1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)36 xfs_update_prealloc_flags(
37 	struct xfs_inode	*ip,
38 	enum xfs_prealloc_flags	flags)
39 {
40 	struct xfs_trans	*tp;
41 	int			error;
42 
43 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 			0, 0, 0, &tp);
45 	if (error)
46 		return error;
47 
48 	xfs_ilock(ip, XFS_ILOCK_EXCL);
49 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50 
51 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 		VFS_I(ip)->i_mode &= ~S_ISUID;
53 		if (VFS_I(ip)->i_mode & S_IXGRP)
54 			VFS_I(ip)->i_mode &= ~S_ISGID;
55 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 	}
57 
58 	if (flags & XFS_PREALLOC_SET)
59 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 	if (flags & XFS_PREALLOC_CLEAR)
61 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62 
63 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 	if (flags & XFS_PREALLOC_SYNC)
65 		xfs_trans_set_sync(tp);
66 	return xfs_trans_commit(tp);
67 }
68 
69 /*
70  * Fsync operations on directories are much simpler than on regular files,
71  * as there is no file data to flush, and thus also no need for explicit
72  * cache flush operations, and there are no non-transaction metadata updates
73  * on directories either.
74  */
75 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)76 xfs_dir_fsync(
77 	struct file		*file,
78 	loff_t			start,
79 	loff_t			end,
80 	int			datasync)
81 {
82 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
83 	struct xfs_mount	*mp = ip->i_mount;
84 	xfs_lsn_t		lsn = 0;
85 
86 	trace_xfs_dir_fsync(ip);
87 
88 	xfs_ilock(ip, XFS_ILOCK_SHARED);
89 	if (xfs_ipincount(ip))
90 		lsn = ip->i_itemp->ili_last_lsn;
91 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
92 
93 	if (!lsn)
94 		return 0;
95 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
96 }
97 
98 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)99 xfs_file_fsync(
100 	struct file		*file,
101 	loff_t			start,
102 	loff_t			end,
103 	int			datasync)
104 {
105 	struct inode		*inode = file->f_mapping->host;
106 	struct xfs_inode	*ip = XFS_I(inode);
107 	struct xfs_mount	*mp = ip->i_mount;
108 	int			error = 0;
109 	int			log_flushed = 0;
110 	xfs_lsn_t		lsn = 0;
111 
112 	trace_xfs_file_fsync(ip);
113 
114 	error = file_write_and_wait_range(file, start, end);
115 	if (error)
116 		return error;
117 
118 	if (XFS_FORCED_SHUTDOWN(mp))
119 		return -EIO;
120 
121 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
122 
123 	/*
124 	 * If we have an RT and/or log subvolume we need to make sure to flush
125 	 * the write cache the device used for file data first.  This is to
126 	 * ensure newly written file data make it to disk before logging the new
127 	 * inode size in case of an extending write.
128 	 */
129 	if (XFS_IS_REALTIME_INODE(ip))
130 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
133 
134 	/*
135 	 * All metadata updates are logged, which means that we just have to
136 	 * flush the log up to the latest LSN that touched the inode. If we have
137 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 	 * log force before we clear the ili_fsync_fields field. This ensures
139 	 * that we don't get a racing sync operation that does not wait for the
140 	 * metadata to hit the journal before returning. If we race with
141 	 * clearing the ili_fsync_fields, then all that will happen is the log
142 	 * force will do nothing as the lsn will already be on disk. We can't
143 	 * race with setting ili_fsync_fields because that is done under
144 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 	 * until after the ili_fsync_fields is cleared.
146 	 */
147 	xfs_ilock(ip, XFS_ILOCK_SHARED);
148 	if (xfs_ipincount(ip)) {
149 		if (!datasync ||
150 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 			lsn = ip->i_itemp->ili_last_lsn;
152 	}
153 
154 	if (lsn) {
155 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 		ip->i_itemp->ili_fsync_fields = 0;
157 	}
158 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
159 
160 	/*
161 	 * If we only have a single device, and the log force about was
162 	 * a no-op we might have to flush the data device cache here.
163 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 	 * an already allocated file and thus do not have any metadata to
165 	 * commit.
166 	 */
167 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 	    mp->m_logdev_targp == mp->m_ddev_targp)
169 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
170 
171 	return error;
172 }
173 
174 STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)175 xfs_file_dio_aio_read(
176 	struct kiocb		*iocb,
177 	struct iov_iter		*to)
178 {
179 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
180 	size_t			count = iov_iter_count(to);
181 	ssize_t			ret;
182 
183 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
184 
185 	if (!count)
186 		return 0; /* skip atime */
187 
188 	file_accessed(iocb->ki_filp);
189 
190 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
191 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
192 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
193 
194 	return ret;
195 }
196 
197 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)198 xfs_file_dax_read(
199 	struct kiocb		*iocb,
200 	struct iov_iter		*to)
201 {
202 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
203 	size_t			count = iov_iter_count(to);
204 	ssize_t			ret = 0;
205 
206 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
207 
208 	if (!count)
209 		return 0; /* skip atime */
210 
211 	if (iocb->ki_flags & IOCB_NOWAIT) {
212 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
213 			return -EAGAIN;
214 	} else {
215 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
216 	}
217 
218 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
219 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
220 
221 	file_accessed(iocb->ki_filp);
222 	return ret;
223 }
224 
225 STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)226 xfs_file_buffered_aio_read(
227 	struct kiocb		*iocb,
228 	struct iov_iter		*to)
229 {
230 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
231 	ssize_t			ret;
232 
233 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
234 
235 	if (iocb->ki_flags & IOCB_NOWAIT) {
236 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
237 			return -EAGAIN;
238 	} else {
239 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
240 	}
241 	ret = generic_file_read_iter(iocb, to);
242 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243 
244 	return ret;
245 }
246 
247 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)248 xfs_file_read_iter(
249 	struct kiocb		*iocb,
250 	struct iov_iter		*to)
251 {
252 	struct inode		*inode = file_inode(iocb->ki_filp);
253 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
254 	ssize_t			ret = 0;
255 
256 	XFS_STATS_INC(mp, xs_read_calls);
257 
258 	if (XFS_FORCED_SHUTDOWN(mp))
259 		return -EIO;
260 
261 	if (IS_DAX(inode))
262 		ret = xfs_file_dax_read(iocb, to);
263 	else if (iocb->ki_flags & IOCB_DIRECT)
264 		ret = xfs_file_dio_aio_read(iocb, to);
265 	else
266 		ret = xfs_file_buffered_aio_read(iocb, to);
267 
268 	if (ret > 0)
269 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
270 	return ret;
271 }
272 
273 /*
274  * Common pre-write limit and setup checks.
275  *
276  * Called with the iolocked held either shared and exclusive according to
277  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
278  * if called for a direct write beyond i_size.
279  */
280 STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)281 xfs_file_aio_write_checks(
282 	struct kiocb		*iocb,
283 	struct iov_iter		*from,
284 	int			*iolock)
285 {
286 	struct file		*file = iocb->ki_filp;
287 	struct inode		*inode = file->f_mapping->host;
288 	struct xfs_inode	*ip = XFS_I(inode);
289 	ssize_t			error = 0;
290 	size_t			count = iov_iter_count(from);
291 	bool			drained_dio = false;
292 	loff_t			isize;
293 
294 restart:
295 	error = generic_write_checks(iocb, from);
296 	if (error <= 0)
297 		return error;
298 
299 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
300 	if (error)
301 		return error;
302 
303 	/*
304 	 * For changing security info in file_remove_privs() we need i_rwsem
305 	 * exclusively.
306 	 */
307 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
308 		xfs_iunlock(ip, *iolock);
309 		*iolock = XFS_IOLOCK_EXCL;
310 		xfs_ilock(ip, *iolock);
311 		goto restart;
312 	}
313 	/*
314 	 * If the offset is beyond the size of the file, we need to zero any
315 	 * blocks that fall between the existing EOF and the start of this
316 	 * write.  If zeroing is needed and we are currently holding the
317 	 * iolock shared, we need to update it to exclusive which implies
318 	 * having to redo all checks before.
319 	 *
320 	 * We need to serialise against EOF updates that occur in IO
321 	 * completions here. We want to make sure that nobody is changing the
322 	 * size while we do this check until we have placed an IO barrier (i.e.
323 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
324 	 * The spinlock effectively forms a memory barrier once we have the
325 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
326 	 * and hence be able to correctly determine if we need to run zeroing.
327 	 */
328 	spin_lock(&ip->i_flags_lock);
329 	isize = i_size_read(inode);
330 	if (iocb->ki_pos > isize) {
331 		spin_unlock(&ip->i_flags_lock);
332 		if (!drained_dio) {
333 			if (*iolock == XFS_IOLOCK_SHARED) {
334 				xfs_iunlock(ip, *iolock);
335 				*iolock = XFS_IOLOCK_EXCL;
336 				xfs_ilock(ip, *iolock);
337 				iov_iter_reexpand(from, count);
338 			}
339 			/*
340 			 * We now have an IO submission barrier in place, but
341 			 * AIO can do EOF updates during IO completion and hence
342 			 * we now need to wait for all of them to drain. Non-AIO
343 			 * DIO will have drained before we are given the
344 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
345 			 * no-op.
346 			 */
347 			inode_dio_wait(inode);
348 			drained_dio = true;
349 			goto restart;
350 		}
351 
352 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
353 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
354 				NULL, &xfs_iomap_ops);
355 		if (error)
356 			return error;
357 	} else
358 		spin_unlock(&ip->i_flags_lock);
359 
360 	/*
361 	 * Updating the timestamps will grab the ilock again from
362 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
363 	 * lock above.  Eventually we should look into a way to avoid
364 	 * the pointless lock roundtrip.
365 	 */
366 	return file_modified(file);
367 }
368 
369 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)370 xfs_dio_write_end_io(
371 	struct kiocb		*iocb,
372 	ssize_t			size,
373 	int			error,
374 	unsigned		flags)
375 {
376 	struct inode		*inode = file_inode(iocb->ki_filp);
377 	struct xfs_inode	*ip = XFS_I(inode);
378 	loff_t			offset = iocb->ki_pos;
379 	unsigned int		nofs_flag;
380 
381 	trace_xfs_end_io_direct_write(ip, offset, size);
382 
383 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 		return -EIO;
385 
386 	if (error)
387 		return error;
388 	if (!size)
389 		return 0;
390 
391 	/*
392 	 * Capture amount written on completion as we can't reliably account
393 	 * for it on submission.
394 	 */
395 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
396 
397 	/*
398 	 * We can allocate memory here while doing writeback on behalf of
399 	 * memory reclaim.  To avoid memory allocation deadlocks set the
400 	 * task-wide nofs context for the following operations.
401 	 */
402 	nofs_flag = memalloc_nofs_save();
403 
404 	if (flags & IOMAP_DIO_COW) {
405 		error = xfs_reflink_end_cow(ip, offset, size);
406 		if (error)
407 			goto out;
408 	}
409 
410 	/*
411 	 * Unwritten conversion updates the in-core isize after extent
412 	 * conversion but before updating the on-disk size. Updating isize any
413 	 * earlier allows a racing dio read to find unwritten extents before
414 	 * they are converted.
415 	 */
416 	if (flags & IOMAP_DIO_UNWRITTEN) {
417 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
418 		goto out;
419 	}
420 
421 	/*
422 	 * We need to update the in-core inode size here so that we don't end up
423 	 * with the on-disk inode size being outside the in-core inode size. We
424 	 * have no other method of updating EOF for AIO, so always do it here
425 	 * if necessary.
426 	 *
427 	 * We need to lock the test/set EOF update as we can be racing with
428 	 * other IO completions here to update the EOF. Failing to serialise
429 	 * here can result in EOF moving backwards and Bad Things Happen when
430 	 * that occurs.
431 	 */
432 	spin_lock(&ip->i_flags_lock);
433 	if (offset + size > i_size_read(inode)) {
434 		i_size_write(inode, offset + size);
435 		spin_unlock(&ip->i_flags_lock);
436 		error = xfs_setfilesize(ip, offset, size);
437 	} else {
438 		spin_unlock(&ip->i_flags_lock);
439 	}
440 
441 out:
442 	memalloc_nofs_restore(nofs_flag);
443 	return error;
444 }
445 
446 static const struct iomap_dio_ops xfs_dio_write_ops = {
447 	.end_io		= xfs_dio_write_end_io,
448 };
449 
450 /*
451  * xfs_file_dio_aio_write - handle direct IO writes
452  *
453  * Lock the inode appropriately to prepare for and issue a direct IO write.
454  * By separating it from the buffered write path we remove all the tricky to
455  * follow locking changes and looping.
456  *
457  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
458  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
459  * pages are flushed out.
460  *
461  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
462  * allowing them to be done in parallel with reads and other direct IO writes.
463  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
464  * needs to do sub-block zeroing and that requires serialisation against other
465  * direct IOs to the same block. In this case we need to serialise the
466  * submission of the unaligned IOs so that we don't get racing block zeroing in
467  * the dio layer.  To avoid the problem with aio, we also need to wait for
468  * outstanding IOs to complete so that unwritten extent conversion is completed
469  * before we try to map the overlapping block. This is currently implemented by
470  * hitting it with a big hammer (i.e. inode_dio_wait()).
471  *
472  * Returns with locks held indicated by @iolock and errors indicated by
473  * negative return values.
474  */
475 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)476 xfs_file_dio_aio_write(
477 	struct kiocb		*iocb,
478 	struct iov_iter		*from)
479 {
480 	struct file		*file = iocb->ki_filp;
481 	struct address_space	*mapping = file->f_mapping;
482 	struct inode		*inode = mapping->host;
483 	struct xfs_inode	*ip = XFS_I(inode);
484 	struct xfs_mount	*mp = ip->i_mount;
485 	ssize_t			ret = 0;
486 	int			unaligned_io = 0;
487 	int			iolock;
488 	size_t			count = iov_iter_count(from);
489 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
490 					mp->m_rtdev_targp : mp->m_ddev_targp;
491 
492 	/* DIO must be aligned to device logical sector size */
493 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
494 		return -EINVAL;
495 
496 	/*
497 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
498 	 * the file system block size.  We don't need to consider the EOF
499 	 * extension case here because xfs_file_aio_write_checks() will relock
500 	 * the inode as necessary for EOF zeroing cases and fill out the new
501 	 * inode size as appropriate.
502 	 */
503 	if ((iocb->ki_pos & mp->m_blockmask) ||
504 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
505 		unaligned_io = 1;
506 
507 		/*
508 		 * We can't properly handle unaligned direct I/O to reflink
509 		 * files yet, as we can't unshare a partial block.
510 		 */
511 		if (xfs_is_cow_inode(ip)) {
512 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
513 			return -EREMCHG;
514 		}
515 		iolock = XFS_IOLOCK_EXCL;
516 	} else {
517 		iolock = XFS_IOLOCK_SHARED;
518 	}
519 
520 	if (iocb->ki_flags & IOCB_NOWAIT) {
521 		/* unaligned dio always waits, bail */
522 		if (unaligned_io)
523 			return -EAGAIN;
524 		if (!xfs_ilock_nowait(ip, iolock))
525 			return -EAGAIN;
526 	} else {
527 		xfs_ilock(ip, iolock);
528 	}
529 
530 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
531 	if (ret)
532 		goto out;
533 	count = iov_iter_count(from);
534 
535 	/*
536 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
537 	 * in-flight at the same time or we risk data corruption. Wait for all
538 	 * other IO to drain before we submit. If the IO is aligned, demote the
539 	 * iolock if we had to take the exclusive lock in
540 	 * xfs_file_aio_write_checks() for other reasons.
541 	 */
542 	if (unaligned_io) {
543 		inode_dio_wait(inode);
544 	} else if (iolock == XFS_IOLOCK_EXCL) {
545 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 		iolock = XFS_IOLOCK_SHARED;
547 	}
548 
549 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
550 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
551 
552 	/*
553 	 * If unaligned, this is the only IO in-flight. If it has not yet
554 	 * completed, wait on it before we release the iolock to prevent
555 	 * subsequent overlapping IO.
556 	 */
557 	if (ret == -EIOCBQUEUED && unaligned_io)
558 		inode_dio_wait(inode);
559 out:
560 	xfs_iunlock(ip, iolock);
561 
562 	/*
563 	 * No fallback to buffered IO on errors for XFS, direct IO will either
564 	 * complete fully or fail.
565 	 */
566 	ASSERT(ret < 0 || ret == count);
567 	return ret;
568 }
569 
570 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)571 xfs_file_dax_write(
572 	struct kiocb		*iocb,
573 	struct iov_iter		*from)
574 {
575 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
576 	struct xfs_inode	*ip = XFS_I(inode);
577 	int			iolock = XFS_IOLOCK_EXCL;
578 	ssize_t			ret, error = 0;
579 	size_t			count;
580 	loff_t			pos;
581 
582 	if (iocb->ki_flags & IOCB_NOWAIT) {
583 		if (!xfs_ilock_nowait(ip, iolock))
584 			return -EAGAIN;
585 	} else {
586 		xfs_ilock(ip, iolock);
587 	}
588 
589 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
590 	if (ret)
591 		goto out;
592 
593 	pos = iocb->ki_pos;
594 	count = iov_iter_count(from);
595 
596 	trace_xfs_file_dax_write(ip, count, pos);
597 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
598 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
599 		i_size_write(inode, iocb->ki_pos);
600 		error = xfs_setfilesize(ip, pos, ret);
601 	}
602 out:
603 	xfs_iunlock(ip, iolock);
604 	if (error)
605 		return error;
606 
607 	if (ret > 0) {
608 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
609 
610 		/* Handle various SYNC-type writes */
611 		ret = generic_write_sync(iocb, ret);
612 	}
613 	return ret;
614 }
615 
616 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)617 xfs_file_buffered_aio_write(
618 	struct kiocb		*iocb,
619 	struct iov_iter		*from)
620 {
621 	struct file		*file = iocb->ki_filp;
622 	struct address_space	*mapping = file->f_mapping;
623 	struct inode		*inode = mapping->host;
624 	struct xfs_inode	*ip = XFS_I(inode);
625 	ssize_t			ret;
626 	int			enospc = 0;
627 	int			iolock;
628 
629 	if (iocb->ki_flags & IOCB_NOWAIT)
630 		return -EOPNOTSUPP;
631 
632 write_retry:
633 	iolock = XFS_IOLOCK_EXCL;
634 	xfs_ilock(ip, iolock);
635 
636 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
637 	if (ret)
638 		goto out;
639 
640 	/* We can write back this queue in page reclaim */
641 	current->backing_dev_info = inode_to_bdi(inode);
642 
643 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
644 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
645 	if (likely(ret >= 0))
646 		iocb->ki_pos += ret;
647 
648 	/*
649 	 * If we hit a space limit, try to free up some lingering preallocated
650 	 * space before returning an error. In the case of ENOSPC, first try to
651 	 * write back all dirty inodes to free up some of the excess reserved
652 	 * metadata space. This reduces the chances that the eofblocks scan
653 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
654 	 * also behaves as a filter to prevent too many eofblocks scans from
655 	 * running at the same time.
656 	 */
657 	if (ret == -EDQUOT && !enospc) {
658 		xfs_iunlock(ip, iolock);
659 		enospc = xfs_inode_free_quota_eofblocks(ip);
660 		if (enospc)
661 			goto write_retry;
662 		enospc = xfs_inode_free_quota_cowblocks(ip);
663 		if (enospc)
664 			goto write_retry;
665 		iolock = 0;
666 	} else if (ret == -ENOSPC && !enospc) {
667 		struct xfs_eofblocks eofb = {0};
668 
669 		enospc = 1;
670 		xfs_flush_inodes(ip->i_mount);
671 
672 		xfs_iunlock(ip, iolock);
673 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
674 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
675 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
676 		goto write_retry;
677 	}
678 
679 	current->backing_dev_info = NULL;
680 out:
681 	if (iolock)
682 		xfs_iunlock(ip, iolock);
683 
684 	if (ret > 0) {
685 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
686 		/* Handle various SYNC-type writes */
687 		ret = generic_write_sync(iocb, ret);
688 	}
689 	return ret;
690 }
691 
692 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)693 xfs_file_write_iter(
694 	struct kiocb		*iocb,
695 	struct iov_iter		*from)
696 {
697 	struct file		*file = iocb->ki_filp;
698 	struct address_space	*mapping = file->f_mapping;
699 	struct inode		*inode = mapping->host;
700 	struct xfs_inode	*ip = XFS_I(inode);
701 	ssize_t			ret;
702 	size_t			ocount = iov_iter_count(from);
703 
704 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
705 
706 	if (ocount == 0)
707 		return 0;
708 
709 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
710 		return -EIO;
711 
712 	if (IS_DAX(inode))
713 		return xfs_file_dax_write(iocb, from);
714 
715 	if (iocb->ki_flags & IOCB_DIRECT) {
716 		/*
717 		 * Allow a directio write to fall back to a buffered
718 		 * write *only* in the case that we're doing a reflink
719 		 * CoW.  In all other directio scenarios we do not
720 		 * allow an operation to fall back to buffered mode.
721 		 */
722 		ret = xfs_file_dio_aio_write(iocb, from);
723 		if (ret != -EREMCHG)
724 			return ret;
725 	}
726 
727 	return xfs_file_buffered_aio_write(iocb, from);
728 }
729 
730 static void
xfs_wait_dax_page(struct inode * inode)731 xfs_wait_dax_page(
732 	struct inode		*inode)
733 {
734 	struct xfs_inode        *ip = XFS_I(inode);
735 
736 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
737 	schedule();
738 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
739 }
740 
741 static int
xfs_break_dax_layouts(struct inode * inode,bool * retry)742 xfs_break_dax_layouts(
743 	struct inode		*inode,
744 	bool			*retry)
745 {
746 	struct page		*page;
747 
748 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
749 
750 	page = dax_layout_busy_page(inode->i_mapping);
751 	if (!page)
752 		return 0;
753 
754 	*retry = true;
755 	return ___wait_var_event(&page->_refcount,
756 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
757 			0, 0, xfs_wait_dax_page(inode));
758 }
759 
760 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)761 xfs_break_layouts(
762 	struct inode		*inode,
763 	uint			*iolock,
764 	enum layout_break_reason reason)
765 {
766 	bool			retry;
767 	int			error;
768 
769 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
770 
771 	do {
772 		retry = false;
773 		switch (reason) {
774 		case BREAK_UNMAP:
775 			error = xfs_break_dax_layouts(inode, &retry);
776 			if (error || retry)
777 				break;
778 			/* fall through */
779 		case BREAK_WRITE:
780 			error = xfs_break_leased_layouts(inode, iolock, &retry);
781 			break;
782 		default:
783 			WARN_ON_ONCE(1);
784 			error = -EINVAL;
785 		}
786 	} while (error == 0 && retry);
787 
788 	return error;
789 }
790 
791 #define	XFS_FALLOC_FL_SUPPORTED						\
792 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
793 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
794 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
795 
796 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)797 xfs_file_fallocate(
798 	struct file		*file,
799 	int			mode,
800 	loff_t			offset,
801 	loff_t			len)
802 {
803 	struct inode		*inode = file_inode(file);
804 	struct xfs_inode	*ip = XFS_I(inode);
805 	long			error;
806 	enum xfs_prealloc_flags	flags = 0;
807 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
808 	loff_t			new_size = 0;
809 	bool			do_file_insert = false;
810 
811 	if (!S_ISREG(inode->i_mode))
812 		return -EINVAL;
813 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
814 		return -EOPNOTSUPP;
815 
816 	xfs_ilock(ip, iolock);
817 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
818 	if (error)
819 		goto out_unlock;
820 
821 	if (mode & FALLOC_FL_PUNCH_HOLE) {
822 		error = xfs_free_file_space(ip, offset, len);
823 		if (error)
824 			goto out_unlock;
825 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
826 		unsigned int blksize_mask = i_blocksize(inode) - 1;
827 
828 		if (offset & blksize_mask || len & blksize_mask) {
829 			error = -EINVAL;
830 			goto out_unlock;
831 		}
832 
833 		/*
834 		 * There is no need to overlap collapse range with EOF,
835 		 * in which case it is effectively a truncate operation
836 		 */
837 		if (offset + len >= i_size_read(inode)) {
838 			error = -EINVAL;
839 			goto out_unlock;
840 		}
841 
842 		new_size = i_size_read(inode) - len;
843 
844 		error = xfs_collapse_file_space(ip, offset, len);
845 		if (error)
846 			goto out_unlock;
847 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
848 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
849 		loff_t		isize = i_size_read(inode);
850 
851 		if (offset & blksize_mask || len & blksize_mask) {
852 			error = -EINVAL;
853 			goto out_unlock;
854 		}
855 
856 		/*
857 		 * New inode size must not exceed ->s_maxbytes, accounting for
858 		 * possible signed overflow.
859 		 */
860 		if (inode->i_sb->s_maxbytes - isize < len) {
861 			error = -EFBIG;
862 			goto out_unlock;
863 		}
864 		new_size = isize + len;
865 
866 		/* Offset should be less than i_size */
867 		if (offset >= isize) {
868 			error = -EINVAL;
869 			goto out_unlock;
870 		}
871 		do_file_insert = true;
872 	} else {
873 		flags |= XFS_PREALLOC_SET;
874 
875 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
876 		    offset + len > i_size_read(inode)) {
877 			new_size = offset + len;
878 			error = inode_newsize_ok(inode, new_size);
879 			if (error)
880 				goto out_unlock;
881 		}
882 
883 		if (mode & FALLOC_FL_ZERO_RANGE) {
884 			error = xfs_zero_file_space(ip, offset, len);
885 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
886 			error = xfs_reflink_unshare(ip, offset, len);
887 			if (error)
888 				goto out_unlock;
889 
890 			if (!xfs_is_always_cow_inode(ip)) {
891 				error = xfs_alloc_file_space(ip, offset, len,
892 						XFS_BMAPI_PREALLOC);
893 			}
894 		} else {
895 			/*
896 			 * If always_cow mode we can't use preallocations and
897 			 * thus should not create them.
898 			 */
899 			if (xfs_is_always_cow_inode(ip)) {
900 				error = -EOPNOTSUPP;
901 				goto out_unlock;
902 			}
903 
904 			error = xfs_alloc_file_space(ip, offset, len,
905 						     XFS_BMAPI_PREALLOC);
906 		}
907 		if (error)
908 			goto out_unlock;
909 	}
910 
911 	if (file->f_flags & O_DSYNC)
912 		flags |= XFS_PREALLOC_SYNC;
913 
914 	error = xfs_update_prealloc_flags(ip, flags);
915 	if (error)
916 		goto out_unlock;
917 
918 	/* Change file size if needed */
919 	if (new_size) {
920 		struct iattr iattr;
921 
922 		iattr.ia_valid = ATTR_SIZE;
923 		iattr.ia_size = new_size;
924 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
925 		if (error)
926 			goto out_unlock;
927 	}
928 
929 	/*
930 	 * Perform hole insertion now that the file size has been
931 	 * updated so that if we crash during the operation we don't
932 	 * leave shifted extents past EOF and hence losing access to
933 	 * the data that is contained within them.
934 	 */
935 	if (do_file_insert)
936 		error = xfs_insert_file_space(ip, offset, len);
937 
938 out_unlock:
939 	xfs_iunlock(ip, iolock);
940 	return error;
941 }
942 
943 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)944 xfs_file_fadvise(
945 	struct file	*file,
946 	loff_t		start,
947 	loff_t		end,
948 	int		advice)
949 {
950 	struct xfs_inode *ip = XFS_I(file_inode(file));
951 	int ret;
952 	int lockflags = 0;
953 
954 	/*
955 	 * Operations creating pages in page cache need protection from hole
956 	 * punching and similar ops
957 	 */
958 	if (advice == POSIX_FADV_WILLNEED) {
959 		lockflags = XFS_IOLOCK_SHARED;
960 		xfs_ilock(ip, lockflags);
961 	}
962 	ret = generic_fadvise(file, start, end, advice);
963 	if (lockflags)
964 		xfs_iunlock(ip, lockflags);
965 	return ret;
966 }
967 
968 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)969 xfs_file_remap_range(
970 	struct file		*file_in,
971 	loff_t			pos_in,
972 	struct file		*file_out,
973 	loff_t			pos_out,
974 	loff_t			len,
975 	unsigned int		remap_flags)
976 {
977 	struct inode		*inode_in = file_inode(file_in);
978 	struct xfs_inode	*src = XFS_I(inode_in);
979 	struct inode		*inode_out = file_inode(file_out);
980 	struct xfs_inode	*dest = XFS_I(inode_out);
981 	struct xfs_mount	*mp = src->i_mount;
982 	loff_t			remapped = 0;
983 	xfs_extlen_t		cowextsize;
984 	int			ret;
985 
986 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
987 		return -EINVAL;
988 
989 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
990 		return -EOPNOTSUPP;
991 
992 	if (XFS_FORCED_SHUTDOWN(mp))
993 		return -EIO;
994 
995 	/* Prepare and then clone file data. */
996 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
997 			&len, remap_flags);
998 	if (ret < 0 || len == 0)
999 		return ret;
1000 
1001 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1002 
1003 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1004 			&remapped);
1005 	if (ret)
1006 		goto out_unlock;
1007 
1008 	/*
1009 	 * Carry the cowextsize hint from src to dest if we're sharing the
1010 	 * entire source file to the entire destination file, the source file
1011 	 * has a cowextsize hint, and the destination file does not.
1012 	 */
1013 	cowextsize = 0;
1014 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1015 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1016 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1017 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1018 		cowextsize = src->i_d.di_cowextsize;
1019 
1020 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1021 			remap_flags);
1022 
1023 out_unlock:
1024 	xfs_reflink_remap_unlock(file_in, file_out);
1025 	if (ret)
1026 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1027 	return remapped > 0 ? remapped : ret;
1028 }
1029 
1030 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1031 xfs_file_open(
1032 	struct inode	*inode,
1033 	struct file	*file)
1034 {
1035 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1036 		return -EFBIG;
1037 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1038 		return -EIO;
1039 	file->f_mode |= FMODE_NOWAIT;
1040 	return 0;
1041 }
1042 
1043 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1044 xfs_dir_open(
1045 	struct inode	*inode,
1046 	struct file	*file)
1047 {
1048 	struct xfs_inode *ip = XFS_I(inode);
1049 	int		mode;
1050 	int		error;
1051 
1052 	error = xfs_file_open(inode, file);
1053 	if (error)
1054 		return error;
1055 
1056 	/*
1057 	 * If there are any blocks, read-ahead block 0 as we're almost
1058 	 * certain to have the next operation be a read there.
1059 	 */
1060 	mode = xfs_ilock_data_map_shared(ip);
1061 	if (ip->i_d.di_nextents > 0)
1062 		error = xfs_dir3_data_readahead(ip, 0, -1);
1063 	xfs_iunlock(ip, mode);
1064 	return error;
1065 }
1066 
1067 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1068 xfs_file_release(
1069 	struct inode	*inode,
1070 	struct file	*filp)
1071 {
1072 	return xfs_release(XFS_I(inode));
1073 }
1074 
1075 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1076 xfs_file_readdir(
1077 	struct file	*file,
1078 	struct dir_context *ctx)
1079 {
1080 	struct inode	*inode = file_inode(file);
1081 	xfs_inode_t	*ip = XFS_I(inode);
1082 	size_t		bufsize;
1083 
1084 	/*
1085 	 * The Linux API doesn't pass down the total size of the buffer
1086 	 * we read into down to the filesystem.  With the filldir concept
1087 	 * it's not needed for correct information, but the XFS dir2 leaf
1088 	 * code wants an estimate of the buffer size to calculate it's
1089 	 * readahead window and size the buffers used for mapping to
1090 	 * physical blocks.
1091 	 *
1092 	 * Try to give it an estimate that's good enough, maybe at some
1093 	 * point we can change the ->readdir prototype to include the
1094 	 * buffer size.  For now we use the current glibc buffer size.
1095 	 */
1096 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1097 
1098 	return xfs_readdir(NULL, ip, ctx, bufsize);
1099 }
1100 
1101 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1102 xfs_file_llseek(
1103 	struct file	*file,
1104 	loff_t		offset,
1105 	int		whence)
1106 {
1107 	struct inode		*inode = file->f_mapping->host;
1108 
1109 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1110 		return -EIO;
1111 
1112 	switch (whence) {
1113 	default:
1114 		return generic_file_llseek(file, offset, whence);
1115 	case SEEK_HOLE:
1116 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1117 		break;
1118 	case SEEK_DATA:
1119 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1120 		break;
1121 	}
1122 
1123 	if (offset < 0)
1124 		return offset;
1125 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1126 }
1127 
1128 /*
1129  * Locking for serialisation of IO during page faults. This results in a lock
1130  * ordering of:
1131  *
1132  * mmap_sem (MM)
1133  *   sb_start_pagefault(vfs, freeze)
1134  *     i_mmaplock (XFS - truncate serialisation)
1135  *       page_lock (MM)
1136  *         i_lock (XFS - extent map serialisation)
1137  */
1138 static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1139 __xfs_filemap_fault(
1140 	struct vm_fault		*vmf,
1141 	enum page_entry_size	pe_size,
1142 	bool			write_fault)
1143 {
1144 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1145 	struct xfs_inode	*ip = XFS_I(inode);
1146 	vm_fault_t		ret;
1147 
1148 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1149 
1150 	if (write_fault) {
1151 		sb_start_pagefault(inode->i_sb);
1152 		file_update_time(vmf->vma->vm_file);
1153 	}
1154 
1155 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1156 	if (IS_DAX(inode)) {
1157 		pfn_t pfn;
1158 
1159 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1160 		if (ret & VM_FAULT_NEEDDSYNC)
1161 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1162 	} else {
1163 		if (write_fault)
1164 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1165 		else
1166 			ret = filemap_fault(vmf);
1167 	}
1168 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1169 
1170 	if (write_fault)
1171 		sb_end_pagefault(inode->i_sb);
1172 	return ret;
1173 }
1174 
1175 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1176 xfs_filemap_fault(
1177 	struct vm_fault		*vmf)
1178 {
1179 	/* DAX can shortcut the normal fault path on write faults! */
1180 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1181 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1182 			(vmf->flags & FAULT_FLAG_WRITE));
1183 }
1184 
1185 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1186 xfs_filemap_huge_fault(
1187 	struct vm_fault		*vmf,
1188 	enum page_entry_size	pe_size)
1189 {
1190 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1191 		return VM_FAULT_FALLBACK;
1192 
1193 	/* DAX can shortcut the normal fault path on write faults! */
1194 	return __xfs_filemap_fault(vmf, pe_size,
1195 			(vmf->flags & FAULT_FLAG_WRITE));
1196 }
1197 
1198 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1199 xfs_filemap_page_mkwrite(
1200 	struct vm_fault		*vmf)
1201 {
1202 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1203 }
1204 
1205 /*
1206  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1207  * on write faults. In reality, it needs to serialise against truncate and
1208  * prepare memory for writing so handle is as standard write fault.
1209  */
1210 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1211 xfs_filemap_pfn_mkwrite(
1212 	struct vm_fault		*vmf)
1213 {
1214 
1215 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1216 }
1217 
1218 static const struct vm_operations_struct xfs_file_vm_ops = {
1219 	.fault		= xfs_filemap_fault,
1220 	.huge_fault	= xfs_filemap_huge_fault,
1221 	.map_pages	= filemap_map_pages,
1222 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1223 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1224 };
1225 
1226 STATIC int
xfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1227 xfs_file_mmap(
1228 	struct file	*filp,
1229 	struct vm_area_struct *vma)
1230 {
1231 	struct dax_device 	*dax_dev;
1232 
1233 	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1234 	/*
1235 	 * We don't support synchronous mappings for non-DAX files and
1236 	 * for DAX files if underneath dax_device is not synchronous.
1237 	 */
1238 	if (!daxdev_mapping_supported(vma, dax_dev))
1239 		return -EOPNOTSUPP;
1240 
1241 	file_accessed(filp);
1242 	vma->vm_ops = &xfs_file_vm_ops;
1243 	if (IS_DAX(file_inode(filp)))
1244 		vma->vm_flags |= VM_HUGEPAGE;
1245 	return 0;
1246 }
1247 
1248 const struct file_operations xfs_file_operations = {
1249 	.llseek		= xfs_file_llseek,
1250 	.read_iter	= xfs_file_read_iter,
1251 	.write_iter	= xfs_file_write_iter,
1252 	.splice_read	= generic_file_splice_read,
1253 	.splice_write	= iter_file_splice_write,
1254 	.iopoll		= iomap_dio_iopoll,
1255 	.unlocked_ioctl	= xfs_file_ioctl,
1256 #ifdef CONFIG_COMPAT
1257 	.compat_ioctl	= xfs_file_compat_ioctl,
1258 #endif
1259 	.mmap		= xfs_file_mmap,
1260 	.mmap_supported_flags = MAP_SYNC,
1261 	.open		= xfs_file_open,
1262 	.release	= xfs_file_release,
1263 	.fsync		= xfs_file_fsync,
1264 	.get_unmapped_area = thp_get_unmapped_area,
1265 	.fallocate	= xfs_file_fallocate,
1266 	.fadvise	= xfs_file_fadvise,
1267 	.remap_file_range = xfs_file_remap_range,
1268 };
1269 
1270 const struct file_operations xfs_dir_file_operations = {
1271 	.open		= xfs_dir_open,
1272 	.read		= generic_read_dir,
1273 	.iterate_shared	= xfs_file_readdir,
1274 	.llseek		= generic_file_llseek,
1275 	.unlocked_ioctl	= xfs_file_ioctl,
1276 #ifdef CONFIG_COMPAT
1277 	.compat_ioctl	= xfs_file_compat_ioctl,
1278 #endif
1279 	.fsync		= xfs_dir_fsync,
1280 };
1281