1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap.h"
17 #include "xfs_alloc.h"
18 #include "xfs_fsops.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_dir2.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_mru_cache.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_icache.h"
28 #include "xfs_trace.h"
29 #include "xfs_icreate_item.h"
30 #include "xfs_filestream.h"
31 #include "xfs_quota.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_ondisk.h"
34 #include "xfs_rmap_item.h"
35 #include "xfs_refcount_item.h"
36 #include "xfs_bmap_item.h"
37 #include "xfs_reflink.h"
38 
39 #include <linux/magic.h>
40 #include <linux/parser.h>
41 
42 static const struct super_operations xfs_super_operations;
43 struct bio_set xfs_ioend_bioset;
44 
45 static struct kset *xfs_kset;		/* top-level xfs sysfs dir */
46 #ifdef DEBUG
47 static struct xfs_kobj xfs_dbg_kobj;	/* global debug sysfs attrs */
48 #endif
49 
50 /*
51  * Table driven mount option parser.
52  */
53 enum {
54 	Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, Opt_biosize,
55 	Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
56 	Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
57 	Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
58 	Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
59 	Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
60 	Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
61 	Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
62 	Opt_discard, Opt_nodiscard, Opt_dax, Opt_err,
63 };
64 
65 static const match_table_t tokens = {
66 	{Opt_logbufs,	"logbufs=%u"},	/* number of XFS log buffers */
67 	{Opt_logbsize,	"logbsize=%s"},	/* size of XFS log buffers */
68 	{Opt_logdev,	"logdev=%s"},	/* log device */
69 	{Opt_rtdev,	"rtdev=%s"},	/* realtime I/O device */
70 	{Opt_biosize,	"biosize=%u"},	/* log2 of preferred buffered io size */
71 	{Opt_wsync,	"wsync"},	/* safe-mode nfs compatible mount */
72 	{Opt_noalign,	"noalign"},	/* turn off stripe alignment */
73 	{Opt_swalloc,	"swalloc"},	/* turn on stripe width allocation */
74 	{Opt_sunit,	"sunit=%u"},	/* data volume stripe unit */
75 	{Opt_swidth,	"swidth=%u"},	/* data volume stripe width */
76 	{Opt_nouuid,	"nouuid"},	/* ignore filesystem UUID */
77 	{Opt_grpid,	"grpid"},	/* group-ID from parent directory */
78 	{Opt_nogrpid,	"nogrpid"},	/* group-ID from current process */
79 	{Opt_bsdgroups,	"bsdgroups"},	/* group-ID from parent directory */
80 	{Opt_sysvgroups,"sysvgroups"},	/* group-ID from current process */
81 	{Opt_allocsize,	"allocsize=%s"},/* preferred allocation size */
82 	{Opt_norecovery,"norecovery"},	/* don't run XFS recovery */
83 	{Opt_inode64,	"inode64"},	/* inodes can be allocated anywhere */
84 	{Opt_inode32,   "inode32"},	/* inode allocation limited to
85 					 * XFS_MAXINUMBER_32 */
86 	{Opt_ikeep,	"ikeep"},	/* do not free empty inode clusters */
87 	{Opt_noikeep,	"noikeep"},	/* free empty inode clusters */
88 	{Opt_largeio,	"largeio"},	/* report large I/O sizes in stat() */
89 	{Opt_nolargeio,	"nolargeio"},	/* do not report large I/O sizes
90 					 * in stat(). */
91 	{Opt_attr2,	"attr2"},	/* do use attr2 attribute format */
92 	{Opt_noattr2,	"noattr2"},	/* do not use attr2 attribute format */
93 	{Opt_filestreams,"filestreams"},/* use filestreams allocator */
94 	{Opt_quota,	"quota"},	/* disk quotas (user) */
95 	{Opt_noquota,	"noquota"},	/* no quotas */
96 	{Opt_usrquota,	"usrquota"},	/* user quota enabled */
97 	{Opt_grpquota,	"grpquota"},	/* group quota enabled */
98 	{Opt_prjquota,	"prjquota"},	/* project quota enabled */
99 	{Opt_uquota,	"uquota"},	/* user quota (IRIX variant) */
100 	{Opt_gquota,	"gquota"},	/* group quota (IRIX variant) */
101 	{Opt_pquota,	"pquota"},	/* project quota (IRIX variant) */
102 	{Opt_uqnoenforce,"uqnoenforce"},/* user quota limit enforcement */
103 	{Opt_gqnoenforce,"gqnoenforce"},/* group quota limit enforcement */
104 	{Opt_pqnoenforce,"pqnoenforce"},/* project quota limit enforcement */
105 	{Opt_qnoenforce, "qnoenforce"},	/* same as uqnoenforce */
106 	{Opt_discard,	"discard"},	/* Discard unused blocks */
107 	{Opt_nodiscard,	"nodiscard"},	/* Do not discard unused blocks */
108 	{Opt_dax,	"dax"},		/* Enable direct access to bdev pages */
109 	{Opt_err,	NULL},
110 };
111 
112 
113 STATIC int
suffix_kstrtoint(const substring_t * s,unsigned int base,int * res)114 suffix_kstrtoint(const substring_t *s, unsigned int base, int *res)
115 {
116 	int	last, shift_left_factor = 0, _res;
117 	char	*value;
118 	int	ret = 0;
119 
120 	value = match_strdup(s);
121 	if (!value)
122 		return -ENOMEM;
123 
124 	last = strlen(value) - 1;
125 	if (value[last] == 'K' || value[last] == 'k') {
126 		shift_left_factor = 10;
127 		value[last] = '\0';
128 	}
129 	if (value[last] == 'M' || value[last] == 'm') {
130 		shift_left_factor = 20;
131 		value[last] = '\0';
132 	}
133 	if (value[last] == 'G' || value[last] == 'g') {
134 		shift_left_factor = 30;
135 		value[last] = '\0';
136 	}
137 
138 	if (kstrtoint(value, base, &_res))
139 		ret = -EINVAL;
140 	kfree(value);
141 	*res = _res << shift_left_factor;
142 	return ret;
143 }
144 
145 /*
146  * This function fills in xfs_mount_t fields based on mount args.
147  * Note: the superblock has _not_ yet been read in.
148  *
149  * Note that this function leaks the various device name allocations on
150  * failure.  The caller takes care of them.
151  *
152  * *sb is const because this is also used to test options on the remount
153  * path, and we don't want this to have any side effects at remount time.
154  * Today this function does not change *sb, but just to future-proof...
155  */
156 STATIC int
xfs_parseargs(struct xfs_mount * mp,char * options)157 xfs_parseargs(
158 	struct xfs_mount	*mp,
159 	char			*options)
160 {
161 	const struct super_block *sb = mp->m_super;
162 	char			*p;
163 	substring_t		args[MAX_OPT_ARGS];
164 	int			dsunit = 0;
165 	int			dswidth = 0;
166 	int			iosize = 0;
167 	uint8_t			iosizelog = 0;
168 
169 	/*
170 	 * set up the mount name first so all the errors will refer to the
171 	 * correct device.
172 	 */
173 	mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
174 	if (!mp->m_fsname)
175 		return -ENOMEM;
176 	mp->m_fsname_len = strlen(mp->m_fsname) + 1;
177 
178 	/*
179 	 * Copy binary VFS mount flags we are interested in.
180 	 */
181 	if (sb_rdonly(sb))
182 		mp->m_flags |= XFS_MOUNT_RDONLY;
183 	if (sb->s_flags & SB_DIRSYNC)
184 		mp->m_flags |= XFS_MOUNT_DIRSYNC;
185 	if (sb->s_flags & SB_SYNCHRONOUS)
186 		mp->m_flags |= XFS_MOUNT_WSYNC;
187 
188 	/*
189 	 * Set some default flags that could be cleared by the mount option
190 	 * parsing.
191 	 */
192 	mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
193 
194 	/*
195 	 * These can be overridden by the mount option parsing.
196 	 */
197 	mp->m_logbufs = -1;
198 	mp->m_logbsize = -1;
199 
200 	if (!options)
201 		goto done;
202 
203 	while ((p = strsep(&options, ",")) != NULL) {
204 		int		token;
205 
206 		if (!*p)
207 			continue;
208 
209 		token = match_token(p, tokens, args);
210 		switch (token) {
211 		case Opt_logbufs:
212 			if (match_int(args, &mp->m_logbufs))
213 				return -EINVAL;
214 			break;
215 		case Opt_logbsize:
216 			if (suffix_kstrtoint(args, 10, &mp->m_logbsize))
217 				return -EINVAL;
218 			break;
219 		case Opt_logdev:
220 			kfree(mp->m_logname);
221 			mp->m_logname = match_strdup(args);
222 			if (!mp->m_logname)
223 				return -ENOMEM;
224 			break;
225 		case Opt_rtdev:
226 			kfree(mp->m_rtname);
227 			mp->m_rtname = match_strdup(args);
228 			if (!mp->m_rtname)
229 				return -ENOMEM;
230 			break;
231 		case Opt_allocsize:
232 		case Opt_biosize:
233 			if (suffix_kstrtoint(args, 10, &iosize))
234 				return -EINVAL;
235 			iosizelog = ffs(iosize) - 1;
236 			break;
237 		case Opt_grpid:
238 		case Opt_bsdgroups:
239 			mp->m_flags |= XFS_MOUNT_GRPID;
240 			break;
241 		case Opt_nogrpid:
242 		case Opt_sysvgroups:
243 			mp->m_flags &= ~XFS_MOUNT_GRPID;
244 			break;
245 		case Opt_wsync:
246 			mp->m_flags |= XFS_MOUNT_WSYNC;
247 			break;
248 		case Opt_norecovery:
249 			mp->m_flags |= XFS_MOUNT_NORECOVERY;
250 			break;
251 		case Opt_noalign:
252 			mp->m_flags |= XFS_MOUNT_NOALIGN;
253 			break;
254 		case Opt_swalloc:
255 			mp->m_flags |= XFS_MOUNT_SWALLOC;
256 			break;
257 		case Opt_sunit:
258 			if (match_int(args, &dsunit))
259 				return -EINVAL;
260 			break;
261 		case Opt_swidth:
262 			if (match_int(args, &dswidth))
263 				return -EINVAL;
264 			break;
265 		case Opt_inode32:
266 			mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
267 			break;
268 		case Opt_inode64:
269 			mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
270 			break;
271 		case Opt_nouuid:
272 			mp->m_flags |= XFS_MOUNT_NOUUID;
273 			break;
274 		case Opt_ikeep:
275 			mp->m_flags |= XFS_MOUNT_IKEEP;
276 			break;
277 		case Opt_noikeep:
278 			mp->m_flags &= ~XFS_MOUNT_IKEEP;
279 			break;
280 		case Opt_largeio:
281 			mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
282 			break;
283 		case Opt_nolargeio:
284 			mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
285 			break;
286 		case Opt_attr2:
287 			mp->m_flags |= XFS_MOUNT_ATTR2;
288 			break;
289 		case Opt_noattr2:
290 			mp->m_flags &= ~XFS_MOUNT_ATTR2;
291 			mp->m_flags |= XFS_MOUNT_NOATTR2;
292 			break;
293 		case Opt_filestreams:
294 			mp->m_flags |= XFS_MOUNT_FILESTREAMS;
295 			break;
296 		case Opt_noquota:
297 			mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
298 			mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
299 			mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
300 			break;
301 		case Opt_quota:
302 		case Opt_uquota:
303 		case Opt_usrquota:
304 			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
305 					 XFS_UQUOTA_ENFD);
306 			break;
307 		case Opt_qnoenforce:
308 		case Opt_uqnoenforce:
309 			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
310 			mp->m_qflags &= ~XFS_UQUOTA_ENFD;
311 			break;
312 		case Opt_pquota:
313 		case Opt_prjquota:
314 			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
315 					 XFS_PQUOTA_ENFD);
316 			break;
317 		case Opt_pqnoenforce:
318 			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
319 			mp->m_qflags &= ~XFS_PQUOTA_ENFD;
320 			break;
321 		case Opt_gquota:
322 		case Opt_grpquota:
323 			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
324 					 XFS_GQUOTA_ENFD);
325 			break;
326 		case Opt_gqnoenforce:
327 			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
328 			mp->m_qflags &= ~XFS_GQUOTA_ENFD;
329 			break;
330 		case Opt_discard:
331 			mp->m_flags |= XFS_MOUNT_DISCARD;
332 			break;
333 		case Opt_nodiscard:
334 			mp->m_flags &= ~XFS_MOUNT_DISCARD;
335 			break;
336 #ifdef CONFIG_FS_DAX
337 		case Opt_dax:
338 			mp->m_flags |= XFS_MOUNT_DAX;
339 			break;
340 #endif
341 		default:
342 			xfs_warn(mp, "unknown mount option [%s].", p);
343 			return -EINVAL;
344 		}
345 	}
346 
347 	/*
348 	 * no recovery flag requires a read-only mount
349 	 */
350 	if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
351 	    !(mp->m_flags & XFS_MOUNT_RDONLY)) {
352 		xfs_warn(mp, "no-recovery mounts must be read-only.");
353 		return -EINVAL;
354 	}
355 
356 	if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
357 		xfs_warn(mp,
358 	"sunit and swidth options incompatible with the noalign option");
359 		return -EINVAL;
360 	}
361 
362 #ifndef CONFIG_XFS_QUOTA
363 	if (XFS_IS_QUOTA_RUNNING(mp)) {
364 		xfs_warn(mp, "quota support not available in this kernel.");
365 		return -EINVAL;
366 	}
367 #endif
368 
369 	if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
370 		xfs_warn(mp, "sunit and swidth must be specified together");
371 		return -EINVAL;
372 	}
373 
374 	if (dsunit && (dswidth % dsunit != 0)) {
375 		xfs_warn(mp,
376 	"stripe width (%d) must be a multiple of the stripe unit (%d)",
377 			dswidth, dsunit);
378 		return -EINVAL;
379 	}
380 
381 done:
382 	if (dsunit && !(mp->m_flags & XFS_MOUNT_NOALIGN)) {
383 		/*
384 		 * At this point the superblock has not been read
385 		 * in, therefore we do not know the block size.
386 		 * Before the mount call ends we will convert
387 		 * these to FSBs.
388 		 */
389 		mp->m_dalign = dsunit;
390 		mp->m_swidth = dswidth;
391 	}
392 
393 	if (mp->m_logbufs != -1 &&
394 	    mp->m_logbufs != 0 &&
395 	    (mp->m_logbufs < XLOG_MIN_ICLOGS ||
396 	     mp->m_logbufs > XLOG_MAX_ICLOGS)) {
397 		xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
398 			mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
399 		return -EINVAL;
400 	}
401 	if (mp->m_logbsize != -1 &&
402 	    mp->m_logbsize !=  0 &&
403 	    (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
404 	     mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
405 	     !is_power_of_2(mp->m_logbsize))) {
406 		xfs_warn(mp,
407 			"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
408 			mp->m_logbsize);
409 		return -EINVAL;
410 	}
411 
412 	if (iosizelog) {
413 		if (iosizelog > XFS_MAX_IO_LOG ||
414 		    iosizelog < XFS_MIN_IO_LOG) {
415 			xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
416 				iosizelog, XFS_MIN_IO_LOG,
417 				XFS_MAX_IO_LOG);
418 			return -EINVAL;
419 		}
420 
421 		mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
422 		mp->m_readio_log = iosizelog;
423 		mp->m_writeio_log = iosizelog;
424 	}
425 
426 	return 0;
427 }
428 
429 struct proc_xfs_info {
430 	uint64_t	flag;
431 	char		*str;
432 };
433 
434 STATIC void
xfs_showargs(struct xfs_mount * mp,struct seq_file * m)435 xfs_showargs(
436 	struct xfs_mount	*mp,
437 	struct seq_file		*m)
438 {
439 	static struct proc_xfs_info xfs_info_set[] = {
440 		/* the few simple ones we can get from the mount struct */
441 		{ XFS_MOUNT_IKEEP,		",ikeep" },
442 		{ XFS_MOUNT_WSYNC,		",wsync" },
443 		{ XFS_MOUNT_NOALIGN,		",noalign" },
444 		{ XFS_MOUNT_SWALLOC,		",swalloc" },
445 		{ XFS_MOUNT_NOUUID,		",nouuid" },
446 		{ XFS_MOUNT_NORECOVERY,		",norecovery" },
447 		{ XFS_MOUNT_ATTR2,		",attr2" },
448 		{ XFS_MOUNT_FILESTREAMS,	",filestreams" },
449 		{ XFS_MOUNT_GRPID,		",grpid" },
450 		{ XFS_MOUNT_DISCARD,		",discard" },
451 		{ XFS_MOUNT_SMALL_INUMS,	",inode32" },
452 		{ XFS_MOUNT_DAX,		",dax" },
453 		{ 0, NULL }
454 	};
455 	static struct proc_xfs_info xfs_info_unset[] = {
456 		/* the few simple ones we can get from the mount struct */
457 		{ XFS_MOUNT_COMPAT_IOSIZE,	",largeio" },
458 		{ XFS_MOUNT_SMALL_INUMS,	",inode64" },
459 		{ 0, NULL }
460 	};
461 	struct proc_xfs_info	*xfs_infop;
462 
463 	for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
464 		if (mp->m_flags & xfs_infop->flag)
465 			seq_puts(m, xfs_infop->str);
466 	}
467 	for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
468 		if (!(mp->m_flags & xfs_infop->flag))
469 			seq_puts(m, xfs_infop->str);
470 	}
471 
472 	if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
473 		seq_printf(m, ",allocsize=%dk",
474 				(int)(1 << mp->m_writeio_log) >> 10);
475 
476 	if (mp->m_logbufs > 0)
477 		seq_printf(m, ",logbufs=%d", mp->m_logbufs);
478 	if (mp->m_logbsize > 0)
479 		seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
480 
481 	if (mp->m_logname)
482 		seq_show_option(m, "logdev", mp->m_logname);
483 	if (mp->m_rtname)
484 		seq_show_option(m, "rtdev", mp->m_rtname);
485 
486 	if (mp->m_dalign > 0)
487 		seq_printf(m, ",sunit=%d",
488 				(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
489 	if (mp->m_swidth > 0)
490 		seq_printf(m, ",swidth=%d",
491 				(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
492 
493 	if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
494 		seq_puts(m, ",usrquota");
495 	else if (mp->m_qflags & XFS_UQUOTA_ACCT)
496 		seq_puts(m, ",uqnoenforce");
497 
498 	if (mp->m_qflags & XFS_PQUOTA_ACCT) {
499 		if (mp->m_qflags & XFS_PQUOTA_ENFD)
500 			seq_puts(m, ",prjquota");
501 		else
502 			seq_puts(m, ",pqnoenforce");
503 	}
504 	if (mp->m_qflags & XFS_GQUOTA_ACCT) {
505 		if (mp->m_qflags & XFS_GQUOTA_ENFD)
506 			seq_puts(m, ",grpquota");
507 		else
508 			seq_puts(m, ",gqnoenforce");
509 	}
510 
511 	if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
512 		seq_puts(m, ",noquota");
513 }
514 
515 static uint64_t
xfs_max_file_offset(unsigned int blockshift)516 xfs_max_file_offset(
517 	unsigned int		blockshift)
518 {
519 	unsigned int		pagefactor = 1;
520 	unsigned int		bitshift = BITS_PER_LONG - 1;
521 
522 	/* Figure out maximum filesize, on Linux this can depend on
523 	 * the filesystem blocksize (on 32 bit platforms).
524 	 * __block_write_begin does this in an [unsigned] long long...
525 	 *      page->index << (PAGE_SHIFT - bbits)
526 	 * So, for page sized blocks (4K on 32 bit platforms),
527 	 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
528 	 *      (((u64)PAGE_SIZE << (BITS_PER_LONG-1))-1)
529 	 * but for smaller blocksizes it is less (bbits = log2 bsize).
530 	 */
531 
532 #if BITS_PER_LONG == 32
533 	ASSERT(sizeof(sector_t) == 8);
534 	pagefactor = PAGE_SIZE;
535 	bitshift = BITS_PER_LONG;
536 #endif
537 
538 	return (((uint64_t)pagefactor) << bitshift) - 1;
539 }
540 
541 /*
542  * Set parameters for inode allocation heuristics, taking into account
543  * filesystem size and inode32/inode64 mount options; i.e. specifically
544  * whether or not XFS_MOUNT_SMALL_INUMS is set.
545  *
546  * Inode allocation patterns are altered only if inode32 is requested
547  * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large.
548  * If altered, XFS_MOUNT_32BITINODES is set as well.
549  *
550  * An agcount independent of that in the mount structure is provided
551  * because in the growfs case, mp->m_sb.sb_agcount is not yet updated
552  * to the potentially higher ag count.
553  *
554  * Returns the maximum AG index which may contain inodes.
555  */
556 xfs_agnumber_t
xfs_set_inode_alloc(struct xfs_mount * mp,xfs_agnumber_t agcount)557 xfs_set_inode_alloc(
558 	struct xfs_mount *mp,
559 	xfs_agnumber_t	agcount)
560 {
561 	xfs_agnumber_t	index;
562 	xfs_agnumber_t	maxagi = 0;
563 	xfs_sb_t	*sbp = &mp->m_sb;
564 	xfs_agnumber_t	max_metadata;
565 	xfs_agino_t	agino;
566 	xfs_ino_t	ino;
567 
568 	/*
569 	 * Calculate how much should be reserved for inodes to meet
570 	 * the max inode percentage.  Used only for inode32.
571 	 */
572 	if (M_IGEO(mp)->maxicount) {
573 		uint64_t	icount;
574 
575 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
576 		do_div(icount, 100);
577 		icount += sbp->sb_agblocks - 1;
578 		do_div(icount, sbp->sb_agblocks);
579 		max_metadata = icount;
580 	} else {
581 		max_metadata = agcount;
582 	}
583 
584 	/* Get the last possible inode in the filesystem */
585 	agino =	XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
586 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
587 
588 	/*
589 	 * If user asked for no more than 32-bit inodes, and the fs is
590 	 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter
591 	 * the allocator to accommodate the request.
592 	 */
593 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
594 		mp->m_flags |= XFS_MOUNT_32BITINODES;
595 	else
596 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
597 
598 	for (index = 0; index < agcount; index++) {
599 		struct xfs_perag	*pag;
600 
601 		ino = XFS_AGINO_TO_INO(mp, index, agino);
602 
603 		pag = xfs_perag_get(mp, index);
604 
605 		if (mp->m_flags & XFS_MOUNT_32BITINODES) {
606 			if (ino > XFS_MAXINUMBER_32) {
607 				pag->pagi_inodeok = 0;
608 				pag->pagf_metadata = 0;
609 			} else {
610 				pag->pagi_inodeok = 1;
611 				maxagi++;
612 				if (index < max_metadata)
613 					pag->pagf_metadata = 1;
614 				else
615 					pag->pagf_metadata = 0;
616 			}
617 		} else {
618 			pag->pagi_inodeok = 1;
619 			pag->pagf_metadata = 0;
620 		}
621 
622 		xfs_perag_put(pag);
623 	}
624 
625 	return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount;
626 }
627 
628 STATIC int
xfs_blkdev_get(xfs_mount_t * mp,const char * name,struct block_device ** bdevp)629 xfs_blkdev_get(
630 	xfs_mount_t		*mp,
631 	const char		*name,
632 	struct block_device	**bdevp)
633 {
634 	int			error = 0;
635 
636 	*bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
637 				    mp);
638 	if (IS_ERR(*bdevp)) {
639 		error = PTR_ERR(*bdevp);
640 		xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
641 	}
642 
643 	return error;
644 }
645 
646 STATIC void
xfs_blkdev_put(struct block_device * bdev)647 xfs_blkdev_put(
648 	struct block_device	*bdev)
649 {
650 	if (bdev)
651 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
652 }
653 
654 void
xfs_blkdev_issue_flush(xfs_buftarg_t * buftarg)655 xfs_blkdev_issue_flush(
656 	xfs_buftarg_t		*buftarg)
657 {
658 	blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL);
659 }
660 
661 STATIC void
xfs_close_devices(struct xfs_mount * mp)662 xfs_close_devices(
663 	struct xfs_mount	*mp)
664 {
665 	struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev;
666 
667 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
668 		struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
669 		struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev;
670 
671 		xfs_free_buftarg(mp->m_logdev_targp);
672 		xfs_blkdev_put(logdev);
673 		fs_put_dax(dax_logdev);
674 	}
675 	if (mp->m_rtdev_targp) {
676 		struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
677 		struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev;
678 
679 		xfs_free_buftarg(mp->m_rtdev_targp);
680 		xfs_blkdev_put(rtdev);
681 		fs_put_dax(dax_rtdev);
682 	}
683 	xfs_free_buftarg(mp->m_ddev_targp);
684 	fs_put_dax(dax_ddev);
685 }
686 
687 /*
688  * The file system configurations are:
689  *	(1) device (partition) with data and internal log
690  *	(2) logical volume with data and log subvolumes.
691  *	(3) logical volume with data, log, and realtime subvolumes.
692  *
693  * We only have to handle opening the log and realtime volumes here if
694  * they are present.  The data subvolume has already been opened by
695  * get_sb_bdev() and is stored in sb->s_bdev.
696  */
697 STATIC int
xfs_open_devices(struct xfs_mount * mp)698 xfs_open_devices(
699 	struct xfs_mount	*mp)
700 {
701 	struct block_device	*ddev = mp->m_super->s_bdev;
702 	struct dax_device	*dax_ddev = fs_dax_get_by_bdev(ddev);
703 	struct dax_device	*dax_logdev = NULL, *dax_rtdev = NULL;
704 	struct block_device	*logdev = NULL, *rtdev = NULL;
705 	int			error;
706 
707 	/*
708 	 * Open real time and log devices - order is important.
709 	 */
710 	if (mp->m_logname) {
711 		error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
712 		if (error)
713 			goto out;
714 		dax_logdev = fs_dax_get_by_bdev(logdev);
715 	}
716 
717 	if (mp->m_rtname) {
718 		error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
719 		if (error)
720 			goto out_close_logdev;
721 
722 		if (rtdev == ddev || rtdev == logdev) {
723 			xfs_warn(mp,
724 	"Cannot mount filesystem with identical rtdev and ddev/logdev.");
725 			error = -EINVAL;
726 			goto out_close_rtdev;
727 		}
728 		dax_rtdev = fs_dax_get_by_bdev(rtdev);
729 	}
730 
731 	/*
732 	 * Setup xfs_mount buffer target pointers
733 	 */
734 	error = -ENOMEM;
735 	mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev);
736 	if (!mp->m_ddev_targp)
737 		goto out_close_rtdev;
738 
739 	if (rtdev) {
740 		mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev);
741 		if (!mp->m_rtdev_targp)
742 			goto out_free_ddev_targ;
743 	}
744 
745 	if (logdev && logdev != ddev) {
746 		mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev);
747 		if (!mp->m_logdev_targp)
748 			goto out_free_rtdev_targ;
749 	} else {
750 		mp->m_logdev_targp = mp->m_ddev_targp;
751 	}
752 
753 	return 0;
754 
755  out_free_rtdev_targ:
756 	if (mp->m_rtdev_targp)
757 		xfs_free_buftarg(mp->m_rtdev_targp);
758  out_free_ddev_targ:
759 	xfs_free_buftarg(mp->m_ddev_targp);
760  out_close_rtdev:
761 	xfs_blkdev_put(rtdev);
762 	fs_put_dax(dax_rtdev);
763  out_close_logdev:
764 	if (logdev && logdev != ddev) {
765 		xfs_blkdev_put(logdev);
766 		fs_put_dax(dax_logdev);
767 	}
768  out:
769 	fs_put_dax(dax_ddev);
770 	return error;
771 }
772 
773 /*
774  * Setup xfs_mount buffer target pointers based on superblock
775  */
776 STATIC int
xfs_setup_devices(struct xfs_mount * mp)777 xfs_setup_devices(
778 	struct xfs_mount	*mp)
779 {
780 	int			error;
781 
782 	error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
783 	if (error)
784 		return error;
785 
786 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
787 		unsigned int	log_sector_size = BBSIZE;
788 
789 		if (xfs_sb_version_hassector(&mp->m_sb))
790 			log_sector_size = mp->m_sb.sb_logsectsize;
791 		error = xfs_setsize_buftarg(mp->m_logdev_targp,
792 					    log_sector_size);
793 		if (error)
794 			return error;
795 	}
796 	if (mp->m_rtdev_targp) {
797 		error = xfs_setsize_buftarg(mp->m_rtdev_targp,
798 					    mp->m_sb.sb_sectsize);
799 		if (error)
800 			return error;
801 	}
802 
803 	return 0;
804 }
805 
806 STATIC int
xfs_init_mount_workqueues(struct xfs_mount * mp)807 xfs_init_mount_workqueues(
808 	struct xfs_mount	*mp)
809 {
810 	mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
811 			WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_fsname);
812 	if (!mp->m_buf_workqueue)
813 		goto out;
814 
815 	mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
816 			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
817 	if (!mp->m_unwritten_workqueue)
818 		goto out_destroy_buf;
819 
820 	mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
821 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND,
822 			0, mp->m_fsname);
823 	if (!mp->m_cil_workqueue)
824 		goto out_destroy_unwritten;
825 
826 	mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
827 			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
828 	if (!mp->m_reclaim_workqueue)
829 		goto out_destroy_cil;
830 
831 	mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
832 			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
833 	if (!mp->m_eofblocks_workqueue)
834 		goto out_destroy_reclaim;
835 
836 	mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0,
837 					       mp->m_fsname);
838 	if (!mp->m_sync_workqueue)
839 		goto out_destroy_eofb;
840 
841 	return 0;
842 
843 out_destroy_eofb:
844 	destroy_workqueue(mp->m_eofblocks_workqueue);
845 out_destroy_reclaim:
846 	destroy_workqueue(mp->m_reclaim_workqueue);
847 out_destroy_cil:
848 	destroy_workqueue(mp->m_cil_workqueue);
849 out_destroy_unwritten:
850 	destroy_workqueue(mp->m_unwritten_workqueue);
851 out_destroy_buf:
852 	destroy_workqueue(mp->m_buf_workqueue);
853 out:
854 	return -ENOMEM;
855 }
856 
857 STATIC void
xfs_destroy_mount_workqueues(struct xfs_mount * mp)858 xfs_destroy_mount_workqueues(
859 	struct xfs_mount	*mp)
860 {
861 	destroy_workqueue(mp->m_sync_workqueue);
862 	destroy_workqueue(mp->m_eofblocks_workqueue);
863 	destroy_workqueue(mp->m_reclaim_workqueue);
864 	destroy_workqueue(mp->m_cil_workqueue);
865 	destroy_workqueue(mp->m_unwritten_workqueue);
866 	destroy_workqueue(mp->m_buf_workqueue);
867 }
868 
869 /*
870  * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
871  * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
872  * for IO to complete so that we effectively throttle multiple callers to the
873  * rate at which IO is completing.
874  */
875 void
xfs_flush_inodes(struct xfs_mount * mp)876 xfs_flush_inodes(
877 	struct xfs_mount	*mp)
878 {
879 	struct super_block	*sb = mp->m_super;
880 
881 	if (down_read_trylock(&sb->s_umount)) {
882 		sync_inodes_sb(sb);
883 		up_read(&sb->s_umount);
884 	}
885 }
886 
887 /* Catch misguided souls that try to use this interface on XFS */
888 STATIC struct inode *
xfs_fs_alloc_inode(struct super_block * sb)889 xfs_fs_alloc_inode(
890 	struct super_block	*sb)
891 {
892 	BUG();
893 	return NULL;
894 }
895 
896 #ifdef DEBUG
897 static void
xfs_check_delalloc(struct xfs_inode * ip,int whichfork)898 xfs_check_delalloc(
899 	struct xfs_inode	*ip,
900 	int			whichfork)
901 {
902 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
903 	struct xfs_bmbt_irec	got;
904 	struct xfs_iext_cursor	icur;
905 
906 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
907 		return;
908 	do {
909 		if (isnullstartblock(got.br_startblock)) {
910 			xfs_warn(ip->i_mount,
911 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
912 				ip->i_ino,
913 				whichfork == XFS_DATA_FORK ? "data" : "cow",
914 				got.br_startoff, got.br_blockcount);
915 		}
916 	} while (xfs_iext_next_extent(ifp, &icur, &got));
917 }
918 #else
919 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
920 #endif
921 
922 /*
923  * Now that the generic code is guaranteed not to be accessing
924  * the linux inode, we can inactivate and reclaim the inode.
925  */
926 STATIC void
xfs_fs_destroy_inode(struct inode * inode)927 xfs_fs_destroy_inode(
928 	struct inode		*inode)
929 {
930 	struct xfs_inode	*ip = XFS_I(inode);
931 
932 	trace_xfs_destroy_inode(ip);
933 
934 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
935 	XFS_STATS_INC(ip->i_mount, vn_rele);
936 	XFS_STATS_INC(ip->i_mount, vn_remove);
937 
938 	xfs_inactive(ip);
939 
940 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) {
941 		xfs_check_delalloc(ip, XFS_DATA_FORK);
942 		xfs_check_delalloc(ip, XFS_COW_FORK);
943 		ASSERT(0);
944 	}
945 
946 	XFS_STATS_INC(ip->i_mount, vn_reclaim);
947 
948 	/*
949 	 * We should never get here with one of the reclaim flags already set.
950 	 */
951 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
952 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
953 
954 	/*
955 	 * We always use background reclaim here because even if the
956 	 * inode is clean, it still may be under IO and hence we have
957 	 * to take the flush lock. The background reclaim path handles
958 	 * this more efficiently than we can here, so simply let background
959 	 * reclaim tear down all inodes.
960 	 */
961 	xfs_inode_set_reclaim_tag(ip);
962 }
963 
964 static void
xfs_fs_dirty_inode(struct inode * inode,int flag)965 xfs_fs_dirty_inode(
966 	struct inode			*inode,
967 	int				flag)
968 {
969 	struct xfs_inode		*ip = XFS_I(inode);
970 	struct xfs_mount		*mp = ip->i_mount;
971 	struct xfs_trans		*tp;
972 
973 	if (!(inode->i_sb->s_flags & SB_LAZYTIME))
974 		return;
975 	if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME))
976 		return;
977 
978 	if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
979 		return;
980 	xfs_ilock(ip, XFS_ILOCK_EXCL);
981 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
982 	xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
983 	xfs_trans_commit(tp);
984 }
985 
986 /*
987  * Slab object creation initialisation for the XFS inode.
988  * This covers only the idempotent fields in the XFS inode;
989  * all other fields need to be initialised on allocation
990  * from the slab. This avoids the need to repeatedly initialise
991  * fields in the xfs inode that left in the initialise state
992  * when freeing the inode.
993  */
994 STATIC void
xfs_fs_inode_init_once(void * inode)995 xfs_fs_inode_init_once(
996 	void			*inode)
997 {
998 	struct xfs_inode	*ip = inode;
999 
1000 	memset(ip, 0, sizeof(struct xfs_inode));
1001 
1002 	/* vfs inode */
1003 	inode_init_once(VFS_I(ip));
1004 
1005 	/* xfs inode */
1006 	atomic_set(&ip->i_pincount, 0);
1007 	spin_lock_init(&ip->i_flags_lock);
1008 
1009 	mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
1010 		     "xfsino", ip->i_ino);
1011 	mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
1012 		     "xfsino", ip->i_ino);
1013 }
1014 
1015 /*
1016  * We do an unlocked check for XFS_IDONTCACHE here because we are already
1017  * serialised against cache hits here via the inode->i_lock and igrab() in
1018  * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
1019  * racing with us, and it avoids needing to grab a spinlock here for every inode
1020  * we drop the final reference on.
1021  */
1022 STATIC int
xfs_fs_drop_inode(struct inode * inode)1023 xfs_fs_drop_inode(
1024 	struct inode		*inode)
1025 {
1026 	struct xfs_inode	*ip = XFS_I(inode);
1027 
1028 	/*
1029 	 * If this unlinked inode is in the middle of recovery, don't
1030 	 * drop the inode just yet; log recovery will take care of
1031 	 * that.  See the comment for this inode flag.
1032 	 */
1033 	if (ip->i_flags & XFS_IRECOVERY) {
1034 		ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED);
1035 		return 0;
1036 	}
1037 
1038 	return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE);
1039 }
1040 
1041 STATIC void
xfs_free_fsname(struct xfs_mount * mp)1042 xfs_free_fsname(
1043 	struct xfs_mount	*mp)
1044 {
1045 	kfree(mp->m_fsname);
1046 	kfree(mp->m_rtname);
1047 	kfree(mp->m_logname);
1048 }
1049 
1050 STATIC int
xfs_fs_sync_fs(struct super_block * sb,int wait)1051 xfs_fs_sync_fs(
1052 	struct super_block	*sb,
1053 	int			wait)
1054 {
1055 	struct xfs_mount	*mp = XFS_M(sb);
1056 
1057 	/*
1058 	 * Doing anything during the async pass would be counterproductive.
1059 	 */
1060 	if (!wait)
1061 		return 0;
1062 
1063 	xfs_log_force(mp, XFS_LOG_SYNC);
1064 	if (laptop_mode) {
1065 		/*
1066 		 * The disk must be active because we're syncing.
1067 		 * We schedule log work now (now that the disk is
1068 		 * active) instead of later (when it might not be).
1069 		 */
1070 		flush_delayed_work(&mp->m_log->l_work);
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 STATIC int
xfs_fs_statfs(struct dentry * dentry,struct kstatfs * statp)1077 xfs_fs_statfs(
1078 	struct dentry		*dentry,
1079 	struct kstatfs		*statp)
1080 {
1081 	struct xfs_mount	*mp = XFS_M(dentry->d_sb);
1082 	xfs_sb_t		*sbp = &mp->m_sb;
1083 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1084 	uint64_t		fakeinos, id;
1085 	uint64_t		icount;
1086 	uint64_t		ifree;
1087 	uint64_t		fdblocks;
1088 	xfs_extlen_t		lsize;
1089 	int64_t			ffree;
1090 
1091 	statp->f_type = XFS_SUPER_MAGIC;
1092 	statp->f_namelen = MAXNAMELEN - 1;
1093 
1094 	id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1095 	statp->f_fsid.val[0] = (u32)id;
1096 	statp->f_fsid.val[1] = (u32)(id >> 32);
1097 
1098 	icount = percpu_counter_sum(&mp->m_icount);
1099 	ifree = percpu_counter_sum(&mp->m_ifree);
1100 	fdblocks = percpu_counter_sum(&mp->m_fdblocks);
1101 
1102 	spin_lock(&mp->m_sb_lock);
1103 	statp->f_bsize = sbp->sb_blocksize;
1104 	lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1105 	statp->f_blocks = sbp->sb_dblocks - lsize;
1106 	spin_unlock(&mp->m_sb_lock);
1107 
1108 	statp->f_bfree = fdblocks - mp->m_alloc_set_aside;
1109 	statp->f_bavail = statp->f_bfree;
1110 
1111 	fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree);
1112 	statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
1113 	if (M_IGEO(mp)->maxicount)
1114 		statp->f_files = min_t(typeof(statp->f_files),
1115 					statp->f_files,
1116 					M_IGEO(mp)->maxicount);
1117 
1118 	/* If sb_icount overshot maxicount, report actual allocation */
1119 	statp->f_files = max_t(typeof(statp->f_files),
1120 					statp->f_files,
1121 					sbp->sb_icount);
1122 
1123 	/* make sure statp->f_ffree does not underflow */
1124 	ffree = statp->f_files - (icount - ifree);
1125 	statp->f_ffree = max_t(int64_t, ffree, 0);
1126 
1127 
1128 	if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1129 	    ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
1130 			      (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
1131 		xfs_qm_statvfs(ip, statp);
1132 
1133 	if (XFS_IS_REALTIME_MOUNT(mp) &&
1134 	    (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
1135 		statp->f_blocks = sbp->sb_rblocks;
1136 		statp->f_bavail = statp->f_bfree =
1137 			sbp->sb_frextents * sbp->sb_rextsize;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 STATIC void
xfs_save_resvblks(struct xfs_mount * mp)1144 xfs_save_resvblks(struct xfs_mount *mp)
1145 {
1146 	uint64_t resblks = 0;
1147 
1148 	mp->m_resblks_save = mp->m_resblks;
1149 	xfs_reserve_blocks(mp, &resblks, NULL);
1150 }
1151 
1152 STATIC void
xfs_restore_resvblks(struct xfs_mount * mp)1153 xfs_restore_resvblks(struct xfs_mount *mp)
1154 {
1155 	uint64_t resblks;
1156 
1157 	if (mp->m_resblks_save) {
1158 		resblks = mp->m_resblks_save;
1159 		mp->m_resblks_save = 0;
1160 	} else
1161 		resblks = xfs_default_resblks(mp);
1162 
1163 	xfs_reserve_blocks(mp, &resblks, NULL);
1164 }
1165 
1166 /*
1167  * Trigger writeback of all the dirty metadata in the file system.
1168  *
1169  * This ensures that the metadata is written to their location on disk rather
1170  * than just existing in transactions in the log. This means after a quiesce
1171  * there is no log replay required to write the inodes to disk - this is the
1172  * primary difference between a sync and a quiesce.
1173  *
1174  * Note: xfs_log_quiesce() stops background log work - the callers must ensure
1175  * it is started again when appropriate.
1176  */
1177 void
xfs_quiesce_attr(struct xfs_mount * mp)1178 xfs_quiesce_attr(
1179 	struct xfs_mount	*mp)
1180 {
1181 	int	error = 0;
1182 
1183 	/* wait for all modifications to complete */
1184 	while (atomic_read(&mp->m_active_trans) > 0)
1185 		delay(100);
1186 
1187 	/* force the log to unpin objects from the now complete transactions */
1188 	xfs_log_force(mp, XFS_LOG_SYNC);
1189 
1190 	/* reclaim inodes to do any IO before the freeze completes */
1191 	xfs_reclaim_inodes(mp, 0);
1192 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1193 
1194 	/* Push the superblock and write an unmount record */
1195 	error = xfs_log_sbcount(mp);
1196 	if (error)
1197 		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
1198 				"Frozen image may not be consistent.");
1199 	/*
1200 	 * Just warn here till VFS can correctly support
1201 	 * read-only remount without racing.
1202 	 */
1203 	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
1204 
1205 	xfs_log_quiesce(mp);
1206 }
1207 
1208 STATIC int
xfs_test_remount_options(struct super_block * sb,char * options)1209 xfs_test_remount_options(
1210 	struct super_block	*sb,
1211 	char			*options)
1212 {
1213 	int			error = 0;
1214 	struct xfs_mount	*tmp_mp;
1215 
1216 	tmp_mp = kmem_zalloc(sizeof(*tmp_mp), KM_MAYFAIL);
1217 	if (!tmp_mp)
1218 		return -ENOMEM;
1219 
1220 	tmp_mp->m_super = sb;
1221 	error = xfs_parseargs(tmp_mp, options);
1222 	xfs_free_fsname(tmp_mp);
1223 	kmem_free(tmp_mp);
1224 
1225 	return error;
1226 }
1227 
1228 STATIC int
xfs_fs_remount(struct super_block * sb,int * flags,char * options)1229 xfs_fs_remount(
1230 	struct super_block	*sb,
1231 	int			*flags,
1232 	char			*options)
1233 {
1234 	struct xfs_mount	*mp = XFS_M(sb);
1235 	xfs_sb_t		*sbp = &mp->m_sb;
1236 	substring_t		args[MAX_OPT_ARGS];
1237 	char			*p;
1238 	int			error;
1239 
1240 	/* First, check for complete junk; i.e. invalid options */
1241 	error = xfs_test_remount_options(sb, options);
1242 	if (error)
1243 		return error;
1244 
1245 	sync_filesystem(sb);
1246 	while ((p = strsep(&options, ",")) != NULL) {
1247 		int token;
1248 
1249 		if (!*p)
1250 			continue;
1251 
1252 		token = match_token(p, tokens, args);
1253 		switch (token) {
1254 		case Opt_inode64:
1255 			mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
1256 			mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
1257 			break;
1258 		case Opt_inode32:
1259 			mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
1260 			mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
1261 			break;
1262 		default:
1263 			/*
1264 			 * Logically we would return an error here to prevent
1265 			 * users from believing they might have changed
1266 			 * mount options using remount which can't be changed.
1267 			 *
1268 			 * But unfortunately mount(8) adds all options from
1269 			 * mtab and fstab to the mount arguments in some cases
1270 			 * so we can't blindly reject options, but have to
1271 			 * check for each specified option if it actually
1272 			 * differs from the currently set option and only
1273 			 * reject it if that's the case.
1274 			 *
1275 			 * Until that is implemented we return success for
1276 			 * every remount request, and silently ignore all
1277 			 * options that we can't actually change.
1278 			 */
1279 #if 0
1280 			xfs_info(mp,
1281 		"mount option \"%s\" not supported for remount", p);
1282 			return -EINVAL;
1283 #else
1284 			break;
1285 #endif
1286 		}
1287 	}
1288 
1289 	/* ro -> rw */
1290 	if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & SB_RDONLY)) {
1291 		if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
1292 			xfs_warn(mp,
1293 		"ro->rw transition prohibited on norecovery mount");
1294 			return -EINVAL;
1295 		}
1296 
1297 		if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
1298 		    xfs_sb_has_ro_compat_feature(sbp,
1299 					XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
1300 			xfs_warn(mp,
1301 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
1302 				(sbp->sb_features_ro_compat &
1303 					XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
1304 			return -EINVAL;
1305 		}
1306 
1307 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
1308 
1309 		/*
1310 		 * If this is the first remount to writeable state we
1311 		 * might have some superblock changes to update.
1312 		 */
1313 		if (mp->m_update_sb) {
1314 			error = xfs_sync_sb(mp, false);
1315 			if (error) {
1316 				xfs_warn(mp, "failed to write sb changes");
1317 				return error;
1318 			}
1319 			mp->m_update_sb = false;
1320 		}
1321 
1322 		/*
1323 		 * Fill out the reserve pool if it is empty. Use the stashed
1324 		 * value if it is non-zero, otherwise go with the default.
1325 		 */
1326 		xfs_restore_resvblks(mp);
1327 		xfs_log_work_queue(mp);
1328 
1329 		/* Recover any CoW blocks that never got remapped. */
1330 		error = xfs_reflink_recover_cow(mp);
1331 		if (error) {
1332 			xfs_err(mp,
1333 	"Error %d recovering leftover CoW allocations.", error);
1334 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1335 			return error;
1336 		}
1337 		xfs_start_block_reaping(mp);
1338 
1339 		/* Create the per-AG metadata reservation pool .*/
1340 		error = xfs_fs_reserve_ag_blocks(mp);
1341 		if (error && error != -ENOSPC)
1342 			return error;
1343 	}
1344 
1345 	/* rw -> ro */
1346 	if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & SB_RDONLY)) {
1347 		/*
1348 		 * Cancel background eofb scanning so it cannot race with the
1349 		 * final log force+buftarg wait and deadlock the remount.
1350 		 */
1351 		xfs_stop_block_reaping(mp);
1352 
1353 		/* Get rid of any leftover CoW reservations... */
1354 		error = xfs_icache_free_cowblocks(mp, NULL);
1355 		if (error) {
1356 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1357 			return error;
1358 		}
1359 
1360 		/* Free the per-AG metadata reservation pool. */
1361 		error = xfs_fs_unreserve_ag_blocks(mp);
1362 		if (error) {
1363 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1364 			return error;
1365 		}
1366 
1367 		/*
1368 		 * Before we sync the metadata, we need to free up the reserve
1369 		 * block pool so that the used block count in the superblock on
1370 		 * disk is correct at the end of the remount. Stash the current
1371 		 * reserve pool size so that if we get remounted rw, we can
1372 		 * return it to the same size.
1373 		 */
1374 		xfs_save_resvblks(mp);
1375 
1376 		xfs_quiesce_attr(mp);
1377 		mp->m_flags |= XFS_MOUNT_RDONLY;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Second stage of a freeze. The data is already frozen so we only
1385  * need to take care of the metadata. Once that's done sync the superblock
1386  * to the log to dirty it in case of a crash while frozen. This ensures that we
1387  * will recover the unlinked inode lists on the next mount.
1388  */
1389 STATIC int
xfs_fs_freeze(struct super_block * sb)1390 xfs_fs_freeze(
1391 	struct super_block	*sb)
1392 {
1393 	struct xfs_mount	*mp = XFS_M(sb);
1394 
1395 	xfs_stop_block_reaping(mp);
1396 	xfs_save_resvblks(mp);
1397 	xfs_quiesce_attr(mp);
1398 	return xfs_sync_sb(mp, true);
1399 }
1400 
1401 STATIC int
xfs_fs_unfreeze(struct super_block * sb)1402 xfs_fs_unfreeze(
1403 	struct super_block	*sb)
1404 {
1405 	struct xfs_mount	*mp = XFS_M(sb);
1406 
1407 	xfs_restore_resvblks(mp);
1408 	xfs_log_work_queue(mp);
1409 	xfs_start_block_reaping(mp);
1410 	return 0;
1411 }
1412 
1413 STATIC int
xfs_fs_show_options(struct seq_file * m,struct dentry * root)1414 xfs_fs_show_options(
1415 	struct seq_file		*m,
1416 	struct dentry		*root)
1417 {
1418 	xfs_showargs(XFS_M(root->d_sb), m);
1419 	return 0;
1420 }
1421 
1422 /*
1423  * This function fills in xfs_mount_t fields based on mount args.
1424  * Note: the superblock _has_ now been read in.
1425  */
1426 STATIC int
xfs_finish_flags(struct xfs_mount * mp)1427 xfs_finish_flags(
1428 	struct xfs_mount	*mp)
1429 {
1430 	int			ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1431 
1432 	/* Fail a mount where the logbuf is smaller than the log stripe */
1433 	if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1434 		if (mp->m_logbsize <= 0 &&
1435 		    mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1436 			mp->m_logbsize = mp->m_sb.sb_logsunit;
1437 		} else if (mp->m_logbsize > 0 &&
1438 			   mp->m_logbsize < mp->m_sb.sb_logsunit) {
1439 			xfs_warn(mp,
1440 		"logbuf size must be greater than or equal to log stripe size");
1441 			return -EINVAL;
1442 		}
1443 	} else {
1444 		/* Fail a mount if the logbuf is larger than 32K */
1445 		if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1446 			xfs_warn(mp,
1447 		"logbuf size for version 1 logs must be 16K or 32K");
1448 			return -EINVAL;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * V5 filesystems always use attr2 format for attributes.
1454 	 */
1455 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
1456 	    (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1457 		xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
1458 			     "attr2 is always enabled for V5 filesystems.");
1459 		return -EINVAL;
1460 	}
1461 
1462 	/*
1463 	 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1464 	 * told by noattr2 to turn it off
1465 	 */
1466 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1467 	    !(mp->m_flags & XFS_MOUNT_NOATTR2))
1468 		mp->m_flags |= XFS_MOUNT_ATTR2;
1469 
1470 	/*
1471 	 * prohibit r/w mounts of read-only filesystems
1472 	 */
1473 	if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1474 		xfs_warn(mp,
1475 			"cannot mount a read-only filesystem as read-write");
1476 		return -EROFS;
1477 	}
1478 
1479 	if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
1480 	    (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
1481 	    !xfs_sb_version_has_pquotino(&mp->m_sb)) {
1482 		xfs_warn(mp,
1483 		  "Super block does not support project and group quota together");
1484 		return -EINVAL;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static int
xfs_init_percpu_counters(struct xfs_mount * mp)1491 xfs_init_percpu_counters(
1492 	struct xfs_mount	*mp)
1493 {
1494 	int		error;
1495 
1496 	error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
1497 	if (error)
1498 		return -ENOMEM;
1499 
1500 	error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
1501 	if (error)
1502 		goto free_icount;
1503 
1504 	error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
1505 	if (error)
1506 		goto free_ifree;
1507 
1508 	error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
1509 	if (error)
1510 		goto free_fdblocks;
1511 
1512 	return 0;
1513 
1514 free_fdblocks:
1515 	percpu_counter_destroy(&mp->m_fdblocks);
1516 free_ifree:
1517 	percpu_counter_destroy(&mp->m_ifree);
1518 free_icount:
1519 	percpu_counter_destroy(&mp->m_icount);
1520 	return -ENOMEM;
1521 }
1522 
1523 void
xfs_reinit_percpu_counters(struct xfs_mount * mp)1524 xfs_reinit_percpu_counters(
1525 	struct xfs_mount	*mp)
1526 {
1527 	percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
1528 	percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
1529 	percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
1530 }
1531 
1532 static void
xfs_destroy_percpu_counters(struct xfs_mount * mp)1533 xfs_destroy_percpu_counters(
1534 	struct xfs_mount	*mp)
1535 {
1536 	percpu_counter_destroy(&mp->m_icount);
1537 	percpu_counter_destroy(&mp->m_ifree);
1538 	percpu_counter_destroy(&mp->m_fdblocks);
1539 	ASSERT(XFS_FORCED_SHUTDOWN(mp) ||
1540 	       percpu_counter_sum(&mp->m_delalloc_blks) == 0);
1541 	percpu_counter_destroy(&mp->m_delalloc_blks);
1542 }
1543 
1544 static struct xfs_mount *
xfs_mount_alloc(struct super_block * sb)1545 xfs_mount_alloc(
1546 	struct super_block	*sb)
1547 {
1548 	struct xfs_mount	*mp;
1549 
1550 	mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1551 	if (!mp)
1552 		return NULL;
1553 
1554 	mp->m_super = sb;
1555 	spin_lock_init(&mp->m_sb_lock);
1556 	spin_lock_init(&mp->m_agirotor_lock);
1557 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1558 	spin_lock_init(&mp->m_perag_lock);
1559 	mutex_init(&mp->m_growlock);
1560 	atomic_set(&mp->m_active_trans, 0);
1561 	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
1562 	INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
1563 	INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker);
1564 	mp->m_kobj.kobject.kset = xfs_kset;
1565 	/*
1566 	 * We don't create the finobt per-ag space reservation until after log
1567 	 * recovery, so we must set this to true so that an ifree transaction
1568 	 * started during log recovery will not depend on space reservations
1569 	 * for finobt expansion.
1570 	 */
1571 	mp->m_finobt_nores = true;
1572 	return mp;
1573 }
1574 
1575 
1576 STATIC int
xfs_fs_fill_super(struct super_block * sb,void * data,int silent)1577 xfs_fs_fill_super(
1578 	struct super_block	*sb,
1579 	void			*data,
1580 	int			silent)
1581 {
1582 	struct inode		*root;
1583 	struct xfs_mount	*mp = NULL;
1584 	int			flags = 0, error = -ENOMEM;
1585 
1586 	/*
1587 	 * allocate mp and do all low-level struct initializations before we
1588 	 * attach it to the super
1589 	 */
1590 	mp = xfs_mount_alloc(sb);
1591 	if (!mp)
1592 		goto out;
1593 	sb->s_fs_info = mp;
1594 
1595 	error = xfs_parseargs(mp, (char *)data);
1596 	if (error)
1597 		goto out_free_fsname;
1598 
1599 	sb_min_blocksize(sb, BBSIZE);
1600 	sb->s_xattr = xfs_xattr_handlers;
1601 	sb->s_export_op = &xfs_export_operations;
1602 #ifdef CONFIG_XFS_QUOTA
1603 	sb->s_qcop = &xfs_quotactl_operations;
1604 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1605 #endif
1606 	sb->s_op = &xfs_super_operations;
1607 
1608 	/*
1609 	 * Delay mount work if the debug hook is set. This is debug
1610 	 * instrumention to coordinate simulation of xfs mount failures with
1611 	 * VFS superblock operations
1612 	 */
1613 	if (xfs_globals.mount_delay) {
1614 		xfs_notice(mp, "Delaying mount for %d seconds.",
1615 			xfs_globals.mount_delay);
1616 		msleep(xfs_globals.mount_delay * 1000);
1617 	}
1618 
1619 	if (silent)
1620 		flags |= XFS_MFSI_QUIET;
1621 
1622 	error = xfs_open_devices(mp);
1623 	if (error)
1624 		goto out_free_fsname;
1625 
1626 	error = xfs_init_mount_workqueues(mp);
1627 	if (error)
1628 		goto out_close_devices;
1629 
1630 	error = xfs_init_percpu_counters(mp);
1631 	if (error)
1632 		goto out_destroy_workqueues;
1633 
1634 	/* Allocate stats memory before we do operations that might use it */
1635 	mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
1636 	if (!mp->m_stats.xs_stats) {
1637 		error = -ENOMEM;
1638 		goto out_destroy_counters;
1639 	}
1640 
1641 	error = xfs_readsb(mp, flags);
1642 	if (error)
1643 		goto out_free_stats;
1644 
1645 	error = xfs_finish_flags(mp);
1646 	if (error)
1647 		goto out_free_sb;
1648 
1649 	error = xfs_setup_devices(mp);
1650 	if (error)
1651 		goto out_free_sb;
1652 
1653 	error = xfs_filestream_mount(mp);
1654 	if (error)
1655 		goto out_free_sb;
1656 
1657 	/*
1658 	 * we must configure the block size in the superblock before we run the
1659 	 * full mount process as the mount process can lookup and cache inodes.
1660 	 */
1661 	sb->s_magic = XFS_SUPER_MAGIC;
1662 	sb->s_blocksize = mp->m_sb.sb_blocksize;
1663 	sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1664 	sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1665 	sb->s_max_links = XFS_MAXLINK;
1666 	sb->s_time_gran = 1;
1667 	sb->s_time_min = S32_MIN;
1668 	sb->s_time_max = S32_MAX;
1669 	sb->s_iflags |= SB_I_CGROUPWB;
1670 
1671 	set_posix_acl_flag(sb);
1672 
1673 	/* version 5 superblocks support inode version counters. */
1674 	if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
1675 		sb->s_flags |= SB_I_VERSION;
1676 
1677 	if (mp->m_flags & XFS_MOUNT_DAX) {
1678 		bool rtdev_is_dax = false, datadev_is_dax;
1679 
1680 		xfs_warn(mp,
1681 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1682 
1683 		datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev,
1684 			sb->s_blocksize);
1685 		if (mp->m_rtdev_targp)
1686 			rtdev_is_dax = bdev_dax_supported(
1687 				mp->m_rtdev_targp->bt_bdev, sb->s_blocksize);
1688 		if (!rtdev_is_dax && !datadev_is_dax) {
1689 			xfs_alert(mp,
1690 			"DAX unsupported by block device. Turning off DAX.");
1691 			mp->m_flags &= ~XFS_MOUNT_DAX;
1692 		}
1693 		if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1694 			xfs_alert(mp,
1695 		"DAX and reflink cannot be used together!");
1696 			error = -EINVAL;
1697 			goto out_filestream_unmount;
1698 		}
1699 	}
1700 
1701 	if (mp->m_flags & XFS_MOUNT_DISCARD) {
1702 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1703 
1704 		if (!blk_queue_discard(q)) {
1705 			xfs_warn(mp, "mounting with \"discard\" option, but "
1706 					"the device does not support discard");
1707 			mp->m_flags &= ~XFS_MOUNT_DISCARD;
1708 		}
1709 	}
1710 
1711 	if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1712 		if (mp->m_sb.sb_rblocks) {
1713 			xfs_alert(mp,
1714 	"reflink not compatible with realtime device!");
1715 			error = -EINVAL;
1716 			goto out_filestream_unmount;
1717 		}
1718 
1719 		if (xfs_globals.always_cow) {
1720 			xfs_info(mp, "using DEBUG-only always_cow mode.");
1721 			mp->m_always_cow = true;
1722 		}
1723 	}
1724 
1725 	if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) {
1726 		xfs_alert(mp,
1727 	"reverse mapping btree not compatible with realtime device!");
1728 		error = -EINVAL;
1729 		goto out_filestream_unmount;
1730 	}
1731 
1732 	error = xfs_mountfs(mp);
1733 	if (error)
1734 		goto out_filestream_unmount;
1735 
1736 	root = igrab(VFS_I(mp->m_rootip));
1737 	if (!root) {
1738 		error = -ENOENT;
1739 		goto out_unmount;
1740 	}
1741 	sb->s_root = d_make_root(root);
1742 	if (!sb->s_root) {
1743 		error = -ENOMEM;
1744 		goto out_unmount;
1745 	}
1746 
1747 	return 0;
1748 
1749  out_filestream_unmount:
1750 	xfs_filestream_unmount(mp);
1751  out_free_sb:
1752 	xfs_freesb(mp);
1753  out_free_stats:
1754 	free_percpu(mp->m_stats.xs_stats);
1755  out_destroy_counters:
1756 	xfs_destroy_percpu_counters(mp);
1757  out_destroy_workqueues:
1758 	xfs_destroy_mount_workqueues(mp);
1759  out_close_devices:
1760 	xfs_close_devices(mp);
1761  out_free_fsname:
1762 	sb->s_fs_info = NULL;
1763 	xfs_free_fsname(mp);
1764 	kfree(mp);
1765  out:
1766 	return error;
1767 
1768  out_unmount:
1769 	xfs_filestream_unmount(mp);
1770 	xfs_unmountfs(mp);
1771 	goto out_free_sb;
1772 }
1773 
1774 STATIC void
xfs_fs_put_super(struct super_block * sb)1775 xfs_fs_put_super(
1776 	struct super_block	*sb)
1777 {
1778 	struct xfs_mount	*mp = XFS_M(sb);
1779 
1780 	/* if ->fill_super failed, we have no mount to tear down */
1781 	if (!sb->s_fs_info)
1782 		return;
1783 
1784 	xfs_notice(mp, "Unmounting Filesystem");
1785 	xfs_filestream_unmount(mp);
1786 	xfs_unmountfs(mp);
1787 
1788 	xfs_freesb(mp);
1789 	free_percpu(mp->m_stats.xs_stats);
1790 	xfs_destroy_percpu_counters(mp);
1791 	xfs_destroy_mount_workqueues(mp);
1792 	xfs_close_devices(mp);
1793 
1794 	sb->s_fs_info = NULL;
1795 	xfs_free_fsname(mp);
1796 	kfree(mp);
1797 }
1798 
1799 STATIC struct dentry *
xfs_fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1800 xfs_fs_mount(
1801 	struct file_system_type	*fs_type,
1802 	int			flags,
1803 	const char		*dev_name,
1804 	void			*data)
1805 {
1806 	return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
1807 }
1808 
1809 static long
xfs_fs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)1810 xfs_fs_nr_cached_objects(
1811 	struct super_block	*sb,
1812 	struct shrink_control	*sc)
1813 {
1814 	/* Paranoia: catch incorrect calls during mount setup or teardown */
1815 	if (WARN_ON_ONCE(!sb->s_fs_info))
1816 		return 0;
1817 	return xfs_reclaim_inodes_count(XFS_M(sb));
1818 }
1819 
1820 static long
xfs_fs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)1821 xfs_fs_free_cached_objects(
1822 	struct super_block	*sb,
1823 	struct shrink_control	*sc)
1824 {
1825 	return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
1826 }
1827 
1828 static const struct super_operations xfs_super_operations = {
1829 	.alloc_inode		= xfs_fs_alloc_inode,
1830 	.destroy_inode		= xfs_fs_destroy_inode,
1831 	.dirty_inode		= xfs_fs_dirty_inode,
1832 	.drop_inode		= xfs_fs_drop_inode,
1833 	.put_super		= xfs_fs_put_super,
1834 	.sync_fs		= xfs_fs_sync_fs,
1835 	.freeze_fs		= xfs_fs_freeze,
1836 	.unfreeze_fs		= xfs_fs_unfreeze,
1837 	.statfs			= xfs_fs_statfs,
1838 	.remount_fs		= xfs_fs_remount,
1839 	.show_options		= xfs_fs_show_options,
1840 	.nr_cached_objects	= xfs_fs_nr_cached_objects,
1841 	.free_cached_objects	= xfs_fs_free_cached_objects,
1842 };
1843 
1844 static struct file_system_type xfs_fs_type = {
1845 	.owner			= THIS_MODULE,
1846 	.name			= "xfs",
1847 	.mount			= xfs_fs_mount,
1848 	.kill_sb		= kill_block_super,
1849 	.fs_flags		= FS_REQUIRES_DEV,
1850 };
1851 MODULE_ALIAS_FS("xfs");
1852 
1853 STATIC int __init
xfs_init_zones(void)1854 xfs_init_zones(void)
1855 {
1856 	if (bioset_init(&xfs_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1857 			offsetof(struct xfs_ioend, io_inline_bio),
1858 			BIOSET_NEED_BVECS))
1859 		goto out;
1860 
1861 	xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1862 						"xfs_log_ticket");
1863 	if (!xfs_log_ticket_zone)
1864 		goto out_free_ioend_bioset;
1865 
1866 	xfs_bmap_free_item_zone = kmem_zone_init(
1867 			sizeof(struct xfs_extent_free_item),
1868 			"xfs_bmap_free_item");
1869 	if (!xfs_bmap_free_item_zone)
1870 		goto out_destroy_log_ticket_zone;
1871 
1872 	xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1873 						"xfs_btree_cur");
1874 	if (!xfs_btree_cur_zone)
1875 		goto out_destroy_bmap_free_item_zone;
1876 
1877 	xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1878 						"xfs_da_state");
1879 	if (!xfs_da_state_zone)
1880 		goto out_destroy_btree_cur_zone;
1881 
1882 	xfs_ifork_zone = kmem_zone_init(sizeof(struct xfs_ifork), "xfs_ifork");
1883 	if (!xfs_ifork_zone)
1884 		goto out_destroy_da_state_zone;
1885 
1886 	xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1887 	if (!xfs_trans_zone)
1888 		goto out_destroy_ifork_zone;
1889 
1890 
1891 	/*
1892 	 * The size of the zone allocated buf log item is the maximum
1893 	 * size possible under XFS.  This wastes a little bit of memory,
1894 	 * but it is much faster.
1895 	 */
1896 	xfs_buf_item_zone = kmem_zone_init(sizeof(struct xfs_buf_log_item),
1897 					   "xfs_buf_item");
1898 	if (!xfs_buf_item_zone)
1899 		goto out_destroy_trans_zone;
1900 
1901 	xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1902 			((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1903 				 sizeof(xfs_extent_t))), "xfs_efd_item");
1904 	if (!xfs_efd_zone)
1905 		goto out_destroy_buf_item_zone;
1906 
1907 	xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1908 			((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1909 				sizeof(xfs_extent_t))), "xfs_efi_item");
1910 	if (!xfs_efi_zone)
1911 		goto out_destroy_efd_zone;
1912 
1913 	xfs_inode_zone =
1914 		kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1915 			KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD |
1916 			KM_ZONE_ACCOUNT, xfs_fs_inode_init_once);
1917 	if (!xfs_inode_zone)
1918 		goto out_destroy_efi_zone;
1919 
1920 	xfs_ili_zone =
1921 		kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1922 					KM_ZONE_SPREAD, NULL);
1923 	if (!xfs_ili_zone)
1924 		goto out_destroy_inode_zone;
1925 	xfs_icreate_zone = kmem_zone_init(sizeof(struct xfs_icreate_item),
1926 					"xfs_icr");
1927 	if (!xfs_icreate_zone)
1928 		goto out_destroy_ili_zone;
1929 
1930 	xfs_rud_zone = kmem_zone_init(sizeof(struct xfs_rud_log_item),
1931 			"xfs_rud_item");
1932 	if (!xfs_rud_zone)
1933 		goto out_destroy_icreate_zone;
1934 
1935 	xfs_rui_zone = kmem_zone_init(
1936 			xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
1937 			"xfs_rui_item");
1938 	if (!xfs_rui_zone)
1939 		goto out_destroy_rud_zone;
1940 
1941 	xfs_cud_zone = kmem_zone_init(sizeof(struct xfs_cud_log_item),
1942 			"xfs_cud_item");
1943 	if (!xfs_cud_zone)
1944 		goto out_destroy_rui_zone;
1945 
1946 	xfs_cui_zone = kmem_zone_init(
1947 			xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
1948 			"xfs_cui_item");
1949 	if (!xfs_cui_zone)
1950 		goto out_destroy_cud_zone;
1951 
1952 	xfs_bud_zone = kmem_zone_init(sizeof(struct xfs_bud_log_item),
1953 			"xfs_bud_item");
1954 	if (!xfs_bud_zone)
1955 		goto out_destroy_cui_zone;
1956 
1957 	xfs_bui_zone = kmem_zone_init(
1958 			xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
1959 			"xfs_bui_item");
1960 	if (!xfs_bui_zone)
1961 		goto out_destroy_bud_zone;
1962 
1963 	return 0;
1964 
1965  out_destroy_bud_zone:
1966 	kmem_zone_destroy(xfs_bud_zone);
1967  out_destroy_cui_zone:
1968 	kmem_zone_destroy(xfs_cui_zone);
1969  out_destroy_cud_zone:
1970 	kmem_zone_destroy(xfs_cud_zone);
1971  out_destroy_rui_zone:
1972 	kmem_zone_destroy(xfs_rui_zone);
1973  out_destroy_rud_zone:
1974 	kmem_zone_destroy(xfs_rud_zone);
1975  out_destroy_icreate_zone:
1976 	kmem_zone_destroy(xfs_icreate_zone);
1977  out_destroy_ili_zone:
1978 	kmem_zone_destroy(xfs_ili_zone);
1979  out_destroy_inode_zone:
1980 	kmem_zone_destroy(xfs_inode_zone);
1981  out_destroy_efi_zone:
1982 	kmem_zone_destroy(xfs_efi_zone);
1983  out_destroy_efd_zone:
1984 	kmem_zone_destroy(xfs_efd_zone);
1985  out_destroy_buf_item_zone:
1986 	kmem_zone_destroy(xfs_buf_item_zone);
1987  out_destroy_trans_zone:
1988 	kmem_zone_destroy(xfs_trans_zone);
1989  out_destroy_ifork_zone:
1990 	kmem_zone_destroy(xfs_ifork_zone);
1991  out_destroy_da_state_zone:
1992 	kmem_zone_destroy(xfs_da_state_zone);
1993  out_destroy_btree_cur_zone:
1994 	kmem_zone_destroy(xfs_btree_cur_zone);
1995  out_destroy_bmap_free_item_zone:
1996 	kmem_zone_destroy(xfs_bmap_free_item_zone);
1997  out_destroy_log_ticket_zone:
1998 	kmem_zone_destroy(xfs_log_ticket_zone);
1999  out_free_ioend_bioset:
2000 	bioset_exit(&xfs_ioend_bioset);
2001  out:
2002 	return -ENOMEM;
2003 }
2004 
2005 STATIC void
xfs_destroy_zones(void)2006 xfs_destroy_zones(void)
2007 {
2008 	/*
2009 	 * Make sure all delayed rcu free are flushed before we
2010 	 * destroy caches.
2011 	 */
2012 	rcu_barrier();
2013 	kmem_zone_destroy(xfs_bui_zone);
2014 	kmem_zone_destroy(xfs_bud_zone);
2015 	kmem_zone_destroy(xfs_cui_zone);
2016 	kmem_zone_destroy(xfs_cud_zone);
2017 	kmem_zone_destroy(xfs_rui_zone);
2018 	kmem_zone_destroy(xfs_rud_zone);
2019 	kmem_zone_destroy(xfs_icreate_zone);
2020 	kmem_zone_destroy(xfs_ili_zone);
2021 	kmem_zone_destroy(xfs_inode_zone);
2022 	kmem_zone_destroy(xfs_efi_zone);
2023 	kmem_zone_destroy(xfs_efd_zone);
2024 	kmem_zone_destroy(xfs_buf_item_zone);
2025 	kmem_zone_destroy(xfs_trans_zone);
2026 	kmem_zone_destroy(xfs_ifork_zone);
2027 	kmem_zone_destroy(xfs_da_state_zone);
2028 	kmem_zone_destroy(xfs_btree_cur_zone);
2029 	kmem_zone_destroy(xfs_bmap_free_item_zone);
2030 	kmem_zone_destroy(xfs_log_ticket_zone);
2031 	bioset_exit(&xfs_ioend_bioset);
2032 }
2033 
2034 STATIC int __init
xfs_init_workqueues(void)2035 xfs_init_workqueues(void)
2036 {
2037 	/*
2038 	 * The allocation workqueue can be used in memory reclaim situations
2039 	 * (writepage path), and parallelism is only limited by the number of
2040 	 * AGs in all the filesystems mounted. Hence use the default large
2041 	 * max_active value for this workqueue.
2042 	 */
2043 	xfs_alloc_wq = alloc_workqueue("xfsalloc",
2044 			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0);
2045 	if (!xfs_alloc_wq)
2046 		return -ENOMEM;
2047 
2048 	xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0);
2049 	if (!xfs_discard_wq)
2050 		goto out_free_alloc_wq;
2051 
2052 	return 0;
2053 out_free_alloc_wq:
2054 	destroy_workqueue(xfs_alloc_wq);
2055 	return -ENOMEM;
2056 }
2057 
2058 STATIC void
xfs_destroy_workqueues(void)2059 xfs_destroy_workqueues(void)
2060 {
2061 	destroy_workqueue(xfs_discard_wq);
2062 	destroy_workqueue(xfs_alloc_wq);
2063 }
2064 
2065 STATIC int __init
init_xfs_fs(void)2066 init_xfs_fs(void)
2067 {
2068 	int			error;
2069 
2070 	xfs_check_ondisk_structs();
2071 
2072 	printk(KERN_INFO XFS_VERSION_STRING " with "
2073 			 XFS_BUILD_OPTIONS " enabled\n");
2074 
2075 	xfs_dir_startup();
2076 
2077 	error = xfs_init_zones();
2078 	if (error)
2079 		goto out;
2080 
2081 	error = xfs_init_workqueues();
2082 	if (error)
2083 		goto out_destroy_zones;
2084 
2085 	error = xfs_mru_cache_init();
2086 	if (error)
2087 		goto out_destroy_wq;
2088 
2089 	error = xfs_buf_init();
2090 	if (error)
2091 		goto out_mru_cache_uninit;
2092 
2093 	error = xfs_init_procfs();
2094 	if (error)
2095 		goto out_buf_terminate;
2096 
2097 	error = xfs_sysctl_register();
2098 	if (error)
2099 		goto out_cleanup_procfs;
2100 
2101 	xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
2102 	if (!xfs_kset) {
2103 		error = -ENOMEM;
2104 		goto out_sysctl_unregister;
2105 	}
2106 
2107 	xfsstats.xs_kobj.kobject.kset = xfs_kset;
2108 
2109 	xfsstats.xs_stats = alloc_percpu(struct xfsstats);
2110 	if (!xfsstats.xs_stats) {
2111 		error = -ENOMEM;
2112 		goto out_kset_unregister;
2113 	}
2114 
2115 	error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
2116 			       "stats");
2117 	if (error)
2118 		goto out_free_stats;
2119 
2120 #ifdef DEBUG
2121 	xfs_dbg_kobj.kobject.kset = xfs_kset;
2122 	error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
2123 	if (error)
2124 		goto out_remove_stats_kobj;
2125 #endif
2126 
2127 	error = xfs_qm_init();
2128 	if (error)
2129 		goto out_remove_dbg_kobj;
2130 
2131 	error = register_filesystem(&xfs_fs_type);
2132 	if (error)
2133 		goto out_qm_exit;
2134 	return 0;
2135 
2136  out_qm_exit:
2137 	xfs_qm_exit();
2138  out_remove_dbg_kobj:
2139 #ifdef DEBUG
2140 	xfs_sysfs_del(&xfs_dbg_kobj);
2141  out_remove_stats_kobj:
2142 #endif
2143 	xfs_sysfs_del(&xfsstats.xs_kobj);
2144  out_free_stats:
2145 	free_percpu(xfsstats.xs_stats);
2146  out_kset_unregister:
2147 	kset_unregister(xfs_kset);
2148  out_sysctl_unregister:
2149 	xfs_sysctl_unregister();
2150  out_cleanup_procfs:
2151 	xfs_cleanup_procfs();
2152  out_buf_terminate:
2153 	xfs_buf_terminate();
2154  out_mru_cache_uninit:
2155 	xfs_mru_cache_uninit();
2156  out_destroy_wq:
2157 	xfs_destroy_workqueues();
2158  out_destroy_zones:
2159 	xfs_destroy_zones();
2160  out:
2161 	return error;
2162 }
2163 
2164 STATIC void __exit
exit_xfs_fs(void)2165 exit_xfs_fs(void)
2166 {
2167 	xfs_qm_exit();
2168 	unregister_filesystem(&xfs_fs_type);
2169 #ifdef DEBUG
2170 	xfs_sysfs_del(&xfs_dbg_kobj);
2171 #endif
2172 	xfs_sysfs_del(&xfsstats.xs_kobj);
2173 	free_percpu(xfsstats.xs_stats);
2174 	kset_unregister(xfs_kset);
2175 	xfs_sysctl_unregister();
2176 	xfs_cleanup_procfs();
2177 	xfs_buf_terminate();
2178 	xfs_mru_cache_uninit();
2179 	xfs_destroy_workqueues();
2180 	xfs_destroy_zones();
2181 	xfs_uuid_table_free();
2182 }
2183 
2184 module_init(init_xfs_fs);
2185 module_exit(exit_xfs_fs);
2186 
2187 MODULE_AUTHOR("Silicon Graphics, Inc.");
2188 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
2189 MODULE_LICENSE("GPL");
2190