1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_alloc.h"
15 #include "xfs_btree.h"
16 #include "xfs_btree_staging.h"
17 #include "xfs_rmap.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_trace.h"
20 #include "xfs_error.h"
21 #include "xfs_extent_busy.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24
25 /*
26 * Reverse map btree.
27 *
28 * This is a per-ag tree used to track the owner(s) of a given extent. With
29 * reflink it is possible for there to be multiple owners, which is a departure
30 * from classic XFS. Owner records for data extents are inserted when the
31 * extent is mapped and removed when an extent is unmapped. Owner records for
32 * all other block types (i.e. metadata) are inserted when an extent is
33 * allocated and removed when an extent is freed. There can only be one owner
34 * of a metadata extent, usually an inode or some other metadata structure like
35 * an AG btree.
36 *
37 * The rmap btree is part of the free space management, so blocks for the tree
38 * are sourced from the agfl. Hence we need transaction reservation support for
39 * this tree so that the freelist is always large enough. This also impacts on
40 * the minimum space we need to leave free in the AG.
41 *
42 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
43 * but it is the only way to enforce unique keys when a block can be owned by
44 * multiple files at any offset. There's no need to order/search by extent
45 * size for online updating/management of the tree. It is intended that most
46 * reverse lookups will be to find the owner(s) of a particular block, or to
47 * try to recover tree and file data from corrupt primary metadata.
48 */
49
50 static struct xfs_btree_cur *
xfs_rmapbt_dup_cursor(struct xfs_btree_cur * cur)51 xfs_rmapbt_dup_cursor(
52 struct xfs_btree_cur *cur)
53 {
54 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
55 cur->bc_ag.agbp, cur->bc_ag.pag);
56 }
57
58 STATIC void
xfs_rmapbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)59 xfs_rmapbt_set_root(
60 struct xfs_btree_cur *cur,
61 const union xfs_btree_ptr *ptr,
62 int inc)
63 {
64 struct xfs_buf *agbp = cur->bc_ag.agbp;
65 struct xfs_agf *agf = agbp->b_addr;
66 int btnum = cur->bc_btnum;
67
68 ASSERT(ptr->s != 0);
69
70 agf->agf_roots[btnum] = ptr->s;
71 be32_add_cpu(&agf->agf_levels[btnum], inc);
72 cur->bc_ag.pag->pagf_levels[btnum] += inc;
73
74 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
75 }
76
77 STATIC int
xfs_rmapbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)78 xfs_rmapbt_alloc_block(
79 struct xfs_btree_cur *cur,
80 const union xfs_btree_ptr *start,
81 union xfs_btree_ptr *new,
82 int *stat)
83 {
84 struct xfs_buf *agbp = cur->bc_ag.agbp;
85 struct xfs_agf *agf = agbp->b_addr;
86 struct xfs_perag *pag = cur->bc_ag.pag;
87 int error;
88 xfs_agblock_t bno;
89
90 /* Allocate the new block from the freelist. If we can't, give up. */
91 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
92 &bno, 1);
93 if (error)
94 return error;
95
96 trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1);
97 if (bno == NULLAGBLOCK) {
98 *stat = 0;
99 return 0;
100 }
101
102 xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
103
104 new->s = cpu_to_be32(bno);
105 be32_add_cpu(&agf->agf_rmap_blocks, 1);
106 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
107
108 xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
109
110 *stat = 1;
111 return 0;
112 }
113
114 STATIC int
xfs_rmapbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)115 xfs_rmapbt_free_block(
116 struct xfs_btree_cur *cur,
117 struct xfs_buf *bp)
118 {
119 struct xfs_buf *agbp = cur->bc_ag.agbp;
120 struct xfs_agf *agf = agbp->b_addr;
121 struct xfs_perag *pag = cur->bc_ag.pag;
122 xfs_agblock_t bno;
123 int error;
124
125 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
126 trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno,
127 bno, 1);
128 be32_add_cpu(&agf->agf_rmap_blocks, -1);
129 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
130 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
131 if (error)
132 return error;
133
134 xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
135 XFS_EXTENT_BUSY_SKIP_DISCARD);
136
137 xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
138 return 0;
139 }
140
141 STATIC int
xfs_rmapbt_get_minrecs(struct xfs_btree_cur * cur,int level)142 xfs_rmapbt_get_minrecs(
143 struct xfs_btree_cur *cur,
144 int level)
145 {
146 return cur->bc_mp->m_rmap_mnr[level != 0];
147 }
148
149 STATIC int
xfs_rmapbt_get_maxrecs(struct xfs_btree_cur * cur,int level)150 xfs_rmapbt_get_maxrecs(
151 struct xfs_btree_cur *cur,
152 int level)
153 {
154 return cur->bc_mp->m_rmap_mxr[level != 0];
155 }
156
157 STATIC void
xfs_rmapbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)158 xfs_rmapbt_init_key_from_rec(
159 union xfs_btree_key *key,
160 const union xfs_btree_rec *rec)
161 {
162 key->rmap.rm_startblock = rec->rmap.rm_startblock;
163 key->rmap.rm_owner = rec->rmap.rm_owner;
164 key->rmap.rm_offset = rec->rmap.rm_offset;
165 }
166
167 /*
168 * The high key for a reverse mapping record can be computed by shifting
169 * the startblock and offset to the highest value that would still map
170 * to that record. In practice this means that we add blockcount-1 to
171 * the startblock for all records, and if the record is for a data/attr
172 * fork mapping, we add blockcount-1 to the offset too.
173 */
174 STATIC void
xfs_rmapbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)175 xfs_rmapbt_init_high_key_from_rec(
176 union xfs_btree_key *key,
177 const union xfs_btree_rec *rec)
178 {
179 uint64_t off;
180 int adj;
181
182 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
183
184 key->rmap.rm_startblock = rec->rmap.rm_startblock;
185 be32_add_cpu(&key->rmap.rm_startblock, adj);
186 key->rmap.rm_owner = rec->rmap.rm_owner;
187 key->rmap.rm_offset = rec->rmap.rm_offset;
188 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
189 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
190 return;
191 off = be64_to_cpu(key->rmap.rm_offset);
192 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
193 key->rmap.rm_offset = cpu_to_be64(off);
194 }
195
196 STATIC void
xfs_rmapbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)197 xfs_rmapbt_init_rec_from_cur(
198 struct xfs_btree_cur *cur,
199 union xfs_btree_rec *rec)
200 {
201 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
202 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
203 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
204 rec->rmap.rm_offset = cpu_to_be64(
205 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
206 }
207
208 STATIC void
xfs_rmapbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)209 xfs_rmapbt_init_ptr_from_cur(
210 struct xfs_btree_cur *cur,
211 union xfs_btree_ptr *ptr)
212 {
213 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
214
215 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
216
217 ptr->s = agf->agf_roots[cur->bc_btnum];
218 }
219
220 STATIC int64_t
xfs_rmapbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)221 xfs_rmapbt_key_diff(
222 struct xfs_btree_cur *cur,
223 const union xfs_btree_key *key)
224 {
225 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
226 const struct xfs_rmap_key *kp = &key->rmap;
227 __u64 x, y;
228 int64_t d;
229
230 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
231 if (d)
232 return d;
233
234 x = be64_to_cpu(kp->rm_owner);
235 y = rec->rm_owner;
236 if (x > y)
237 return 1;
238 else if (y > x)
239 return -1;
240
241 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
242 y = rec->rm_offset;
243 if (x > y)
244 return 1;
245 else if (y > x)
246 return -1;
247 return 0;
248 }
249
250 STATIC int64_t
xfs_rmapbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)251 xfs_rmapbt_diff_two_keys(
252 struct xfs_btree_cur *cur,
253 const union xfs_btree_key *k1,
254 const union xfs_btree_key *k2)
255 {
256 const struct xfs_rmap_key *kp1 = &k1->rmap;
257 const struct xfs_rmap_key *kp2 = &k2->rmap;
258 int64_t d;
259 __u64 x, y;
260
261 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
262 be32_to_cpu(kp2->rm_startblock);
263 if (d)
264 return d;
265
266 x = be64_to_cpu(kp1->rm_owner);
267 y = be64_to_cpu(kp2->rm_owner);
268 if (x > y)
269 return 1;
270 else if (y > x)
271 return -1;
272
273 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
274 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
275 if (x > y)
276 return 1;
277 else if (y > x)
278 return -1;
279 return 0;
280 }
281
282 static xfs_failaddr_t
xfs_rmapbt_verify(struct xfs_buf * bp)283 xfs_rmapbt_verify(
284 struct xfs_buf *bp)
285 {
286 struct xfs_mount *mp = bp->b_mount;
287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
288 struct xfs_perag *pag = bp->b_pag;
289 xfs_failaddr_t fa;
290 unsigned int level;
291
292 /*
293 * magic number and level verification
294 *
295 * During growfs operations, we can't verify the exact level or owner as
296 * the perag is not fully initialised and hence not attached to the
297 * buffer. In this case, check against the maximum tree depth.
298 *
299 * Similarly, during log recovery we will have a perag structure
300 * attached, but the agf information will not yet have been initialised
301 * from the on disk AGF. Again, we can only check against maximum limits
302 * in this case.
303 */
304 if (!xfs_verify_magic(bp, block->bb_magic))
305 return __this_address;
306
307 if (!xfs_has_rmapbt(mp))
308 return __this_address;
309 fa = xfs_btree_sblock_v5hdr_verify(bp);
310 if (fa)
311 return fa;
312
313 level = be16_to_cpu(block->bb_level);
314 if (pag && pag->pagf_init) {
315 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
316 return __this_address;
317 } else if (level >= mp->m_rmap_maxlevels)
318 return __this_address;
319
320 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
321 }
322
323 static void
xfs_rmapbt_read_verify(struct xfs_buf * bp)324 xfs_rmapbt_read_verify(
325 struct xfs_buf *bp)
326 {
327 xfs_failaddr_t fa;
328
329 if (!xfs_btree_sblock_verify_crc(bp))
330 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
331 else {
332 fa = xfs_rmapbt_verify(bp);
333 if (fa)
334 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
335 }
336
337 if (bp->b_error)
338 trace_xfs_btree_corrupt(bp, _RET_IP_);
339 }
340
341 static void
xfs_rmapbt_write_verify(struct xfs_buf * bp)342 xfs_rmapbt_write_verify(
343 struct xfs_buf *bp)
344 {
345 xfs_failaddr_t fa;
346
347 fa = xfs_rmapbt_verify(bp);
348 if (fa) {
349 trace_xfs_btree_corrupt(bp, _RET_IP_);
350 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
351 return;
352 }
353 xfs_btree_sblock_calc_crc(bp);
354
355 }
356
357 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
358 .name = "xfs_rmapbt",
359 .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
360 .verify_read = xfs_rmapbt_read_verify,
361 .verify_write = xfs_rmapbt_write_verify,
362 .verify_struct = xfs_rmapbt_verify,
363 };
364
365 STATIC int
xfs_rmapbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)366 xfs_rmapbt_keys_inorder(
367 struct xfs_btree_cur *cur,
368 const union xfs_btree_key *k1,
369 const union xfs_btree_key *k2)
370 {
371 uint32_t x;
372 uint32_t y;
373 uint64_t a;
374 uint64_t b;
375
376 x = be32_to_cpu(k1->rmap.rm_startblock);
377 y = be32_to_cpu(k2->rmap.rm_startblock);
378 if (x < y)
379 return 1;
380 else if (x > y)
381 return 0;
382 a = be64_to_cpu(k1->rmap.rm_owner);
383 b = be64_to_cpu(k2->rmap.rm_owner);
384 if (a < b)
385 return 1;
386 else if (a > b)
387 return 0;
388 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
389 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
390 if (a <= b)
391 return 1;
392 return 0;
393 }
394
395 STATIC int
xfs_rmapbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)396 xfs_rmapbt_recs_inorder(
397 struct xfs_btree_cur *cur,
398 const union xfs_btree_rec *r1,
399 const union xfs_btree_rec *r2)
400 {
401 uint32_t x;
402 uint32_t y;
403 uint64_t a;
404 uint64_t b;
405
406 x = be32_to_cpu(r1->rmap.rm_startblock);
407 y = be32_to_cpu(r2->rmap.rm_startblock);
408 if (x < y)
409 return 1;
410 else if (x > y)
411 return 0;
412 a = be64_to_cpu(r1->rmap.rm_owner);
413 b = be64_to_cpu(r2->rmap.rm_owner);
414 if (a < b)
415 return 1;
416 else if (a > b)
417 return 0;
418 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
419 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
420 if (a <= b)
421 return 1;
422 return 0;
423 }
424
425 static const struct xfs_btree_ops xfs_rmapbt_ops = {
426 .rec_len = sizeof(struct xfs_rmap_rec),
427 .key_len = 2 * sizeof(struct xfs_rmap_key),
428
429 .dup_cursor = xfs_rmapbt_dup_cursor,
430 .set_root = xfs_rmapbt_set_root,
431 .alloc_block = xfs_rmapbt_alloc_block,
432 .free_block = xfs_rmapbt_free_block,
433 .get_minrecs = xfs_rmapbt_get_minrecs,
434 .get_maxrecs = xfs_rmapbt_get_maxrecs,
435 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
436 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
437 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
438 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
439 .key_diff = xfs_rmapbt_key_diff,
440 .buf_ops = &xfs_rmapbt_buf_ops,
441 .diff_two_keys = xfs_rmapbt_diff_two_keys,
442 .keys_inorder = xfs_rmapbt_keys_inorder,
443 .recs_inorder = xfs_rmapbt_recs_inorder,
444 };
445
446 static struct xfs_btree_cur *
xfs_rmapbt_init_common(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag)447 xfs_rmapbt_init_common(
448 struct xfs_mount *mp,
449 struct xfs_trans *tp,
450 struct xfs_perag *pag)
451 {
452 struct xfs_btree_cur *cur;
453
454 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
455 cur->bc_tp = tp;
456 cur->bc_mp = mp;
457 /* Overlapping btree; 2 keys per pointer. */
458 cur->bc_btnum = XFS_BTNUM_RMAP;
459 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
460 cur->bc_blocklog = mp->m_sb.sb_blocklog;
461 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
462 cur->bc_ops = &xfs_rmapbt_ops;
463
464 /* take a reference for the cursor */
465 atomic_inc(&pag->pag_ref);
466 cur->bc_ag.pag = pag;
467
468 return cur;
469 }
470
471 /* Create a new reverse mapping btree cursor. */
472 struct xfs_btree_cur *
xfs_rmapbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)473 xfs_rmapbt_init_cursor(
474 struct xfs_mount *mp,
475 struct xfs_trans *tp,
476 struct xfs_buf *agbp,
477 struct xfs_perag *pag)
478 {
479 struct xfs_agf *agf = agbp->b_addr;
480 struct xfs_btree_cur *cur;
481
482 cur = xfs_rmapbt_init_common(mp, tp, pag);
483 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
484 cur->bc_ag.agbp = agbp;
485 return cur;
486 }
487
488 /* Create a new reverse mapping btree cursor with a fake root for staging. */
489 struct xfs_btree_cur *
xfs_rmapbt_stage_cursor(struct xfs_mount * mp,struct xbtree_afakeroot * afake,struct xfs_perag * pag)490 xfs_rmapbt_stage_cursor(
491 struct xfs_mount *mp,
492 struct xbtree_afakeroot *afake,
493 struct xfs_perag *pag)
494 {
495 struct xfs_btree_cur *cur;
496
497 cur = xfs_rmapbt_init_common(mp, NULL, pag);
498 xfs_btree_stage_afakeroot(cur, afake);
499 return cur;
500 }
501
502 /*
503 * Install a new reverse mapping btree root. Caller is responsible for
504 * invalidating and freeing the old btree blocks.
505 */
506 void
xfs_rmapbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)507 xfs_rmapbt_commit_staged_btree(
508 struct xfs_btree_cur *cur,
509 struct xfs_trans *tp,
510 struct xfs_buf *agbp)
511 {
512 struct xfs_agf *agf = agbp->b_addr;
513 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
514
515 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
516
517 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
518 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
519 agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
520 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
521 XFS_AGF_RMAP_BLOCKS);
522 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
523 }
524
525 /*
526 * Calculate number of records in an rmap btree block.
527 */
528 int
xfs_rmapbt_maxrecs(int blocklen,int leaf)529 xfs_rmapbt_maxrecs(
530 int blocklen,
531 int leaf)
532 {
533 blocklen -= XFS_RMAP_BLOCK_LEN;
534
535 if (leaf)
536 return blocklen / sizeof(struct xfs_rmap_rec);
537 return blocklen /
538 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
539 }
540
541 /* Compute the maximum height of an rmap btree. */
542 void
xfs_rmapbt_compute_maxlevels(struct xfs_mount * mp)543 xfs_rmapbt_compute_maxlevels(
544 struct xfs_mount *mp)
545 {
546 /*
547 * On a non-reflink filesystem, the maximum number of rmap
548 * records is the number of blocks in the AG, hence the max
549 * rmapbt height is log_$maxrecs($agblocks). However, with
550 * reflink each AG block can have up to 2^32 (per the refcount
551 * record format) owners, which means that theoretically we
552 * could face up to 2^64 rmap records.
553 *
554 * That effectively means that the max rmapbt height must be
555 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
556 * blocks to feed the rmapbt long before the rmapbt reaches
557 * maximum height. The reflink code uses ag_resv_critical to
558 * disallow reflinking when less than 10% of the per-AG metadata
559 * block reservation since the fallback is a regular file copy.
560 */
561 if (xfs_has_reflink(mp))
562 mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
563 else
564 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
565 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
566 }
567
568 /* Calculate the refcount btree size for some records. */
569 xfs_extlen_t
xfs_rmapbt_calc_size(struct xfs_mount * mp,unsigned long long len)570 xfs_rmapbt_calc_size(
571 struct xfs_mount *mp,
572 unsigned long long len)
573 {
574 return xfs_btree_calc_size(mp->m_rmap_mnr, len);
575 }
576
577 /*
578 * Calculate the maximum refcount btree size.
579 */
580 xfs_extlen_t
xfs_rmapbt_max_size(struct xfs_mount * mp,xfs_agblock_t agblocks)581 xfs_rmapbt_max_size(
582 struct xfs_mount *mp,
583 xfs_agblock_t agblocks)
584 {
585 /* Bail out if we're uninitialized, which can happen in mkfs. */
586 if (mp->m_rmap_mxr[0] == 0)
587 return 0;
588
589 return xfs_rmapbt_calc_size(mp, agblocks);
590 }
591
592 /*
593 * Figure out how many blocks to reserve and how many are used by this btree.
594 */
595 int
xfs_rmapbt_calc_reserves(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_extlen_t * ask,xfs_extlen_t * used)596 xfs_rmapbt_calc_reserves(
597 struct xfs_mount *mp,
598 struct xfs_trans *tp,
599 struct xfs_perag *pag,
600 xfs_extlen_t *ask,
601 xfs_extlen_t *used)
602 {
603 struct xfs_buf *agbp;
604 struct xfs_agf *agf;
605 xfs_agblock_t agblocks;
606 xfs_extlen_t tree_len;
607 int error;
608
609 if (!xfs_has_rmapbt(mp))
610 return 0;
611
612 error = xfs_alloc_read_agf(mp, tp, pag->pag_agno, 0, &agbp);
613 if (error)
614 return error;
615
616 agf = agbp->b_addr;
617 agblocks = be32_to_cpu(agf->agf_length);
618 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
619 xfs_trans_brelse(tp, agbp);
620
621 /*
622 * The log is permanently allocated, so the space it occupies will
623 * never be available for the kinds of things that would require btree
624 * expansion. We therefore can pretend the space isn't there.
625 */
626 if (mp->m_sb.sb_logstart &&
627 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == pag->pag_agno)
628 agblocks -= mp->m_sb.sb_logblocks;
629
630 /* Reserve 1% of the AG or enough for 1 block per record. */
631 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
632 *used += tree_len;
633
634 return error;
635 }
636