4019 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4020 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4021 goto disable_slot;
4022 }
4023 vdev = xhci->devs[slot_id];
4024 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4025 trace_xhci_alloc_dev(slot_ctx);
4026
4027 udev->slot_id = slot_id;
4028
4029 xhci_debugfs_create_slot(xhci, slot_id);
4030
4031 #ifndef CONFIG_USB_DEFAULT_PERSIST
4032 /*
4033 * If resetting upon resume, we can't put the controller into runtime
4034 * suspend if there is a device attached.
4035 */
4036 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4037 pm_runtime_get_noresume(hcd->self.controller);
4038 #endif
4039
4040 /* Is this a LS or FS device under a HS hub? */
4041 /* Hub or peripherial? */
4042 return 1;
4043
4044 disable_slot:
4045 ret = xhci_disable_slot(xhci, udev->slot_id);
4046 if (ret)
4047 xhci_free_virt_device(xhci, udev->slot_id);
4048
4049 return 0;
4050 }
4051
4052 /*
4053 * Issue an Address Device command and optionally send a corresponding
4054 * SetAddress request to the device.
4055 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4056 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4057 enum xhci_setup_dev setup)
4058 {
4059 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4060 unsigned long flags;
4061 struct xhci_virt_device *virt_dev;
4062 int ret = 0;
4063 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4064 struct xhci_slot_ctx *slot_ctx;
4065 struct xhci_input_control_ctx *ctrl_ctx;
4066 u64 temp_64;
4067 struct xhci_command *command = NULL;
4068
4069 mutex_lock(&xhci->mutex);
4070
4071 if (xhci->xhc_state) { /* dying, removing or halted */
4072 ret = -ESHUTDOWN;
4073 goto out;
4074 }
4075
4076 if (!udev->slot_id) {
4077 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4078 "Bad Slot ID %d", udev->slot_id);
4079 ret = -EINVAL;
4080 goto out;
4081 }
4082
4083 virt_dev = xhci->devs[udev->slot_id];
4084
4085 if (WARN_ON(!virt_dev)) {
4086 /*
4087 * In plug/unplug torture test with an NEC controller,
4088 * a zero-dereference was observed once due to virt_dev = 0.
4089 * Print useful debug rather than crash if it is observed again!
4090 */
4091 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4092 udev->slot_id);
4093 ret = -EINVAL;
4094 goto out;
4095 }
4096 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4097 trace_xhci_setup_device_slot(slot_ctx);
4098
4099 if (setup == SETUP_CONTEXT_ONLY) {
4100 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4101 SLOT_STATE_DEFAULT) {
4102 xhci_dbg(xhci, "Slot already in default state\n");
4103 goto out;
4104 }
4105 }
4106
4107 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4108 if (!command) {
4109 ret = -ENOMEM;
4110 goto out;
4111 }
4112
4113 command->in_ctx = virt_dev->in_ctx;
4114
4115 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4116 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4117 if (!ctrl_ctx) {
4118 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4119 __func__);
4120 ret = -EINVAL;
4121 goto out;
4122 }
4123 /*
4124 * If this is the first Set Address since device plug-in or
4125 * virt_device realloaction after a resume with an xHCI power loss,
4126 * then set up the slot context.
4127 */
4128 if (!slot_ctx->dev_info)
4129 xhci_setup_addressable_virt_dev(xhci, udev);
4130 /* Otherwise, update the control endpoint ring enqueue pointer. */
4131 else
4132 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4133 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4134 ctrl_ctx->drop_flags = 0;
4135
4136 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4137 le32_to_cpu(slot_ctx->dev_info) >> 27);
4138
4139 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4140 spin_lock_irqsave(&xhci->lock, flags);
4141 trace_xhci_setup_device(virt_dev);
4142 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4143 udev->slot_id, setup);
4144 if (ret) {
4145 spin_unlock_irqrestore(&xhci->lock, flags);
4146 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4147 "FIXME: allocate a command ring segment");
4148 goto out;
4149 }
4150 xhci_ring_cmd_db(xhci);
4151 spin_unlock_irqrestore(&xhci->lock, flags);
4152
4153 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4154 wait_for_completion(command->completion);
4155
4156 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4157 * the SetAddress() "recovery interval" required by USB and aborting the
4158 * command on a timeout.
4159 */
4160 switch (command->status) {
4161 case COMP_COMMAND_ABORTED:
4162 case COMP_COMMAND_RING_STOPPED:
4163 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4164 ret = -ETIME;
4165 break;
4166 case COMP_CONTEXT_STATE_ERROR:
4167 case COMP_SLOT_NOT_ENABLED_ERROR:
4168 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4169 act, udev->slot_id);
4170 ret = -EINVAL;
4171 break;
4172 case COMP_USB_TRANSACTION_ERROR:
4173 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4174
4175 mutex_unlock(&xhci->mutex);
4176 ret = xhci_disable_slot(xhci, udev->slot_id);
4177 if (!ret)
4178 xhci_alloc_dev(hcd, udev);
4179 kfree(command->completion);
4180 kfree(command);
4181 return -EPROTO;
4182 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4183 dev_warn(&udev->dev,
4184 "ERROR: Incompatible device for setup %s command\n", act);
4185 ret = -ENODEV;
4186 break;
4187 case COMP_SUCCESS:
4188 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4189 "Successful setup %s command", act);
4190 break;
4191 default:
4192 xhci_err(xhci,
4193 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4194 act, command->status);
4195 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4196 ret = -EINVAL;
4197 break;
4198 }
4199 if (ret)
4200 goto out;
4201 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4202 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203 "Op regs DCBAA ptr = %#016llx", temp_64);
4204 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4205 "Slot ID %d dcbaa entry @%p = %#016llx",
4206 udev->slot_id,
4207 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4208 (unsigned long long)
4209 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4210 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4211 "Output Context DMA address = %#08llx",
4212 (unsigned long long)virt_dev->out_ctx->dma);
4213 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4214 le32_to_cpu(slot_ctx->dev_info) >> 27);
4215 /*
4216 * USB core uses address 1 for the roothubs, so we add one to the
4217 * address given back to us by the HC.
4218 */
4219 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4220 le32_to_cpu(slot_ctx->dev_info) >> 27);
4221 /* Zero the input context control for later use */
4222 ctrl_ctx->add_flags = 0;
4223 ctrl_ctx->drop_flags = 0;
4224 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4225 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4226
4227 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4228 "Internal device address = %d",
4229 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4230 out:
4231 mutex_unlock(&xhci->mutex);
4232 if (command) {
4233 kfree(command->completion);
4234 kfree(command);
4235 }
4236 return ret;
4237 }
4238
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4239 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4240 {
4241 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4242 }
4243
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4244 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4245 {
4246 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4247 }
4248
4249 /*
4250 * Transfer the port index into real index in the HW port status
4251 * registers. Caculate offset between the port's PORTSC register
4252 * and port status base. Divide the number of per port register
4253 * to get the real index. The raw port number bases 1.
4254 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4255 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4256 {
4257 struct xhci_hub *rhub;
4258
4259 rhub = xhci_get_rhub(hcd);
4260 return rhub->ports[port1 - 1]->hw_portnum + 1;
4261 }
4262
4263 /*
4264 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4265 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4266 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4267 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4268 struct usb_device *udev, u16 max_exit_latency)
4269 {
4270 struct xhci_virt_device *virt_dev;
4271 struct xhci_command *command;
4272 struct xhci_input_control_ctx *ctrl_ctx;
4273 struct xhci_slot_ctx *slot_ctx;
4274 unsigned long flags;
4275 int ret;
4276
4277 spin_lock_irqsave(&xhci->lock, flags);
4278
4279 virt_dev = xhci->devs[udev->slot_id];
4280
4281 /*
4282 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4283 * xHC was re-initialized. Exit latency will be set later after
4284 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4285 */
4286
4287 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4288 spin_unlock_irqrestore(&xhci->lock, flags);
4289 return 0;
4290 }
4291
4292 /* Attempt to issue an Evaluate Context command to change the MEL. */
4293 command = xhci->lpm_command;
4294 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4295 if (!ctrl_ctx) {
4296 spin_unlock_irqrestore(&xhci->lock, flags);
4297 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4298 __func__);
4299 return -ENOMEM;
4300 }
4301
4302 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4303 spin_unlock_irqrestore(&xhci->lock, flags);
4304
4305 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4306 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4307 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4308 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4309 slot_ctx->dev_state = 0;
4310
4311 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4312 "Set up evaluate context for LPM MEL change.");
4313
4314 /* Issue and wait for the evaluate context command. */
4315 ret = xhci_configure_endpoint(xhci, udev, command,
4316 true, true);
4317
4318 if (!ret) {
4319 spin_lock_irqsave(&xhci->lock, flags);
4320 virt_dev->current_mel = max_exit_latency;
4321 spin_unlock_irqrestore(&xhci->lock, flags);
4322 }
4323 return ret;
4324 }
4325
4326 #ifdef CONFIG_PM
4327
4328 /* BESL to HIRD Encoding array for USB2 LPM */
4329 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4330 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4331
4332 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4333 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4334 struct usb_device *udev)
4335 {
4336 int u2del, besl, besl_host;
4337 int besl_device = 0;
4338 u32 field;
4339
4340 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4341 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4342
4343 if (field & USB_BESL_SUPPORT) {
4344 for (besl_host = 0; besl_host < 16; besl_host++) {
4345 if (xhci_besl_encoding[besl_host] >= u2del)
4346 break;
4347 }
4348 /* Use baseline BESL value as default */
4349 if (field & USB_BESL_BASELINE_VALID)
4350 besl_device = USB_GET_BESL_BASELINE(field);
4351 else if (field & USB_BESL_DEEP_VALID)
4352 besl_device = USB_GET_BESL_DEEP(field);
4353 } else {
4354 if (u2del <= 50)
4355 besl_host = 0;
4356 else
4357 besl_host = (u2del - 51) / 75 + 1;
4358 }
4359
4360 besl = besl_host + besl_device;
4361 if (besl > 15)
4362 besl = 15;
4363
4364 return besl;
4365 }
4366
4367 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4368 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4369 {
4370 u32 field;
4371 int l1;
4372 int besld = 0;
4373 int hirdm = 0;
4374
4375 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4376
4377 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4378 l1 = udev->l1_params.timeout / 256;
4379
4380 /* device has preferred BESLD */
4381 if (field & USB_BESL_DEEP_VALID) {
4382 besld = USB_GET_BESL_DEEP(field);
4383 hirdm = 1;
4384 }
4385
4386 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4387 }
4388
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4389 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4390 struct usb_device *udev, int enable)
4391 {
4392 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4393 struct xhci_port **ports;
4394 __le32 __iomem *pm_addr, *hlpm_addr;
4395 u32 pm_val, hlpm_val, field;
4396 unsigned int port_num;
4397 unsigned long flags;
4398 int hird, exit_latency;
4399 int ret;
4400
4401 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4402 return -EPERM;
4403
4404 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4405 !udev->lpm_capable)
4406 return -EPERM;
4407
4408 if (!udev->parent || udev->parent->parent ||
4409 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4410 return -EPERM;
4411
4412 if (udev->usb2_hw_lpm_capable != 1)
4413 return -EPERM;
4414
4415 spin_lock_irqsave(&xhci->lock, flags);
4416
4417 ports = xhci->usb2_rhub.ports;
4418 port_num = udev->portnum - 1;
4419 pm_addr = ports[port_num]->addr + PORTPMSC;
4420 pm_val = readl(pm_addr);
4421 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4422
4423 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4424 enable ? "enable" : "disable", port_num + 1);
4425
4426 if (enable) {
4427 /* Host supports BESL timeout instead of HIRD */
4428 if (udev->usb2_hw_lpm_besl_capable) {
4429 /* if device doesn't have a preferred BESL value use a
4430 * default one which works with mixed HIRD and BESL
4431 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4432 */
4433 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4434 if ((field & USB_BESL_SUPPORT) &&
4435 (field & USB_BESL_BASELINE_VALID))
4436 hird = USB_GET_BESL_BASELINE(field);
4437 else
4438 hird = udev->l1_params.besl;
4439
4440 exit_latency = xhci_besl_encoding[hird];
4441 spin_unlock_irqrestore(&xhci->lock, flags);
4442
4443 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4444 * input context for link powermanagement evaluate
4445 * context commands. It is protected by hcd->bandwidth
4446 * mutex and is shared by all devices. We need to set
4447 * the max ext latency in USB 2 BESL LPM as well, so
4448 * use the same mutex and xhci_change_max_exit_latency()
4449 */
4450 mutex_lock(hcd->bandwidth_mutex);
4451 ret = xhci_change_max_exit_latency(xhci, udev,
4452 exit_latency);
4453 mutex_unlock(hcd->bandwidth_mutex);
4454
4455 if (ret < 0)
4456 return ret;
4457 spin_lock_irqsave(&xhci->lock, flags);
4458
4459 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4460 writel(hlpm_val, hlpm_addr);
4461 /* flush write */
4462 readl(hlpm_addr);
4463 } else {
4464 hird = xhci_calculate_hird_besl(xhci, udev);
4465 }
4466
4467 pm_val &= ~PORT_HIRD_MASK;
4468 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4469 writel(pm_val, pm_addr);
4470 pm_val = readl(pm_addr);
4471 pm_val |= PORT_HLE;
4472 writel(pm_val, pm_addr);
4473 /* flush write */
4474 readl(pm_addr);
4475 } else {
4476 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4477 writel(pm_val, pm_addr);
4478 /* flush write */
4479 readl(pm_addr);
4480 if (udev->usb2_hw_lpm_besl_capable) {
4481 spin_unlock_irqrestore(&xhci->lock, flags);
4482 mutex_lock(hcd->bandwidth_mutex);
4483 xhci_change_max_exit_latency(xhci, udev, 0);
4484 mutex_unlock(hcd->bandwidth_mutex);
4485 readl_poll_timeout(ports[port_num]->addr, pm_val,
4486 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4487 100, 10000);
4488 return 0;
4489 }
4490 }
4491
4492 spin_unlock_irqrestore(&xhci->lock, flags);
4493 return 0;
4494 }
4495
4496 /* check if a usb2 port supports a given extened capability protocol
4497 * only USB2 ports extended protocol capability values are cached.
4498 * Return 1 if capability is supported
4499 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4500 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4501 unsigned capability)
4502 {
4503 u32 port_offset, port_count;
4504 int i;
4505
4506 for (i = 0; i < xhci->num_ext_caps; i++) {
4507 if (xhci->ext_caps[i] & capability) {
4508 /* port offsets starts at 1 */
4509 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4510 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4511 if (port >= port_offset &&
4512 port < port_offset + port_count)
4513 return 1;
4514 }
4515 }
4516 return 0;
4517 }
4518
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4519 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4520 {
4521 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4522 int portnum = udev->portnum - 1;
4523
4524 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4525 return 0;
4526
4527 /* we only support lpm for non-hub device connected to root hub yet */
4528 if (!udev->parent || udev->parent->parent ||
4529 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4530 return 0;
4531
4532 if (xhci->hw_lpm_support == 1 &&
4533 xhci_check_usb2_port_capability(
4534 xhci, portnum, XHCI_HLC)) {
4535 udev->usb2_hw_lpm_capable = 1;
4536 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4537 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4538 if (xhci_check_usb2_port_capability(xhci, portnum,
4539 XHCI_BLC))
4540 udev->usb2_hw_lpm_besl_capable = 1;
4541 }
4542
4543 return 0;
4544 }
4545
4546 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4547
4548 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4549 static unsigned long long xhci_service_interval_to_ns(
4550 struct usb_endpoint_descriptor *desc)
4551 {
4552 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4553 }
4554
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4555 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4556 enum usb3_link_state state)
4557 {
4558 unsigned long long sel;
4559 unsigned long long pel;
4560 unsigned int max_sel_pel;
4561 char *state_name;
4562
4563 switch (state) {
4564 case USB3_LPM_U1:
4565 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4566 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4567 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4568 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4569 state_name = "U1";
4570 break;
4571 case USB3_LPM_U2:
4572 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4573 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4574 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4575 state_name = "U2";
4576 break;
4577 default:
4578 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4579 __func__);
4580 return USB3_LPM_DISABLED;
4581 }
4582
4583 if (sel <= max_sel_pel && pel <= max_sel_pel)
4584 return USB3_LPM_DEVICE_INITIATED;
4585
4586 if (sel > max_sel_pel)
4587 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4588 "due to long SEL %llu ms\n",
4589 state_name, sel);
4590 else
4591 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4592 "due to long PEL %llu ms\n",
4593 state_name, pel);
4594 return USB3_LPM_DISABLED;
4595 }
4596
4597 /* The U1 timeout should be the maximum of the following values:
4598 * - For control endpoints, U1 system exit latency (SEL) * 3
4599 * - For bulk endpoints, U1 SEL * 5
4600 * - For interrupt endpoints:
4601 * - Notification EPs, U1 SEL * 3
4602 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4603 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4604 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4605 static unsigned long long xhci_calculate_intel_u1_timeout(
4606 struct usb_device *udev,
4607 struct usb_endpoint_descriptor *desc)
4608 {
4609 unsigned long long timeout_ns;
4610 int ep_type;
4611 int intr_type;
4612
4613 ep_type = usb_endpoint_type(desc);
4614 switch (ep_type) {
4615 case USB_ENDPOINT_XFER_CONTROL:
4616 timeout_ns = udev->u1_params.sel * 3;
4617 break;
4618 case USB_ENDPOINT_XFER_BULK:
4619 timeout_ns = udev->u1_params.sel * 5;
4620 break;
4621 case USB_ENDPOINT_XFER_INT:
4622 intr_type = usb_endpoint_interrupt_type(desc);
4623 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4624 timeout_ns = udev->u1_params.sel * 3;
4625 break;
4626 }
4627 /* Otherwise the calculation is the same as isoc eps */
4628 fallthrough;
4629 case USB_ENDPOINT_XFER_ISOC:
4630 timeout_ns = xhci_service_interval_to_ns(desc);
4631 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4632 if (timeout_ns < udev->u1_params.sel * 2)
4633 timeout_ns = udev->u1_params.sel * 2;
4634 break;
4635 default:
4636 return 0;
4637 }
4638
4639 return timeout_ns;
4640 }
4641
4642 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4643 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4644 struct usb_device *udev,
4645 struct usb_endpoint_descriptor *desc)
4646 {
4647 unsigned long long timeout_ns;
4648
4649 /* Prevent U1 if service interval is shorter than U1 exit latency */
4650 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4651 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4652 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4653 return USB3_LPM_DISABLED;
4654 }
4655 }
4656
4657 if (xhci->quirks & XHCI_INTEL_HOST)
4658 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4659 else
4660 timeout_ns = udev->u1_params.sel;
4661
4662 /* The U1 timeout is encoded in 1us intervals.
4663 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4664 */
4665 if (timeout_ns == USB3_LPM_DISABLED)
4666 timeout_ns = 1;
4667 else
4668 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4669
4670 /* If the necessary timeout value is bigger than what we can set in the
4671 * USB 3.0 hub, we have to disable hub-initiated U1.
4672 */
4673 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4674 return timeout_ns;
4675 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4676 "due to long timeout %llu ms\n", timeout_ns);
4677 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4678 }
4679
4680 /* The U2 timeout should be the maximum of:
4681 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4682 * - largest bInterval of any active periodic endpoint (to avoid going
4683 * into lower power link states between intervals).
4684 * - the U2 Exit Latency of the device
4685 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4686 static unsigned long long xhci_calculate_intel_u2_timeout(
4687 struct usb_device *udev,
4688 struct usb_endpoint_descriptor *desc)
4689 {
4690 unsigned long long timeout_ns;
4691 unsigned long long u2_del_ns;
4692
4693 timeout_ns = 10 * 1000 * 1000;
4694
4695 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4696 (xhci_service_interval_to_ns(desc) > timeout_ns))
4697 timeout_ns = xhci_service_interval_to_ns(desc);
4698
4699 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4700 if (u2_del_ns > timeout_ns)
4701 timeout_ns = u2_del_ns;
4702
4703 return timeout_ns;
4704 }
4705
4706 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4707 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4708 struct usb_device *udev,
4709 struct usb_endpoint_descriptor *desc)
4710 {
4711 unsigned long long timeout_ns;
4712
4713 /* Prevent U2 if service interval is shorter than U2 exit latency */
4714 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4715 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4716 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4717 return USB3_LPM_DISABLED;
4718 }
4719 }
4720
4721 if (xhci->quirks & XHCI_INTEL_HOST)
4722 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4723 else
4724 timeout_ns = udev->u2_params.sel;
4725
4726 /* The U2 timeout is encoded in 256us intervals */
4727 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4728 /* If the necessary timeout value is bigger than what we can set in the
4729 * USB 3.0 hub, we have to disable hub-initiated U2.
4730 */
4731 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4732 return timeout_ns;
4733 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4734 "due to long timeout %llu ms\n", timeout_ns);
4735 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4736 }
4737
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4738 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4739 struct usb_device *udev,
4740 struct usb_endpoint_descriptor *desc,
4741 enum usb3_link_state state,
4742 u16 *timeout)
4743 {
4744 if (state == USB3_LPM_U1)
4745 return xhci_calculate_u1_timeout(xhci, udev, desc);
4746 else if (state == USB3_LPM_U2)
4747 return xhci_calculate_u2_timeout(xhci, udev, desc);
4748
4749 return USB3_LPM_DISABLED;
4750 }
4751
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4752 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4753 struct usb_device *udev,
4754 struct usb_endpoint_descriptor *desc,
4755 enum usb3_link_state state,
4756 u16 *timeout)
4757 {
4758 u16 alt_timeout;
4759
4760 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4761 desc, state, timeout);
4762
4763 /* If we found we can't enable hub-initiated LPM, and
4764 * the U1 or U2 exit latency was too high to allow
4765 * device-initiated LPM as well, then we will disable LPM
4766 * for this device, so stop searching any further.
4767 */
4768 if (alt_timeout == USB3_LPM_DISABLED) {
4769 *timeout = alt_timeout;
4770 return -E2BIG;
4771 }
4772 if (alt_timeout > *timeout)
4773 *timeout = alt_timeout;
4774 return 0;
4775 }
4776
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4777 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4778 struct usb_device *udev,
4779 struct usb_host_interface *alt,
4780 enum usb3_link_state state,
4781 u16 *timeout)
4782 {
4783 int j;
4784
4785 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4786 if (xhci_update_timeout_for_endpoint(xhci, udev,
4787 &alt->endpoint[j].desc, state, timeout))
4788 return -E2BIG;
4789 continue;
4790 }
4791 return 0;
4792 }
4793
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4794 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4795 enum usb3_link_state state)
4796 {
4797 struct usb_device *parent;
4798 unsigned int num_hubs;
4799
4800 if (state == USB3_LPM_U2)
4801 return 0;
4802
4803 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4804 for (parent = udev->parent, num_hubs = 0; parent->parent;
4805 parent = parent->parent)
4806 num_hubs++;
4807
4808 if (num_hubs < 2)
4809 return 0;
4810
4811 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4812 " below second-tier hub.\n");
4813 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4814 "to decrease power consumption.\n");
4815 return -E2BIG;
4816 }
4817
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4818 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4819 struct usb_device *udev,
4820 enum usb3_link_state state)
4821 {
4822 if (xhci->quirks & XHCI_INTEL_HOST)
4823 return xhci_check_intel_tier_policy(udev, state);
4824 else
4825 return 0;
4826 }
4827
4828 /* Returns the U1 or U2 timeout that should be enabled.
4829 * If the tier check or timeout setting functions return with a non-zero exit
4830 * code, that means the timeout value has been finalized and we shouldn't look
4831 * at any more endpoints.
4832 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4833 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4834 struct usb_device *udev, enum usb3_link_state state)
4835 {
4836 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4837 struct usb_host_config *config;
4838 char *state_name;
4839 int i;
4840 u16 timeout = USB3_LPM_DISABLED;
4841
4842 if (state == USB3_LPM_U1)
4843 state_name = "U1";
4844 else if (state == USB3_LPM_U2)
4845 state_name = "U2";
4846 else {
4847 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4848 state);
4849 return timeout;
4850 }
4851
4852 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4853 return timeout;
4854
4855 /* Gather some information about the currently installed configuration
4856 * and alternate interface settings.
4857 */
4858 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4859 state, &timeout))
4860 return timeout;
4861
4862 config = udev->actconfig;
4863 if (!config)
4864 return timeout;
4865
4866 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4867 struct usb_driver *driver;
4868 struct usb_interface *intf = config->interface[i];
4869
4870 if (!intf)
4871 continue;
4872
4873 /* Check if any currently bound drivers want hub-initiated LPM
4874 * disabled.
4875 */
4876 if (intf->dev.driver) {
4877 driver = to_usb_driver(intf->dev.driver);
4878 if (driver && driver->disable_hub_initiated_lpm) {
4879 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4880 state_name, driver->name);
4881 timeout = xhci_get_timeout_no_hub_lpm(udev,
4882 state);
4883 if (timeout == USB3_LPM_DISABLED)
4884 return timeout;
4885 }
4886 }
4887
4888 /* Not sure how this could happen... */
4889 if (!intf->cur_altsetting)
4890 continue;
4891
4892 if (xhci_update_timeout_for_interface(xhci, udev,
4893 intf->cur_altsetting,
4894 state, &timeout))
4895 return timeout;
4896 }
4897 return timeout;
4898 }
4899
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4900 static int calculate_max_exit_latency(struct usb_device *udev,
4901 enum usb3_link_state state_changed,
4902 u16 hub_encoded_timeout)
4903 {
4904 unsigned long long u1_mel_us = 0;
4905 unsigned long long u2_mel_us = 0;
4906 unsigned long long mel_us = 0;
4907 bool disabling_u1;
4908 bool disabling_u2;
4909 bool enabling_u1;
4910 bool enabling_u2;
4911
4912 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4913 hub_encoded_timeout == USB3_LPM_DISABLED);
4914 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4915 hub_encoded_timeout == USB3_LPM_DISABLED);
4916
4917 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4918 hub_encoded_timeout != USB3_LPM_DISABLED);
4919 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4920 hub_encoded_timeout != USB3_LPM_DISABLED);
4921
4922 /* If U1 was already enabled and we're not disabling it,
4923 * or we're going to enable U1, account for the U1 max exit latency.
4924 */
4925 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4926 enabling_u1)
4927 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4928 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4929 enabling_u2)
4930 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4931
4932 if (u1_mel_us > u2_mel_us)
4933 mel_us = u1_mel_us;
4934 else
4935 mel_us = u2_mel_us;
4936 /* xHCI host controller max exit latency field is only 16 bits wide. */
4937 if (mel_us > MAX_EXIT) {
4938 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4939 "is too big.\n", mel_us);
4940 return -E2BIG;
4941 }
4942 return mel_us;
4943 }
4944
4945 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4946 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4947 struct usb_device *udev, enum usb3_link_state state)
4948 {
4949 struct xhci_hcd *xhci;
4950 u16 hub_encoded_timeout;
4951 int mel;
4952 int ret;
4953
4954 xhci = hcd_to_xhci(hcd);
4955 /* The LPM timeout values are pretty host-controller specific, so don't
4956 * enable hub-initiated timeouts unless the vendor has provided
4957 * information about their timeout algorithm.
4958 */
4959 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4960 !xhci->devs[udev->slot_id])
4961 return USB3_LPM_DISABLED;
4962
4963 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4964 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4965 if (mel < 0) {
4966 /* Max Exit Latency is too big, disable LPM. */
4967 hub_encoded_timeout = USB3_LPM_DISABLED;
4968 mel = 0;
4969 }
4970
4971 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4972 if (ret)
4973 return ret;
4974 return hub_encoded_timeout;
4975 }
4976
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4977 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4978 struct usb_device *udev, enum usb3_link_state state)
4979 {
4980 struct xhci_hcd *xhci;
4981 u16 mel;
4982
4983 xhci = hcd_to_xhci(hcd);
4984 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4985 !xhci->devs[udev->slot_id])
4986 return 0;
4987
4988 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4989 return xhci_change_max_exit_latency(xhci, udev, mel);
4990 }
4991 #else /* CONFIG_PM */
4992
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4993 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4994 struct usb_device *udev, int enable)
4995 {
4996 return 0;
4997 }
4998
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4999 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5000 {
5001 return 0;
5002 }
5003
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5004 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5005 struct usb_device *udev, enum usb3_link_state state)
5006 {
5007 return USB3_LPM_DISABLED;
5008 }
5009
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5010 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5011 struct usb_device *udev, enum usb3_link_state state)
5012 {
5013 return 0;
5014 }
5015 #endif /* CONFIG_PM */
5016
5017 /*-------------------------------------------------------------------------*/
5018
5019 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5020 * internal data structures for the device.
5021 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5022 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5023 struct usb_tt *tt, gfp_t mem_flags)
5024 {
5025 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5026 struct xhci_virt_device *vdev;
5027 struct xhci_command *config_cmd;
5028 struct xhci_input_control_ctx *ctrl_ctx;
5029 struct xhci_slot_ctx *slot_ctx;
5030 unsigned long flags;
5031 unsigned think_time;
5032 int ret;
5033
5034 /* Ignore root hubs */
5035 if (!hdev->parent)
5036 return 0;
5037
5038 vdev = xhci->devs[hdev->slot_id];
5039 if (!vdev) {
5040 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5041 return -EINVAL;
5042 }
5043
5044 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5045 if (!config_cmd)
5046 return -ENOMEM;
5047
5048 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5049 if (!ctrl_ctx) {
5050 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5051 __func__);
5052 xhci_free_command(xhci, config_cmd);
5053 return -ENOMEM;
5054 }
5055
5056 spin_lock_irqsave(&xhci->lock, flags);
5057 if (hdev->speed == USB_SPEED_HIGH &&
5058 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5059 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5060 xhci_free_command(xhci, config_cmd);
5061 spin_unlock_irqrestore(&xhci->lock, flags);
5062 return -ENOMEM;
5063 }
5064
5065 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5066 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5067 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5068 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5069 /*
5070 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5071 * but it may be already set to 1 when setup an xHCI virtual
5072 * device, so clear it anyway.
5073 */
5074 if (tt->multi)
5075 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5076 else if (hdev->speed == USB_SPEED_FULL)
5077 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5078
5079 if (xhci->hci_version > 0x95) {
5080 xhci_dbg(xhci, "xHCI version %x needs hub "
5081 "TT think time and number of ports\n",
5082 (unsigned int) xhci->hci_version);
5083 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5084 /* Set TT think time - convert from ns to FS bit times.
5085 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5086 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5087 *
5088 * xHCI 1.0: this field shall be 0 if the device is not a
5089 * High-spped hub.
5090 */
5091 think_time = tt->think_time;
5092 if (think_time != 0)
5093 think_time = (think_time / 666) - 1;
5094 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5095 slot_ctx->tt_info |=
5096 cpu_to_le32(TT_THINK_TIME(think_time));
5097 } else {
5098 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5099 "TT think time or number of ports\n",
5100 (unsigned int) xhci->hci_version);
5101 }
5102 slot_ctx->dev_state = 0;
5103 spin_unlock_irqrestore(&xhci->lock, flags);
5104
5105 xhci_dbg(xhci, "Set up %s for hub device.\n",
5106 (xhci->hci_version > 0x95) ?
5107 "configure endpoint" : "evaluate context");
5108
5109 /* Issue and wait for the configure endpoint or
5110 * evaluate context command.
5111 */
5112 if (xhci->hci_version > 0x95)
5113 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5114 false, false);
5115 else
5116 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5117 true, false);
5118
5119 xhci_free_command(xhci, config_cmd);
5120 return ret;
5121 }
5122
xhci_get_frame(struct usb_hcd * hcd)5123 static int xhci_get_frame(struct usb_hcd *hcd)
5124 {
5125 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5126 /* EHCI mods by the periodic size. Why? */
5127 return readl(&xhci->run_regs->microframe_index) >> 3;
5128 }
5129
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5130 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5131 {
5132 struct xhci_hcd *xhci;
5133 /*
5134 * TODO: Check with DWC3 clients for sysdev according to
5135 * quirks
5136 */
5137 struct device *dev = hcd->self.sysdev;
5138 unsigned int minor_rev;
5139 int retval;
5140
5141 /* Accept arbitrarily long scatter-gather lists */
5142 hcd->self.sg_tablesize = ~0;
5143
5144 /* support to build packet from discontinuous buffers */
5145 hcd->self.no_sg_constraint = 1;
5146
5147 /* XHCI controllers don't stop the ep queue on short packets :| */
5148 hcd->self.no_stop_on_short = 1;
5149
5150 xhci = hcd_to_xhci(hcd);
5151
5152 if (usb_hcd_is_primary_hcd(hcd)) {
5153 xhci->main_hcd = hcd;
5154 xhci->usb2_rhub.hcd = hcd;
5155 /* Mark the first roothub as being USB 2.0.
5156 * The xHCI driver will register the USB 3.0 roothub.
5157 */
5158 hcd->speed = HCD_USB2;
5159 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5160 /*
5161 * USB 2.0 roothub under xHCI has an integrated TT,
5162 * (rate matching hub) as opposed to having an OHCI/UHCI
5163 * companion controller.
5164 */
5165 hcd->has_tt = 1;
5166 } else {
5167 /*
5168 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5169 * should return 0x31 for sbrn, or that the minor revision
5170 * is a two digit BCD containig minor and sub-minor numbers.
5171 * This was later clarified in xHCI 1.2.
5172 *
5173 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5174 * minor revision set to 0x1 instead of 0x10.
5175 */
5176 if (xhci->usb3_rhub.min_rev == 0x1)
5177 minor_rev = 1;
5178 else
5179 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5180
5181 switch (minor_rev) {
5182 case 2:
5183 hcd->speed = HCD_USB32;
5184 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5185 hcd->self.root_hub->rx_lanes = 2;
5186 hcd->self.root_hub->tx_lanes = 2;
5187 break;
5188 case 1:
5189 hcd->speed = HCD_USB31;
5190 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5191 break;
5192 }
5193 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5194 minor_rev,
5195 minor_rev ? "Enhanced " : "");
5196
5197 xhci->usb3_rhub.hcd = hcd;
5198 /* xHCI private pointer was set in xhci_pci_probe for the second
5199 * registered roothub.
5200 */
5201 return 0;
5202 }
5203
5204 mutex_init(&xhci->mutex);
5205 xhci->cap_regs = hcd->regs;
5206 xhci->op_regs = hcd->regs +
5207 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5208 xhci->run_regs = hcd->regs +
5209 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5210 /* Cache read-only capability registers */
5211 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5212 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5213 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5214 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5215 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5216 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5217 if (xhci->hci_version > 0x100)
5218 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5219
5220 xhci->quirks |= quirks;
5221
5222 get_quirks(dev, xhci);
5223
5224 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5225 * success event after a short transfer. This quirk will ignore such
5226 * spurious event.
5227 */
5228 if (xhci->hci_version > 0x96)
5229 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5230
5231 /* Make sure the HC is halted. */
5232 retval = xhci_halt(xhci);
5233 if (retval)
5234 return retval;
5235
5236 xhci_zero_64b_regs(xhci);
5237
5238 xhci_dbg(xhci, "Resetting HCD\n");
5239 /* Reset the internal HC memory state and registers. */
5240 retval = xhci_reset(xhci);
5241 if (retval)
5242 return retval;
5243 xhci_dbg(xhci, "Reset complete\n");
5244
5245 /*
5246 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5247 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5248 * address memory pointers actually. So, this driver clears the AC64
5249 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5250 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5251 */
5252 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5253 xhci->hcc_params &= ~BIT(0);
5254
5255 /* Set dma_mask and coherent_dma_mask to 64-bits,
5256 * if xHC supports 64-bit addressing */
5257 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5258 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5259 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5260 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5261 } else {
5262 /*
5263 * This is to avoid error in cases where a 32-bit USB
5264 * controller is used on a 64-bit capable system.
5265 */
5266 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5267 if (retval)
5268 return retval;
5269 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5270 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5271 }
5272
5273 xhci_dbg(xhci, "Calling HCD init\n");
5274 /* Initialize HCD and host controller data structures. */
5275 retval = xhci_init(hcd);
5276 if (retval)
5277 return retval;
5278 xhci_dbg(xhci, "Called HCD init\n");
5279
5280 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5281 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5282
5283 return 0;
5284 }
5285 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5286
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5287 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5288 struct usb_host_endpoint *ep)
5289 {
5290 struct xhci_hcd *xhci;
5291 struct usb_device *udev;
5292 unsigned int slot_id;
5293 unsigned int ep_index;
5294 unsigned long flags;
5295
5296 xhci = hcd_to_xhci(hcd);
5297
5298 spin_lock_irqsave(&xhci->lock, flags);
5299 udev = (struct usb_device *)ep->hcpriv;
5300 slot_id = udev->slot_id;
5301 ep_index = xhci_get_endpoint_index(&ep->desc);
5302
5303 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5304 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5305 spin_unlock_irqrestore(&xhci->lock, flags);
5306 }
5307
5308 static const struct hc_driver xhci_hc_driver = {
5309 .description = "xhci-hcd",
5310 .product_desc = "xHCI Host Controller",
5311 .hcd_priv_size = sizeof(struct xhci_hcd),
5312
5313 /*
5314 * generic hardware linkage
5315 */
5316 .irq = xhci_irq,
5317 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5318 HCD_BH,
5319
5320 /*
5321 * basic lifecycle operations
5322 */
5323 .reset = NULL, /* set in xhci_init_driver() */
5324 .start = xhci_run,
5325 .stop = xhci_stop,
5326 .shutdown = xhci_shutdown,
5327
5328 /*
5329 * managing i/o requests and associated device resources
5330 */
5331 .map_urb_for_dma = xhci_map_urb_for_dma,
5332 .urb_enqueue = xhci_urb_enqueue,
5333 .urb_dequeue = xhci_urb_dequeue,
5334 .alloc_dev = xhci_alloc_dev,
5335 .free_dev = xhci_free_dev,
5336 .alloc_streams = xhci_alloc_streams,
5337 .free_streams = xhci_free_streams,
5338 .add_endpoint = xhci_add_endpoint,
5339 .drop_endpoint = xhci_drop_endpoint,
5340 .endpoint_disable = xhci_endpoint_disable,
5341 .endpoint_reset = xhci_endpoint_reset,
5342 .check_bandwidth = xhci_check_bandwidth,
5343 .reset_bandwidth = xhci_reset_bandwidth,
5344 .address_device = xhci_address_device,
5345 .enable_device = xhci_enable_device,
5346 .update_hub_device = xhci_update_hub_device,
5347 .reset_device = xhci_discover_or_reset_device,
5348
5349 /*
5350 * scheduling support
5351 */
5352 .get_frame_number = xhci_get_frame,
5353
5354 /*
5355 * root hub support
5356 */
5357 .hub_control = xhci_hub_control,
5358 .hub_status_data = xhci_hub_status_data,
5359 .bus_suspend = xhci_bus_suspend,
5360 .bus_resume = xhci_bus_resume,
5361 .get_resuming_ports = xhci_get_resuming_ports,
5362
5363 /*
5364 * call back when device connected and addressed
5365 */
5366 .update_device = xhci_update_device,
5367 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5368 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5369 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5370 .find_raw_port_number = xhci_find_raw_port_number,
5371 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5372 };
5373
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5374 void xhci_init_driver(struct hc_driver *drv,
5375 const struct xhci_driver_overrides *over)
5376 {
5377 BUG_ON(!over);
5378
5379 /* Copy the generic table to drv then apply the overrides */
5380 *drv = xhci_hc_driver;
5381
5382 if (over) {
5383 drv->hcd_priv_size += over->extra_priv_size;
5384 if (over->reset)
5385 drv->reset = over->reset;
5386 if (over->start)
5387 drv->start = over->start;
5388 }
5389 }
5390 EXPORT_SYMBOL_GPL(xhci_init_driver);
5391
5392 MODULE_DESCRIPTION(DRIVER_DESC);
5393 MODULE_AUTHOR(DRIVER_AUTHOR);
5394 MODULE_LICENSE("GPL");
5395
xhci_hcd_init(void)5396 static int __init xhci_hcd_init(void)
5397 {
5398 /*
5399 * Check the compiler generated sizes of structures that must be laid
5400 * out in specific ways for hardware access.
5401 */
5402 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5403 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5404 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5405 /* xhci_device_control has eight fields, and also
5406 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5407 */
5408 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5409 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5410 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5411 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5412 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5413 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5414 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5415
5416 if (usb_disabled())
5417 return -ENODEV;
5418
5419 xhci_debugfs_create_root();
5420
5421 return 0;
5422 }
5423
5424 /*
5425 * If an init function is provided, an exit function must also be provided
5426 * to allow module unload.
5427 */
xhci_hcd_fini(void)5428 static void __exit xhci_hcd_fini(void)
5429 {
5430 xhci_debugfs_remove_root();
5431 }
5432
5433 module_init(xhci_hcd_init);
5434 module_exit(xhci_hcd_fini);
5435