1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114
115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 xhci_quiesce(xhci);
117
118 ret = xhci_handshake(&xhci->op_regs->status,
119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 if (ret) {
121 xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 return ret;
123 }
124
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127
128 return ret;
129 }
130
131 /*
132 * Set the run bit and wait for the host to be running.
133 */
xhci_start(struct xhci_hcd * xhci)134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 u32 temp;
137 int ret;
138
139 temp = readl(&xhci->op_regs->command);
140 temp |= (CMD_RUN);
141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 temp);
143 writel(temp, &xhci->op_regs->command);
144
145 /*
146 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 * running.
148 */
149 ret = xhci_handshake(&xhci->op_regs->status,
150 STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 if (ret == -ETIMEDOUT)
152 xhci_err(xhci, "Host took too long to start, "
153 "waited %u microseconds.\n",
154 XHCI_MAX_HALT_USEC);
155 if (!ret) {
156 /* clear state flags. Including dying, halted or removing */
157 xhci->xhc_state = 0;
158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 }
160
161 return ret;
162 }
163
164 /*
165 * Reset a halted HC.
166 *
167 * This resets pipelines, timers, counters, state machines, etc.
168 * Transactions will be terminated immediately, and operational registers
169 * will be set to their defaults.
170 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 u32 command;
174 u32 state;
175 int ret;
176
177 state = readl(&xhci->op_regs->status);
178
179 if (state == ~(u32)0) {
180 xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 return -ENODEV;
182 }
183
184 if ((state & STS_HALT) == 0) {
185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 return 0;
187 }
188
189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 command = readl(&xhci->op_regs->command);
191 command |= CMD_RESET;
192 writel(command, &xhci->op_regs->command);
193
194 /* Existing Intel xHCI controllers require a delay of 1 mS,
195 * after setting the CMD_RESET bit, and before accessing any
196 * HC registers. This allows the HC to complete the
197 * reset operation and be ready for HC register access.
198 * Without this delay, the subsequent HC register access,
199 * may result in a system hang very rarely.
200 */
201 if (xhci->quirks & XHCI_INTEL_HOST)
202 udelay(1000);
203
204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 if (ret)
206 return ret;
207
208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210
211 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 "Wait for controller to be ready for doorbell rings");
213 /*
214 * xHCI cannot write to any doorbells or operational registers other
215 * than status until the "Controller Not Ready" flag is cleared.
216 */
217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218
219 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 xhci->usb3_rhub.bus_state.resuming_ports = 0;
225
226 return ret;
227 }
228
xhci_zero_64b_regs(struct xhci_hcd * xhci)229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 struct iommu_domain *domain;
233 int err, i;
234 u64 val;
235 u32 intrs;
236
237 /*
238 * Some Renesas controllers get into a weird state if they are
239 * reset while programmed with 64bit addresses (they will preserve
240 * the top half of the address in internal, non visible
241 * registers). You end up with half the address coming from the
242 * kernel, and the other half coming from the firmware. Also,
243 * changing the programming leads to extra accesses even if the
244 * controller is supposed to be halted. The controller ends up with
245 * a fatal fault, and is then ripe for being properly reset.
246 *
247 * Special care is taken to only apply this if the device is behind
248 * an iommu. Doing anything when there is no iommu is definitely
249 * unsafe...
250 */
251 domain = iommu_get_domain_for_dev(dev);
252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 domain->type == IOMMU_DOMAIN_IDENTITY)
254 return;
255
256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257
258 /* Clear HSEIE so that faults do not get signaled */
259 val = readl(&xhci->op_regs->command);
260 val &= ~CMD_HSEIE;
261 writel(val, &xhci->op_regs->command);
262
263 /* Clear HSE (aka FATAL) */
264 val = readl(&xhci->op_regs->status);
265 val |= STS_FATAL;
266 writel(val, &xhci->op_regs->status);
267
268 /* Now zero the registers, and brace for impact */
269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 if (upper_32_bits(val))
271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 if (upper_32_bits(val))
274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275
276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 ARRAY_SIZE(xhci->run_regs->ir_set));
278
279 for (i = 0; i < intrs; i++) {
280 struct xhci_intr_reg __iomem *ir;
281
282 ir = &xhci->run_regs->ir_set[i];
283 val = xhci_read_64(xhci, &ir->erst_base);
284 if (upper_32_bits(val))
285 xhci_write_64(xhci, 0, &ir->erst_base);
286 val= xhci_read_64(xhci, &ir->erst_dequeue);
287 if (upper_32_bits(val))
288 xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 }
290
291 /* Wait for the fault to appear. It will be cleared on reset */
292 err = xhci_handshake(&xhci->op_regs->status,
293 STS_FATAL, STS_FATAL,
294 XHCI_MAX_HALT_USEC);
295 if (!err)
296 xhci_info(xhci, "Fault detected\n");
297 }
298
xhci_enable_interrupter(struct xhci_interrupter * ir)299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 u32 iman;
302
303 if (!ir || !ir->ir_set)
304 return -EINVAL;
305
306 iman = readl(&ir->ir_set->irq_pending);
307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308
309 return 0;
310 }
311
xhci_disable_interrupter(struct xhci_interrupter * ir)312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 u32 iman;
315
316 if (!ir || !ir->ir_set)
317 return -EINVAL;
318
319 iman = readl(&ir->ir_set->irq_pending);
320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321
322 return 0;
323 }
324
compliance_mode_recovery(struct timer_list * t)325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 struct xhci_hcd *xhci;
328 struct usb_hcd *hcd;
329 struct xhci_hub *rhub;
330 u32 temp;
331 int i;
332
333 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 rhub = &xhci->usb3_rhub;
335 hcd = rhub->hcd;
336
337 if (!hcd)
338 return;
339
340 for (i = 0; i < rhub->num_ports; i++) {
341 temp = readl(rhub->ports[i]->addr);
342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 /*
344 * Compliance Mode Detected. Letting USB Core
345 * handle the Warm Reset
346 */
347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 "Compliance mode detected->port %d",
349 i + 1);
350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 "Attempting compliance mode recovery");
352
353 if (hcd->state == HC_STATE_SUSPENDED)
354 usb_hcd_resume_root_hub(hcd);
355
356 usb_hcd_poll_rh_status(hcd);
357 }
358 }
359
360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 mod_timer(&xhci->comp_mode_recovery_timer,
362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364
365 /*
366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367 * that causes ports behind that hardware to enter compliance mode sometimes.
368 * The quirk creates a timer that polls every 2 seconds the link state of
369 * each host controller's port and recovers it by issuing a Warm reset
370 * if Compliance mode is detected, otherwise the port will become "dead" (no
371 * device connections or disconnections will be detected anymore). Becasue no
372 * status event is generated when entering compliance mode (per xhci spec),
373 * this quirk is needed on systems that have the failing hardware installed.
374 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 xhci->port_status_u0 = 0;
378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 0);
380 xhci->comp_mode_recovery_timer.expires = jiffies +
381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382
383 add_timer(&xhci->comp_mode_recovery_timer);
384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 "Compliance mode recovery timer initialized");
386 }
387
388 /*
389 * This function identifies the systems that have installed the SN65LVPE502CP
390 * USB3.0 re-driver and that need the Compliance Mode Quirk.
391 * Systems:
392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393 */
xhci_compliance_mode_recovery_timer_quirk_check(void)394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 const char *dmi_product_name, *dmi_sys_vendor;
397
398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 if (!dmi_product_name || !dmi_sys_vendor)
401 return false;
402
403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 return false;
405
406 if (strstr(dmi_product_name, "Z420") ||
407 strstr(dmi_product_name, "Z620") ||
408 strstr(dmi_product_name, "Z820") ||
409 strstr(dmi_product_name, "Z1 Workstation"))
410 return true;
411
412 return false;
413 }
414
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419
420
421 /*
422 * Initialize memory for HCD and xHC (one-time init).
423 *
424 * Program the PAGESIZE register, initialize the device context array, create
425 * device contexts (?), set up a command ring segment (or two?), create event
426 * ring (one for now).
427 */
xhci_init(struct usb_hcd * hcd)428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 int retval;
432
433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 spin_lock_init(&xhci->lock);
435 if (xhci->hci_version == 0x95 && link_quirk) {
436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 "QUIRK: Not clearing Link TRB chain bits.");
438 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 } else {
440 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 "xHCI doesn't need link TRB QUIRK");
442 }
443 retval = xhci_mem_init(xhci, GFP_KERNEL);
444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445
446 /* Initializing Compliance Mode Recovery Data If Needed */
447 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 compliance_mode_recovery_timer_init(xhci);
450 }
451
452 return retval;
453 }
454
455 /*-------------------------------------------------------------------------*/
456
xhci_run_finished(struct xhci_hcd * xhci)457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 struct xhci_interrupter *ir = xhci->interrupter;
460 unsigned long flags;
461 u32 temp;
462
463 /*
464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 * Protect the short window before host is running with a lock
466 */
467 spin_lock_irqsave(&xhci->lock, flags);
468
469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 temp = readl(&xhci->op_regs->command);
471 temp |= (CMD_EIE);
472 writel(temp, &xhci->op_regs->command);
473
474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 xhci_enable_interrupter(ir);
476
477 if (xhci_start(xhci)) {
478 xhci_halt(xhci);
479 spin_unlock_irqrestore(&xhci->lock, flags);
480 return -ENODEV;
481 }
482
483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484
485 if (xhci->quirks & XHCI_NEC_HOST)
486 xhci_ring_cmd_db(xhci);
487
488 spin_unlock_irqrestore(&xhci->lock, flags);
489
490 return 0;
491 }
492
493 /*
494 * Start the HC after it was halted.
495 *
496 * This function is called by the USB core when the HC driver is added.
497 * Its opposite is xhci_stop().
498 *
499 * xhci_init() must be called once before this function can be called.
500 * Reset the HC, enable device slot contexts, program DCBAAP, and
501 * set command ring pointer and event ring pointer.
502 *
503 * Setup MSI-X vectors and enable interrupts.
504 */
xhci_run(struct usb_hcd * hcd)505 int xhci_run(struct usb_hcd *hcd)
506 {
507 u32 temp;
508 u64 temp_64;
509 int ret;
510 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 struct xhci_interrupter *ir = xhci->interrupter;
512 /* Start the xHCI host controller running only after the USB 2.0 roothub
513 * is setup.
514 */
515
516 hcd->uses_new_polling = 1;
517 if (!usb_hcd_is_primary_hcd(hcd))
518 return xhci_run_finished(xhci);
519
520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521
522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 temp_64 &= ~ERST_PTR_MASK;
524 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526
527 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 "// Set the interrupt modulation register");
529 temp = readl(&ir->ir_set->irq_control);
530 temp &= ~ER_IRQ_INTERVAL_MASK;
531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 writel(temp, &ir->ir_set->irq_control);
533
534 if (xhci->quirks & XHCI_NEC_HOST) {
535 struct xhci_command *command;
536
537 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 if (!command)
539 return -ENOMEM;
540
541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 TRB_TYPE(TRB_NEC_GET_FW));
543 if (ret)
544 xhci_free_command(xhci, command);
545 }
546 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 "Finished %s for main hcd", __func__);
548
549 xhci_create_dbc_dev(xhci);
550
551 xhci_debugfs_init(xhci);
552
553 if (xhci_has_one_roothub(xhci))
554 return xhci_run_finished(xhci);
555
556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557
558 return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561
562 /*
563 * Stop xHCI driver.
564 *
565 * This function is called by the USB core when the HC driver is removed.
566 * Its opposite is xhci_run().
567 *
568 * Disable device contexts, disable IRQs, and quiesce the HC.
569 * Reset the HC, finish any completed transactions, and cleanup memory.
570 */
xhci_stop(struct usb_hcd * hcd)571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 u32 temp;
574 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 struct xhci_interrupter *ir = xhci->interrupter;
576
577 mutex_lock(&xhci->mutex);
578
579 /* Only halt host and free memory after both hcds are removed */
580 if (!usb_hcd_is_primary_hcd(hcd)) {
581 mutex_unlock(&xhci->mutex);
582 return;
583 }
584
585 xhci_remove_dbc_dev(xhci);
586
587 spin_lock_irq(&xhci->lock);
588 xhci->xhc_state |= XHCI_STATE_HALTED;
589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 xhci_halt(xhci);
591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 spin_unlock_irq(&xhci->lock);
593
594 /* Deleting Compliance Mode Recovery Timer */
595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 (!(xhci_all_ports_seen_u0(xhci)))) {
597 del_timer_sync(&xhci->comp_mode_recovery_timer);
598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 "%s: compliance mode recovery timer deleted",
600 __func__);
601 }
602
603 if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 usb_amd_dev_put();
605
606 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 "// Disabling event ring interrupts");
608 temp = readl(&xhci->op_regs->status);
609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 xhci_disable_interrupter(ir);
611
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 xhci_mem_cleanup(xhci);
614 xhci_debugfs_exit(xhci);
615 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 "xhci_stop completed - status = %x",
617 readl(&xhci->op_regs->status));
618 mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621
622 /*
623 * Shutdown HC (not bus-specific)
624 *
625 * This is called when the machine is rebooting or halting. We assume that the
626 * machine will be powered off, and the HC's internal state will be reset.
627 * Don't bother to free memory.
628 *
629 * This will only ever be called with the main usb_hcd (the USB3 roothub).
630 */
xhci_shutdown(struct usb_hcd * hcd)631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634
635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637
638 /* Don't poll the roothubs after shutdown. */
639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 __func__, hcd->self.busnum);
641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 del_timer_sync(&hcd->rh_timer);
643
644 if (xhci->shared_hcd) {
645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 del_timer_sync(&xhci->shared_hcd->rh_timer);
647 }
648
649 spin_lock_irq(&xhci->lock);
650 xhci_halt(xhci);
651
652 /*
653 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 */
656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659
660 spin_unlock_irq(&xhci->lock);
661
662 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 "xhci_shutdown completed - status = %x",
664 readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667
668 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 struct xhci_interrupter *ir = xhci->interrupter;
672
673 xhci->s3.command = readl(&xhci->op_regs->command);
674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677
678 if (!ir)
679 return;
680
681 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687
xhci_restore_registers(struct xhci_hcd * xhci)688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 struct xhci_interrupter *ir = xhci->interrupter;
691
692 writel(xhci->s3.command, &xhci->op_regs->command);
693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 u64 val_64;
706
707 /* step 2: initialize command ring buffer */
708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 xhci->cmd_ring->dequeue) &
712 (u64) ~CMD_RING_RSVD_BITS) |
713 xhci->cmd_ring->cycle_state;
714 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 "// Setting command ring address to 0x%llx",
716 (long unsigned long) val_64);
717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719
720 /*
721 * The whole command ring must be cleared to zero when we suspend the host.
722 *
723 * The host doesn't save the command ring pointer in the suspend well, so we
724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
725 * aligned, because of the reserved bits in the command ring dequeue pointer
726 * register. Therefore, we can't just set the dequeue pointer back in the
727 * middle of the ring (TRBs are 16-byte aligned).
728 */
xhci_clear_command_ring(struct xhci_hcd * xhci)729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 struct xhci_ring *ring;
732 struct xhci_segment *seg;
733
734 ring = xhci->cmd_ring;
735 seg = ring->deq_seg;
736 do {
737 memset(seg->trbs, 0,
738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 cpu_to_le32(~TRB_CYCLE);
741 seg = seg->next;
742 } while (seg != ring->deq_seg);
743
744 /* Reset the software enqueue and dequeue pointers */
745 ring->deq_seg = ring->first_seg;
746 ring->dequeue = ring->first_seg->trbs;
747 ring->enq_seg = ring->deq_seg;
748 ring->enqueue = ring->dequeue;
749
750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 /*
752 * Ring is now zeroed, so the HW should look for change of ownership
753 * when the cycle bit is set to 1.
754 */
755 ring->cycle_state = 1;
756
757 /*
758 * Reset the hardware dequeue pointer.
759 * Yes, this will need to be re-written after resume, but we're paranoid
760 * and want to make sure the hardware doesn't access bogus memory
761 * because, say, the BIOS or an SMI started the host without changing
762 * the command ring pointers.
763 */
764 xhci_set_cmd_ring_deq(xhci);
765 }
766
767 /*
768 * Disable port wake bits if do_wakeup is not set.
769 *
770 * Also clear a possible internal port wake state left hanging for ports that
771 * detected termination but never successfully enumerated (trained to 0U).
772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773 * at enumeration clears this wake, force one here as well for unconnected ports
774 */
775
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 struct xhci_hub *rhub,
778 bool do_wakeup)
779 {
780 unsigned long flags;
781 u32 t1, t2, portsc;
782 int i;
783
784 spin_lock_irqsave(&xhci->lock, flags);
785
786 for (i = 0; i < rhub->num_ports; i++) {
787 portsc = readl(rhub->ports[i]->addr);
788 t1 = xhci_port_state_to_neutral(portsc);
789 t2 = t1;
790
791 /* clear wake bits if do_wake is not set */
792 if (!do_wakeup)
793 t2 &= ~PORT_WAKE_BITS;
794
795 /* Don't touch csc bit if connected or connect change is set */
796 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 t2 |= PORT_CSC;
798
799 if (t1 != t2) {
800 writel(t2, rhub->ports[i]->addr);
801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 }
804 }
805 spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807
xhci_pending_portevent(struct xhci_hcd * xhci)808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 struct xhci_port **ports;
811 int port_index;
812 u32 status;
813 u32 portsc;
814
815 status = readl(&xhci->op_regs->status);
816 if (status & STS_EINT)
817 return true;
818 /*
819 * Checking STS_EINT is not enough as there is a lag between a change
820 * bit being set and the Port Status Change Event that it generated
821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 */
823
824 port_index = xhci->usb2_rhub.num_ports;
825 ports = xhci->usb2_rhub.ports;
826 while (port_index--) {
827 portsc = readl(ports[port_index]->addr);
828 if (portsc & PORT_CHANGE_MASK ||
829 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 return true;
831 }
832 port_index = xhci->usb3_rhub.num_ports;
833 ports = xhci->usb3_rhub.ports;
834 while (port_index--) {
835 portsc = readl(ports[port_index]->addr);
836 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 return true;
839 }
840 return false;
841 }
842
843 /*
844 * Stop HC (not bus-specific)
845 *
846 * This is called when the machine transition into S3/S4 mode.
847 *
848 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 int rc = 0;
852 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
853 struct usb_hcd *hcd = xhci_to_hcd(xhci);
854 u32 command;
855 u32 res;
856
857 if (!hcd->state)
858 return 0;
859
860 if (hcd->state != HC_STATE_SUSPENDED ||
861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 return -EINVAL;
863
864 /* Clear root port wake on bits if wakeup not allowed. */
865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867
868 if (!HCD_HW_ACCESSIBLE(hcd))
869 return 0;
870
871 xhci_dbc_suspend(xhci);
872
873 /* Don't poll the roothubs on bus suspend. */
874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 __func__, hcd->self.busnum);
876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 del_timer_sync(&hcd->rh_timer);
878 if (xhci->shared_hcd) {
879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 del_timer_sync(&xhci->shared_hcd->rh_timer);
881 }
882
883 if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 usleep_range(1000, 1500);
885
886 spin_lock_irq(&xhci->lock);
887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 if (xhci->shared_hcd)
889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 /* step 1: stop endpoint */
891 /* skipped assuming that port suspend has done */
892
893 /* step 2: clear Run/Stop bit */
894 command = readl(&xhci->op_regs->command);
895 command &= ~CMD_RUN;
896 writel(command, &xhci->op_regs->command);
897
898 /* Some chips from Fresco Logic need an extraordinary delay */
899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900
901 if (xhci_handshake(&xhci->op_regs->status,
902 STS_HALT, STS_HALT, delay)) {
903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 spin_unlock_irq(&xhci->lock);
905 return -ETIMEDOUT;
906 }
907 xhci_clear_command_ring(xhci);
908
909 /* step 3: save registers */
910 xhci_save_registers(xhci);
911
912 /* step 4: set CSS flag */
913 command = readl(&xhci->op_regs->command);
914 command |= CMD_CSS;
915 writel(command, &xhci->op_regs->command);
916 xhci->broken_suspend = 0;
917 if (xhci_handshake(&xhci->op_regs->status,
918 STS_SAVE, 0, 20 * 1000)) {
919 /*
920 * AMD SNPS xHC 3.0 occasionally does not clear the
921 * SSS bit of USBSTS and when driver tries to poll
922 * to see if the xHC clears BIT(8) which never happens
923 * and driver assumes that controller is not responding
924 * and times out. To workaround this, its good to check
925 * if SRE and HCE bits are not set (as per xhci
926 * Section 5.4.2) and bypass the timeout.
927 */
928 res = readl(&xhci->op_regs->status);
929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 (((res & STS_SRE) == 0) &&
931 ((res & STS_HCE) == 0))) {
932 xhci->broken_suspend = 1;
933 } else {
934 xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 spin_unlock_irq(&xhci->lock);
936 return -ETIMEDOUT;
937 }
938 }
939 spin_unlock_irq(&xhci->lock);
940
941 /*
942 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 * is about to be suspended.
944 */
945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 (!(xhci_all_ports_seen_u0(xhci)))) {
947 del_timer_sync(&xhci->comp_mode_recovery_timer);
948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 "%s: compliance mode recovery timer deleted",
950 __func__);
951 }
952
953 return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956
957 /*
958 * start xHC (not bus-specific)
959 *
960 * This is called when the machine transition from S3/S4 mode.
961 *
962 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 bool hibernated = (msg.event == PM_EVENT_RESTORE);
966 u32 command, temp = 0;
967 struct usb_hcd *hcd = xhci_to_hcd(xhci);
968 int retval = 0;
969 bool comp_timer_running = false;
970 bool pending_portevent = false;
971 bool reinit_xhc = false;
972
973 if (!hcd->state)
974 return 0;
975
976 /* Wait a bit if either of the roothubs need to settle from the
977 * transition into bus suspend.
978 */
979
980 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
981 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
982 msleep(100);
983
984 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
985 if (xhci->shared_hcd)
986 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
987
988 spin_lock_irq(&xhci->lock);
989
990 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
991 reinit_xhc = true;
992
993 if (!reinit_xhc) {
994 /*
995 * Some controllers might lose power during suspend, so wait
996 * for controller not ready bit to clear, just as in xHC init.
997 */
998 retval = xhci_handshake(&xhci->op_regs->status,
999 STS_CNR, 0, 10 * 1000 * 1000);
1000 if (retval) {
1001 xhci_warn(xhci, "Controller not ready at resume %d\n",
1002 retval);
1003 spin_unlock_irq(&xhci->lock);
1004 return retval;
1005 }
1006 /* step 1: restore register */
1007 xhci_restore_registers(xhci);
1008 /* step 2: initialize command ring buffer */
1009 xhci_set_cmd_ring_deq(xhci);
1010 /* step 3: restore state and start state*/
1011 /* step 3: set CRS flag */
1012 command = readl(&xhci->op_regs->command);
1013 command |= CMD_CRS;
1014 writel(command, &xhci->op_regs->command);
1015 /*
1016 * Some controllers take up to 55+ ms to complete the controller
1017 * restore so setting the timeout to 100ms. Xhci specification
1018 * doesn't mention any timeout value.
1019 */
1020 if (xhci_handshake(&xhci->op_regs->status,
1021 STS_RESTORE, 0, 100 * 1000)) {
1022 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1023 spin_unlock_irq(&xhci->lock);
1024 return -ETIMEDOUT;
1025 }
1026 }
1027
1028 temp = readl(&xhci->op_regs->status);
1029
1030 /* re-initialize the HC on Restore Error, or Host Controller Error */
1031 if ((temp & (STS_SRE | STS_HCE)) &&
1032 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1033 reinit_xhc = true;
1034 if (!xhci->broken_suspend)
1035 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1036 }
1037
1038 if (reinit_xhc) {
1039 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1040 !(xhci_all_ports_seen_u0(xhci))) {
1041 del_timer_sync(&xhci->comp_mode_recovery_timer);
1042 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1043 "Compliance Mode Recovery Timer deleted!");
1044 }
1045
1046 /* Let the USB core know _both_ roothubs lost power. */
1047 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1048 if (xhci->shared_hcd)
1049 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1050
1051 xhci_dbg(xhci, "Stop HCD\n");
1052 xhci_halt(xhci);
1053 xhci_zero_64b_regs(xhci);
1054 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1055 spin_unlock_irq(&xhci->lock);
1056 if (retval)
1057 return retval;
1058
1059 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1060 temp = readl(&xhci->op_regs->status);
1061 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1062 xhci_disable_interrupter(xhci->interrupter);
1063
1064 xhci_dbg(xhci, "cleaning up memory\n");
1065 xhci_mem_cleanup(xhci);
1066 xhci_debugfs_exit(xhci);
1067 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1068 readl(&xhci->op_regs->status));
1069
1070 /* USB core calls the PCI reinit and start functions twice:
1071 * first with the primary HCD, and then with the secondary HCD.
1072 * If we don't do the same, the host will never be started.
1073 */
1074 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1075 retval = xhci_init(hcd);
1076 if (retval)
1077 return retval;
1078 comp_timer_running = true;
1079
1080 xhci_dbg(xhci, "Start the primary HCD\n");
1081 retval = xhci_run(hcd);
1082 if (!retval && xhci->shared_hcd) {
1083 xhci_dbg(xhci, "Start the secondary HCD\n");
1084 retval = xhci_run(xhci->shared_hcd);
1085 }
1086
1087 hcd->state = HC_STATE_SUSPENDED;
1088 if (xhci->shared_hcd)
1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 goto done;
1091 }
1092
1093 /* step 4: set Run/Stop bit */
1094 command = readl(&xhci->op_regs->command);
1095 command |= CMD_RUN;
1096 writel(command, &xhci->op_regs->command);
1097 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 0, 250 * 1000);
1099
1100 /* step 5: walk topology and initialize portsc,
1101 * portpmsc and portli
1102 */
1103 /* this is done in bus_resume */
1104
1105 /* step 6: restart each of the previously
1106 * Running endpoints by ringing their doorbells
1107 */
1108
1109 spin_unlock_irq(&xhci->lock);
1110
1111 xhci_dbc_resume(xhci);
1112
1113 done:
1114 if (retval == 0) {
1115 /*
1116 * Resume roothubs only if there are pending events.
1117 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1118 * the first wake signalling failed, give it that chance.
1119 */
1120 pending_portevent = xhci_pending_portevent(xhci);
1121 if (!pending_portevent && msg.event == PM_EVENT_AUTO_RESUME) {
1122 msleep(120);
1123 pending_portevent = xhci_pending_portevent(xhci);
1124 }
1125
1126 if (pending_portevent) {
1127 if (xhci->shared_hcd)
1128 usb_hcd_resume_root_hub(xhci->shared_hcd);
1129 usb_hcd_resume_root_hub(hcd);
1130 }
1131 }
1132 /*
1133 * If system is subject to the Quirk, Compliance Mode Timer needs to
1134 * be re-initialized Always after a system resume. Ports are subject
1135 * to suffer the Compliance Mode issue again. It doesn't matter if
1136 * ports have entered previously to U0 before system's suspension.
1137 */
1138 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1139 compliance_mode_recovery_timer_init(xhci);
1140
1141 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1142 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1143
1144 /* Re-enable port polling. */
1145 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1146 __func__, hcd->self.busnum);
1147 if (xhci->shared_hcd) {
1148 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1149 usb_hcd_poll_rh_status(xhci->shared_hcd);
1150 }
1151 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1152 usb_hcd_poll_rh_status(hcd);
1153
1154 return retval;
1155 }
1156 EXPORT_SYMBOL_GPL(xhci_resume);
1157 #endif /* CONFIG_PM */
1158
1159 /*-------------------------------------------------------------------------*/
1160
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1161 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1162 {
1163 void *temp;
1164 int ret = 0;
1165 unsigned int buf_len;
1166 enum dma_data_direction dir;
1167
1168 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1169 buf_len = urb->transfer_buffer_length;
1170
1171 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1172 dev_to_node(hcd->self.sysdev));
1173
1174 if (usb_urb_dir_out(urb))
1175 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1176 temp, buf_len, 0);
1177
1178 urb->transfer_buffer = temp;
1179 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1180 urb->transfer_buffer,
1181 urb->transfer_buffer_length,
1182 dir);
1183
1184 if (dma_mapping_error(hcd->self.sysdev,
1185 urb->transfer_dma)) {
1186 ret = -EAGAIN;
1187 kfree(temp);
1188 } else {
1189 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1190 }
1191
1192 return ret;
1193 }
1194
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1195 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1196 struct urb *urb)
1197 {
1198 bool ret = false;
1199 unsigned int i;
1200 unsigned int len = 0;
1201 unsigned int trb_size;
1202 unsigned int max_pkt;
1203 struct scatterlist *sg;
1204 struct scatterlist *tail_sg;
1205
1206 tail_sg = urb->sg;
1207 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1208
1209 if (!urb->num_sgs)
1210 return ret;
1211
1212 if (urb->dev->speed >= USB_SPEED_SUPER)
1213 trb_size = TRB_CACHE_SIZE_SS;
1214 else
1215 trb_size = TRB_CACHE_SIZE_HS;
1216
1217 if (urb->transfer_buffer_length != 0 &&
1218 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1219 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1220 len = len + sg->length;
1221 if (i > trb_size - 2) {
1222 len = len - tail_sg->length;
1223 if (len < max_pkt) {
1224 ret = true;
1225 break;
1226 }
1227
1228 tail_sg = sg_next(tail_sg);
1229 }
1230 }
1231 }
1232 return ret;
1233 }
1234
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1235 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1236 {
1237 unsigned int len;
1238 unsigned int buf_len;
1239 enum dma_data_direction dir;
1240
1241 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1242
1243 buf_len = urb->transfer_buffer_length;
1244
1245 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1246 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1247 dma_unmap_single(hcd->self.sysdev,
1248 urb->transfer_dma,
1249 urb->transfer_buffer_length,
1250 dir);
1251
1252 if (usb_urb_dir_in(urb)) {
1253 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1254 urb->transfer_buffer,
1255 buf_len,
1256 0);
1257 if (len != buf_len) {
1258 xhci_dbg(hcd_to_xhci(hcd),
1259 "Copy from tmp buf to urb sg list failed\n");
1260 urb->actual_length = len;
1261 }
1262 }
1263 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1264 kfree(urb->transfer_buffer);
1265 urb->transfer_buffer = NULL;
1266 }
1267
1268 /*
1269 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1270 * we'll copy the actual data into the TRB address register. This is limited to
1271 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1272 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1273 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1274 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1275 gfp_t mem_flags)
1276 {
1277 struct xhci_hcd *xhci;
1278
1279 xhci = hcd_to_xhci(hcd);
1280
1281 if (xhci_urb_suitable_for_idt(urb))
1282 return 0;
1283
1284 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1285 if (xhci_urb_temp_buffer_required(hcd, urb))
1286 return xhci_map_temp_buffer(hcd, urb);
1287 }
1288 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1289 }
1290
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1291 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1292 {
1293 struct xhci_hcd *xhci;
1294 bool unmap_temp_buf = false;
1295
1296 xhci = hcd_to_xhci(hcd);
1297
1298 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1299 unmap_temp_buf = true;
1300
1301 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1302 xhci_unmap_temp_buf(hcd, urb);
1303 else
1304 usb_hcd_unmap_urb_for_dma(hcd, urb);
1305 }
1306
1307 /**
1308 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1309 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1310 * value to right shift 1 for the bitmask.
1311 *
1312 * Index = (epnum * 2) + direction - 1,
1313 * where direction = 0 for OUT, 1 for IN.
1314 * For control endpoints, the IN index is used (OUT index is unused), so
1315 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1316 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1317 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1318 {
1319 unsigned int index;
1320 if (usb_endpoint_xfer_control(desc))
1321 index = (unsigned int) (usb_endpoint_num(desc)*2);
1322 else
1323 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1324 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1325 return index;
1326 }
1327 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1328
1329 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1330 * address from the XHCI endpoint index.
1331 */
xhci_get_endpoint_address(unsigned int ep_index)1332 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1333 {
1334 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1335 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1336 return direction | number;
1337 }
1338
1339 /* Find the flag for this endpoint (for use in the control context). Use the
1340 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1341 * bit 1, etc.
1342 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1343 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1344 {
1345 return 1 << (xhci_get_endpoint_index(desc) + 1);
1346 }
1347
1348 /* Compute the last valid endpoint context index. Basically, this is the
1349 * endpoint index plus one. For slot contexts with more than valid endpoint,
1350 * we find the most significant bit set in the added contexts flags.
1351 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1352 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1353 */
xhci_last_valid_endpoint(u32 added_ctxs)1354 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1355 {
1356 return fls(added_ctxs) - 1;
1357 }
1358
1359 /* Returns 1 if the arguments are OK;
1360 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1361 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1362 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1363 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1364 const char *func) {
1365 struct xhci_hcd *xhci;
1366 struct xhci_virt_device *virt_dev;
1367
1368 if (!hcd || (check_ep && !ep) || !udev) {
1369 pr_debug("xHCI %s called with invalid args\n", func);
1370 return -EINVAL;
1371 }
1372 if (!udev->parent) {
1373 pr_debug("xHCI %s called for root hub\n", func);
1374 return 0;
1375 }
1376
1377 xhci = hcd_to_xhci(hcd);
1378 if (check_virt_dev) {
1379 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1380 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1381 func);
1382 return -EINVAL;
1383 }
1384
1385 virt_dev = xhci->devs[udev->slot_id];
1386 if (virt_dev->udev != udev) {
1387 xhci_dbg(xhci, "xHCI %s called with udev and "
1388 "virt_dev does not match\n", func);
1389 return -EINVAL;
1390 }
1391 }
1392
1393 if (xhci->xhc_state & XHCI_STATE_HALTED)
1394 return -ENODEV;
1395
1396 return 1;
1397 }
1398
1399 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1400 struct usb_device *udev, struct xhci_command *command,
1401 bool ctx_change, bool must_succeed);
1402
1403 /*
1404 * Full speed devices may have a max packet size greater than 8 bytes, but the
1405 * USB core doesn't know that until it reads the first 8 bytes of the
1406 * descriptor. If the usb_device's max packet size changes after that point,
1407 * we need to issue an evaluate context command and wait on it.
1408 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1409 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1410 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1411 {
1412 struct xhci_container_ctx *out_ctx;
1413 struct xhci_input_control_ctx *ctrl_ctx;
1414 struct xhci_ep_ctx *ep_ctx;
1415 struct xhci_command *command;
1416 int max_packet_size;
1417 int hw_max_packet_size;
1418 int ret = 0;
1419
1420 out_ctx = xhci->devs[slot_id]->out_ctx;
1421 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1422 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1423 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1424 if (hw_max_packet_size != max_packet_size) {
1425 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1426 "Max Packet Size for ep 0 changed.");
1427 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1428 "Max packet size in usb_device = %d",
1429 max_packet_size);
1430 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1431 "Max packet size in xHCI HW = %d",
1432 hw_max_packet_size);
1433 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1434 "Issuing evaluate context command.");
1435
1436 /* Set up the input context flags for the command */
1437 /* FIXME: This won't work if a non-default control endpoint
1438 * changes max packet sizes.
1439 */
1440
1441 command = xhci_alloc_command(xhci, true, mem_flags);
1442 if (!command)
1443 return -ENOMEM;
1444
1445 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1446 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1447 if (!ctrl_ctx) {
1448 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1449 __func__);
1450 ret = -ENOMEM;
1451 goto command_cleanup;
1452 }
1453 /* Set up the modified control endpoint 0 */
1454 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1455 xhci->devs[slot_id]->out_ctx, ep_index);
1456
1457 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1458 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1459 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1460 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1461
1462 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1463 ctrl_ctx->drop_flags = 0;
1464
1465 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1466 true, false);
1467
1468 /* Clean up the input context for later use by bandwidth
1469 * functions.
1470 */
1471 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1472 command_cleanup:
1473 kfree(command->completion);
1474 kfree(command);
1475 }
1476 return ret;
1477 }
1478
1479 /*
1480 * non-error returns are a promise to giveback() the urb later
1481 * we drop ownership so next owner (or urb unlink) can get it
1482 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1483 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1484 {
1485 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1486 unsigned long flags;
1487 int ret = 0;
1488 unsigned int slot_id, ep_index;
1489 unsigned int *ep_state;
1490 struct urb_priv *urb_priv;
1491 int num_tds;
1492
1493 if (!urb)
1494 return -EINVAL;
1495 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1496 true, true, __func__);
1497 if (ret <= 0)
1498 return ret ? ret : -EINVAL;
1499
1500 slot_id = urb->dev->slot_id;
1501 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1502 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1503
1504 if (!HCD_HW_ACCESSIBLE(hcd))
1505 return -ESHUTDOWN;
1506
1507 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1508 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1509 return -ENODEV;
1510 }
1511
1512 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1513 num_tds = urb->number_of_packets;
1514 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1515 urb->transfer_buffer_length > 0 &&
1516 urb->transfer_flags & URB_ZERO_PACKET &&
1517 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1518 num_tds = 2;
1519 else
1520 num_tds = 1;
1521
1522 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1523 if (!urb_priv)
1524 return -ENOMEM;
1525
1526 urb_priv->num_tds = num_tds;
1527 urb_priv->num_tds_done = 0;
1528 urb->hcpriv = urb_priv;
1529
1530 trace_xhci_urb_enqueue(urb);
1531
1532 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1533 /* Check to see if the max packet size for the default control
1534 * endpoint changed during FS device enumeration
1535 */
1536 if (urb->dev->speed == USB_SPEED_FULL) {
1537 ret = xhci_check_maxpacket(xhci, slot_id,
1538 ep_index, urb, mem_flags);
1539 if (ret < 0) {
1540 xhci_urb_free_priv(urb_priv);
1541 urb->hcpriv = NULL;
1542 return ret;
1543 }
1544 }
1545 }
1546
1547 spin_lock_irqsave(&xhci->lock, flags);
1548
1549 if (xhci->xhc_state & XHCI_STATE_DYING) {
1550 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1551 urb->ep->desc.bEndpointAddress, urb);
1552 ret = -ESHUTDOWN;
1553 goto free_priv;
1554 }
1555 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1556 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1557 *ep_state);
1558 ret = -EINVAL;
1559 goto free_priv;
1560 }
1561 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1562 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1563 ret = -EINVAL;
1564 goto free_priv;
1565 }
1566
1567 switch (usb_endpoint_type(&urb->ep->desc)) {
1568
1569 case USB_ENDPOINT_XFER_CONTROL:
1570 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1571 slot_id, ep_index);
1572 break;
1573 case USB_ENDPOINT_XFER_BULK:
1574 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1575 slot_id, ep_index);
1576 break;
1577 case USB_ENDPOINT_XFER_INT:
1578 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1579 slot_id, ep_index);
1580 break;
1581 case USB_ENDPOINT_XFER_ISOC:
1582 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1583 slot_id, ep_index);
1584 }
1585
1586 if (ret) {
1587 free_priv:
1588 xhci_urb_free_priv(urb_priv);
1589 urb->hcpriv = NULL;
1590 }
1591 spin_unlock_irqrestore(&xhci->lock, flags);
1592 return ret;
1593 }
1594
1595 /*
1596 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1597 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1598 * should pick up where it left off in the TD, unless a Set Transfer Ring
1599 * Dequeue Pointer is issued.
1600 *
1601 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1602 * the ring. Since the ring is a contiguous structure, they can't be physically
1603 * removed. Instead, there are two options:
1604 *
1605 * 1) If the HC is in the middle of processing the URB to be canceled, we
1606 * simply move the ring's dequeue pointer past those TRBs using the Set
1607 * Transfer Ring Dequeue Pointer command. This will be the common case,
1608 * when drivers timeout on the last submitted URB and attempt to cancel.
1609 *
1610 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1611 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1612 * HC will need to invalidate the any TRBs it has cached after the stop
1613 * endpoint command, as noted in the xHCI 0.95 errata.
1614 *
1615 * 3) The TD may have completed by the time the Stop Endpoint Command
1616 * completes, so software needs to handle that case too.
1617 *
1618 * This function should protect against the TD enqueueing code ringing the
1619 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1620 * It also needs to account for multiple cancellations on happening at the same
1621 * time for the same endpoint.
1622 *
1623 * Note that this function can be called in any context, or so says
1624 * usb_hcd_unlink_urb()
1625 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1626 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1627 {
1628 unsigned long flags;
1629 int ret, i;
1630 u32 temp;
1631 struct xhci_hcd *xhci;
1632 struct urb_priv *urb_priv;
1633 struct xhci_td *td;
1634 unsigned int ep_index;
1635 struct xhci_ring *ep_ring;
1636 struct xhci_virt_ep *ep;
1637 struct xhci_command *command;
1638 struct xhci_virt_device *vdev;
1639
1640 xhci = hcd_to_xhci(hcd);
1641 spin_lock_irqsave(&xhci->lock, flags);
1642
1643 trace_xhci_urb_dequeue(urb);
1644
1645 /* Make sure the URB hasn't completed or been unlinked already */
1646 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1647 if (ret)
1648 goto done;
1649
1650 /* give back URB now if we can't queue it for cancel */
1651 vdev = xhci->devs[urb->dev->slot_id];
1652 urb_priv = urb->hcpriv;
1653 if (!vdev || !urb_priv)
1654 goto err_giveback;
1655
1656 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1657 ep = &vdev->eps[ep_index];
1658 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1659 if (!ep || !ep_ring)
1660 goto err_giveback;
1661
1662 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1663 temp = readl(&xhci->op_regs->status);
1664 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1665 xhci_hc_died(xhci);
1666 goto done;
1667 }
1668
1669 /*
1670 * check ring is not re-allocated since URB was enqueued. If it is, then
1671 * make sure none of the ring related pointers in this URB private data
1672 * are touched, such as td_list, otherwise we overwrite freed data
1673 */
1674 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1675 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1676 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1677 td = &urb_priv->td[i];
1678 if (!list_empty(&td->cancelled_td_list))
1679 list_del_init(&td->cancelled_td_list);
1680 }
1681 goto err_giveback;
1682 }
1683
1684 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1685 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1686 "HC halted, freeing TD manually.");
1687 for (i = urb_priv->num_tds_done;
1688 i < urb_priv->num_tds;
1689 i++) {
1690 td = &urb_priv->td[i];
1691 if (!list_empty(&td->td_list))
1692 list_del_init(&td->td_list);
1693 if (!list_empty(&td->cancelled_td_list))
1694 list_del_init(&td->cancelled_td_list);
1695 }
1696 goto err_giveback;
1697 }
1698
1699 i = urb_priv->num_tds_done;
1700 if (i < urb_priv->num_tds)
1701 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1702 "Cancel URB %p, dev %s, ep 0x%x, "
1703 "starting at offset 0x%llx",
1704 urb, urb->dev->devpath,
1705 urb->ep->desc.bEndpointAddress,
1706 (unsigned long long) xhci_trb_virt_to_dma(
1707 urb_priv->td[i].start_seg,
1708 urb_priv->td[i].first_trb));
1709
1710 for (; i < urb_priv->num_tds; i++) {
1711 td = &urb_priv->td[i];
1712 /* TD can already be on cancelled list if ep halted on it */
1713 if (list_empty(&td->cancelled_td_list)) {
1714 td->cancel_status = TD_DIRTY;
1715 list_add_tail(&td->cancelled_td_list,
1716 &ep->cancelled_td_list);
1717 }
1718 }
1719
1720 /* Queue a stop endpoint command, but only if this is
1721 * the first cancellation to be handled.
1722 */
1723 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1724 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1725 if (!command) {
1726 ret = -ENOMEM;
1727 goto done;
1728 }
1729 ep->ep_state |= EP_STOP_CMD_PENDING;
1730 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1731 ep_index, 0);
1732 xhci_ring_cmd_db(xhci);
1733 }
1734 done:
1735 spin_unlock_irqrestore(&xhci->lock, flags);
1736 return ret;
1737
1738 err_giveback:
1739 if (urb_priv)
1740 xhci_urb_free_priv(urb_priv);
1741 usb_hcd_unlink_urb_from_ep(hcd, urb);
1742 spin_unlock_irqrestore(&xhci->lock, flags);
1743 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1744 return ret;
1745 }
1746
1747 /* Drop an endpoint from a new bandwidth configuration for this device.
1748 * Only one call to this function is allowed per endpoint before
1749 * check_bandwidth() or reset_bandwidth() must be called.
1750 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1751 * add the endpoint to the schedule with possibly new parameters denoted by a
1752 * different endpoint descriptor in usb_host_endpoint.
1753 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1754 * not allowed.
1755 *
1756 * The USB core will not allow URBs to be queued to an endpoint that is being
1757 * disabled, so there's no need for mutual exclusion to protect
1758 * the xhci->devs[slot_id] structure.
1759 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1760 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1761 struct usb_host_endpoint *ep)
1762 {
1763 struct xhci_hcd *xhci;
1764 struct xhci_container_ctx *in_ctx, *out_ctx;
1765 struct xhci_input_control_ctx *ctrl_ctx;
1766 unsigned int ep_index;
1767 struct xhci_ep_ctx *ep_ctx;
1768 u32 drop_flag;
1769 u32 new_add_flags, new_drop_flags;
1770 int ret;
1771
1772 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1773 if (ret <= 0)
1774 return ret;
1775 xhci = hcd_to_xhci(hcd);
1776 if (xhci->xhc_state & XHCI_STATE_DYING)
1777 return -ENODEV;
1778
1779 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1780 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1781 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1782 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1783 __func__, drop_flag);
1784 return 0;
1785 }
1786
1787 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1788 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1789 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1790 if (!ctrl_ctx) {
1791 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1792 __func__);
1793 return 0;
1794 }
1795
1796 ep_index = xhci_get_endpoint_index(&ep->desc);
1797 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1798 /* If the HC already knows the endpoint is disabled,
1799 * or the HCD has noted it is disabled, ignore this request
1800 */
1801 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1802 le32_to_cpu(ctrl_ctx->drop_flags) &
1803 xhci_get_endpoint_flag(&ep->desc)) {
1804 /* Do not warn when called after a usb_device_reset */
1805 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1806 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1807 __func__, ep);
1808 return 0;
1809 }
1810
1811 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1812 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1813
1814 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1815 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1816
1817 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1818
1819 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1820
1821 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1822 (unsigned int) ep->desc.bEndpointAddress,
1823 udev->slot_id,
1824 (unsigned int) new_drop_flags,
1825 (unsigned int) new_add_flags);
1826 return 0;
1827 }
1828 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1829
1830 /* Add an endpoint to a new possible bandwidth configuration for this device.
1831 * Only one call to this function is allowed per endpoint before
1832 * check_bandwidth() or reset_bandwidth() must be called.
1833 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1834 * add the endpoint to the schedule with possibly new parameters denoted by a
1835 * different endpoint descriptor in usb_host_endpoint.
1836 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1837 * not allowed.
1838 *
1839 * The USB core will not allow URBs to be queued to an endpoint until the
1840 * configuration or alt setting is installed in the device, so there's no need
1841 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1842 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1843 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1844 struct usb_host_endpoint *ep)
1845 {
1846 struct xhci_hcd *xhci;
1847 struct xhci_container_ctx *in_ctx;
1848 unsigned int ep_index;
1849 struct xhci_input_control_ctx *ctrl_ctx;
1850 struct xhci_ep_ctx *ep_ctx;
1851 u32 added_ctxs;
1852 u32 new_add_flags, new_drop_flags;
1853 struct xhci_virt_device *virt_dev;
1854 int ret = 0;
1855
1856 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1857 if (ret <= 0) {
1858 /* So we won't queue a reset ep command for a root hub */
1859 ep->hcpriv = NULL;
1860 return ret;
1861 }
1862 xhci = hcd_to_xhci(hcd);
1863 if (xhci->xhc_state & XHCI_STATE_DYING)
1864 return -ENODEV;
1865
1866 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1867 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1868 /* FIXME when we have to issue an evaluate endpoint command to
1869 * deal with ep0 max packet size changing once we get the
1870 * descriptors
1871 */
1872 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1873 __func__, added_ctxs);
1874 return 0;
1875 }
1876
1877 virt_dev = xhci->devs[udev->slot_id];
1878 in_ctx = virt_dev->in_ctx;
1879 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1880 if (!ctrl_ctx) {
1881 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1882 __func__);
1883 return 0;
1884 }
1885
1886 ep_index = xhci_get_endpoint_index(&ep->desc);
1887 /* If this endpoint is already in use, and the upper layers are trying
1888 * to add it again without dropping it, reject the addition.
1889 */
1890 if (virt_dev->eps[ep_index].ring &&
1891 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1892 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1893 "without dropping it.\n",
1894 (unsigned int) ep->desc.bEndpointAddress);
1895 return -EINVAL;
1896 }
1897
1898 /* If the HCD has already noted the endpoint is enabled,
1899 * ignore this request.
1900 */
1901 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1902 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1903 __func__, ep);
1904 return 0;
1905 }
1906
1907 /*
1908 * Configuration and alternate setting changes must be done in
1909 * process context, not interrupt context (or so documenation
1910 * for usb_set_interface() and usb_set_configuration() claim).
1911 */
1912 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1913 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1914 __func__, ep->desc.bEndpointAddress);
1915 return -ENOMEM;
1916 }
1917
1918 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1919 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1920
1921 /* If xhci_endpoint_disable() was called for this endpoint, but the
1922 * xHC hasn't been notified yet through the check_bandwidth() call,
1923 * this re-adds a new state for the endpoint from the new endpoint
1924 * descriptors. We must drop and re-add this endpoint, so we leave the
1925 * drop flags alone.
1926 */
1927 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928
1929 /* Store the usb_device pointer for later use */
1930 ep->hcpriv = udev;
1931
1932 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1933 trace_xhci_add_endpoint(ep_ctx);
1934
1935 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1936 (unsigned int) ep->desc.bEndpointAddress,
1937 udev->slot_id,
1938 (unsigned int) new_drop_flags,
1939 (unsigned int) new_add_flags);
1940 return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1943
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1944 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1945 {
1946 struct xhci_input_control_ctx *ctrl_ctx;
1947 struct xhci_ep_ctx *ep_ctx;
1948 struct xhci_slot_ctx *slot_ctx;
1949 int i;
1950
1951 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1952 if (!ctrl_ctx) {
1953 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1954 __func__);
1955 return;
1956 }
1957
1958 /* When a device's add flag and drop flag are zero, any subsequent
1959 * configure endpoint command will leave that endpoint's state
1960 * untouched. Make sure we don't leave any old state in the input
1961 * endpoint contexts.
1962 */
1963 ctrl_ctx->drop_flags = 0;
1964 ctrl_ctx->add_flags = 0;
1965 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1966 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1967 /* Endpoint 0 is always valid */
1968 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1969 for (i = 1; i < 31; i++) {
1970 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1971 ep_ctx->ep_info = 0;
1972 ep_ctx->ep_info2 = 0;
1973 ep_ctx->deq = 0;
1974 ep_ctx->tx_info = 0;
1975 }
1976 }
1977
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1978 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1979 struct usb_device *udev, u32 *cmd_status)
1980 {
1981 int ret;
1982
1983 switch (*cmd_status) {
1984 case COMP_COMMAND_ABORTED:
1985 case COMP_COMMAND_RING_STOPPED:
1986 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1987 ret = -ETIME;
1988 break;
1989 case COMP_RESOURCE_ERROR:
1990 dev_warn(&udev->dev,
1991 "Not enough host controller resources for new device state.\n");
1992 ret = -ENOMEM;
1993 /* FIXME: can we allocate more resources for the HC? */
1994 break;
1995 case COMP_BANDWIDTH_ERROR:
1996 case COMP_SECONDARY_BANDWIDTH_ERROR:
1997 dev_warn(&udev->dev,
1998 "Not enough bandwidth for new device state.\n");
1999 ret = -ENOSPC;
2000 /* FIXME: can we go back to the old state? */
2001 break;
2002 case COMP_TRB_ERROR:
2003 /* the HCD set up something wrong */
2004 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2005 "add flag = 1, "
2006 "and endpoint is not disabled.\n");
2007 ret = -EINVAL;
2008 break;
2009 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2010 dev_warn(&udev->dev,
2011 "ERROR: Incompatible device for endpoint configure command.\n");
2012 ret = -ENODEV;
2013 break;
2014 case COMP_SUCCESS:
2015 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2016 "Successful Endpoint Configure command");
2017 ret = 0;
2018 break;
2019 default:
2020 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2021 *cmd_status);
2022 ret = -EINVAL;
2023 break;
2024 }
2025 return ret;
2026 }
2027
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2028 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2029 struct usb_device *udev, u32 *cmd_status)
2030 {
2031 int ret;
2032
2033 switch (*cmd_status) {
2034 case COMP_COMMAND_ABORTED:
2035 case COMP_COMMAND_RING_STOPPED:
2036 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2037 ret = -ETIME;
2038 break;
2039 case COMP_PARAMETER_ERROR:
2040 dev_warn(&udev->dev,
2041 "WARN: xHCI driver setup invalid evaluate context command.\n");
2042 ret = -EINVAL;
2043 break;
2044 case COMP_SLOT_NOT_ENABLED_ERROR:
2045 dev_warn(&udev->dev,
2046 "WARN: slot not enabled for evaluate context command.\n");
2047 ret = -EINVAL;
2048 break;
2049 case COMP_CONTEXT_STATE_ERROR:
2050 dev_warn(&udev->dev,
2051 "WARN: invalid context state for evaluate context command.\n");
2052 ret = -EINVAL;
2053 break;
2054 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2055 dev_warn(&udev->dev,
2056 "ERROR: Incompatible device for evaluate context command.\n");
2057 ret = -ENODEV;
2058 break;
2059 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2060 /* Max Exit Latency too large error */
2061 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2062 ret = -EINVAL;
2063 break;
2064 case COMP_SUCCESS:
2065 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2066 "Successful evaluate context command");
2067 ret = 0;
2068 break;
2069 default:
2070 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2071 *cmd_status);
2072 ret = -EINVAL;
2073 break;
2074 }
2075 return ret;
2076 }
2077
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2078 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2079 struct xhci_input_control_ctx *ctrl_ctx)
2080 {
2081 u32 valid_add_flags;
2082 u32 valid_drop_flags;
2083
2084 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2085 * (bit 1). The default control endpoint is added during the Address
2086 * Device command and is never removed until the slot is disabled.
2087 */
2088 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2089 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2090
2091 /* Use hweight32 to count the number of ones in the add flags, or
2092 * number of endpoints added. Don't count endpoints that are changed
2093 * (both added and dropped).
2094 */
2095 return hweight32(valid_add_flags) -
2096 hweight32(valid_add_flags & valid_drop_flags);
2097 }
2098
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2099 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2100 struct xhci_input_control_ctx *ctrl_ctx)
2101 {
2102 u32 valid_add_flags;
2103 u32 valid_drop_flags;
2104
2105 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2106 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2107
2108 return hweight32(valid_drop_flags) -
2109 hweight32(valid_add_flags & valid_drop_flags);
2110 }
2111
2112 /*
2113 * We need to reserve the new number of endpoints before the configure endpoint
2114 * command completes. We can't subtract the dropped endpoints from the number
2115 * of active endpoints until the command completes because we can oversubscribe
2116 * the host in this case:
2117 *
2118 * - the first configure endpoint command drops more endpoints than it adds
2119 * - a second configure endpoint command that adds more endpoints is queued
2120 * - the first configure endpoint command fails, so the config is unchanged
2121 * - the second command may succeed, even though there isn't enough resources
2122 *
2123 * Must be called with xhci->lock held.
2124 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2125 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2126 struct xhci_input_control_ctx *ctrl_ctx)
2127 {
2128 u32 added_eps;
2129
2130 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2131 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2132 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2133 "Not enough ep ctxs: "
2134 "%u active, need to add %u, limit is %u.",
2135 xhci->num_active_eps, added_eps,
2136 xhci->limit_active_eps);
2137 return -ENOMEM;
2138 }
2139 xhci->num_active_eps += added_eps;
2140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 "Adding %u ep ctxs, %u now active.", added_eps,
2142 xhci->num_active_eps);
2143 return 0;
2144 }
2145
2146 /*
2147 * The configure endpoint was failed by the xHC for some other reason, so we
2148 * need to revert the resources that failed configuration would have used.
2149 *
2150 * Must be called with xhci->lock held.
2151 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2152 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2153 struct xhci_input_control_ctx *ctrl_ctx)
2154 {
2155 u32 num_failed_eps;
2156
2157 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2158 xhci->num_active_eps -= num_failed_eps;
2159 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2160 "Removing %u failed ep ctxs, %u now active.",
2161 num_failed_eps,
2162 xhci->num_active_eps);
2163 }
2164
2165 /*
2166 * Now that the command has completed, clean up the active endpoint count by
2167 * subtracting out the endpoints that were dropped (but not changed).
2168 *
2169 * Must be called with xhci->lock held.
2170 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2171 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2172 struct xhci_input_control_ctx *ctrl_ctx)
2173 {
2174 u32 num_dropped_eps;
2175
2176 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2177 xhci->num_active_eps -= num_dropped_eps;
2178 if (num_dropped_eps)
2179 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180 "Removing %u dropped ep ctxs, %u now active.",
2181 num_dropped_eps,
2182 xhci->num_active_eps);
2183 }
2184
xhci_get_block_size(struct usb_device * udev)2185 static unsigned int xhci_get_block_size(struct usb_device *udev)
2186 {
2187 switch (udev->speed) {
2188 case USB_SPEED_LOW:
2189 case USB_SPEED_FULL:
2190 return FS_BLOCK;
2191 case USB_SPEED_HIGH:
2192 return HS_BLOCK;
2193 case USB_SPEED_SUPER:
2194 case USB_SPEED_SUPER_PLUS:
2195 return SS_BLOCK;
2196 case USB_SPEED_UNKNOWN:
2197 default:
2198 /* Should never happen */
2199 return 1;
2200 }
2201 }
2202
2203 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2204 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2205 {
2206 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2207 return LS_OVERHEAD;
2208 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2209 return FS_OVERHEAD;
2210 return HS_OVERHEAD;
2211 }
2212
2213 /* If we are changing a LS/FS device under a HS hub,
2214 * make sure (if we are activating a new TT) that the HS bus has enough
2215 * bandwidth for this new TT.
2216 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2217 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2218 struct xhci_virt_device *virt_dev,
2219 int old_active_eps)
2220 {
2221 struct xhci_interval_bw_table *bw_table;
2222 struct xhci_tt_bw_info *tt_info;
2223
2224 /* Find the bandwidth table for the root port this TT is attached to. */
2225 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2226 tt_info = virt_dev->tt_info;
2227 /* If this TT already had active endpoints, the bandwidth for this TT
2228 * has already been added. Removing all periodic endpoints (and thus
2229 * making the TT enactive) will only decrease the bandwidth used.
2230 */
2231 if (old_active_eps)
2232 return 0;
2233 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2234 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2235 return -ENOMEM;
2236 return 0;
2237 }
2238 /* Not sure why we would have no new active endpoints...
2239 *
2240 * Maybe because of an Evaluate Context change for a hub update or a
2241 * control endpoint 0 max packet size change?
2242 * FIXME: skip the bandwidth calculation in that case.
2243 */
2244 return 0;
2245 }
2246
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2247 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2248 struct xhci_virt_device *virt_dev)
2249 {
2250 unsigned int bw_reserved;
2251
2252 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2253 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2254 return -ENOMEM;
2255
2256 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2257 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2258 return -ENOMEM;
2259
2260 return 0;
2261 }
2262
2263 /*
2264 * This algorithm is a very conservative estimate of the worst-case scheduling
2265 * scenario for any one interval. The hardware dynamically schedules the
2266 * packets, so we can't tell which microframe could be the limiting factor in
2267 * the bandwidth scheduling. This only takes into account periodic endpoints.
2268 *
2269 * Obviously, we can't solve an NP complete problem to find the minimum worst
2270 * case scenario. Instead, we come up with an estimate that is no less than
2271 * the worst case bandwidth used for any one microframe, but may be an
2272 * over-estimate.
2273 *
2274 * We walk the requirements for each endpoint by interval, starting with the
2275 * smallest interval, and place packets in the schedule where there is only one
2276 * possible way to schedule packets for that interval. In order to simplify
2277 * this algorithm, we record the largest max packet size for each interval, and
2278 * assume all packets will be that size.
2279 *
2280 * For interval 0, we obviously must schedule all packets for each interval.
2281 * The bandwidth for interval 0 is just the amount of data to be transmitted
2282 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2283 * the number of packets).
2284 *
2285 * For interval 1, we have two possible microframes to schedule those packets
2286 * in. For this algorithm, if we can schedule the same number of packets for
2287 * each possible scheduling opportunity (each microframe), we will do so. The
2288 * remaining number of packets will be saved to be transmitted in the gaps in
2289 * the next interval's scheduling sequence.
2290 *
2291 * As we move those remaining packets to be scheduled with interval 2 packets,
2292 * we have to double the number of remaining packets to transmit. This is
2293 * because the intervals are actually powers of 2, and we would be transmitting
2294 * the previous interval's packets twice in this interval. We also have to be
2295 * sure that when we look at the largest max packet size for this interval, we
2296 * also look at the largest max packet size for the remaining packets and take
2297 * the greater of the two.
2298 *
2299 * The algorithm continues to evenly distribute packets in each scheduling
2300 * opportunity, and push the remaining packets out, until we get to the last
2301 * interval. Then those packets and their associated overhead are just added
2302 * to the bandwidth used.
2303 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2304 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2305 struct xhci_virt_device *virt_dev,
2306 int old_active_eps)
2307 {
2308 unsigned int bw_reserved;
2309 unsigned int max_bandwidth;
2310 unsigned int bw_used;
2311 unsigned int block_size;
2312 struct xhci_interval_bw_table *bw_table;
2313 unsigned int packet_size = 0;
2314 unsigned int overhead = 0;
2315 unsigned int packets_transmitted = 0;
2316 unsigned int packets_remaining = 0;
2317 unsigned int i;
2318
2319 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2320 return xhci_check_ss_bw(xhci, virt_dev);
2321
2322 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2323 max_bandwidth = HS_BW_LIMIT;
2324 /* Convert percent of bus BW reserved to blocks reserved */
2325 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2326 } else {
2327 max_bandwidth = FS_BW_LIMIT;
2328 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2329 }
2330
2331 bw_table = virt_dev->bw_table;
2332 /* We need to translate the max packet size and max ESIT payloads into
2333 * the units the hardware uses.
2334 */
2335 block_size = xhci_get_block_size(virt_dev->udev);
2336
2337 /* If we are manipulating a LS/FS device under a HS hub, double check
2338 * that the HS bus has enough bandwidth if we are activing a new TT.
2339 */
2340 if (virt_dev->tt_info) {
2341 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2342 "Recalculating BW for rootport %u",
2343 virt_dev->real_port);
2344 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2345 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2346 "newly activated TT.\n");
2347 return -ENOMEM;
2348 }
2349 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2350 "Recalculating BW for TT slot %u port %u",
2351 virt_dev->tt_info->slot_id,
2352 virt_dev->tt_info->ttport);
2353 } else {
2354 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2355 "Recalculating BW for rootport %u",
2356 virt_dev->real_port);
2357 }
2358
2359 /* Add in how much bandwidth will be used for interval zero, or the
2360 * rounded max ESIT payload + number of packets * largest overhead.
2361 */
2362 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2363 bw_table->interval_bw[0].num_packets *
2364 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2365
2366 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2367 unsigned int bw_added;
2368 unsigned int largest_mps;
2369 unsigned int interval_overhead;
2370
2371 /*
2372 * How many packets could we transmit in this interval?
2373 * If packets didn't fit in the previous interval, we will need
2374 * to transmit that many packets twice within this interval.
2375 */
2376 packets_remaining = 2 * packets_remaining +
2377 bw_table->interval_bw[i].num_packets;
2378
2379 /* Find the largest max packet size of this or the previous
2380 * interval.
2381 */
2382 if (list_empty(&bw_table->interval_bw[i].endpoints))
2383 largest_mps = 0;
2384 else {
2385 struct xhci_virt_ep *virt_ep;
2386 struct list_head *ep_entry;
2387
2388 ep_entry = bw_table->interval_bw[i].endpoints.next;
2389 virt_ep = list_entry(ep_entry,
2390 struct xhci_virt_ep, bw_endpoint_list);
2391 /* Convert to blocks, rounding up */
2392 largest_mps = DIV_ROUND_UP(
2393 virt_ep->bw_info.max_packet_size,
2394 block_size);
2395 }
2396 if (largest_mps > packet_size)
2397 packet_size = largest_mps;
2398
2399 /* Use the larger overhead of this or the previous interval. */
2400 interval_overhead = xhci_get_largest_overhead(
2401 &bw_table->interval_bw[i]);
2402 if (interval_overhead > overhead)
2403 overhead = interval_overhead;
2404
2405 /* How many packets can we evenly distribute across
2406 * (1 << (i + 1)) possible scheduling opportunities?
2407 */
2408 packets_transmitted = packets_remaining >> (i + 1);
2409
2410 /* Add in the bandwidth used for those scheduled packets */
2411 bw_added = packets_transmitted * (overhead + packet_size);
2412
2413 /* How many packets do we have remaining to transmit? */
2414 packets_remaining = packets_remaining % (1 << (i + 1));
2415
2416 /* What largest max packet size should those packets have? */
2417 /* If we've transmitted all packets, don't carry over the
2418 * largest packet size.
2419 */
2420 if (packets_remaining == 0) {
2421 packet_size = 0;
2422 overhead = 0;
2423 } else if (packets_transmitted > 0) {
2424 /* Otherwise if we do have remaining packets, and we've
2425 * scheduled some packets in this interval, take the
2426 * largest max packet size from endpoints with this
2427 * interval.
2428 */
2429 packet_size = largest_mps;
2430 overhead = interval_overhead;
2431 }
2432 /* Otherwise carry over packet_size and overhead from the last
2433 * time we had a remainder.
2434 */
2435 bw_used += bw_added;
2436 if (bw_used > max_bandwidth) {
2437 xhci_warn(xhci, "Not enough bandwidth. "
2438 "Proposed: %u, Max: %u\n",
2439 bw_used, max_bandwidth);
2440 return -ENOMEM;
2441 }
2442 }
2443 /*
2444 * Ok, we know we have some packets left over after even-handedly
2445 * scheduling interval 15. We don't know which microframes they will
2446 * fit into, so we over-schedule and say they will be scheduled every
2447 * microframe.
2448 */
2449 if (packets_remaining > 0)
2450 bw_used += overhead + packet_size;
2451
2452 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2453 unsigned int port_index = virt_dev->real_port - 1;
2454
2455 /* OK, we're manipulating a HS device attached to a
2456 * root port bandwidth domain. Include the number of active TTs
2457 * in the bandwidth used.
2458 */
2459 bw_used += TT_HS_OVERHEAD *
2460 xhci->rh_bw[port_index].num_active_tts;
2461 }
2462
2463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2464 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2465 "Available: %u " "percent",
2466 bw_used, max_bandwidth, bw_reserved,
2467 (max_bandwidth - bw_used - bw_reserved) * 100 /
2468 max_bandwidth);
2469
2470 bw_used += bw_reserved;
2471 if (bw_used > max_bandwidth) {
2472 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2473 bw_used, max_bandwidth);
2474 return -ENOMEM;
2475 }
2476
2477 bw_table->bw_used = bw_used;
2478 return 0;
2479 }
2480
xhci_is_async_ep(unsigned int ep_type)2481 static bool xhci_is_async_ep(unsigned int ep_type)
2482 {
2483 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2484 ep_type != ISOC_IN_EP &&
2485 ep_type != INT_IN_EP);
2486 }
2487
xhci_is_sync_in_ep(unsigned int ep_type)2488 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2489 {
2490 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2491 }
2492
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2493 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2494 {
2495 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2496
2497 if (ep_bw->ep_interval == 0)
2498 return SS_OVERHEAD_BURST +
2499 (ep_bw->mult * ep_bw->num_packets *
2500 (SS_OVERHEAD + mps));
2501 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2502 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2503 1 << ep_bw->ep_interval);
2504
2505 }
2506
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2507 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2508 struct xhci_bw_info *ep_bw,
2509 struct xhci_interval_bw_table *bw_table,
2510 struct usb_device *udev,
2511 struct xhci_virt_ep *virt_ep,
2512 struct xhci_tt_bw_info *tt_info)
2513 {
2514 struct xhci_interval_bw *interval_bw;
2515 int normalized_interval;
2516
2517 if (xhci_is_async_ep(ep_bw->type))
2518 return;
2519
2520 if (udev->speed >= USB_SPEED_SUPER) {
2521 if (xhci_is_sync_in_ep(ep_bw->type))
2522 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2523 xhci_get_ss_bw_consumed(ep_bw);
2524 else
2525 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2526 xhci_get_ss_bw_consumed(ep_bw);
2527 return;
2528 }
2529
2530 /* SuperSpeed endpoints never get added to intervals in the table, so
2531 * this check is only valid for HS/FS/LS devices.
2532 */
2533 if (list_empty(&virt_ep->bw_endpoint_list))
2534 return;
2535 /* For LS/FS devices, we need to translate the interval expressed in
2536 * microframes to frames.
2537 */
2538 if (udev->speed == USB_SPEED_HIGH)
2539 normalized_interval = ep_bw->ep_interval;
2540 else
2541 normalized_interval = ep_bw->ep_interval - 3;
2542
2543 if (normalized_interval == 0)
2544 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2545 interval_bw = &bw_table->interval_bw[normalized_interval];
2546 interval_bw->num_packets -= ep_bw->num_packets;
2547 switch (udev->speed) {
2548 case USB_SPEED_LOW:
2549 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2550 break;
2551 case USB_SPEED_FULL:
2552 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2553 break;
2554 case USB_SPEED_HIGH:
2555 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2556 break;
2557 default:
2558 /* Should never happen because only LS/FS/HS endpoints will get
2559 * added to the endpoint list.
2560 */
2561 return;
2562 }
2563 if (tt_info)
2564 tt_info->active_eps -= 1;
2565 list_del_init(&virt_ep->bw_endpoint_list);
2566 }
2567
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2568 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2569 struct xhci_bw_info *ep_bw,
2570 struct xhci_interval_bw_table *bw_table,
2571 struct usb_device *udev,
2572 struct xhci_virt_ep *virt_ep,
2573 struct xhci_tt_bw_info *tt_info)
2574 {
2575 struct xhci_interval_bw *interval_bw;
2576 struct xhci_virt_ep *smaller_ep;
2577 int normalized_interval;
2578
2579 if (xhci_is_async_ep(ep_bw->type))
2580 return;
2581
2582 if (udev->speed == USB_SPEED_SUPER) {
2583 if (xhci_is_sync_in_ep(ep_bw->type))
2584 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2585 xhci_get_ss_bw_consumed(ep_bw);
2586 else
2587 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2588 xhci_get_ss_bw_consumed(ep_bw);
2589 return;
2590 }
2591
2592 /* For LS/FS devices, we need to translate the interval expressed in
2593 * microframes to frames.
2594 */
2595 if (udev->speed == USB_SPEED_HIGH)
2596 normalized_interval = ep_bw->ep_interval;
2597 else
2598 normalized_interval = ep_bw->ep_interval - 3;
2599
2600 if (normalized_interval == 0)
2601 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2602 interval_bw = &bw_table->interval_bw[normalized_interval];
2603 interval_bw->num_packets += ep_bw->num_packets;
2604 switch (udev->speed) {
2605 case USB_SPEED_LOW:
2606 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2607 break;
2608 case USB_SPEED_FULL:
2609 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2610 break;
2611 case USB_SPEED_HIGH:
2612 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2613 break;
2614 default:
2615 /* Should never happen because only LS/FS/HS endpoints will get
2616 * added to the endpoint list.
2617 */
2618 return;
2619 }
2620
2621 if (tt_info)
2622 tt_info->active_eps += 1;
2623 /* Insert the endpoint into the list, largest max packet size first. */
2624 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2625 bw_endpoint_list) {
2626 if (ep_bw->max_packet_size >=
2627 smaller_ep->bw_info.max_packet_size) {
2628 /* Add the new ep before the smaller endpoint */
2629 list_add_tail(&virt_ep->bw_endpoint_list,
2630 &smaller_ep->bw_endpoint_list);
2631 return;
2632 }
2633 }
2634 /* Add the new endpoint at the end of the list. */
2635 list_add_tail(&virt_ep->bw_endpoint_list,
2636 &interval_bw->endpoints);
2637 }
2638
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2639 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2640 struct xhci_virt_device *virt_dev,
2641 int old_active_eps)
2642 {
2643 struct xhci_root_port_bw_info *rh_bw_info;
2644 if (!virt_dev->tt_info)
2645 return;
2646
2647 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2648 if (old_active_eps == 0 &&
2649 virt_dev->tt_info->active_eps != 0) {
2650 rh_bw_info->num_active_tts += 1;
2651 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2652 } else if (old_active_eps != 0 &&
2653 virt_dev->tt_info->active_eps == 0) {
2654 rh_bw_info->num_active_tts -= 1;
2655 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2656 }
2657 }
2658
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2659 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2660 struct xhci_virt_device *virt_dev,
2661 struct xhci_container_ctx *in_ctx)
2662 {
2663 struct xhci_bw_info ep_bw_info[31];
2664 int i;
2665 struct xhci_input_control_ctx *ctrl_ctx;
2666 int old_active_eps = 0;
2667
2668 if (virt_dev->tt_info)
2669 old_active_eps = virt_dev->tt_info->active_eps;
2670
2671 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2672 if (!ctrl_ctx) {
2673 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2674 __func__);
2675 return -ENOMEM;
2676 }
2677
2678 for (i = 0; i < 31; i++) {
2679 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2680 continue;
2681
2682 /* Make a copy of the BW info in case we need to revert this */
2683 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2684 sizeof(ep_bw_info[i]));
2685 /* Drop the endpoint from the interval table if the endpoint is
2686 * being dropped or changed.
2687 */
2688 if (EP_IS_DROPPED(ctrl_ctx, i))
2689 xhci_drop_ep_from_interval_table(xhci,
2690 &virt_dev->eps[i].bw_info,
2691 virt_dev->bw_table,
2692 virt_dev->udev,
2693 &virt_dev->eps[i],
2694 virt_dev->tt_info);
2695 }
2696 /* Overwrite the information stored in the endpoints' bw_info */
2697 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2698 for (i = 0; i < 31; i++) {
2699 /* Add any changed or added endpoints to the interval table */
2700 if (EP_IS_ADDED(ctrl_ctx, i))
2701 xhci_add_ep_to_interval_table(xhci,
2702 &virt_dev->eps[i].bw_info,
2703 virt_dev->bw_table,
2704 virt_dev->udev,
2705 &virt_dev->eps[i],
2706 virt_dev->tt_info);
2707 }
2708
2709 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2710 /* Ok, this fits in the bandwidth we have.
2711 * Update the number of active TTs.
2712 */
2713 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2714 return 0;
2715 }
2716
2717 /* We don't have enough bandwidth for this, revert the stored info. */
2718 for (i = 0; i < 31; i++) {
2719 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2720 continue;
2721
2722 /* Drop the new copies of any added or changed endpoints from
2723 * the interval table.
2724 */
2725 if (EP_IS_ADDED(ctrl_ctx, i)) {
2726 xhci_drop_ep_from_interval_table(xhci,
2727 &virt_dev->eps[i].bw_info,
2728 virt_dev->bw_table,
2729 virt_dev->udev,
2730 &virt_dev->eps[i],
2731 virt_dev->tt_info);
2732 }
2733 /* Revert the endpoint back to its old information */
2734 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2735 sizeof(ep_bw_info[i]));
2736 /* Add any changed or dropped endpoints back into the table */
2737 if (EP_IS_DROPPED(ctrl_ctx, i))
2738 xhci_add_ep_to_interval_table(xhci,
2739 &virt_dev->eps[i].bw_info,
2740 virt_dev->bw_table,
2741 virt_dev->udev,
2742 &virt_dev->eps[i],
2743 virt_dev->tt_info);
2744 }
2745 return -ENOMEM;
2746 }
2747
2748
2749 /* Issue a configure endpoint command or evaluate context command
2750 * and wait for it to finish.
2751 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2752 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2753 struct usb_device *udev,
2754 struct xhci_command *command,
2755 bool ctx_change, bool must_succeed)
2756 {
2757 int ret;
2758 unsigned long flags;
2759 struct xhci_input_control_ctx *ctrl_ctx;
2760 struct xhci_virt_device *virt_dev;
2761 struct xhci_slot_ctx *slot_ctx;
2762
2763 if (!command)
2764 return -EINVAL;
2765
2766 spin_lock_irqsave(&xhci->lock, flags);
2767
2768 if (xhci->xhc_state & XHCI_STATE_DYING) {
2769 spin_unlock_irqrestore(&xhci->lock, flags);
2770 return -ESHUTDOWN;
2771 }
2772
2773 virt_dev = xhci->devs[udev->slot_id];
2774
2775 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2776 if (!ctrl_ctx) {
2777 spin_unlock_irqrestore(&xhci->lock, flags);
2778 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2779 __func__);
2780 return -ENOMEM;
2781 }
2782
2783 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2784 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2785 spin_unlock_irqrestore(&xhci->lock, flags);
2786 xhci_warn(xhci, "Not enough host resources, "
2787 "active endpoint contexts = %u\n",
2788 xhci->num_active_eps);
2789 return -ENOMEM;
2790 }
2791 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2792 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2793 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2794 xhci_free_host_resources(xhci, ctrl_ctx);
2795 spin_unlock_irqrestore(&xhci->lock, flags);
2796 xhci_warn(xhci, "Not enough bandwidth\n");
2797 return -ENOMEM;
2798 }
2799
2800 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2801
2802 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2803 trace_xhci_configure_endpoint(slot_ctx);
2804
2805 if (!ctx_change)
2806 ret = xhci_queue_configure_endpoint(xhci, command,
2807 command->in_ctx->dma,
2808 udev->slot_id, must_succeed);
2809 else
2810 ret = xhci_queue_evaluate_context(xhci, command,
2811 command->in_ctx->dma,
2812 udev->slot_id, must_succeed);
2813 if (ret < 0) {
2814 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2815 xhci_free_host_resources(xhci, ctrl_ctx);
2816 spin_unlock_irqrestore(&xhci->lock, flags);
2817 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2818 "FIXME allocate a new ring segment");
2819 return -ENOMEM;
2820 }
2821 xhci_ring_cmd_db(xhci);
2822 spin_unlock_irqrestore(&xhci->lock, flags);
2823
2824 /* Wait for the configure endpoint command to complete */
2825 wait_for_completion(command->completion);
2826
2827 if (!ctx_change)
2828 ret = xhci_configure_endpoint_result(xhci, udev,
2829 &command->status);
2830 else
2831 ret = xhci_evaluate_context_result(xhci, udev,
2832 &command->status);
2833
2834 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2835 spin_lock_irqsave(&xhci->lock, flags);
2836 /* If the command failed, remove the reserved resources.
2837 * Otherwise, clean up the estimate to include dropped eps.
2838 */
2839 if (ret)
2840 xhci_free_host_resources(xhci, ctrl_ctx);
2841 else
2842 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2843 spin_unlock_irqrestore(&xhci->lock, flags);
2844 }
2845 return ret;
2846 }
2847
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2848 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2849 struct xhci_virt_device *vdev, int i)
2850 {
2851 struct xhci_virt_ep *ep = &vdev->eps[i];
2852
2853 if (ep->ep_state & EP_HAS_STREAMS) {
2854 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2855 xhci_get_endpoint_address(i));
2856 xhci_free_stream_info(xhci, ep->stream_info);
2857 ep->stream_info = NULL;
2858 ep->ep_state &= ~EP_HAS_STREAMS;
2859 }
2860 }
2861
2862 /* Called after one or more calls to xhci_add_endpoint() or
2863 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2864 * to call xhci_reset_bandwidth().
2865 *
2866 * Since we are in the middle of changing either configuration or
2867 * installing a new alt setting, the USB core won't allow URBs to be
2868 * enqueued for any endpoint on the old config or interface. Nothing
2869 * else should be touching the xhci->devs[slot_id] structure, so we
2870 * don't need to take the xhci->lock for manipulating that.
2871 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2872 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2873 {
2874 int i;
2875 int ret = 0;
2876 struct xhci_hcd *xhci;
2877 struct xhci_virt_device *virt_dev;
2878 struct xhci_input_control_ctx *ctrl_ctx;
2879 struct xhci_slot_ctx *slot_ctx;
2880 struct xhci_command *command;
2881
2882 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2883 if (ret <= 0)
2884 return ret;
2885 xhci = hcd_to_xhci(hcd);
2886 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2887 (xhci->xhc_state & XHCI_STATE_REMOVING))
2888 return -ENODEV;
2889
2890 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2891 virt_dev = xhci->devs[udev->slot_id];
2892
2893 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2894 if (!command)
2895 return -ENOMEM;
2896
2897 command->in_ctx = virt_dev->in_ctx;
2898
2899 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2900 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2901 if (!ctrl_ctx) {
2902 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2903 __func__);
2904 ret = -ENOMEM;
2905 goto command_cleanup;
2906 }
2907 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2908 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2909 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2910
2911 /* Don't issue the command if there's no endpoints to update. */
2912 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2913 ctrl_ctx->drop_flags == 0) {
2914 ret = 0;
2915 goto command_cleanup;
2916 }
2917 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2918 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2919 for (i = 31; i >= 1; i--) {
2920 __le32 le32 = cpu_to_le32(BIT(i));
2921
2922 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2923 || (ctrl_ctx->add_flags & le32) || i == 1) {
2924 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2925 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2926 break;
2927 }
2928 }
2929
2930 ret = xhci_configure_endpoint(xhci, udev, command,
2931 false, false);
2932 if (ret)
2933 /* Callee should call reset_bandwidth() */
2934 goto command_cleanup;
2935
2936 /* Free any rings that were dropped, but not changed. */
2937 for (i = 1; i < 31; i++) {
2938 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2939 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2940 xhci_free_endpoint_ring(xhci, virt_dev, i);
2941 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2942 }
2943 }
2944 xhci_zero_in_ctx(xhci, virt_dev);
2945 /*
2946 * Install any rings for completely new endpoints or changed endpoints,
2947 * and free any old rings from changed endpoints.
2948 */
2949 for (i = 1; i < 31; i++) {
2950 if (!virt_dev->eps[i].new_ring)
2951 continue;
2952 /* Only free the old ring if it exists.
2953 * It may not if this is the first add of an endpoint.
2954 */
2955 if (virt_dev->eps[i].ring) {
2956 xhci_free_endpoint_ring(xhci, virt_dev, i);
2957 }
2958 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2959 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2960 virt_dev->eps[i].new_ring = NULL;
2961 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2962 }
2963 command_cleanup:
2964 kfree(command->completion);
2965 kfree(command);
2966
2967 return ret;
2968 }
2969 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2970
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2971 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2972 {
2973 struct xhci_hcd *xhci;
2974 struct xhci_virt_device *virt_dev;
2975 int i, ret;
2976
2977 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2978 if (ret <= 0)
2979 return;
2980 xhci = hcd_to_xhci(hcd);
2981
2982 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2983 virt_dev = xhci->devs[udev->slot_id];
2984 /* Free any rings allocated for added endpoints */
2985 for (i = 0; i < 31; i++) {
2986 if (virt_dev->eps[i].new_ring) {
2987 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2988 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2989 virt_dev->eps[i].new_ring = NULL;
2990 }
2991 }
2992 xhci_zero_in_ctx(xhci, virt_dev);
2993 }
2994 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
2995
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2996 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2997 struct xhci_container_ctx *in_ctx,
2998 struct xhci_container_ctx *out_ctx,
2999 struct xhci_input_control_ctx *ctrl_ctx,
3000 u32 add_flags, u32 drop_flags)
3001 {
3002 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3003 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3004 xhci_slot_copy(xhci, in_ctx, out_ctx);
3005 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3006 }
3007
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3008 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3009 struct usb_host_endpoint *host_ep)
3010 {
3011 struct xhci_hcd *xhci;
3012 struct xhci_virt_device *vdev;
3013 struct xhci_virt_ep *ep;
3014 struct usb_device *udev;
3015 unsigned long flags;
3016 unsigned int ep_index;
3017
3018 xhci = hcd_to_xhci(hcd);
3019 rescan:
3020 spin_lock_irqsave(&xhci->lock, flags);
3021
3022 udev = (struct usb_device *)host_ep->hcpriv;
3023 if (!udev || !udev->slot_id)
3024 goto done;
3025
3026 vdev = xhci->devs[udev->slot_id];
3027 if (!vdev)
3028 goto done;
3029
3030 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3031 ep = &vdev->eps[ep_index];
3032
3033 /* wait for hub_tt_work to finish clearing hub TT */
3034 if (ep->ep_state & EP_CLEARING_TT) {
3035 spin_unlock_irqrestore(&xhci->lock, flags);
3036 schedule_timeout_uninterruptible(1);
3037 goto rescan;
3038 }
3039
3040 if (ep->ep_state)
3041 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3042 ep->ep_state);
3043 done:
3044 host_ep->hcpriv = NULL;
3045 spin_unlock_irqrestore(&xhci->lock, flags);
3046 }
3047
3048 /*
3049 * Called after usb core issues a clear halt control message.
3050 * The host side of the halt should already be cleared by a reset endpoint
3051 * command issued when the STALL event was received.
3052 *
3053 * The reset endpoint command may only be issued to endpoints in the halted
3054 * state. For software that wishes to reset the data toggle or sequence number
3055 * of an endpoint that isn't in the halted state this function will issue a
3056 * configure endpoint command with the Drop and Add bits set for the target
3057 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3058 */
3059
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3060 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3061 struct usb_host_endpoint *host_ep)
3062 {
3063 struct xhci_hcd *xhci;
3064 struct usb_device *udev;
3065 struct xhci_virt_device *vdev;
3066 struct xhci_virt_ep *ep;
3067 struct xhci_input_control_ctx *ctrl_ctx;
3068 struct xhci_command *stop_cmd, *cfg_cmd;
3069 unsigned int ep_index;
3070 unsigned long flags;
3071 u32 ep_flag;
3072 int err;
3073
3074 xhci = hcd_to_xhci(hcd);
3075 if (!host_ep->hcpriv)
3076 return;
3077 udev = (struct usb_device *) host_ep->hcpriv;
3078 vdev = xhci->devs[udev->slot_id];
3079
3080 /*
3081 * vdev may be lost due to xHC restore error and re-initialization
3082 * during S3/S4 resume. A new vdev will be allocated later by
3083 * xhci_discover_or_reset_device()
3084 */
3085 if (!udev->slot_id || !vdev)
3086 return;
3087 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3088 ep = &vdev->eps[ep_index];
3089
3090 /* Bail out if toggle is already being cleared by a endpoint reset */
3091 spin_lock_irqsave(&xhci->lock, flags);
3092 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3093 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3094 spin_unlock_irqrestore(&xhci->lock, flags);
3095 return;
3096 }
3097 spin_unlock_irqrestore(&xhci->lock, flags);
3098 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3099 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3100 usb_endpoint_xfer_isoc(&host_ep->desc))
3101 return;
3102
3103 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3104
3105 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3106 return;
3107
3108 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3109 if (!stop_cmd)
3110 return;
3111
3112 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3113 if (!cfg_cmd)
3114 goto cleanup;
3115
3116 spin_lock_irqsave(&xhci->lock, flags);
3117
3118 /* block queuing new trbs and ringing ep doorbell */
3119 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3120
3121 /*
3122 * Make sure endpoint ring is empty before resetting the toggle/seq.
3123 * Driver is required to synchronously cancel all transfer request.
3124 * Stop the endpoint to force xHC to update the output context
3125 */
3126
3127 if (!list_empty(&ep->ring->td_list)) {
3128 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3129 spin_unlock_irqrestore(&xhci->lock, flags);
3130 xhci_free_command(xhci, cfg_cmd);
3131 goto cleanup;
3132 }
3133
3134 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3135 ep_index, 0);
3136 if (err < 0) {
3137 spin_unlock_irqrestore(&xhci->lock, flags);
3138 xhci_free_command(xhci, cfg_cmd);
3139 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3140 __func__, err);
3141 goto cleanup;
3142 }
3143
3144 xhci_ring_cmd_db(xhci);
3145 spin_unlock_irqrestore(&xhci->lock, flags);
3146
3147 wait_for_completion(stop_cmd->completion);
3148
3149 spin_lock_irqsave(&xhci->lock, flags);
3150
3151 /* config ep command clears toggle if add and drop ep flags are set */
3152 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3153 if (!ctrl_ctx) {
3154 spin_unlock_irqrestore(&xhci->lock, flags);
3155 xhci_free_command(xhci, cfg_cmd);
3156 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3157 __func__);
3158 goto cleanup;
3159 }
3160
3161 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3162 ctrl_ctx, ep_flag, ep_flag);
3163 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3164
3165 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3166 udev->slot_id, false);
3167 if (err < 0) {
3168 spin_unlock_irqrestore(&xhci->lock, flags);
3169 xhci_free_command(xhci, cfg_cmd);
3170 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3171 __func__, err);
3172 goto cleanup;
3173 }
3174
3175 xhci_ring_cmd_db(xhci);
3176 spin_unlock_irqrestore(&xhci->lock, flags);
3177
3178 wait_for_completion(cfg_cmd->completion);
3179
3180 xhci_free_command(xhci, cfg_cmd);
3181 cleanup:
3182 xhci_free_command(xhci, stop_cmd);
3183 spin_lock_irqsave(&xhci->lock, flags);
3184 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3185 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3186 spin_unlock_irqrestore(&xhci->lock, flags);
3187 }
3188
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3189 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3190 struct usb_device *udev, struct usb_host_endpoint *ep,
3191 unsigned int slot_id)
3192 {
3193 int ret;
3194 unsigned int ep_index;
3195 unsigned int ep_state;
3196
3197 if (!ep)
3198 return -EINVAL;
3199 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3200 if (ret <= 0)
3201 return ret ? ret : -EINVAL;
3202 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3203 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3204 " descriptor for ep 0x%x does not support streams\n",
3205 ep->desc.bEndpointAddress);
3206 return -EINVAL;
3207 }
3208
3209 ep_index = xhci_get_endpoint_index(&ep->desc);
3210 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3211 if (ep_state & EP_HAS_STREAMS ||
3212 ep_state & EP_GETTING_STREAMS) {
3213 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3214 "already has streams set up.\n",
3215 ep->desc.bEndpointAddress);
3216 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3217 "dynamic stream context array reallocation.\n");
3218 return -EINVAL;
3219 }
3220 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3221 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3222 "endpoint 0x%x; URBs are pending.\n",
3223 ep->desc.bEndpointAddress);
3224 return -EINVAL;
3225 }
3226 return 0;
3227 }
3228
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3229 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3230 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3231 {
3232 unsigned int max_streams;
3233
3234 /* The stream context array size must be a power of two */
3235 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3236 /*
3237 * Find out how many primary stream array entries the host controller
3238 * supports. Later we may use secondary stream arrays (similar to 2nd
3239 * level page entries), but that's an optional feature for xHCI host
3240 * controllers. xHCs must support at least 4 stream IDs.
3241 */
3242 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3243 if (*num_stream_ctxs > max_streams) {
3244 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3245 max_streams);
3246 *num_stream_ctxs = max_streams;
3247 *num_streams = max_streams;
3248 }
3249 }
3250
3251 /* Returns an error code if one of the endpoint already has streams.
3252 * This does not change any data structures, it only checks and gathers
3253 * information.
3254 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3255 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3256 struct usb_device *udev,
3257 struct usb_host_endpoint **eps, unsigned int num_eps,
3258 unsigned int *num_streams, u32 *changed_ep_bitmask)
3259 {
3260 unsigned int max_streams;
3261 unsigned int endpoint_flag;
3262 int i;
3263 int ret;
3264
3265 for (i = 0; i < num_eps; i++) {
3266 ret = xhci_check_streams_endpoint(xhci, udev,
3267 eps[i], udev->slot_id);
3268 if (ret < 0)
3269 return ret;
3270
3271 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3272 if (max_streams < (*num_streams - 1)) {
3273 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3274 eps[i]->desc.bEndpointAddress,
3275 max_streams);
3276 *num_streams = max_streams+1;
3277 }
3278
3279 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3280 if (*changed_ep_bitmask & endpoint_flag)
3281 return -EINVAL;
3282 *changed_ep_bitmask |= endpoint_flag;
3283 }
3284 return 0;
3285 }
3286
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3287 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3288 struct usb_device *udev,
3289 struct usb_host_endpoint **eps, unsigned int num_eps)
3290 {
3291 u32 changed_ep_bitmask = 0;
3292 unsigned int slot_id;
3293 unsigned int ep_index;
3294 unsigned int ep_state;
3295 int i;
3296
3297 slot_id = udev->slot_id;
3298 if (!xhci->devs[slot_id])
3299 return 0;
3300
3301 for (i = 0; i < num_eps; i++) {
3302 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3303 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3304 /* Are streams already being freed for the endpoint? */
3305 if (ep_state & EP_GETTING_NO_STREAMS) {
3306 xhci_warn(xhci, "WARN Can't disable streams for "
3307 "endpoint 0x%x, "
3308 "streams are being disabled already\n",
3309 eps[i]->desc.bEndpointAddress);
3310 return 0;
3311 }
3312 /* Are there actually any streams to free? */
3313 if (!(ep_state & EP_HAS_STREAMS) &&
3314 !(ep_state & EP_GETTING_STREAMS)) {
3315 xhci_warn(xhci, "WARN Can't disable streams for "
3316 "endpoint 0x%x, "
3317 "streams are already disabled!\n",
3318 eps[i]->desc.bEndpointAddress);
3319 xhci_warn(xhci, "WARN xhci_free_streams() called "
3320 "with non-streams endpoint\n");
3321 return 0;
3322 }
3323 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3324 }
3325 return changed_ep_bitmask;
3326 }
3327
3328 /*
3329 * The USB device drivers use this function (through the HCD interface in USB
3330 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3331 * coordinate mass storage command queueing across multiple endpoints (basically
3332 * a stream ID == a task ID).
3333 *
3334 * Setting up streams involves allocating the same size stream context array
3335 * for each endpoint and issuing a configure endpoint command for all endpoints.
3336 *
3337 * Don't allow the call to succeed if one endpoint only supports one stream
3338 * (which means it doesn't support streams at all).
3339 *
3340 * Drivers may get less stream IDs than they asked for, if the host controller
3341 * hardware or endpoints claim they can't support the number of requested
3342 * stream IDs.
3343 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3344 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3345 struct usb_host_endpoint **eps, unsigned int num_eps,
3346 unsigned int num_streams, gfp_t mem_flags)
3347 {
3348 int i, ret;
3349 struct xhci_hcd *xhci;
3350 struct xhci_virt_device *vdev;
3351 struct xhci_command *config_cmd;
3352 struct xhci_input_control_ctx *ctrl_ctx;
3353 unsigned int ep_index;
3354 unsigned int num_stream_ctxs;
3355 unsigned int max_packet;
3356 unsigned long flags;
3357 u32 changed_ep_bitmask = 0;
3358
3359 if (!eps)
3360 return -EINVAL;
3361
3362 /* Add one to the number of streams requested to account for
3363 * stream 0 that is reserved for xHCI usage.
3364 */
3365 num_streams += 1;
3366 xhci = hcd_to_xhci(hcd);
3367 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3368 num_streams);
3369
3370 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3371 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3372 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3373 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3374 return -ENOSYS;
3375 }
3376
3377 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3378 if (!config_cmd)
3379 return -ENOMEM;
3380
3381 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3382 if (!ctrl_ctx) {
3383 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3384 __func__);
3385 xhci_free_command(xhci, config_cmd);
3386 return -ENOMEM;
3387 }
3388
3389 /* Check to make sure all endpoints are not already configured for
3390 * streams. While we're at it, find the maximum number of streams that
3391 * all the endpoints will support and check for duplicate endpoints.
3392 */
3393 spin_lock_irqsave(&xhci->lock, flags);
3394 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3395 num_eps, &num_streams, &changed_ep_bitmask);
3396 if (ret < 0) {
3397 xhci_free_command(xhci, config_cmd);
3398 spin_unlock_irqrestore(&xhci->lock, flags);
3399 return ret;
3400 }
3401 if (num_streams <= 1) {
3402 xhci_warn(xhci, "WARN: endpoints can't handle "
3403 "more than one stream.\n");
3404 xhci_free_command(xhci, config_cmd);
3405 spin_unlock_irqrestore(&xhci->lock, flags);
3406 return -EINVAL;
3407 }
3408 vdev = xhci->devs[udev->slot_id];
3409 /* Mark each endpoint as being in transition, so
3410 * xhci_urb_enqueue() will reject all URBs.
3411 */
3412 for (i = 0; i < num_eps; i++) {
3413 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3414 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3415 }
3416 spin_unlock_irqrestore(&xhci->lock, flags);
3417
3418 /* Setup internal data structures and allocate HW data structures for
3419 * streams (but don't install the HW structures in the input context
3420 * until we're sure all memory allocation succeeded).
3421 */
3422 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3423 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3424 num_stream_ctxs, num_streams);
3425
3426 for (i = 0; i < num_eps; i++) {
3427 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3428 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3429 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3430 num_stream_ctxs,
3431 num_streams,
3432 max_packet, mem_flags);
3433 if (!vdev->eps[ep_index].stream_info)
3434 goto cleanup;
3435 /* Set maxPstreams in endpoint context and update deq ptr to
3436 * point to stream context array. FIXME
3437 */
3438 }
3439
3440 /* Set up the input context for a configure endpoint command. */
3441 for (i = 0; i < num_eps; i++) {
3442 struct xhci_ep_ctx *ep_ctx;
3443
3444 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3445 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3446
3447 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3448 vdev->out_ctx, ep_index);
3449 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3450 vdev->eps[ep_index].stream_info);
3451 }
3452 /* Tell the HW to drop its old copy of the endpoint context info
3453 * and add the updated copy from the input context.
3454 */
3455 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3456 vdev->out_ctx, ctrl_ctx,
3457 changed_ep_bitmask, changed_ep_bitmask);
3458
3459 /* Issue and wait for the configure endpoint command */
3460 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3461 false, false);
3462
3463 /* xHC rejected the configure endpoint command for some reason, so we
3464 * leave the old ring intact and free our internal streams data
3465 * structure.
3466 */
3467 if (ret < 0)
3468 goto cleanup;
3469
3470 spin_lock_irqsave(&xhci->lock, flags);
3471 for (i = 0; i < num_eps; i++) {
3472 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3473 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3474 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3475 udev->slot_id, ep_index);
3476 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3477 }
3478 xhci_free_command(xhci, config_cmd);
3479 spin_unlock_irqrestore(&xhci->lock, flags);
3480
3481 for (i = 0; i < num_eps; i++) {
3482 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3483 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3484 }
3485 /* Subtract 1 for stream 0, which drivers can't use */
3486 return num_streams - 1;
3487
3488 cleanup:
3489 /* If it didn't work, free the streams! */
3490 for (i = 0; i < num_eps; i++) {
3491 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3492 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3493 vdev->eps[ep_index].stream_info = NULL;
3494 /* FIXME Unset maxPstreams in endpoint context and
3495 * update deq ptr to point to normal string ring.
3496 */
3497 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3498 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3499 xhci_endpoint_zero(xhci, vdev, eps[i]);
3500 }
3501 xhci_free_command(xhci, config_cmd);
3502 return -ENOMEM;
3503 }
3504
3505 /* Transition the endpoint from using streams to being a "normal" endpoint
3506 * without streams.
3507 *
3508 * Modify the endpoint context state, submit a configure endpoint command,
3509 * and free all endpoint rings for streams if that completes successfully.
3510 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3511 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512 struct usb_host_endpoint **eps, unsigned int num_eps,
3513 gfp_t mem_flags)
3514 {
3515 int i, ret;
3516 struct xhci_hcd *xhci;
3517 struct xhci_virt_device *vdev;
3518 struct xhci_command *command;
3519 struct xhci_input_control_ctx *ctrl_ctx;
3520 unsigned int ep_index;
3521 unsigned long flags;
3522 u32 changed_ep_bitmask;
3523
3524 xhci = hcd_to_xhci(hcd);
3525 vdev = xhci->devs[udev->slot_id];
3526
3527 /* Set up a configure endpoint command to remove the streams rings */
3528 spin_lock_irqsave(&xhci->lock, flags);
3529 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3530 udev, eps, num_eps);
3531 if (changed_ep_bitmask == 0) {
3532 spin_unlock_irqrestore(&xhci->lock, flags);
3533 return -EINVAL;
3534 }
3535
3536 /* Use the xhci_command structure from the first endpoint. We may have
3537 * allocated too many, but the driver may call xhci_free_streams() for
3538 * each endpoint it grouped into one call to xhci_alloc_streams().
3539 */
3540 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3541 command = vdev->eps[ep_index].stream_info->free_streams_command;
3542 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3543 if (!ctrl_ctx) {
3544 spin_unlock_irqrestore(&xhci->lock, flags);
3545 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3546 __func__);
3547 return -EINVAL;
3548 }
3549
3550 for (i = 0; i < num_eps; i++) {
3551 struct xhci_ep_ctx *ep_ctx;
3552
3553 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3554 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3555 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3556 EP_GETTING_NO_STREAMS;
3557
3558 xhci_endpoint_copy(xhci, command->in_ctx,
3559 vdev->out_ctx, ep_index);
3560 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3561 &vdev->eps[ep_index]);
3562 }
3563 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3564 vdev->out_ctx, ctrl_ctx,
3565 changed_ep_bitmask, changed_ep_bitmask);
3566 spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568 /* Issue and wait for the configure endpoint command,
3569 * which must succeed.
3570 */
3571 ret = xhci_configure_endpoint(xhci, udev, command,
3572 false, true);
3573
3574 /* xHC rejected the configure endpoint command for some reason, so we
3575 * leave the streams rings intact.
3576 */
3577 if (ret < 0)
3578 return ret;
3579
3580 spin_lock_irqsave(&xhci->lock, flags);
3581 for (i = 0; i < num_eps; i++) {
3582 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3583 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3584 vdev->eps[ep_index].stream_info = NULL;
3585 /* FIXME Unset maxPstreams in endpoint context and
3586 * update deq ptr to point to normal string ring.
3587 */
3588 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3589 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3590 }
3591 spin_unlock_irqrestore(&xhci->lock, flags);
3592
3593 return 0;
3594 }
3595
3596 /*
3597 * Deletes endpoint resources for endpoints that were active before a Reset
3598 * Device command, or a Disable Slot command. The Reset Device command leaves
3599 * the control endpoint intact, whereas the Disable Slot command deletes it.
3600 *
3601 * Must be called with xhci->lock held.
3602 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3603 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3604 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3605 {
3606 int i;
3607 unsigned int num_dropped_eps = 0;
3608 unsigned int drop_flags = 0;
3609
3610 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3611 if (virt_dev->eps[i].ring) {
3612 drop_flags |= 1 << i;
3613 num_dropped_eps++;
3614 }
3615 }
3616 xhci->num_active_eps -= num_dropped_eps;
3617 if (num_dropped_eps)
3618 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3619 "Dropped %u ep ctxs, flags = 0x%x, "
3620 "%u now active.",
3621 num_dropped_eps, drop_flags,
3622 xhci->num_active_eps);
3623 }
3624
3625 /*
3626 * This submits a Reset Device Command, which will set the device state to 0,
3627 * set the device address to 0, and disable all the endpoints except the default
3628 * control endpoint. The USB core should come back and call
3629 * xhci_address_device(), and then re-set up the configuration. If this is
3630 * called because of a usb_reset_and_verify_device(), then the old alternate
3631 * settings will be re-installed through the normal bandwidth allocation
3632 * functions.
3633 *
3634 * Wait for the Reset Device command to finish. Remove all structures
3635 * associated with the endpoints that were disabled. Clear the input device
3636 * structure? Reset the control endpoint 0 max packet size?
3637 *
3638 * If the virt_dev to be reset does not exist or does not match the udev,
3639 * it means the device is lost, possibly due to the xHC restore error and
3640 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3641 * re-allocate the device.
3642 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3643 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3644 struct usb_device *udev)
3645 {
3646 int ret, i;
3647 unsigned long flags;
3648 struct xhci_hcd *xhci;
3649 unsigned int slot_id;
3650 struct xhci_virt_device *virt_dev;
3651 struct xhci_command *reset_device_cmd;
3652 struct xhci_slot_ctx *slot_ctx;
3653 int old_active_eps = 0;
3654
3655 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3656 if (ret <= 0)
3657 return ret;
3658 xhci = hcd_to_xhci(hcd);
3659 slot_id = udev->slot_id;
3660 virt_dev = xhci->devs[slot_id];
3661 if (!virt_dev) {
3662 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3663 "not exist. Re-allocate the device\n", slot_id);
3664 ret = xhci_alloc_dev(hcd, udev);
3665 if (ret == 1)
3666 return 0;
3667 else
3668 return -EINVAL;
3669 }
3670
3671 if (virt_dev->tt_info)
3672 old_active_eps = virt_dev->tt_info->active_eps;
3673
3674 if (virt_dev->udev != udev) {
3675 /* If the virt_dev and the udev does not match, this virt_dev
3676 * may belong to another udev.
3677 * Re-allocate the device.
3678 */
3679 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3680 "not match the udev. Re-allocate the device\n",
3681 slot_id);
3682 ret = xhci_alloc_dev(hcd, udev);
3683 if (ret == 1)
3684 return 0;
3685 else
3686 return -EINVAL;
3687 }
3688
3689 /* If device is not setup, there is no point in resetting it */
3690 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3691 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3692 SLOT_STATE_DISABLED)
3693 return 0;
3694
3695 trace_xhci_discover_or_reset_device(slot_ctx);
3696
3697 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3698 /* Allocate the command structure that holds the struct completion.
3699 * Assume we're in process context, since the normal device reset
3700 * process has to wait for the device anyway. Storage devices are
3701 * reset as part of error handling, so use GFP_NOIO instead of
3702 * GFP_KERNEL.
3703 */
3704 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3705 if (!reset_device_cmd) {
3706 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3707 return -ENOMEM;
3708 }
3709
3710 /* Attempt to submit the Reset Device command to the command ring */
3711 spin_lock_irqsave(&xhci->lock, flags);
3712
3713 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3714 if (ret) {
3715 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3716 spin_unlock_irqrestore(&xhci->lock, flags);
3717 goto command_cleanup;
3718 }
3719 xhci_ring_cmd_db(xhci);
3720 spin_unlock_irqrestore(&xhci->lock, flags);
3721
3722 /* Wait for the Reset Device command to finish */
3723 wait_for_completion(reset_device_cmd->completion);
3724
3725 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3726 * unless we tried to reset a slot ID that wasn't enabled,
3727 * or the device wasn't in the addressed or configured state.
3728 */
3729 ret = reset_device_cmd->status;
3730 switch (ret) {
3731 case COMP_COMMAND_ABORTED:
3732 case COMP_COMMAND_RING_STOPPED:
3733 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3734 ret = -ETIME;
3735 goto command_cleanup;
3736 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3737 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3738 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3739 slot_id,
3740 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3741 xhci_dbg(xhci, "Not freeing device rings.\n");
3742 /* Don't treat this as an error. May change my mind later. */
3743 ret = 0;
3744 goto command_cleanup;
3745 case COMP_SUCCESS:
3746 xhci_dbg(xhci, "Successful reset device command.\n");
3747 break;
3748 default:
3749 if (xhci_is_vendor_info_code(xhci, ret))
3750 break;
3751 xhci_warn(xhci, "Unknown completion code %u for "
3752 "reset device command.\n", ret);
3753 ret = -EINVAL;
3754 goto command_cleanup;
3755 }
3756
3757 /* Free up host controller endpoint resources */
3758 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3759 spin_lock_irqsave(&xhci->lock, flags);
3760 /* Don't delete the default control endpoint resources */
3761 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3762 spin_unlock_irqrestore(&xhci->lock, flags);
3763 }
3764
3765 /* Everything but endpoint 0 is disabled, so free the rings. */
3766 for (i = 1; i < 31; i++) {
3767 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3768
3769 if (ep->ep_state & EP_HAS_STREAMS) {
3770 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3771 xhci_get_endpoint_address(i));
3772 xhci_free_stream_info(xhci, ep->stream_info);
3773 ep->stream_info = NULL;
3774 ep->ep_state &= ~EP_HAS_STREAMS;
3775 }
3776
3777 if (ep->ring) {
3778 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3779 xhci_free_endpoint_ring(xhci, virt_dev, i);
3780 }
3781 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3782 xhci_drop_ep_from_interval_table(xhci,
3783 &virt_dev->eps[i].bw_info,
3784 virt_dev->bw_table,
3785 udev,
3786 &virt_dev->eps[i],
3787 virt_dev->tt_info);
3788 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3789 }
3790 /* If necessary, update the number of active TTs on this root port */
3791 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3792 virt_dev->flags = 0;
3793 ret = 0;
3794
3795 command_cleanup:
3796 xhci_free_command(xhci, reset_device_cmd);
3797 return ret;
3798 }
3799
3800 /*
3801 * At this point, the struct usb_device is about to go away, the device has
3802 * disconnected, and all traffic has been stopped and the endpoints have been
3803 * disabled. Free any HC data structures associated with that device.
3804 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3805 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3806 {
3807 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3808 struct xhci_virt_device *virt_dev;
3809 struct xhci_slot_ctx *slot_ctx;
3810 unsigned long flags;
3811 int i, ret;
3812
3813 /*
3814 * We called pm_runtime_get_noresume when the device was attached.
3815 * Decrement the counter here to allow controller to runtime suspend
3816 * if no devices remain.
3817 */
3818 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3819 pm_runtime_put_noidle(hcd->self.controller);
3820
3821 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3822 /* If the host is halted due to driver unload, we still need to free the
3823 * device.
3824 */
3825 if (ret <= 0 && ret != -ENODEV)
3826 return;
3827
3828 virt_dev = xhci->devs[udev->slot_id];
3829 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3830 trace_xhci_free_dev(slot_ctx);
3831
3832 /* Stop any wayward timer functions (which may grab the lock) */
3833 for (i = 0; i < 31; i++)
3834 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3835 virt_dev->udev = NULL;
3836 xhci_disable_slot(xhci, udev->slot_id);
3837
3838 spin_lock_irqsave(&xhci->lock, flags);
3839 xhci_free_virt_device(xhci, udev->slot_id);
3840 spin_unlock_irqrestore(&xhci->lock, flags);
3841
3842 }
3843
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3844 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3845 {
3846 struct xhci_command *command;
3847 unsigned long flags;
3848 u32 state;
3849 int ret;
3850
3851 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3852 if (!command)
3853 return -ENOMEM;
3854
3855 xhci_debugfs_remove_slot(xhci, slot_id);
3856
3857 spin_lock_irqsave(&xhci->lock, flags);
3858 /* Don't disable the slot if the host controller is dead. */
3859 state = readl(&xhci->op_regs->status);
3860 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3861 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3862 spin_unlock_irqrestore(&xhci->lock, flags);
3863 kfree(command);
3864 return -ENODEV;
3865 }
3866
3867 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3868 slot_id);
3869 if (ret) {
3870 spin_unlock_irqrestore(&xhci->lock, flags);
3871 kfree(command);
3872 return ret;
3873 }
3874 xhci_ring_cmd_db(xhci);
3875 spin_unlock_irqrestore(&xhci->lock, flags);
3876
3877 wait_for_completion(command->completion);
3878
3879 if (command->status != COMP_SUCCESS)
3880 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3881 slot_id, command->status);
3882
3883 xhci_free_command(xhci, command);
3884
3885 return 0;
3886 }
3887
3888 /*
3889 * Checks if we have enough host controller resources for the default control
3890 * endpoint.
3891 *
3892 * Must be called with xhci->lock held.
3893 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3894 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3895 {
3896 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3897 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3898 "Not enough ep ctxs: "
3899 "%u active, need to add 1, limit is %u.",
3900 xhci->num_active_eps, xhci->limit_active_eps);
3901 return -ENOMEM;
3902 }
3903 xhci->num_active_eps += 1;
3904 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3905 "Adding 1 ep ctx, %u now active.",
3906 xhci->num_active_eps);
3907 return 0;
3908 }
3909
3910
3911 /*
3912 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3913 * timed out, or allocating memory failed. Returns 1 on success.
3914 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3915 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3916 {
3917 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3918 struct xhci_virt_device *vdev;
3919 struct xhci_slot_ctx *slot_ctx;
3920 unsigned long flags;
3921 int ret, slot_id;
3922 struct xhci_command *command;
3923
3924 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3925 if (!command)
3926 return 0;
3927
3928 spin_lock_irqsave(&xhci->lock, flags);
3929 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3930 if (ret) {
3931 spin_unlock_irqrestore(&xhci->lock, flags);
3932 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3933 xhci_free_command(xhci, command);
3934 return 0;
3935 }
3936 xhci_ring_cmd_db(xhci);
3937 spin_unlock_irqrestore(&xhci->lock, flags);
3938
3939 wait_for_completion(command->completion);
3940 slot_id = command->slot_id;
3941
3942 if (!slot_id || command->status != COMP_SUCCESS) {
3943 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3944 xhci_trb_comp_code_string(command->status));
3945 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3946 HCS_MAX_SLOTS(
3947 readl(&xhci->cap_regs->hcs_params1)));
3948 xhci_free_command(xhci, command);
3949 return 0;
3950 }
3951
3952 xhci_free_command(xhci, command);
3953
3954 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3955 spin_lock_irqsave(&xhci->lock, flags);
3956 ret = xhci_reserve_host_control_ep_resources(xhci);
3957 if (ret) {
3958 spin_unlock_irqrestore(&xhci->lock, flags);
3959 xhci_warn(xhci, "Not enough host resources, "
3960 "active endpoint contexts = %u\n",
3961 xhci->num_active_eps);
3962 goto disable_slot;
3963 }
3964 spin_unlock_irqrestore(&xhci->lock, flags);
3965 }
3966 /* Use GFP_NOIO, since this function can be called from
3967 * xhci_discover_or_reset_device(), which may be called as part of
3968 * mass storage driver error handling.
3969 */
3970 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3971 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3972 goto disable_slot;
3973 }
3974 vdev = xhci->devs[slot_id];
3975 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3976 trace_xhci_alloc_dev(slot_ctx);
3977
3978 udev->slot_id = slot_id;
3979
3980 xhci_debugfs_create_slot(xhci, slot_id);
3981
3982 /*
3983 * If resetting upon resume, we can't put the controller into runtime
3984 * suspend if there is a device attached.
3985 */
3986 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3987 pm_runtime_get_noresume(hcd->self.controller);
3988
3989 /* Is this a LS or FS device under a HS hub? */
3990 /* Hub or peripherial? */
3991 return 1;
3992
3993 disable_slot:
3994 xhci_disable_slot(xhci, udev->slot_id);
3995 xhci_free_virt_device(xhci, udev->slot_id);
3996
3997 return 0;
3998 }
3999
4000 /*
4001 * Issue an Address Device command and optionally send a corresponding
4002 * SetAddress request to the device.
4003 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4004 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4005 enum xhci_setup_dev setup)
4006 {
4007 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4008 unsigned long flags;
4009 struct xhci_virt_device *virt_dev;
4010 int ret = 0;
4011 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4012 struct xhci_slot_ctx *slot_ctx;
4013 struct xhci_input_control_ctx *ctrl_ctx;
4014 u64 temp_64;
4015 struct xhci_command *command = NULL;
4016
4017 mutex_lock(&xhci->mutex);
4018
4019 if (xhci->xhc_state) { /* dying, removing or halted */
4020 ret = -ESHUTDOWN;
4021 goto out;
4022 }
4023
4024 if (!udev->slot_id) {
4025 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4026 "Bad Slot ID %d", udev->slot_id);
4027 ret = -EINVAL;
4028 goto out;
4029 }
4030
4031 virt_dev = xhci->devs[udev->slot_id];
4032
4033 if (WARN_ON(!virt_dev)) {
4034 /*
4035 * In plug/unplug torture test with an NEC controller,
4036 * a zero-dereference was observed once due to virt_dev = 0.
4037 * Print useful debug rather than crash if it is observed again!
4038 */
4039 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4040 udev->slot_id);
4041 ret = -EINVAL;
4042 goto out;
4043 }
4044 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4045 trace_xhci_setup_device_slot(slot_ctx);
4046
4047 if (setup == SETUP_CONTEXT_ONLY) {
4048 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4049 SLOT_STATE_DEFAULT) {
4050 xhci_dbg(xhci, "Slot already in default state\n");
4051 goto out;
4052 }
4053 }
4054
4055 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4056 if (!command) {
4057 ret = -ENOMEM;
4058 goto out;
4059 }
4060
4061 command->in_ctx = virt_dev->in_ctx;
4062
4063 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4064 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4065 if (!ctrl_ctx) {
4066 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4067 __func__);
4068 ret = -EINVAL;
4069 goto out;
4070 }
4071 /*
4072 * If this is the first Set Address since device plug-in or
4073 * virt_device realloaction after a resume with an xHCI power loss,
4074 * then set up the slot context.
4075 */
4076 if (!slot_ctx->dev_info)
4077 xhci_setup_addressable_virt_dev(xhci, udev);
4078 /* Otherwise, update the control endpoint ring enqueue pointer. */
4079 else
4080 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4081 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4082 ctrl_ctx->drop_flags = 0;
4083
4084 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4085 le32_to_cpu(slot_ctx->dev_info) >> 27);
4086
4087 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4088 spin_lock_irqsave(&xhci->lock, flags);
4089 trace_xhci_setup_device(virt_dev);
4090 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4091 udev->slot_id, setup);
4092 if (ret) {
4093 spin_unlock_irqrestore(&xhci->lock, flags);
4094 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4095 "FIXME: allocate a command ring segment");
4096 goto out;
4097 }
4098 xhci_ring_cmd_db(xhci);
4099 spin_unlock_irqrestore(&xhci->lock, flags);
4100
4101 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4102 wait_for_completion(command->completion);
4103
4104 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4105 * the SetAddress() "recovery interval" required by USB and aborting the
4106 * command on a timeout.
4107 */
4108 switch (command->status) {
4109 case COMP_COMMAND_ABORTED:
4110 case COMP_COMMAND_RING_STOPPED:
4111 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4112 ret = -ETIME;
4113 break;
4114 case COMP_CONTEXT_STATE_ERROR:
4115 case COMP_SLOT_NOT_ENABLED_ERROR:
4116 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4117 act, udev->slot_id);
4118 ret = -EINVAL;
4119 break;
4120 case COMP_USB_TRANSACTION_ERROR:
4121 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4122
4123 mutex_unlock(&xhci->mutex);
4124 ret = xhci_disable_slot(xhci, udev->slot_id);
4125 xhci_free_virt_device(xhci, udev->slot_id);
4126 if (!ret)
4127 xhci_alloc_dev(hcd, udev);
4128 kfree(command->completion);
4129 kfree(command);
4130 return -EPROTO;
4131 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4132 dev_warn(&udev->dev,
4133 "ERROR: Incompatible device for setup %s command\n", act);
4134 ret = -ENODEV;
4135 break;
4136 case COMP_SUCCESS:
4137 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4138 "Successful setup %s command", act);
4139 break;
4140 default:
4141 xhci_err(xhci,
4142 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4143 act, command->status);
4144 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4145 ret = -EINVAL;
4146 break;
4147 }
4148 if (ret)
4149 goto out;
4150 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4151 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4152 "Op regs DCBAA ptr = %#016llx", temp_64);
4153 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4154 "Slot ID %d dcbaa entry @%p = %#016llx",
4155 udev->slot_id,
4156 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4157 (unsigned long long)
4158 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4159 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4160 "Output Context DMA address = %#08llx",
4161 (unsigned long long)virt_dev->out_ctx->dma);
4162 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4163 le32_to_cpu(slot_ctx->dev_info) >> 27);
4164 /*
4165 * USB core uses address 1 for the roothubs, so we add one to the
4166 * address given back to us by the HC.
4167 */
4168 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4169 le32_to_cpu(slot_ctx->dev_info) >> 27);
4170 /* Zero the input context control for later use */
4171 ctrl_ctx->add_flags = 0;
4172 ctrl_ctx->drop_flags = 0;
4173 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4174 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4175
4176 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4177 "Internal device address = %d",
4178 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4179 out:
4180 mutex_unlock(&xhci->mutex);
4181 if (command) {
4182 kfree(command->completion);
4183 kfree(command);
4184 }
4185 return ret;
4186 }
4187
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4188 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4189 {
4190 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4191 }
4192
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4193 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4194 {
4195 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4196 }
4197
4198 /*
4199 * Transfer the port index into real index in the HW port status
4200 * registers. Caculate offset between the port's PORTSC register
4201 * and port status base. Divide the number of per port register
4202 * to get the real index. The raw port number bases 1.
4203 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4204 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4205 {
4206 struct xhci_hub *rhub;
4207
4208 rhub = xhci_get_rhub(hcd);
4209 return rhub->ports[port1 - 1]->hw_portnum + 1;
4210 }
4211
4212 /*
4213 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4214 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4215 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4216 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4217 struct usb_device *udev, u16 max_exit_latency)
4218 {
4219 struct xhci_virt_device *virt_dev;
4220 struct xhci_command *command;
4221 struct xhci_input_control_ctx *ctrl_ctx;
4222 struct xhci_slot_ctx *slot_ctx;
4223 unsigned long flags;
4224 int ret;
4225
4226 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4227 if (!command)
4228 return -ENOMEM;
4229
4230 spin_lock_irqsave(&xhci->lock, flags);
4231
4232 virt_dev = xhci->devs[udev->slot_id];
4233
4234 /*
4235 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4236 * xHC was re-initialized. Exit latency will be set later after
4237 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4238 */
4239
4240 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4241 spin_unlock_irqrestore(&xhci->lock, flags);
4242 xhci_free_command(xhci, command);
4243 return 0;
4244 }
4245
4246 /* Attempt to issue an Evaluate Context command to change the MEL. */
4247 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4248 if (!ctrl_ctx) {
4249 spin_unlock_irqrestore(&xhci->lock, flags);
4250 xhci_free_command(xhci, command);
4251 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4252 __func__);
4253 return -ENOMEM;
4254 }
4255
4256 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4257 spin_unlock_irqrestore(&xhci->lock, flags);
4258
4259 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4260 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4261 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4262 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4263 slot_ctx->dev_state = 0;
4264
4265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4266 "Set up evaluate context for LPM MEL change.");
4267
4268 /* Issue and wait for the evaluate context command. */
4269 ret = xhci_configure_endpoint(xhci, udev, command,
4270 true, true);
4271
4272 if (!ret) {
4273 spin_lock_irqsave(&xhci->lock, flags);
4274 virt_dev->current_mel = max_exit_latency;
4275 spin_unlock_irqrestore(&xhci->lock, flags);
4276 }
4277
4278 xhci_free_command(xhci, command);
4279
4280 return ret;
4281 }
4282
4283 #ifdef CONFIG_PM
4284
4285 /* BESL to HIRD Encoding array for USB2 LPM */
4286 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4287 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4288
4289 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4290 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4291 struct usb_device *udev)
4292 {
4293 int u2del, besl, besl_host;
4294 int besl_device = 0;
4295 u32 field;
4296
4297 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4298 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4299
4300 if (field & USB_BESL_SUPPORT) {
4301 for (besl_host = 0; besl_host < 16; besl_host++) {
4302 if (xhci_besl_encoding[besl_host] >= u2del)
4303 break;
4304 }
4305 /* Use baseline BESL value as default */
4306 if (field & USB_BESL_BASELINE_VALID)
4307 besl_device = USB_GET_BESL_BASELINE(field);
4308 else if (field & USB_BESL_DEEP_VALID)
4309 besl_device = USB_GET_BESL_DEEP(field);
4310 } else {
4311 if (u2del <= 50)
4312 besl_host = 0;
4313 else
4314 besl_host = (u2del - 51) / 75 + 1;
4315 }
4316
4317 besl = besl_host + besl_device;
4318 if (besl > 15)
4319 besl = 15;
4320
4321 return besl;
4322 }
4323
4324 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4325 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4326 {
4327 u32 field;
4328 int l1;
4329 int besld = 0;
4330 int hirdm = 0;
4331
4332 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4333
4334 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4335 l1 = udev->l1_params.timeout / 256;
4336
4337 /* device has preferred BESLD */
4338 if (field & USB_BESL_DEEP_VALID) {
4339 besld = USB_GET_BESL_DEEP(field);
4340 hirdm = 1;
4341 }
4342
4343 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4344 }
4345
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4346 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4347 struct usb_device *udev, int enable)
4348 {
4349 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4350 struct xhci_port **ports;
4351 __le32 __iomem *pm_addr, *hlpm_addr;
4352 u32 pm_val, hlpm_val, field;
4353 unsigned int port_num;
4354 unsigned long flags;
4355 int hird, exit_latency;
4356 int ret;
4357
4358 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4359 return -EPERM;
4360
4361 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4362 !udev->lpm_capable)
4363 return -EPERM;
4364
4365 if (!udev->parent || udev->parent->parent ||
4366 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4367 return -EPERM;
4368
4369 if (udev->usb2_hw_lpm_capable != 1)
4370 return -EPERM;
4371
4372 spin_lock_irqsave(&xhci->lock, flags);
4373
4374 ports = xhci->usb2_rhub.ports;
4375 port_num = udev->portnum - 1;
4376 pm_addr = ports[port_num]->addr + PORTPMSC;
4377 pm_val = readl(pm_addr);
4378 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4379
4380 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4381 enable ? "enable" : "disable", port_num + 1);
4382
4383 if (enable) {
4384 /* Host supports BESL timeout instead of HIRD */
4385 if (udev->usb2_hw_lpm_besl_capable) {
4386 /* if device doesn't have a preferred BESL value use a
4387 * default one which works with mixed HIRD and BESL
4388 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4389 */
4390 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4391 if ((field & USB_BESL_SUPPORT) &&
4392 (field & USB_BESL_BASELINE_VALID))
4393 hird = USB_GET_BESL_BASELINE(field);
4394 else
4395 hird = udev->l1_params.besl;
4396
4397 exit_latency = xhci_besl_encoding[hird];
4398 spin_unlock_irqrestore(&xhci->lock, flags);
4399
4400 ret = xhci_change_max_exit_latency(xhci, udev,
4401 exit_latency);
4402 if (ret < 0)
4403 return ret;
4404 spin_lock_irqsave(&xhci->lock, flags);
4405
4406 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4407 writel(hlpm_val, hlpm_addr);
4408 /* flush write */
4409 readl(hlpm_addr);
4410 } else {
4411 hird = xhci_calculate_hird_besl(xhci, udev);
4412 }
4413
4414 pm_val &= ~PORT_HIRD_MASK;
4415 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4416 writel(pm_val, pm_addr);
4417 pm_val = readl(pm_addr);
4418 pm_val |= PORT_HLE;
4419 writel(pm_val, pm_addr);
4420 /* flush write */
4421 readl(pm_addr);
4422 } else {
4423 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4424 writel(pm_val, pm_addr);
4425 /* flush write */
4426 readl(pm_addr);
4427 if (udev->usb2_hw_lpm_besl_capable) {
4428 spin_unlock_irqrestore(&xhci->lock, flags);
4429 xhci_change_max_exit_latency(xhci, udev, 0);
4430 readl_poll_timeout(ports[port_num]->addr, pm_val,
4431 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4432 100, 10000);
4433 return 0;
4434 }
4435 }
4436
4437 spin_unlock_irqrestore(&xhci->lock, flags);
4438 return 0;
4439 }
4440
4441 /* check if a usb2 port supports a given extened capability protocol
4442 * only USB2 ports extended protocol capability values are cached.
4443 * Return 1 if capability is supported
4444 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4445 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4446 unsigned capability)
4447 {
4448 u32 port_offset, port_count;
4449 int i;
4450
4451 for (i = 0; i < xhci->num_ext_caps; i++) {
4452 if (xhci->ext_caps[i] & capability) {
4453 /* port offsets starts at 1 */
4454 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4455 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4456 if (port >= port_offset &&
4457 port < port_offset + port_count)
4458 return 1;
4459 }
4460 }
4461 return 0;
4462 }
4463
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4464 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4465 {
4466 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4467 int portnum = udev->portnum - 1;
4468
4469 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4470 return 0;
4471
4472 /* we only support lpm for non-hub device connected to root hub yet */
4473 if (!udev->parent || udev->parent->parent ||
4474 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4475 return 0;
4476
4477 if (xhci->hw_lpm_support == 1 &&
4478 xhci_check_usb2_port_capability(
4479 xhci, portnum, XHCI_HLC)) {
4480 udev->usb2_hw_lpm_capable = 1;
4481 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4482 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4483 if (xhci_check_usb2_port_capability(xhci, portnum,
4484 XHCI_BLC))
4485 udev->usb2_hw_lpm_besl_capable = 1;
4486 }
4487
4488 return 0;
4489 }
4490
4491 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4492
4493 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4494 static unsigned long long xhci_service_interval_to_ns(
4495 struct usb_endpoint_descriptor *desc)
4496 {
4497 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4498 }
4499
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4500 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4501 enum usb3_link_state state)
4502 {
4503 unsigned long long sel;
4504 unsigned long long pel;
4505 unsigned int max_sel_pel;
4506 char *state_name;
4507
4508 switch (state) {
4509 case USB3_LPM_U1:
4510 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4511 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4512 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4513 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4514 state_name = "U1";
4515 break;
4516 case USB3_LPM_U2:
4517 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4518 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4519 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4520 state_name = "U2";
4521 break;
4522 default:
4523 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4524 __func__);
4525 return USB3_LPM_DISABLED;
4526 }
4527
4528 if (sel <= max_sel_pel && pel <= max_sel_pel)
4529 return USB3_LPM_DEVICE_INITIATED;
4530
4531 if (sel > max_sel_pel)
4532 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4533 "due to long SEL %llu ms\n",
4534 state_name, sel);
4535 else
4536 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4537 "due to long PEL %llu ms\n",
4538 state_name, pel);
4539 return USB3_LPM_DISABLED;
4540 }
4541
4542 /* The U1 timeout should be the maximum of the following values:
4543 * - For control endpoints, U1 system exit latency (SEL) * 3
4544 * - For bulk endpoints, U1 SEL * 5
4545 * - For interrupt endpoints:
4546 * - Notification EPs, U1 SEL * 3
4547 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4548 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4549 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4550 static unsigned long long xhci_calculate_intel_u1_timeout(
4551 struct usb_device *udev,
4552 struct usb_endpoint_descriptor *desc)
4553 {
4554 unsigned long long timeout_ns;
4555 int ep_type;
4556 int intr_type;
4557
4558 ep_type = usb_endpoint_type(desc);
4559 switch (ep_type) {
4560 case USB_ENDPOINT_XFER_CONTROL:
4561 timeout_ns = udev->u1_params.sel * 3;
4562 break;
4563 case USB_ENDPOINT_XFER_BULK:
4564 timeout_ns = udev->u1_params.sel * 5;
4565 break;
4566 case USB_ENDPOINT_XFER_INT:
4567 intr_type = usb_endpoint_interrupt_type(desc);
4568 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4569 timeout_ns = udev->u1_params.sel * 3;
4570 break;
4571 }
4572 /* Otherwise the calculation is the same as isoc eps */
4573 fallthrough;
4574 case USB_ENDPOINT_XFER_ISOC:
4575 timeout_ns = xhci_service_interval_to_ns(desc);
4576 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4577 if (timeout_ns < udev->u1_params.sel * 2)
4578 timeout_ns = udev->u1_params.sel * 2;
4579 break;
4580 default:
4581 return 0;
4582 }
4583
4584 return timeout_ns;
4585 }
4586
4587 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4588 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4589 struct usb_device *udev,
4590 struct usb_endpoint_descriptor *desc)
4591 {
4592 unsigned long long timeout_ns;
4593
4594 /* Prevent U1 if service interval is shorter than U1 exit latency */
4595 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4596 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4597 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4598 return USB3_LPM_DISABLED;
4599 }
4600 }
4601
4602 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4603 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4604 else
4605 timeout_ns = udev->u1_params.sel;
4606
4607 /* The U1 timeout is encoded in 1us intervals.
4608 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4609 */
4610 if (timeout_ns == USB3_LPM_DISABLED)
4611 timeout_ns = 1;
4612 else
4613 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4614
4615 /* If the necessary timeout value is bigger than what we can set in the
4616 * USB 3.0 hub, we have to disable hub-initiated U1.
4617 */
4618 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4619 return timeout_ns;
4620 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4621 "due to long timeout %llu ms\n", timeout_ns);
4622 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4623 }
4624
4625 /* The U2 timeout should be the maximum of:
4626 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4627 * - largest bInterval of any active periodic endpoint (to avoid going
4628 * into lower power link states between intervals).
4629 * - the U2 Exit Latency of the device
4630 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4631 static unsigned long long xhci_calculate_intel_u2_timeout(
4632 struct usb_device *udev,
4633 struct usb_endpoint_descriptor *desc)
4634 {
4635 unsigned long long timeout_ns;
4636 unsigned long long u2_del_ns;
4637
4638 timeout_ns = 10 * 1000 * 1000;
4639
4640 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4641 (xhci_service_interval_to_ns(desc) > timeout_ns))
4642 timeout_ns = xhci_service_interval_to_ns(desc);
4643
4644 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4645 if (u2_del_ns > timeout_ns)
4646 timeout_ns = u2_del_ns;
4647
4648 return timeout_ns;
4649 }
4650
4651 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4652 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4653 struct usb_device *udev,
4654 struct usb_endpoint_descriptor *desc)
4655 {
4656 unsigned long long timeout_ns;
4657
4658 /* Prevent U2 if service interval is shorter than U2 exit latency */
4659 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4660 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4661 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4662 return USB3_LPM_DISABLED;
4663 }
4664 }
4665
4666 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4667 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4668 else
4669 timeout_ns = udev->u2_params.sel;
4670
4671 /* The U2 timeout is encoded in 256us intervals */
4672 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4673 /* If the necessary timeout value is bigger than what we can set in the
4674 * USB 3.0 hub, we have to disable hub-initiated U2.
4675 */
4676 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4677 return timeout_ns;
4678 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4679 "due to long timeout %llu ms\n", timeout_ns);
4680 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4681 }
4682
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4683 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4684 struct usb_device *udev,
4685 struct usb_endpoint_descriptor *desc,
4686 enum usb3_link_state state,
4687 u16 *timeout)
4688 {
4689 if (state == USB3_LPM_U1)
4690 return xhci_calculate_u1_timeout(xhci, udev, desc);
4691 else if (state == USB3_LPM_U2)
4692 return xhci_calculate_u2_timeout(xhci, udev, desc);
4693
4694 return USB3_LPM_DISABLED;
4695 }
4696
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4697 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4698 struct usb_device *udev,
4699 struct usb_endpoint_descriptor *desc,
4700 enum usb3_link_state state,
4701 u16 *timeout)
4702 {
4703 u16 alt_timeout;
4704
4705 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4706 desc, state, timeout);
4707
4708 /* If we found we can't enable hub-initiated LPM, and
4709 * the U1 or U2 exit latency was too high to allow
4710 * device-initiated LPM as well, then we will disable LPM
4711 * for this device, so stop searching any further.
4712 */
4713 if (alt_timeout == USB3_LPM_DISABLED) {
4714 *timeout = alt_timeout;
4715 return -E2BIG;
4716 }
4717 if (alt_timeout > *timeout)
4718 *timeout = alt_timeout;
4719 return 0;
4720 }
4721
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4722 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4723 struct usb_device *udev,
4724 struct usb_host_interface *alt,
4725 enum usb3_link_state state,
4726 u16 *timeout)
4727 {
4728 int j;
4729
4730 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4731 if (xhci_update_timeout_for_endpoint(xhci, udev,
4732 &alt->endpoint[j].desc, state, timeout))
4733 return -E2BIG;
4734 }
4735 return 0;
4736 }
4737
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4738 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4739 struct usb_device *udev,
4740 enum usb3_link_state state)
4741 {
4742 struct usb_device *parent = udev->parent;
4743 int tier = 1; /* roothub is tier1 */
4744
4745 while (parent) {
4746 parent = parent->parent;
4747 tier++;
4748 }
4749
4750 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4751 goto fail;
4752 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4753 goto fail;
4754
4755 return 0;
4756 fail:
4757 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4758 tier);
4759 return -E2BIG;
4760 }
4761
4762 /* Returns the U1 or U2 timeout that should be enabled.
4763 * If the tier check or timeout setting functions return with a non-zero exit
4764 * code, that means the timeout value has been finalized and we shouldn't look
4765 * at any more endpoints.
4766 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4767 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4768 struct usb_device *udev, enum usb3_link_state state)
4769 {
4770 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4771 struct usb_host_config *config;
4772 char *state_name;
4773 int i;
4774 u16 timeout = USB3_LPM_DISABLED;
4775
4776 if (state == USB3_LPM_U1)
4777 state_name = "U1";
4778 else if (state == USB3_LPM_U2)
4779 state_name = "U2";
4780 else {
4781 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4782 state);
4783 return timeout;
4784 }
4785
4786 /* Gather some information about the currently installed configuration
4787 * and alternate interface settings.
4788 */
4789 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4790 state, &timeout))
4791 return timeout;
4792
4793 config = udev->actconfig;
4794 if (!config)
4795 return timeout;
4796
4797 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4798 struct usb_driver *driver;
4799 struct usb_interface *intf = config->interface[i];
4800
4801 if (!intf)
4802 continue;
4803
4804 /* Check if any currently bound drivers want hub-initiated LPM
4805 * disabled.
4806 */
4807 if (intf->dev.driver) {
4808 driver = to_usb_driver(intf->dev.driver);
4809 if (driver && driver->disable_hub_initiated_lpm) {
4810 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4811 state_name, driver->name);
4812 timeout = xhci_get_timeout_no_hub_lpm(udev,
4813 state);
4814 if (timeout == USB3_LPM_DISABLED)
4815 return timeout;
4816 }
4817 }
4818
4819 /* Not sure how this could happen... */
4820 if (!intf->cur_altsetting)
4821 continue;
4822
4823 if (xhci_update_timeout_for_interface(xhci, udev,
4824 intf->cur_altsetting,
4825 state, &timeout))
4826 return timeout;
4827 }
4828 return timeout;
4829 }
4830
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4831 static int calculate_max_exit_latency(struct usb_device *udev,
4832 enum usb3_link_state state_changed,
4833 u16 hub_encoded_timeout)
4834 {
4835 unsigned long long u1_mel_us = 0;
4836 unsigned long long u2_mel_us = 0;
4837 unsigned long long mel_us = 0;
4838 bool disabling_u1;
4839 bool disabling_u2;
4840 bool enabling_u1;
4841 bool enabling_u2;
4842
4843 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4844 hub_encoded_timeout == USB3_LPM_DISABLED);
4845 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4846 hub_encoded_timeout == USB3_LPM_DISABLED);
4847
4848 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4849 hub_encoded_timeout != USB3_LPM_DISABLED);
4850 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4851 hub_encoded_timeout != USB3_LPM_DISABLED);
4852
4853 /* If U1 was already enabled and we're not disabling it,
4854 * or we're going to enable U1, account for the U1 max exit latency.
4855 */
4856 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4857 enabling_u1)
4858 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4859 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4860 enabling_u2)
4861 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4862
4863 mel_us = max(u1_mel_us, u2_mel_us);
4864
4865 /* xHCI host controller max exit latency field is only 16 bits wide. */
4866 if (mel_us > MAX_EXIT) {
4867 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4868 "is too big.\n", mel_us);
4869 return -E2BIG;
4870 }
4871 return mel_us;
4872 }
4873
4874 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4875 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4876 struct usb_device *udev, enum usb3_link_state state)
4877 {
4878 struct xhci_hcd *xhci;
4879 struct xhci_port *port;
4880 u16 hub_encoded_timeout;
4881 int mel;
4882 int ret;
4883
4884 xhci = hcd_to_xhci(hcd);
4885 /* The LPM timeout values are pretty host-controller specific, so don't
4886 * enable hub-initiated timeouts unless the vendor has provided
4887 * information about their timeout algorithm.
4888 */
4889 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4890 !xhci->devs[udev->slot_id])
4891 return USB3_LPM_DISABLED;
4892
4893 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4894 return USB3_LPM_DISABLED;
4895
4896 /* If connected to root port then check port can handle lpm */
4897 if (udev->parent && !udev->parent->parent) {
4898 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4899 if (port->lpm_incapable)
4900 return USB3_LPM_DISABLED;
4901 }
4902
4903 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4904 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4905 if (mel < 0) {
4906 /* Max Exit Latency is too big, disable LPM. */
4907 hub_encoded_timeout = USB3_LPM_DISABLED;
4908 mel = 0;
4909 }
4910
4911 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4912 if (ret)
4913 return ret;
4914 return hub_encoded_timeout;
4915 }
4916
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4917 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4918 struct usb_device *udev, enum usb3_link_state state)
4919 {
4920 struct xhci_hcd *xhci;
4921 u16 mel;
4922
4923 xhci = hcd_to_xhci(hcd);
4924 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4925 !xhci->devs[udev->slot_id])
4926 return 0;
4927
4928 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4929 return xhci_change_max_exit_latency(xhci, udev, mel);
4930 }
4931 #else /* CONFIG_PM */
4932
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4933 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4934 struct usb_device *udev, int enable)
4935 {
4936 return 0;
4937 }
4938
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4939 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4940 {
4941 return 0;
4942 }
4943
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4944 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4945 struct usb_device *udev, enum usb3_link_state state)
4946 {
4947 return USB3_LPM_DISABLED;
4948 }
4949
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4950 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4951 struct usb_device *udev, enum usb3_link_state state)
4952 {
4953 return 0;
4954 }
4955 #endif /* CONFIG_PM */
4956
4957 /*-------------------------------------------------------------------------*/
4958
4959 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4960 * internal data structures for the device.
4961 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4962 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4963 struct usb_tt *tt, gfp_t mem_flags)
4964 {
4965 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4966 struct xhci_virt_device *vdev;
4967 struct xhci_command *config_cmd;
4968 struct xhci_input_control_ctx *ctrl_ctx;
4969 struct xhci_slot_ctx *slot_ctx;
4970 unsigned long flags;
4971 unsigned think_time;
4972 int ret;
4973
4974 /* Ignore root hubs */
4975 if (!hdev->parent)
4976 return 0;
4977
4978 vdev = xhci->devs[hdev->slot_id];
4979 if (!vdev) {
4980 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4981 return -EINVAL;
4982 }
4983
4984 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4985 if (!config_cmd)
4986 return -ENOMEM;
4987
4988 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4989 if (!ctrl_ctx) {
4990 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4991 __func__);
4992 xhci_free_command(xhci, config_cmd);
4993 return -ENOMEM;
4994 }
4995
4996 spin_lock_irqsave(&xhci->lock, flags);
4997 if (hdev->speed == USB_SPEED_HIGH &&
4998 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4999 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5000 xhci_free_command(xhci, config_cmd);
5001 spin_unlock_irqrestore(&xhci->lock, flags);
5002 return -ENOMEM;
5003 }
5004
5005 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5006 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5007 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5008 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5009 /*
5010 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5011 * but it may be already set to 1 when setup an xHCI virtual
5012 * device, so clear it anyway.
5013 */
5014 if (tt->multi)
5015 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5016 else if (hdev->speed == USB_SPEED_FULL)
5017 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5018
5019 if (xhci->hci_version > 0x95) {
5020 xhci_dbg(xhci, "xHCI version %x needs hub "
5021 "TT think time and number of ports\n",
5022 (unsigned int) xhci->hci_version);
5023 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5024 /* Set TT think time - convert from ns to FS bit times.
5025 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5026 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5027 *
5028 * xHCI 1.0: this field shall be 0 if the device is not a
5029 * High-spped hub.
5030 */
5031 think_time = tt->think_time;
5032 if (think_time != 0)
5033 think_time = (think_time / 666) - 1;
5034 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5035 slot_ctx->tt_info |=
5036 cpu_to_le32(TT_THINK_TIME(think_time));
5037 } else {
5038 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5039 "TT think time or number of ports\n",
5040 (unsigned int) xhci->hci_version);
5041 }
5042 slot_ctx->dev_state = 0;
5043 spin_unlock_irqrestore(&xhci->lock, flags);
5044
5045 xhci_dbg(xhci, "Set up %s for hub device.\n",
5046 (xhci->hci_version > 0x95) ?
5047 "configure endpoint" : "evaluate context");
5048
5049 /* Issue and wait for the configure endpoint or
5050 * evaluate context command.
5051 */
5052 if (xhci->hci_version > 0x95)
5053 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5054 false, false);
5055 else
5056 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5057 true, false);
5058
5059 xhci_free_command(xhci, config_cmd);
5060 return ret;
5061 }
5062 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5063
xhci_get_frame(struct usb_hcd * hcd)5064 static int xhci_get_frame(struct usb_hcd *hcd)
5065 {
5066 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5067 /* EHCI mods by the periodic size. Why? */
5068 return readl(&xhci->run_regs->microframe_index) >> 3;
5069 }
5070
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5071 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5072 {
5073 xhci->usb2_rhub.hcd = hcd;
5074 hcd->speed = HCD_USB2;
5075 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5076 /*
5077 * USB 2.0 roothub under xHCI has an integrated TT,
5078 * (rate matching hub) as opposed to having an OHCI/UHCI
5079 * companion controller.
5080 */
5081 hcd->has_tt = 1;
5082 }
5083
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5084 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5085 {
5086 unsigned int minor_rev;
5087
5088 /*
5089 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5090 * should return 0x31 for sbrn, or that the minor revision
5091 * is a two digit BCD containig minor and sub-minor numbers.
5092 * This was later clarified in xHCI 1.2.
5093 *
5094 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5095 * minor revision set to 0x1 instead of 0x10.
5096 */
5097 if (xhci->usb3_rhub.min_rev == 0x1)
5098 minor_rev = 1;
5099 else
5100 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5101
5102 switch (minor_rev) {
5103 case 2:
5104 hcd->speed = HCD_USB32;
5105 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5106 hcd->self.root_hub->rx_lanes = 2;
5107 hcd->self.root_hub->tx_lanes = 2;
5108 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5109 break;
5110 case 1:
5111 hcd->speed = HCD_USB31;
5112 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5113 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5114 break;
5115 }
5116 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5117 minor_rev, minor_rev ? "Enhanced " : "");
5118
5119 xhci->usb3_rhub.hcd = hcd;
5120 }
5121
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5122 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5123 {
5124 struct xhci_hcd *xhci;
5125 /*
5126 * TODO: Check with DWC3 clients for sysdev according to
5127 * quirks
5128 */
5129 struct device *dev = hcd->self.sysdev;
5130 int retval;
5131
5132 /* Accept arbitrarily long scatter-gather lists */
5133 hcd->self.sg_tablesize = ~0;
5134
5135 /* support to build packet from discontinuous buffers */
5136 hcd->self.no_sg_constraint = 1;
5137
5138 /* XHCI controllers don't stop the ep queue on short packets :| */
5139 hcd->self.no_stop_on_short = 1;
5140
5141 xhci = hcd_to_xhci(hcd);
5142
5143 if (!usb_hcd_is_primary_hcd(hcd)) {
5144 xhci_hcd_init_usb3_data(xhci, hcd);
5145 return 0;
5146 }
5147
5148 mutex_init(&xhci->mutex);
5149 xhci->main_hcd = hcd;
5150 xhci->cap_regs = hcd->regs;
5151 xhci->op_regs = hcd->regs +
5152 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5153 xhci->run_regs = hcd->regs +
5154 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5155 /* Cache read-only capability registers */
5156 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5157 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5158 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5159 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5160 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5161 if (xhci->hci_version > 0x100)
5162 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5163
5164 /* xhci-plat or xhci-pci might have set max_interrupters already */
5165 if ((!xhci->max_interrupters) ||
5166 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5167 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5168
5169 xhci->quirks |= quirks;
5170
5171 if (get_quirks)
5172 get_quirks(dev, xhci);
5173
5174 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5175 * success event after a short transfer. This quirk will ignore such
5176 * spurious event.
5177 */
5178 if (xhci->hci_version > 0x96)
5179 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5180
5181 /* Make sure the HC is halted. */
5182 retval = xhci_halt(xhci);
5183 if (retval)
5184 return retval;
5185
5186 xhci_zero_64b_regs(xhci);
5187
5188 xhci_dbg(xhci, "Resetting HCD\n");
5189 /* Reset the internal HC memory state and registers. */
5190 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5191 if (retval)
5192 return retval;
5193 xhci_dbg(xhci, "Reset complete\n");
5194
5195 /*
5196 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5197 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5198 * address memory pointers actually. So, this driver clears the AC64
5199 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5200 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5201 */
5202 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5203 xhci->hcc_params &= ~BIT(0);
5204
5205 /* Set dma_mask and coherent_dma_mask to 64-bits,
5206 * if xHC supports 64-bit addressing */
5207 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5208 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5209 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5210 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5211 } else {
5212 /*
5213 * This is to avoid error in cases where a 32-bit USB
5214 * controller is used on a 64-bit capable system.
5215 */
5216 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5217 if (retval)
5218 return retval;
5219 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5220 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5221 }
5222
5223 xhci_dbg(xhci, "Calling HCD init\n");
5224 /* Initialize HCD and host controller data structures. */
5225 retval = xhci_init(hcd);
5226 if (retval)
5227 return retval;
5228 xhci_dbg(xhci, "Called HCD init\n");
5229
5230 if (xhci_hcd_is_usb3(hcd))
5231 xhci_hcd_init_usb3_data(xhci, hcd);
5232 else
5233 xhci_hcd_init_usb2_data(xhci, hcd);
5234
5235 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5236 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5237
5238 return 0;
5239 }
5240 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5241
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5242 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5243 struct usb_host_endpoint *ep)
5244 {
5245 struct xhci_hcd *xhci;
5246 struct usb_device *udev;
5247 unsigned int slot_id;
5248 unsigned int ep_index;
5249 unsigned long flags;
5250
5251 xhci = hcd_to_xhci(hcd);
5252
5253 spin_lock_irqsave(&xhci->lock, flags);
5254 udev = (struct usb_device *)ep->hcpriv;
5255 slot_id = udev->slot_id;
5256 ep_index = xhci_get_endpoint_index(&ep->desc);
5257
5258 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5259 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5260 spin_unlock_irqrestore(&xhci->lock, flags);
5261 }
5262
5263 static const struct hc_driver xhci_hc_driver = {
5264 .description = "xhci-hcd",
5265 .product_desc = "xHCI Host Controller",
5266 .hcd_priv_size = sizeof(struct xhci_hcd),
5267
5268 /*
5269 * generic hardware linkage
5270 */
5271 .irq = xhci_irq,
5272 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5273 HCD_BH,
5274
5275 /*
5276 * basic lifecycle operations
5277 */
5278 .reset = NULL, /* set in xhci_init_driver() */
5279 .start = xhci_run,
5280 .stop = xhci_stop,
5281 .shutdown = xhci_shutdown,
5282
5283 /*
5284 * managing i/o requests and associated device resources
5285 */
5286 .map_urb_for_dma = xhci_map_urb_for_dma,
5287 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5288 .urb_enqueue = xhci_urb_enqueue,
5289 .urb_dequeue = xhci_urb_dequeue,
5290 .alloc_dev = xhci_alloc_dev,
5291 .free_dev = xhci_free_dev,
5292 .alloc_streams = xhci_alloc_streams,
5293 .free_streams = xhci_free_streams,
5294 .add_endpoint = xhci_add_endpoint,
5295 .drop_endpoint = xhci_drop_endpoint,
5296 .endpoint_disable = xhci_endpoint_disable,
5297 .endpoint_reset = xhci_endpoint_reset,
5298 .check_bandwidth = xhci_check_bandwidth,
5299 .reset_bandwidth = xhci_reset_bandwidth,
5300 .address_device = xhci_address_device,
5301 .enable_device = xhci_enable_device,
5302 .update_hub_device = xhci_update_hub_device,
5303 .reset_device = xhci_discover_or_reset_device,
5304
5305 /*
5306 * scheduling support
5307 */
5308 .get_frame_number = xhci_get_frame,
5309
5310 /*
5311 * root hub support
5312 */
5313 .hub_control = xhci_hub_control,
5314 .hub_status_data = xhci_hub_status_data,
5315 .bus_suspend = xhci_bus_suspend,
5316 .bus_resume = xhci_bus_resume,
5317 .get_resuming_ports = xhci_get_resuming_ports,
5318
5319 /*
5320 * call back when device connected and addressed
5321 */
5322 .update_device = xhci_update_device,
5323 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5324 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5325 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5326 .find_raw_port_number = xhci_find_raw_port_number,
5327 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5328 };
5329
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5330 void xhci_init_driver(struct hc_driver *drv,
5331 const struct xhci_driver_overrides *over)
5332 {
5333 BUG_ON(!over);
5334
5335 /* Copy the generic table to drv then apply the overrides */
5336 *drv = xhci_hc_driver;
5337
5338 if (over) {
5339 drv->hcd_priv_size += over->extra_priv_size;
5340 if (over->reset)
5341 drv->reset = over->reset;
5342 if (over->start)
5343 drv->start = over->start;
5344 if (over->add_endpoint)
5345 drv->add_endpoint = over->add_endpoint;
5346 if (over->drop_endpoint)
5347 drv->drop_endpoint = over->drop_endpoint;
5348 if (over->check_bandwidth)
5349 drv->check_bandwidth = over->check_bandwidth;
5350 if (over->reset_bandwidth)
5351 drv->reset_bandwidth = over->reset_bandwidth;
5352 if (over->update_hub_device)
5353 drv->update_hub_device = over->update_hub_device;
5354 if (over->hub_control)
5355 drv->hub_control = over->hub_control;
5356 }
5357 }
5358 EXPORT_SYMBOL_GPL(xhci_init_driver);
5359
5360 MODULE_DESCRIPTION(DRIVER_DESC);
5361 MODULE_AUTHOR(DRIVER_AUTHOR);
5362 MODULE_LICENSE("GPL");
5363
xhci_hcd_init(void)5364 static int __init xhci_hcd_init(void)
5365 {
5366 /*
5367 * Check the compiler generated sizes of structures that must be laid
5368 * out in specific ways for hardware access.
5369 */
5370 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5371 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5372 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5373 /* xhci_device_control has eight fields, and also
5374 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5375 */
5376 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5377 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5378 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5379 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5380 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5381 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5382 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5383
5384 if (usb_disabled())
5385 return -ENODEV;
5386
5387 xhci_debugfs_create_root();
5388 xhci_dbc_init();
5389
5390 return 0;
5391 }
5392
5393 /*
5394 * If an init function is provided, an exit function must also be provided
5395 * to allow module unload.
5396 */
xhci_hcd_fini(void)5397 static void __exit xhci_hcd_fini(void)
5398 {
5399 xhci_debugfs_remove_root();
5400 xhci_dbc_exit();
5401 }
5402
5403 module_init(xhci_hcd_init);
5404 module_exit(xhci_hcd_fini);
5405