1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38
39 kmem_zone_t *xfs_inode_zone;
40
41 /*
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
44 */
45 #define XFS_ITRUNC_MAX_EXTENTS 2
46
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49
50 /*
51 * helper function to extract extent size hint from inode
52 */
53 xfs_extlen_t
xfs_get_extsz_hint(struct xfs_inode * ip)54 xfs_get_extsz_hint(
55 struct xfs_inode *ip)
56 {
57 /*
58 * No point in aligning allocations if we need to COW to actually
59 * write to them.
60 */
61 if (xfs_is_always_cow_inode(ip))
62 return 0;
63 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
64 return ip->i_d.di_extsize;
65 if (XFS_IS_REALTIME_INODE(ip))
66 return ip->i_mount->m_sb.sb_rextsize;
67 return 0;
68 }
69
70 /*
71 * Helper function to extract CoW extent size hint from inode.
72 * Between the extent size hint and the CoW extent size hint, we
73 * return the greater of the two. If the value is zero (automatic),
74 * use the default size.
75 */
76 xfs_extlen_t
xfs_get_cowextsz_hint(struct xfs_inode * ip)77 xfs_get_cowextsz_hint(
78 struct xfs_inode *ip)
79 {
80 xfs_extlen_t a, b;
81
82 a = 0;
83 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
84 a = ip->i_d.di_cowextsize;
85 b = xfs_get_extsz_hint(ip);
86
87 a = max(a, b);
88 if (a == 0)
89 return XFS_DEFAULT_COWEXTSZ_HINT;
90 return a;
91 }
92
93 /*
94 * These two are wrapper routines around the xfs_ilock() routine used to
95 * centralize some grungy code. They are used in places that wish to lock the
96 * inode solely for reading the extents. The reason these places can't just
97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98 * bringing in of the extents from disk for a file in b-tree format. If the
99 * inode is in b-tree format, then we need to lock the inode exclusively until
100 * the extents are read in. Locking it exclusively all the time would limit
101 * our parallelism unnecessarily, though. What we do instead is check to see
102 * if the extents have been read in yet, and only lock the inode exclusively
103 * if they have not.
104 *
105 * The functions return a value which should be given to the corresponding
106 * xfs_iunlock() call.
107 */
108 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)109 xfs_ilock_data_map_shared(
110 struct xfs_inode *ip)
111 {
112 uint lock_mode = XFS_ILOCK_SHARED;
113
114 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
115 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
119 }
120
121 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)122 xfs_ilock_attr_map_shared(
123 struct xfs_inode *ip)
124 {
125 uint lock_mode = XFS_ILOCK_SHARED;
126
127 if (ip->i_afp &&
128 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
133 }
134
135 /*
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
139 *
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
142 *
143 * Basic locking order:
144 *
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146 *
147 * mmap_lock locking order:
148 *
149 * i_rwsem -> page lock -> mmap_lock
150 * mmap_lock -> i_mmap_lock -> page_lock
151 *
152 * The difference in mmap_lock locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_lock.
158 *
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
163 * functions).
164 */
165 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)166 xfs_ilock(
167 xfs_inode_t *ip,
168 uint lock_flags)
169 {
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171
172 /*
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 */
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
191 }
192
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203
204 /*
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
210 *
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
214 * of valid values.
215 */
216 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)217 xfs_ilock_nowait(
218 xfs_inode_t *ip,
219 uint lock_flags)
220 {
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222
223 /*
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 */
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235
236 if (lock_flags & XFS_IOLOCK_EXCL) {
237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 goto out;
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 goto out;
242 }
243
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
250 }
251
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
254 goto out_undo_mmaplock;
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
257 goto out_undo_mmaplock;
258 }
259 return 1;
260
261 out_undo_mmaplock:
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 if (lock_flags & XFS_IOLOCK_EXCL)
268 up_write(&VFS_I(ip)->i_rwsem);
269 else if (lock_flags & XFS_IOLOCK_SHARED)
270 up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 return 0;
273 }
274
275 /*
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
280 *
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
285 *
286 */
287 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)288 xfs_iunlock(
289 xfs_inode_t *ip,
290 uint lock_flags)
291 {
292 /*
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 */
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 ASSERT(lock_flags != 0);
305
306 if (lock_flags & XFS_IOLOCK_EXCL)
307 up_write(&VFS_I(ip)->i_rwsem);
308 else if (lock_flags & XFS_IOLOCK_SHARED)
309 up_read(&VFS_I(ip)->i_rwsem);
310
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
315
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
320
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323
324 /*
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
327 */
328 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)329 xfs_ilock_demote(
330 xfs_inode_t *ip,
331 uint lock_flags)
332 {
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 ASSERT((lock_flags &
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
341 if (lock_flags & XFS_IOLOCK_EXCL)
342 downgrade_write(&VFS_I(ip)->i_rwsem);
343
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
xfs_isilocked(xfs_inode_t * ip,uint lock_flags)349 xfs_isilocked(
350 xfs_inode_t *ip,
351 uint lock_flags)
352 {
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
357 }
358
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 }
364
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 }
371
372 ASSERT(0);
373 return 0;
374 }
375 #endif
376
377 /*
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
382 */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
xfs_lockdep_subclass_ok(int subclass)385 xfs_lockdep_subclass_ok(
386 int subclass)
387 {
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass) (true)
392 #endif
393
394 /*
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
399 */
400 static inline int
xfs_lock_inumorder(int lock_mode,int subclass)401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 int class = 0;
404
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 XFS_ILOCK_RTSUM)));
407 ASSERT(xfs_lockdep_subclass_ok(subclass));
408
409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 class += subclass << XFS_IOLOCK_SHIFT;
412 }
413
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
417 }
418
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
422 }
423
424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426
427 /*
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
430 *
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
436 *
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
441 */
442 static void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)443 xfs_lock_inodes(
444 struct xfs_inode **ips,
445 int inodes,
446 uint lock_mode)
447 {
448 int attempts = 0, i, j, try_lock;
449 struct xfs_log_item *lp;
450
451 /*
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
456 * the asserts.
457 */
458 ASSERT(ips && inodes >= 2 && inodes <= 5);
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 XFS_ILOCK_EXCL));
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 XFS_ILOCK_SHARED)));
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472
473 try_lock = 0;
474 i = 0;
475 again:
476 for (; i < inodes; i++) {
477 ASSERT(ips[i]);
478
479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
480 continue;
481
482 /*
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
485 */
486 if (!try_lock) {
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = &ips[j]->i_itemp->ili_item;
489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 try_lock++;
491 }
492 }
493
494 /*
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
498 * and try again.
499 */
500 if (!try_lock) {
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 continue;
503 }
504
505 /* try_lock means we have an inode locked that is in the AIL. */
506 ASSERT(i != 0);
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 continue;
509
510 /*
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
513 */
514 attempts++;
515 for (j = i - 1; j >= 0; j--) {
516 /*
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
519 * same.
520 */
521 if (j != (i - 1) && ips[j] == ips[j + 1])
522 continue;
523
524 xfs_iunlock(ips[j], lock_mode);
525 }
526
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
529 }
530 i = 0;
531 try_lock = 0;
532 goto again;
533 }
534 }
535
536 /*
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
542 * SHARED.
543 */
544 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)545 xfs_lock_two_inodes(
546 struct xfs_inode *ip0,
547 uint ip0_mode,
548 struct xfs_inode *ip1,
549 uint ip1_mode)
550 {
551 struct xfs_inode *temp;
552 uint mode_temp;
553 int attempts = 0;
554 struct xfs_log_item *lp;
555
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568
569 ASSERT(ip0->i_ino != ip1->i_ino);
570
571 if (ip0->i_ino > ip1->i_ino) {
572 temp = ip0;
573 ip0 = ip1;
574 ip1 = temp;
575 mode_temp = ip0_mode;
576 ip0_mode = ip1_mode;
577 ip1_mode = mode_temp;
578 }
579
580 again:
581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582
583 /*
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
586 * and try again.
587 */
588 lp = &ip0->i_itemp->ili_item;
589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
594 goto again;
595 }
596 } else {
597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 }
599 }
600
601 STATIC uint
_xfs_dic2xflags(uint16_t di_flags,uint64_t di_flags2,bool has_attr)602 _xfs_dic2xflags(
603 uint16_t di_flags,
604 uint64_t di_flags2,
605 bool has_attr)
606 {
607 uint flags = 0;
608
609 if (di_flags & XFS_DIFLAG_ANY) {
610 if (di_flags & XFS_DIFLAG_REALTIME)
611 flags |= FS_XFLAG_REALTIME;
612 if (di_flags & XFS_DIFLAG_PREALLOC)
613 flags |= FS_XFLAG_PREALLOC;
614 if (di_flags & XFS_DIFLAG_IMMUTABLE)
615 flags |= FS_XFLAG_IMMUTABLE;
616 if (di_flags & XFS_DIFLAG_APPEND)
617 flags |= FS_XFLAG_APPEND;
618 if (di_flags & XFS_DIFLAG_SYNC)
619 flags |= FS_XFLAG_SYNC;
620 if (di_flags & XFS_DIFLAG_NOATIME)
621 flags |= FS_XFLAG_NOATIME;
622 if (di_flags & XFS_DIFLAG_NODUMP)
623 flags |= FS_XFLAG_NODUMP;
624 if (di_flags & XFS_DIFLAG_RTINHERIT)
625 flags |= FS_XFLAG_RTINHERIT;
626 if (di_flags & XFS_DIFLAG_PROJINHERIT)
627 flags |= FS_XFLAG_PROJINHERIT;
628 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
629 flags |= FS_XFLAG_NOSYMLINKS;
630 if (di_flags & XFS_DIFLAG_EXTSIZE)
631 flags |= FS_XFLAG_EXTSIZE;
632 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
633 flags |= FS_XFLAG_EXTSZINHERIT;
634 if (di_flags & XFS_DIFLAG_NODEFRAG)
635 flags |= FS_XFLAG_NODEFRAG;
636 if (di_flags & XFS_DIFLAG_FILESTREAM)
637 flags |= FS_XFLAG_FILESTREAM;
638 }
639
640 if (di_flags2 & XFS_DIFLAG2_ANY) {
641 if (di_flags2 & XFS_DIFLAG2_DAX)
642 flags |= FS_XFLAG_DAX;
643 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
644 flags |= FS_XFLAG_COWEXTSIZE;
645 }
646
647 if (has_attr)
648 flags |= FS_XFLAG_HASATTR;
649
650 return flags;
651 }
652
653 uint
xfs_ip2xflags(struct xfs_inode * ip)654 xfs_ip2xflags(
655 struct xfs_inode *ip)
656 {
657 struct xfs_icdinode *dic = &ip->i_d;
658
659 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
660 }
661
662 /*
663 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
664 * is allowed, otherwise it has to be an exact match. If a CI match is found,
665 * ci_name->name will point to a the actual name (caller must free) or
666 * will be set to NULL if an exact match is found.
667 */
668 int
xfs_lookup(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t ** ipp,struct xfs_name * ci_name)669 xfs_lookup(
670 xfs_inode_t *dp,
671 struct xfs_name *name,
672 xfs_inode_t **ipp,
673 struct xfs_name *ci_name)
674 {
675 xfs_ino_t inum;
676 int error;
677
678 trace_xfs_lookup(dp, name);
679
680 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
681 return -EIO;
682
683 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
684 if (error)
685 goto out_unlock;
686
687 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
688 if (error)
689 goto out_free_name;
690
691 return 0;
692
693 out_free_name:
694 if (ci_name)
695 kmem_free(ci_name->name);
696 out_unlock:
697 *ipp = NULL;
698 return error;
699 }
700
701 /* Propagate di_flags from a parent inode to a child inode. */
702 static void
xfs_inode_inherit_flags(struct xfs_inode * ip,const struct xfs_inode * pip)703 xfs_inode_inherit_flags(
704 struct xfs_inode *ip,
705 const struct xfs_inode *pip)
706 {
707 unsigned int di_flags = 0;
708 umode_t mode = VFS_I(ip)->i_mode;
709
710 if (S_ISDIR(mode)) {
711 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
712 di_flags |= XFS_DIFLAG_RTINHERIT;
713 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
714 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
715 ip->i_d.di_extsize = pip->i_d.di_extsize;
716 }
717 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
718 di_flags |= XFS_DIFLAG_PROJINHERIT;
719 } else if (S_ISREG(mode)) {
720 if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) &&
721 xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
722 di_flags |= XFS_DIFLAG_REALTIME;
723 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
724 di_flags |= XFS_DIFLAG_EXTSIZE;
725 ip->i_d.di_extsize = pip->i_d.di_extsize;
726 }
727 }
728 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
729 xfs_inherit_noatime)
730 di_flags |= XFS_DIFLAG_NOATIME;
731 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
732 xfs_inherit_nodump)
733 di_flags |= XFS_DIFLAG_NODUMP;
734 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
735 xfs_inherit_sync)
736 di_flags |= XFS_DIFLAG_SYNC;
737 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
738 xfs_inherit_nosymlinks)
739 di_flags |= XFS_DIFLAG_NOSYMLINKS;
740 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
741 xfs_inherit_nodefrag)
742 di_flags |= XFS_DIFLAG_NODEFRAG;
743 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
744 di_flags |= XFS_DIFLAG_FILESTREAM;
745
746 ip->i_d.di_flags |= di_flags;
747 }
748
749 /* Propagate di_flags2 from a parent inode to a child inode. */
750 static void
xfs_inode_inherit_flags2(struct xfs_inode * ip,const struct xfs_inode * pip)751 xfs_inode_inherit_flags2(
752 struct xfs_inode *ip,
753 const struct xfs_inode *pip)
754 {
755 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
756 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
757 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
758 }
759 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
760 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
761 }
762
763 /*
764 * Allocate an inode on disk and return a copy of its in-core version.
765 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
766 * appropriately within the inode. The uid and gid for the inode are
767 * set according to the contents of the given cred structure.
768 *
769 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
770 * has a free inode available, call xfs_iget() to obtain the in-core
771 * version of the allocated inode. Finally, fill in the inode and
772 * log its initial contents. In this case, ialloc_context would be
773 * set to NULL.
774 *
775 * If xfs_dialloc() does not have an available inode, it will replenish
776 * its supply by doing an allocation. Since we can only do one
777 * allocation within a transaction without deadlocks, we must commit
778 * the current transaction before returning the inode itself.
779 * In this case, therefore, we will set ialloc_context and return.
780 * The caller should then commit the current transaction, start a new
781 * transaction, and call xfs_ialloc() again to actually get the inode.
782 *
783 * To ensure that some other process does not grab the inode that
784 * was allocated during the first call to xfs_ialloc(), this routine
785 * also returns the [locked] bp pointing to the head of the freelist
786 * as ialloc_context. The caller should hold this buffer across
787 * the commit and pass it back into this routine on the second call.
788 *
789 * If we are allocating quota inodes, we do not have a parent inode
790 * to attach to or associate with (i.e. pip == NULL) because they
791 * are not linked into the directory structure - they are attached
792 * directly to the superblock - and so have no parent.
793 */
794 static int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_buf_t ** ialloc_context,xfs_inode_t ** ipp)795 xfs_ialloc(
796 xfs_trans_t *tp,
797 xfs_inode_t *pip,
798 umode_t mode,
799 xfs_nlink_t nlink,
800 dev_t rdev,
801 prid_t prid,
802 xfs_buf_t **ialloc_context,
803 xfs_inode_t **ipp)
804 {
805 struct xfs_mount *mp = tp->t_mountp;
806 xfs_ino_t ino;
807 xfs_inode_t *ip;
808 uint flags;
809 int error;
810 struct timespec64 tv;
811 struct inode *inode;
812
813 /*
814 * Call the space management code to pick
815 * the on-disk inode to be allocated.
816 */
817 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
818 ialloc_context, &ino);
819 if (error)
820 return error;
821 if (*ialloc_context || ino == NULLFSINO) {
822 *ipp = NULL;
823 return 0;
824 }
825 ASSERT(*ialloc_context == NULL);
826
827 /*
828 * Protect against obviously corrupt allocation btree records. Later
829 * xfs_iget checks will catch re-allocation of other active in-memory
830 * and on-disk inodes. If we don't catch reallocating the parent inode
831 * here we will deadlock in xfs_iget() so we have to do these checks
832 * first.
833 */
834 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
835 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
836 return -EFSCORRUPTED;
837 }
838
839 /*
840 * Get the in-core inode with the lock held exclusively.
841 * This is because we're setting fields here we need
842 * to prevent others from looking at until we're done.
843 */
844 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
845 XFS_ILOCK_EXCL, &ip);
846 if (error)
847 return error;
848 ASSERT(ip != NULL);
849 inode = VFS_I(ip);
850 inode->i_mode = mode;
851 set_nlink(inode, nlink);
852 inode->i_uid = current_fsuid();
853 inode->i_rdev = rdev;
854 ip->i_d.di_projid = prid;
855
856 if (pip && XFS_INHERIT_GID(pip)) {
857 inode->i_gid = VFS_I(pip)->i_gid;
858 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
859 inode->i_mode |= S_ISGID;
860 } else {
861 inode->i_gid = current_fsgid();
862 }
863
864 /*
865 * If the group ID of the new file does not match the effective group
866 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
867 * (and only if the irix_sgid_inherit compatibility variable is set).
868 */
869 if (irix_sgid_inherit &&
870 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
871 inode->i_mode &= ~S_ISGID;
872
873 ip->i_d.di_size = 0;
874 ip->i_df.if_nextents = 0;
875 ASSERT(ip->i_d.di_nblocks == 0);
876
877 tv = current_time(inode);
878 inode->i_mtime = tv;
879 inode->i_atime = tv;
880 inode->i_ctime = tv;
881
882 ip->i_d.di_extsize = 0;
883 ip->i_d.di_dmevmask = 0;
884 ip->i_d.di_dmstate = 0;
885 ip->i_d.di_flags = 0;
886
887 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
888 inode_set_iversion(inode, 1);
889 ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2;
890 ip->i_d.di_cowextsize = 0;
891 ip->i_d.di_crtime = tv;
892 }
893
894 flags = XFS_ILOG_CORE;
895 switch (mode & S_IFMT) {
896 case S_IFIFO:
897 case S_IFCHR:
898 case S_IFBLK:
899 case S_IFSOCK:
900 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
901 ip->i_df.if_flags = 0;
902 flags |= XFS_ILOG_DEV;
903 break;
904 case S_IFREG:
905 case S_IFDIR:
906 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY))
907 xfs_inode_inherit_flags(ip, pip);
908 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY))
909 xfs_inode_inherit_flags2(ip, pip);
910 /* FALLTHROUGH */
911 case S_IFLNK:
912 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
913 ip->i_df.if_flags = XFS_IFEXTENTS;
914 ip->i_df.if_bytes = 0;
915 ip->i_df.if_u1.if_root = NULL;
916 break;
917 default:
918 ASSERT(0);
919 }
920
921 /*
922 * Log the new values stuffed into the inode.
923 */
924 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
925 xfs_trans_log_inode(tp, ip, flags);
926
927 /* now that we have an i_mode we can setup the inode structure */
928 xfs_setup_inode(ip);
929
930 *ipp = ip;
931 return 0;
932 }
933
934 /*
935 * Allocates a new inode from disk and return a pointer to the
936 * incore copy. This routine will internally commit the current
937 * transaction and allocate a new one if the Space Manager needed
938 * to do an allocation to replenish the inode free-list.
939 *
940 * This routine is designed to be called from xfs_create and
941 * xfs_create_dir.
942 *
943 */
944 int
xfs_dir_ialloc(xfs_trans_t ** tpp,xfs_inode_t * dp,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_inode_t ** ipp)945 xfs_dir_ialloc(
946 xfs_trans_t **tpp, /* input: current transaction;
947 output: may be a new transaction. */
948 xfs_inode_t *dp, /* directory within whose allocate
949 the inode. */
950 umode_t mode,
951 xfs_nlink_t nlink,
952 dev_t rdev,
953 prid_t prid, /* project id */
954 xfs_inode_t **ipp) /* pointer to inode; it will be
955 locked. */
956 {
957 xfs_trans_t *tp;
958 xfs_inode_t *ip;
959 xfs_buf_t *ialloc_context = NULL;
960 int code;
961 void *dqinfo;
962 uint tflags;
963
964 tp = *tpp;
965 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
966
967 /*
968 * xfs_ialloc will return a pointer to an incore inode if
969 * the Space Manager has an available inode on the free
970 * list. Otherwise, it will do an allocation and replenish
971 * the freelist. Since we can only do one allocation per
972 * transaction without deadlocks, we will need to commit the
973 * current transaction and start a new one. We will then
974 * need to call xfs_ialloc again to get the inode.
975 *
976 * If xfs_ialloc did an allocation to replenish the freelist,
977 * it returns the bp containing the head of the freelist as
978 * ialloc_context. We will hold a lock on it across the
979 * transaction commit so that no other process can steal
980 * the inode(s) that we've just allocated.
981 */
982 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
983 &ip);
984
985 /*
986 * Return an error if we were unable to allocate a new inode.
987 * This should only happen if we run out of space on disk or
988 * encounter a disk error.
989 */
990 if (code) {
991 *ipp = NULL;
992 return code;
993 }
994 if (!ialloc_context && !ip) {
995 *ipp = NULL;
996 return -ENOSPC;
997 }
998
999 /*
1000 * If the AGI buffer is non-NULL, then we were unable to get an
1001 * inode in one operation. We need to commit the current
1002 * transaction and call xfs_ialloc() again. It is guaranteed
1003 * to succeed the second time.
1004 */
1005 if (ialloc_context) {
1006 /*
1007 * Normally, xfs_trans_commit releases all the locks.
1008 * We call bhold to hang on to the ialloc_context across
1009 * the commit. Holding this buffer prevents any other
1010 * processes from doing any allocations in this
1011 * allocation group.
1012 */
1013 xfs_trans_bhold(tp, ialloc_context);
1014
1015 /*
1016 * We want the quota changes to be associated with the next
1017 * transaction, NOT this one. So, detach the dqinfo from this
1018 * and attach it to the next transaction.
1019 */
1020 dqinfo = NULL;
1021 tflags = 0;
1022 if (tp->t_dqinfo) {
1023 dqinfo = (void *)tp->t_dqinfo;
1024 tp->t_dqinfo = NULL;
1025 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1026 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1027 }
1028
1029 code = xfs_trans_roll(&tp);
1030
1031 /*
1032 * Re-attach the quota info that we detached from prev trx.
1033 */
1034 if (dqinfo) {
1035 tp->t_dqinfo = dqinfo;
1036 tp->t_flags |= tflags;
1037 }
1038
1039 if (code) {
1040 xfs_buf_relse(ialloc_context);
1041 *tpp = tp;
1042 *ipp = NULL;
1043 return code;
1044 }
1045 xfs_trans_bjoin(tp, ialloc_context);
1046
1047 /*
1048 * Call ialloc again. Since we've locked out all
1049 * other allocations in this allocation group,
1050 * this call should always succeed.
1051 */
1052 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1053 &ialloc_context, &ip);
1054
1055 /*
1056 * If we get an error at this point, return to the caller
1057 * so that the current transaction can be aborted.
1058 */
1059 if (code) {
1060 *tpp = tp;
1061 *ipp = NULL;
1062 return code;
1063 }
1064 ASSERT(!ialloc_context && ip);
1065
1066 }
1067
1068 *ipp = ip;
1069 *tpp = tp;
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * Decrement the link count on an inode & log the change. If this causes the
1076 * link count to go to zero, move the inode to AGI unlinked list so that it can
1077 * be freed when the last active reference goes away via xfs_inactive().
1078 */
1079 static int /* error */
xfs_droplink(xfs_trans_t * tp,xfs_inode_t * ip)1080 xfs_droplink(
1081 xfs_trans_t *tp,
1082 xfs_inode_t *ip)
1083 {
1084 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1085
1086 drop_nlink(VFS_I(ip));
1087 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1088
1089 if (VFS_I(ip)->i_nlink)
1090 return 0;
1091
1092 return xfs_iunlink(tp, ip);
1093 }
1094
1095 /*
1096 * Increment the link count on an inode & log the change.
1097 */
1098 static void
xfs_bumplink(xfs_trans_t * tp,xfs_inode_t * ip)1099 xfs_bumplink(
1100 xfs_trans_t *tp,
1101 xfs_inode_t *ip)
1102 {
1103 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1104
1105 inc_nlink(VFS_I(ip));
1106 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1107 }
1108
1109 int
xfs_create(xfs_inode_t * dp,struct xfs_name * name,umode_t mode,dev_t rdev,xfs_inode_t ** ipp)1110 xfs_create(
1111 xfs_inode_t *dp,
1112 struct xfs_name *name,
1113 umode_t mode,
1114 dev_t rdev,
1115 xfs_inode_t **ipp)
1116 {
1117 int is_dir = S_ISDIR(mode);
1118 struct xfs_mount *mp = dp->i_mount;
1119 struct xfs_inode *ip = NULL;
1120 struct xfs_trans *tp = NULL;
1121 int error;
1122 bool unlock_dp_on_error = false;
1123 prid_t prid;
1124 struct xfs_dquot *udqp = NULL;
1125 struct xfs_dquot *gdqp = NULL;
1126 struct xfs_dquot *pdqp = NULL;
1127 struct xfs_trans_res *tres;
1128 uint resblks;
1129
1130 trace_xfs_create(dp, name);
1131
1132 if (XFS_FORCED_SHUTDOWN(mp))
1133 return -EIO;
1134
1135 prid = xfs_get_initial_prid(dp);
1136
1137 /*
1138 * Make sure that we have allocated dquot(s) on disk.
1139 */
1140 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1141 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1142 &udqp, &gdqp, &pdqp);
1143 if (error)
1144 return error;
1145
1146 if (is_dir) {
1147 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1148 tres = &M_RES(mp)->tr_mkdir;
1149 } else {
1150 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1151 tres = &M_RES(mp)->tr_create;
1152 }
1153
1154 /*
1155 * Initially assume that the file does not exist and
1156 * reserve the resources for that case. If that is not
1157 * the case we'll drop the one we have and get a more
1158 * appropriate transaction later.
1159 */
1160 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1161 if (error == -ENOSPC) {
1162 /* flush outstanding delalloc blocks and retry */
1163 xfs_flush_inodes(mp);
1164 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1165 }
1166 if (error)
1167 goto out_release_inode;
1168
1169 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1170 unlock_dp_on_error = true;
1171
1172 /*
1173 * Reserve disk quota and the inode.
1174 */
1175 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1176 pdqp, resblks, 1, 0);
1177 if (error)
1178 goto out_trans_cancel;
1179
1180 /*
1181 * A newly created regular or special file just has one directory
1182 * entry pointing to them, but a directory also the "." entry
1183 * pointing to itself.
1184 */
1185 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1186 if (error)
1187 goto out_trans_cancel;
1188
1189 /*
1190 * Now we join the directory inode to the transaction. We do not do it
1191 * earlier because xfs_dir_ialloc might commit the previous transaction
1192 * (and release all the locks). An error from here on will result in
1193 * the transaction cancel unlocking dp so don't do it explicitly in the
1194 * error path.
1195 */
1196 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1197 unlock_dp_on_error = false;
1198
1199 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1200 resblks - XFS_IALLOC_SPACE_RES(mp));
1201 if (error) {
1202 ASSERT(error != -ENOSPC);
1203 goto out_trans_cancel;
1204 }
1205 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1206 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1207
1208 if (is_dir) {
1209 error = xfs_dir_init(tp, ip, dp);
1210 if (error)
1211 goto out_trans_cancel;
1212
1213 xfs_bumplink(tp, dp);
1214 }
1215
1216 /*
1217 * If this is a synchronous mount, make sure that the
1218 * create transaction goes to disk before returning to
1219 * the user.
1220 */
1221 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1222 xfs_trans_set_sync(tp);
1223
1224 /*
1225 * Attach the dquot(s) to the inodes and modify them incore.
1226 * These ids of the inode couldn't have changed since the new
1227 * inode has been locked ever since it was created.
1228 */
1229 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1230
1231 error = xfs_trans_commit(tp);
1232 if (error)
1233 goto out_release_inode;
1234
1235 xfs_qm_dqrele(udqp);
1236 xfs_qm_dqrele(gdqp);
1237 xfs_qm_dqrele(pdqp);
1238
1239 *ipp = ip;
1240 return 0;
1241
1242 out_trans_cancel:
1243 xfs_trans_cancel(tp);
1244 out_release_inode:
1245 /*
1246 * Wait until after the current transaction is aborted to finish the
1247 * setup of the inode and release the inode. This prevents recursive
1248 * transactions and deadlocks from xfs_inactive.
1249 */
1250 if (ip) {
1251 xfs_finish_inode_setup(ip);
1252 xfs_irele(ip);
1253 }
1254
1255 xfs_qm_dqrele(udqp);
1256 xfs_qm_dqrele(gdqp);
1257 xfs_qm_dqrele(pdqp);
1258
1259 if (unlock_dp_on_error)
1260 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1261 return error;
1262 }
1263
1264 int
xfs_create_tmpfile(struct xfs_inode * dp,umode_t mode,struct xfs_inode ** ipp)1265 xfs_create_tmpfile(
1266 struct xfs_inode *dp,
1267 umode_t mode,
1268 struct xfs_inode **ipp)
1269 {
1270 struct xfs_mount *mp = dp->i_mount;
1271 struct xfs_inode *ip = NULL;
1272 struct xfs_trans *tp = NULL;
1273 int error;
1274 prid_t prid;
1275 struct xfs_dquot *udqp = NULL;
1276 struct xfs_dquot *gdqp = NULL;
1277 struct xfs_dquot *pdqp = NULL;
1278 struct xfs_trans_res *tres;
1279 uint resblks;
1280
1281 if (XFS_FORCED_SHUTDOWN(mp))
1282 return -EIO;
1283
1284 prid = xfs_get_initial_prid(dp);
1285
1286 /*
1287 * Make sure that we have allocated dquot(s) on disk.
1288 */
1289 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1290 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1291 &udqp, &gdqp, &pdqp);
1292 if (error)
1293 return error;
1294
1295 resblks = XFS_IALLOC_SPACE_RES(mp);
1296 tres = &M_RES(mp)->tr_create_tmpfile;
1297
1298 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1299 if (error)
1300 goto out_release_inode;
1301
1302 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1303 pdqp, resblks, 1, 0);
1304 if (error)
1305 goto out_trans_cancel;
1306
1307 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1308 if (error)
1309 goto out_trans_cancel;
1310
1311 if (mp->m_flags & XFS_MOUNT_WSYNC)
1312 xfs_trans_set_sync(tp);
1313
1314 /*
1315 * Attach the dquot(s) to the inodes and modify them incore.
1316 * These ids of the inode couldn't have changed since the new
1317 * inode has been locked ever since it was created.
1318 */
1319 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1320
1321 error = xfs_iunlink(tp, ip);
1322 if (error)
1323 goto out_trans_cancel;
1324
1325 error = xfs_trans_commit(tp);
1326 if (error)
1327 goto out_release_inode;
1328
1329 xfs_qm_dqrele(udqp);
1330 xfs_qm_dqrele(gdqp);
1331 xfs_qm_dqrele(pdqp);
1332
1333 *ipp = ip;
1334 return 0;
1335
1336 out_trans_cancel:
1337 xfs_trans_cancel(tp);
1338 out_release_inode:
1339 /*
1340 * Wait until after the current transaction is aborted to finish the
1341 * setup of the inode and release the inode. This prevents recursive
1342 * transactions and deadlocks from xfs_inactive.
1343 */
1344 if (ip) {
1345 xfs_finish_inode_setup(ip);
1346 xfs_irele(ip);
1347 }
1348
1349 xfs_qm_dqrele(udqp);
1350 xfs_qm_dqrele(gdqp);
1351 xfs_qm_dqrele(pdqp);
1352
1353 return error;
1354 }
1355
1356 int
xfs_link(xfs_inode_t * tdp,xfs_inode_t * sip,struct xfs_name * target_name)1357 xfs_link(
1358 xfs_inode_t *tdp,
1359 xfs_inode_t *sip,
1360 struct xfs_name *target_name)
1361 {
1362 xfs_mount_t *mp = tdp->i_mount;
1363 xfs_trans_t *tp;
1364 int error;
1365 int resblks;
1366
1367 trace_xfs_link(tdp, target_name);
1368
1369 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1370
1371 if (XFS_FORCED_SHUTDOWN(mp))
1372 return -EIO;
1373
1374 error = xfs_qm_dqattach(sip);
1375 if (error)
1376 goto std_return;
1377
1378 error = xfs_qm_dqattach(tdp);
1379 if (error)
1380 goto std_return;
1381
1382 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1383 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1384 if (error == -ENOSPC) {
1385 resblks = 0;
1386 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1387 }
1388 if (error)
1389 goto std_return;
1390
1391 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1392
1393 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1394 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1395
1396 /*
1397 * If we are using project inheritance, we only allow hard link
1398 * creation in our tree when the project IDs are the same; else
1399 * the tree quota mechanism could be circumvented.
1400 */
1401 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1402 tdp->i_d.di_projid != sip->i_d.di_projid)) {
1403 error = -EXDEV;
1404 goto error_return;
1405 }
1406
1407 if (!resblks) {
1408 error = xfs_dir_canenter(tp, tdp, target_name);
1409 if (error)
1410 goto error_return;
1411 }
1412
1413 /*
1414 * Handle initial link state of O_TMPFILE inode
1415 */
1416 if (VFS_I(sip)->i_nlink == 0) {
1417 error = xfs_iunlink_remove(tp, sip);
1418 if (error)
1419 goto error_return;
1420 }
1421
1422 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1423 resblks);
1424 if (error)
1425 goto error_return;
1426 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1427 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1428
1429 xfs_bumplink(tp, sip);
1430
1431 /*
1432 * If this is a synchronous mount, make sure that the
1433 * link transaction goes to disk before returning to
1434 * the user.
1435 */
1436 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1437 xfs_trans_set_sync(tp);
1438
1439 return xfs_trans_commit(tp);
1440
1441 error_return:
1442 xfs_trans_cancel(tp);
1443 std_return:
1444 return error;
1445 }
1446
1447 /* Clear the reflink flag and the cowblocks tag if possible. */
1448 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)1449 xfs_itruncate_clear_reflink_flags(
1450 struct xfs_inode *ip)
1451 {
1452 struct xfs_ifork *dfork;
1453 struct xfs_ifork *cfork;
1454
1455 if (!xfs_is_reflink_inode(ip))
1456 return;
1457 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1458 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1459 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1460 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1461 if (cfork->if_bytes == 0)
1462 xfs_inode_clear_cowblocks_tag(ip);
1463 }
1464
1465 /*
1466 * Free up the underlying blocks past new_size. The new size must be smaller
1467 * than the current size. This routine can be used both for the attribute and
1468 * data fork, and does not modify the inode size, which is left to the caller.
1469 *
1470 * The transaction passed to this routine must have made a permanent log
1471 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1472 * given transaction and start new ones, so make sure everything involved in
1473 * the transaction is tidy before calling here. Some transaction will be
1474 * returned to the caller to be committed. The incoming transaction must
1475 * already include the inode, and both inode locks must be held exclusively.
1476 * The inode must also be "held" within the transaction. On return the inode
1477 * will be "held" within the returned transaction. This routine does NOT
1478 * require any disk space to be reserved for it within the transaction.
1479 *
1480 * If we get an error, we must return with the inode locked and linked into the
1481 * current transaction. This keeps things simple for the higher level code,
1482 * because it always knows that the inode is locked and held in the transaction
1483 * that returns to it whether errors occur or not. We don't mark the inode
1484 * dirty on error so that transactions can be easily aborted if possible.
1485 */
1486 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1487 xfs_itruncate_extents_flags(
1488 struct xfs_trans **tpp,
1489 struct xfs_inode *ip,
1490 int whichfork,
1491 xfs_fsize_t new_size,
1492 int flags)
1493 {
1494 struct xfs_mount *mp = ip->i_mount;
1495 struct xfs_trans *tp = *tpp;
1496 xfs_fileoff_t first_unmap_block;
1497 xfs_filblks_t unmap_len;
1498 int error = 0;
1499
1500 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1501 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1502 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1503 ASSERT(new_size <= XFS_ISIZE(ip));
1504 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1505 ASSERT(ip->i_itemp != NULL);
1506 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1507 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1508
1509 trace_xfs_itruncate_extents_start(ip, new_size);
1510
1511 flags |= xfs_bmapi_aflag(whichfork);
1512
1513 /*
1514 * Since it is possible for space to become allocated beyond
1515 * the end of the file (in a crash where the space is allocated
1516 * but the inode size is not yet updated), simply remove any
1517 * blocks which show up between the new EOF and the maximum
1518 * possible file size.
1519 *
1520 * We have to free all the blocks to the bmbt maximum offset, even if
1521 * the page cache can't scale that far.
1522 */
1523 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1524 if (first_unmap_block >= XFS_MAX_FILEOFF) {
1525 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1526 return 0;
1527 }
1528
1529 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1530 while (unmap_len > 0) {
1531 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1532 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1533 flags, XFS_ITRUNC_MAX_EXTENTS);
1534 if (error)
1535 goto out;
1536
1537 /* free the just unmapped extents */
1538 error = xfs_defer_finish(&tp);
1539 if (error)
1540 goto out;
1541 }
1542
1543 if (whichfork == XFS_DATA_FORK) {
1544 /* Remove all pending CoW reservations. */
1545 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1546 first_unmap_block, XFS_MAX_FILEOFF, true);
1547 if (error)
1548 goto out;
1549
1550 xfs_itruncate_clear_reflink_flags(ip);
1551 }
1552
1553 /*
1554 * Always re-log the inode so that our permanent transaction can keep
1555 * on rolling it forward in the log.
1556 */
1557 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1558
1559 trace_xfs_itruncate_extents_end(ip, new_size);
1560
1561 out:
1562 *tpp = tp;
1563 return error;
1564 }
1565
1566 int
xfs_release(xfs_inode_t * ip)1567 xfs_release(
1568 xfs_inode_t *ip)
1569 {
1570 xfs_mount_t *mp = ip->i_mount;
1571 int error;
1572
1573 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1574 return 0;
1575
1576 /* If this is a read-only mount, don't do this (would generate I/O) */
1577 if (mp->m_flags & XFS_MOUNT_RDONLY)
1578 return 0;
1579
1580 if (!XFS_FORCED_SHUTDOWN(mp)) {
1581 int truncated;
1582
1583 /*
1584 * If we previously truncated this file and removed old data
1585 * in the process, we want to initiate "early" writeout on
1586 * the last close. This is an attempt to combat the notorious
1587 * NULL files problem which is particularly noticeable from a
1588 * truncate down, buffered (re-)write (delalloc), followed by
1589 * a crash. What we are effectively doing here is
1590 * significantly reducing the time window where we'd otherwise
1591 * be exposed to that problem.
1592 */
1593 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1594 if (truncated) {
1595 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1596 if (ip->i_delayed_blks > 0) {
1597 error = filemap_flush(VFS_I(ip)->i_mapping);
1598 if (error)
1599 return error;
1600 }
1601 }
1602 }
1603
1604 if (VFS_I(ip)->i_nlink == 0)
1605 return 0;
1606
1607 if (xfs_can_free_eofblocks(ip, false)) {
1608
1609 /*
1610 * Check if the inode is being opened, written and closed
1611 * frequently and we have delayed allocation blocks outstanding
1612 * (e.g. streaming writes from the NFS server), truncating the
1613 * blocks past EOF will cause fragmentation to occur.
1614 *
1615 * In this case don't do the truncation, but we have to be
1616 * careful how we detect this case. Blocks beyond EOF show up as
1617 * i_delayed_blks even when the inode is clean, so we need to
1618 * truncate them away first before checking for a dirty release.
1619 * Hence on the first dirty close we will still remove the
1620 * speculative allocation, but after that we will leave it in
1621 * place.
1622 */
1623 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1624 return 0;
1625 /*
1626 * If we can't get the iolock just skip truncating the blocks
1627 * past EOF because we could deadlock with the mmap_lock
1628 * otherwise. We'll get another chance to drop them once the
1629 * last reference to the inode is dropped, so we'll never leak
1630 * blocks permanently.
1631 */
1632 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1633 error = xfs_free_eofblocks(ip);
1634 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1635 if (error)
1636 return error;
1637 }
1638
1639 /* delalloc blocks after truncation means it really is dirty */
1640 if (ip->i_delayed_blks)
1641 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1642 }
1643 return 0;
1644 }
1645
1646 /*
1647 * xfs_inactive_truncate
1648 *
1649 * Called to perform a truncate when an inode becomes unlinked.
1650 */
1651 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1652 xfs_inactive_truncate(
1653 struct xfs_inode *ip)
1654 {
1655 struct xfs_mount *mp = ip->i_mount;
1656 struct xfs_trans *tp;
1657 int error;
1658
1659 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1660 if (error) {
1661 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1662 return error;
1663 }
1664 xfs_ilock(ip, XFS_ILOCK_EXCL);
1665 xfs_trans_ijoin(tp, ip, 0);
1666
1667 /*
1668 * Log the inode size first to prevent stale data exposure in the event
1669 * of a system crash before the truncate completes. See the related
1670 * comment in xfs_vn_setattr_size() for details.
1671 */
1672 ip->i_d.di_size = 0;
1673 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1674
1675 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1676 if (error)
1677 goto error_trans_cancel;
1678
1679 ASSERT(ip->i_df.if_nextents == 0);
1680
1681 error = xfs_trans_commit(tp);
1682 if (error)
1683 goto error_unlock;
1684
1685 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1686 return 0;
1687
1688 error_trans_cancel:
1689 xfs_trans_cancel(tp);
1690 error_unlock:
1691 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1692 return error;
1693 }
1694
1695 /*
1696 * xfs_inactive_ifree()
1697 *
1698 * Perform the inode free when an inode is unlinked.
1699 */
1700 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1701 xfs_inactive_ifree(
1702 struct xfs_inode *ip)
1703 {
1704 struct xfs_mount *mp = ip->i_mount;
1705 struct xfs_trans *tp;
1706 int error;
1707
1708 /*
1709 * We try to use a per-AG reservation for any block needed by the finobt
1710 * tree, but as the finobt feature predates the per-AG reservation
1711 * support a degraded file system might not have enough space for the
1712 * reservation at mount time. In that case try to dip into the reserved
1713 * pool and pray.
1714 *
1715 * Send a warning if the reservation does happen to fail, as the inode
1716 * now remains allocated and sits on the unlinked list until the fs is
1717 * repaired.
1718 */
1719 if (unlikely(mp->m_finobt_nores)) {
1720 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1721 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1722 &tp);
1723 } else {
1724 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1725 }
1726 if (error) {
1727 if (error == -ENOSPC) {
1728 xfs_warn_ratelimited(mp,
1729 "Failed to remove inode(s) from unlinked list. "
1730 "Please free space, unmount and run xfs_repair.");
1731 } else {
1732 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1733 }
1734 return error;
1735 }
1736
1737 /*
1738 * We do not hold the inode locked across the entire rolling transaction
1739 * here. We only need to hold it for the first transaction that
1740 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1741 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1742 * here breaks the relationship between cluster buffer invalidation and
1743 * stale inode invalidation on cluster buffer item journal commit
1744 * completion, and can result in leaving dirty stale inodes hanging
1745 * around in memory.
1746 *
1747 * We have no need for serialising this inode operation against other
1748 * operations - we freed the inode and hence reallocation is required
1749 * and that will serialise on reallocating the space the deferops need
1750 * to free. Hence we can unlock the inode on the first commit of
1751 * the transaction rather than roll it right through the deferops. This
1752 * avoids relogging the XFS_ISTALE inode.
1753 *
1754 * We check that xfs_ifree() hasn't grown an internal transaction roll
1755 * by asserting that the inode is still locked when it returns.
1756 */
1757 xfs_ilock(ip, XFS_ILOCK_EXCL);
1758 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1759
1760 error = xfs_ifree(tp, ip);
1761 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1762 if (error) {
1763 /*
1764 * If we fail to free the inode, shut down. The cancel
1765 * might do that, we need to make sure. Otherwise the
1766 * inode might be lost for a long time or forever.
1767 */
1768 if (!XFS_FORCED_SHUTDOWN(mp)) {
1769 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1770 __func__, error);
1771 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1772 }
1773 xfs_trans_cancel(tp);
1774 return error;
1775 }
1776
1777 /*
1778 * Credit the quota account(s). The inode is gone.
1779 */
1780 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1781
1782 /*
1783 * Just ignore errors at this point. There is nothing we can do except
1784 * to try to keep going. Make sure it's not a silent error.
1785 */
1786 error = xfs_trans_commit(tp);
1787 if (error)
1788 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1789 __func__, error);
1790
1791 return 0;
1792 }
1793
1794 /*
1795 * xfs_inactive
1796 *
1797 * This is called when the vnode reference count for the vnode
1798 * goes to zero. If the file has been unlinked, then it must
1799 * now be truncated. Also, we clear all of the read-ahead state
1800 * kept for the inode here since the file is now closed.
1801 */
1802 void
xfs_inactive(xfs_inode_t * ip)1803 xfs_inactive(
1804 xfs_inode_t *ip)
1805 {
1806 struct xfs_mount *mp;
1807 int error;
1808 int truncate = 0;
1809
1810 /*
1811 * If the inode is already free, then there can be nothing
1812 * to clean up here.
1813 */
1814 if (VFS_I(ip)->i_mode == 0) {
1815 ASSERT(ip->i_df.if_broot_bytes == 0);
1816 return;
1817 }
1818
1819 mp = ip->i_mount;
1820 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1821
1822 /* If this is a read-only mount, don't do this (would generate I/O) */
1823 if (mp->m_flags & XFS_MOUNT_RDONLY)
1824 return;
1825
1826 /* Try to clean out the cow blocks if there are any. */
1827 if (xfs_inode_has_cow_data(ip))
1828 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1829
1830 if (VFS_I(ip)->i_nlink != 0) {
1831 /*
1832 * force is true because we are evicting an inode from the
1833 * cache. Post-eof blocks must be freed, lest we end up with
1834 * broken free space accounting.
1835 *
1836 * Note: don't bother with iolock here since lockdep complains
1837 * about acquiring it in reclaim context. We have the only
1838 * reference to the inode at this point anyways.
1839 */
1840 if (xfs_can_free_eofblocks(ip, true))
1841 xfs_free_eofblocks(ip);
1842
1843 return;
1844 }
1845
1846 if (S_ISREG(VFS_I(ip)->i_mode) &&
1847 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1848 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1849 truncate = 1;
1850
1851 error = xfs_qm_dqattach(ip);
1852 if (error)
1853 return;
1854
1855 if (S_ISLNK(VFS_I(ip)->i_mode))
1856 error = xfs_inactive_symlink(ip);
1857 else if (truncate)
1858 error = xfs_inactive_truncate(ip);
1859 if (error)
1860 return;
1861
1862 /*
1863 * If there are attributes associated with the file then blow them away
1864 * now. The code calls a routine that recursively deconstructs the
1865 * attribute fork. If also blows away the in-core attribute fork.
1866 */
1867 if (XFS_IFORK_Q(ip)) {
1868 error = xfs_attr_inactive(ip);
1869 if (error)
1870 return;
1871 }
1872
1873 ASSERT(!ip->i_afp);
1874 ASSERT(ip->i_d.di_forkoff == 0);
1875
1876 /*
1877 * Free the inode.
1878 */
1879 error = xfs_inactive_ifree(ip);
1880 if (error)
1881 return;
1882
1883 /*
1884 * Release the dquots held by inode, if any.
1885 */
1886 xfs_qm_dqdetach(ip);
1887 }
1888
1889 /*
1890 * In-Core Unlinked List Lookups
1891 * =============================
1892 *
1893 * Every inode is supposed to be reachable from some other piece of metadata
1894 * with the exception of the root directory. Inodes with a connection to a
1895 * file descriptor but not linked from anywhere in the on-disk directory tree
1896 * are collectively known as unlinked inodes, though the filesystem itself
1897 * maintains links to these inodes so that on-disk metadata are consistent.
1898 *
1899 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1900 * header contains a number of buckets that point to an inode, and each inode
1901 * record has a pointer to the next inode in the hash chain. This
1902 * singly-linked list causes scaling problems in the iunlink remove function
1903 * because we must walk that list to find the inode that points to the inode
1904 * being removed from the unlinked hash bucket list.
1905 *
1906 * What if we modelled the unlinked list as a collection of records capturing
1907 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1908 * have a fast way to look up unlinked list predecessors, which avoids the
1909 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1910 * rhashtable.
1911 *
1912 * Because this is a backref cache, we ignore operational failures since the
1913 * iunlink code can fall back to the slow bucket walk. The only errors that
1914 * should bubble out are for obviously incorrect situations.
1915 *
1916 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1917 * access or have otherwise provided for concurrency control.
1918 */
1919
1920 /* Capture a "X.next_unlinked = Y" relationship. */
1921 struct xfs_iunlink {
1922 struct rhash_head iu_rhash_head;
1923 xfs_agino_t iu_agino; /* X */
1924 xfs_agino_t iu_next_unlinked; /* Y */
1925 };
1926
1927 /* Unlinked list predecessor lookup hashtable construction */
1928 static int
xfs_iunlink_obj_cmpfn(struct rhashtable_compare_arg * arg,const void * obj)1929 xfs_iunlink_obj_cmpfn(
1930 struct rhashtable_compare_arg *arg,
1931 const void *obj)
1932 {
1933 const xfs_agino_t *key = arg->key;
1934 const struct xfs_iunlink *iu = obj;
1935
1936 if (iu->iu_next_unlinked != *key)
1937 return 1;
1938 return 0;
1939 }
1940
1941 static const struct rhashtable_params xfs_iunlink_hash_params = {
1942 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1943 .key_len = sizeof(xfs_agino_t),
1944 .key_offset = offsetof(struct xfs_iunlink,
1945 iu_next_unlinked),
1946 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1947 .automatic_shrinking = true,
1948 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1949 };
1950
1951 /*
1952 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1953 * relation is found.
1954 */
1955 static xfs_agino_t
xfs_iunlink_lookup_backref(struct xfs_perag * pag,xfs_agino_t agino)1956 xfs_iunlink_lookup_backref(
1957 struct xfs_perag *pag,
1958 xfs_agino_t agino)
1959 {
1960 struct xfs_iunlink *iu;
1961
1962 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1963 xfs_iunlink_hash_params);
1964 return iu ? iu->iu_agino : NULLAGINO;
1965 }
1966
1967 /*
1968 * Take ownership of an iunlink cache entry and insert it into the hash table.
1969 * If successful, the entry will be owned by the cache; if not, it is freed.
1970 * Either way, the caller does not own @iu after this call.
1971 */
1972 static int
xfs_iunlink_insert_backref(struct xfs_perag * pag,struct xfs_iunlink * iu)1973 xfs_iunlink_insert_backref(
1974 struct xfs_perag *pag,
1975 struct xfs_iunlink *iu)
1976 {
1977 int error;
1978
1979 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1980 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1981 /*
1982 * Fail loudly if there already was an entry because that's a sign of
1983 * corruption of in-memory data. Also fail loudly if we see an error
1984 * code we didn't anticipate from the rhashtable code. Currently we
1985 * only anticipate ENOMEM.
1986 */
1987 if (error) {
1988 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1989 kmem_free(iu);
1990 }
1991 /*
1992 * Absorb any runtime errors that aren't a result of corruption because
1993 * this is a cache and we can always fall back to bucket list scanning.
1994 */
1995 if (error != 0 && error != -EEXIST)
1996 error = 0;
1997 return error;
1998 }
1999
2000 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2001 static int
xfs_iunlink_add_backref(struct xfs_perag * pag,xfs_agino_t prev_agino,xfs_agino_t this_agino)2002 xfs_iunlink_add_backref(
2003 struct xfs_perag *pag,
2004 xfs_agino_t prev_agino,
2005 xfs_agino_t this_agino)
2006 {
2007 struct xfs_iunlink *iu;
2008
2009 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2010 return 0;
2011
2012 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2013 iu->iu_agino = prev_agino;
2014 iu->iu_next_unlinked = this_agino;
2015
2016 return xfs_iunlink_insert_backref(pag, iu);
2017 }
2018
2019 /*
2020 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2021 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2022 * wasn't any such entry then we don't bother.
2023 */
2024 static int
xfs_iunlink_change_backref(struct xfs_perag * pag,xfs_agino_t agino,xfs_agino_t next_unlinked)2025 xfs_iunlink_change_backref(
2026 struct xfs_perag *pag,
2027 xfs_agino_t agino,
2028 xfs_agino_t next_unlinked)
2029 {
2030 struct xfs_iunlink *iu;
2031 int error;
2032
2033 /* Look up the old entry; if there wasn't one then exit. */
2034 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2035 xfs_iunlink_hash_params);
2036 if (!iu)
2037 return 0;
2038
2039 /*
2040 * Remove the entry. This shouldn't ever return an error, but if we
2041 * couldn't remove the old entry we don't want to add it again to the
2042 * hash table, and if the entry disappeared on us then someone's
2043 * violated the locking rules and we need to fail loudly. Either way
2044 * we cannot remove the inode because internal state is or would have
2045 * been corrupt.
2046 */
2047 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2048 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2049 if (error)
2050 return error;
2051
2052 /* If there is no new next entry just free our item and return. */
2053 if (next_unlinked == NULLAGINO) {
2054 kmem_free(iu);
2055 return 0;
2056 }
2057
2058 /* Update the entry and re-add it to the hash table. */
2059 iu->iu_next_unlinked = next_unlinked;
2060 return xfs_iunlink_insert_backref(pag, iu);
2061 }
2062
2063 /* Set up the in-core predecessor structures. */
2064 int
xfs_iunlink_init(struct xfs_perag * pag)2065 xfs_iunlink_init(
2066 struct xfs_perag *pag)
2067 {
2068 return rhashtable_init(&pag->pagi_unlinked_hash,
2069 &xfs_iunlink_hash_params);
2070 }
2071
2072 /* Free the in-core predecessor structures. */
2073 static void
xfs_iunlink_free_item(void * ptr,void * arg)2074 xfs_iunlink_free_item(
2075 void *ptr,
2076 void *arg)
2077 {
2078 struct xfs_iunlink *iu = ptr;
2079 bool *freed_anything = arg;
2080
2081 *freed_anything = true;
2082 kmem_free(iu);
2083 }
2084
2085 void
xfs_iunlink_destroy(struct xfs_perag * pag)2086 xfs_iunlink_destroy(
2087 struct xfs_perag *pag)
2088 {
2089 bool freed_anything = false;
2090
2091 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2092 xfs_iunlink_free_item, &freed_anything);
2093
2094 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2095 }
2096
2097 /*
2098 * Point the AGI unlinked bucket at an inode and log the results. The caller
2099 * is responsible for validating the old value.
2100 */
2101 STATIC int
xfs_iunlink_update_bucket(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_buf * agibp,unsigned int bucket_index,xfs_agino_t new_agino)2102 xfs_iunlink_update_bucket(
2103 struct xfs_trans *tp,
2104 xfs_agnumber_t agno,
2105 struct xfs_buf *agibp,
2106 unsigned int bucket_index,
2107 xfs_agino_t new_agino)
2108 {
2109 struct xfs_agi *agi = agibp->b_addr;
2110 xfs_agino_t old_value;
2111 int offset;
2112
2113 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2114
2115 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2116 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2117 old_value, new_agino);
2118
2119 /*
2120 * We should never find the head of the list already set to the value
2121 * passed in because either we're adding or removing ourselves from the
2122 * head of the list.
2123 */
2124 if (old_value == new_agino) {
2125 xfs_buf_mark_corrupt(agibp);
2126 return -EFSCORRUPTED;
2127 }
2128
2129 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2130 offset = offsetof(struct xfs_agi, agi_unlinked) +
2131 (sizeof(xfs_agino_t) * bucket_index);
2132 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2133 return 0;
2134 }
2135
2136 /* Set an on-disk inode's next_unlinked pointer. */
2137 STATIC void
xfs_iunlink_update_dinode(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t agino,struct xfs_buf * ibp,struct xfs_dinode * dip,struct xfs_imap * imap,xfs_agino_t next_agino)2138 xfs_iunlink_update_dinode(
2139 struct xfs_trans *tp,
2140 xfs_agnumber_t agno,
2141 xfs_agino_t agino,
2142 struct xfs_buf *ibp,
2143 struct xfs_dinode *dip,
2144 struct xfs_imap *imap,
2145 xfs_agino_t next_agino)
2146 {
2147 struct xfs_mount *mp = tp->t_mountp;
2148 int offset;
2149
2150 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2151
2152 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2153 be32_to_cpu(dip->di_next_unlinked), next_agino);
2154
2155 dip->di_next_unlinked = cpu_to_be32(next_agino);
2156 offset = imap->im_boffset +
2157 offsetof(struct xfs_dinode, di_next_unlinked);
2158
2159 /* need to recalc the inode CRC if appropriate */
2160 xfs_dinode_calc_crc(mp, dip);
2161 xfs_trans_inode_buf(tp, ibp);
2162 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2163 }
2164
2165 /* Set an in-core inode's unlinked pointer and return the old value. */
2166 STATIC int
xfs_iunlink_update_inode(struct xfs_trans * tp,struct xfs_inode * ip,xfs_agnumber_t agno,xfs_agino_t next_agino,xfs_agino_t * old_next_agino)2167 xfs_iunlink_update_inode(
2168 struct xfs_trans *tp,
2169 struct xfs_inode *ip,
2170 xfs_agnumber_t agno,
2171 xfs_agino_t next_agino,
2172 xfs_agino_t *old_next_agino)
2173 {
2174 struct xfs_mount *mp = tp->t_mountp;
2175 struct xfs_dinode *dip;
2176 struct xfs_buf *ibp;
2177 xfs_agino_t old_value;
2178 int error;
2179
2180 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2181
2182 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2183 if (error)
2184 return error;
2185
2186 /* Make sure the old pointer isn't garbage. */
2187 old_value = be32_to_cpu(dip->di_next_unlinked);
2188 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2189 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2190 sizeof(*dip), __this_address);
2191 error = -EFSCORRUPTED;
2192 goto out;
2193 }
2194
2195 /*
2196 * Since we're updating a linked list, we should never find that the
2197 * current pointer is the same as the new value, unless we're
2198 * terminating the list.
2199 */
2200 *old_next_agino = old_value;
2201 if (old_value == next_agino) {
2202 if (next_agino != NULLAGINO) {
2203 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2204 dip, sizeof(*dip), __this_address);
2205 error = -EFSCORRUPTED;
2206 }
2207 goto out;
2208 }
2209
2210 /* Ok, update the new pointer. */
2211 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2212 ibp, dip, &ip->i_imap, next_agino);
2213 return 0;
2214 out:
2215 xfs_trans_brelse(tp, ibp);
2216 return error;
2217 }
2218
2219 /*
2220 * This is called when the inode's link count has gone to 0 or we are creating
2221 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2222 *
2223 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2224 * list when the inode is freed.
2225 */
2226 STATIC int
xfs_iunlink(struct xfs_trans * tp,struct xfs_inode * ip)2227 xfs_iunlink(
2228 struct xfs_trans *tp,
2229 struct xfs_inode *ip)
2230 {
2231 struct xfs_mount *mp = tp->t_mountp;
2232 struct xfs_agi *agi;
2233 struct xfs_buf *agibp;
2234 xfs_agino_t next_agino;
2235 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2236 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2237 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2238 int error;
2239
2240 ASSERT(VFS_I(ip)->i_nlink == 0);
2241 ASSERT(VFS_I(ip)->i_mode != 0);
2242 trace_xfs_iunlink(ip);
2243
2244 /* Get the agi buffer first. It ensures lock ordering on the list. */
2245 error = xfs_read_agi(mp, tp, agno, &agibp);
2246 if (error)
2247 return error;
2248 agi = agibp->b_addr;
2249
2250 /*
2251 * Get the index into the agi hash table for the list this inode will
2252 * go on. Make sure the pointer isn't garbage and that this inode
2253 * isn't already on the list.
2254 */
2255 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2256 if (next_agino == agino ||
2257 !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2258 xfs_buf_mark_corrupt(agibp);
2259 return -EFSCORRUPTED;
2260 }
2261
2262 if (next_agino != NULLAGINO) {
2263 xfs_agino_t old_agino;
2264
2265 /*
2266 * There is already another inode in the bucket, so point this
2267 * inode to the current head of the list.
2268 */
2269 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2270 &old_agino);
2271 if (error)
2272 return error;
2273 ASSERT(old_agino == NULLAGINO);
2274
2275 /*
2276 * agino has been unlinked, add a backref from the next inode
2277 * back to agino.
2278 */
2279 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2280 if (error)
2281 return error;
2282 }
2283
2284 /* Point the head of the list to point to this inode. */
2285 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2286 }
2287
2288 /* Return the imap, dinode pointer, and buffer for an inode. */
2289 STATIC int
xfs_iunlink_map_ino(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp)2290 xfs_iunlink_map_ino(
2291 struct xfs_trans *tp,
2292 xfs_agnumber_t agno,
2293 xfs_agino_t agino,
2294 struct xfs_imap *imap,
2295 struct xfs_dinode **dipp,
2296 struct xfs_buf **bpp)
2297 {
2298 struct xfs_mount *mp = tp->t_mountp;
2299 int error;
2300
2301 imap->im_blkno = 0;
2302 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2303 if (error) {
2304 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2305 __func__, error);
2306 return error;
2307 }
2308
2309 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2310 if (error) {
2311 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2312 __func__, error);
2313 return error;
2314 }
2315
2316 return 0;
2317 }
2318
2319 /*
2320 * Walk the unlinked chain from @head_agino until we find the inode that
2321 * points to @target_agino. Return the inode number, map, dinode pointer,
2322 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2323 *
2324 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2325 * @agino, @imap, @dipp, and @bpp are all output parameters.
2326 *
2327 * Do not call this function if @target_agino is the head of the list.
2328 */
2329 STATIC int
xfs_iunlink_map_prev(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t head_agino,xfs_agino_t target_agino,xfs_agino_t * agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp,struct xfs_perag * pag)2330 xfs_iunlink_map_prev(
2331 struct xfs_trans *tp,
2332 xfs_agnumber_t agno,
2333 xfs_agino_t head_agino,
2334 xfs_agino_t target_agino,
2335 xfs_agino_t *agino,
2336 struct xfs_imap *imap,
2337 struct xfs_dinode **dipp,
2338 struct xfs_buf **bpp,
2339 struct xfs_perag *pag)
2340 {
2341 struct xfs_mount *mp = tp->t_mountp;
2342 xfs_agino_t next_agino;
2343 int error;
2344
2345 ASSERT(head_agino != target_agino);
2346 *bpp = NULL;
2347
2348 /* See if our backref cache can find it faster. */
2349 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2350 if (*agino != NULLAGINO) {
2351 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2352 if (error)
2353 return error;
2354
2355 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2356 return 0;
2357
2358 /*
2359 * If we get here the cache contents were corrupt, so drop the
2360 * buffer and fall back to walking the bucket list.
2361 */
2362 xfs_trans_brelse(tp, *bpp);
2363 *bpp = NULL;
2364 WARN_ON_ONCE(1);
2365 }
2366
2367 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2368
2369 /* Otherwise, walk the entire bucket until we find it. */
2370 next_agino = head_agino;
2371 while (next_agino != target_agino) {
2372 xfs_agino_t unlinked_agino;
2373
2374 if (*bpp)
2375 xfs_trans_brelse(tp, *bpp);
2376
2377 *agino = next_agino;
2378 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2379 bpp);
2380 if (error)
2381 return error;
2382
2383 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2384 /*
2385 * Make sure this pointer is valid and isn't an obvious
2386 * infinite loop.
2387 */
2388 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2389 next_agino == unlinked_agino) {
2390 XFS_CORRUPTION_ERROR(__func__,
2391 XFS_ERRLEVEL_LOW, mp,
2392 *dipp, sizeof(**dipp));
2393 error = -EFSCORRUPTED;
2394 return error;
2395 }
2396 next_agino = unlinked_agino;
2397 }
2398
2399 return 0;
2400 }
2401
2402 /*
2403 * Pull the on-disk inode from the AGI unlinked list.
2404 */
2405 STATIC int
xfs_iunlink_remove(struct xfs_trans * tp,struct xfs_inode * ip)2406 xfs_iunlink_remove(
2407 struct xfs_trans *tp,
2408 struct xfs_inode *ip)
2409 {
2410 struct xfs_mount *mp = tp->t_mountp;
2411 struct xfs_agi *agi;
2412 struct xfs_buf *agibp;
2413 struct xfs_buf *last_ibp;
2414 struct xfs_dinode *last_dip = NULL;
2415 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2416 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2417 xfs_agino_t next_agino;
2418 xfs_agino_t head_agino;
2419 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2420 int error;
2421
2422 trace_xfs_iunlink_remove(ip);
2423
2424 /* Get the agi buffer first. It ensures lock ordering on the list. */
2425 error = xfs_read_agi(mp, tp, agno, &agibp);
2426 if (error)
2427 return error;
2428 agi = agibp->b_addr;
2429
2430 /*
2431 * Get the index into the agi hash table for the list this inode will
2432 * go on. Make sure the head pointer isn't garbage.
2433 */
2434 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2435 if (!xfs_verify_agino(mp, agno, head_agino)) {
2436 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2437 agi, sizeof(*agi));
2438 return -EFSCORRUPTED;
2439 }
2440
2441 /*
2442 * Set our inode's next_unlinked pointer to NULL and then return
2443 * the old pointer value so that we can update whatever was previous
2444 * to us in the list to point to whatever was next in the list.
2445 */
2446 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2447 if (error)
2448 return error;
2449
2450 /*
2451 * If there was a backref pointing from the next inode back to this
2452 * one, remove it because we've removed this inode from the list.
2453 *
2454 * Later, if this inode was in the middle of the list we'll update
2455 * this inode's backref to point from the next inode.
2456 */
2457 if (next_agino != NULLAGINO) {
2458 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2459 NULLAGINO);
2460 if (error)
2461 return error;
2462 }
2463
2464 if (head_agino != agino) {
2465 struct xfs_imap imap;
2466 xfs_agino_t prev_agino;
2467
2468 /* We need to search the list for the inode being freed. */
2469 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2470 &prev_agino, &imap, &last_dip, &last_ibp,
2471 agibp->b_pag);
2472 if (error)
2473 return error;
2474
2475 /* Point the previous inode on the list to the next inode. */
2476 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2477 last_dip, &imap, next_agino);
2478
2479 /*
2480 * Now we deal with the backref for this inode. If this inode
2481 * pointed at a real inode, change the backref that pointed to
2482 * us to point to our old next. If this inode was the end of
2483 * the list, delete the backref that pointed to us. Note that
2484 * change_backref takes care of deleting the backref if
2485 * next_agino is NULLAGINO.
2486 */
2487 return xfs_iunlink_change_backref(agibp->b_pag, agino,
2488 next_agino);
2489 }
2490
2491 /* Point the head of the list to the next unlinked inode. */
2492 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2493 next_agino);
2494 }
2495
2496 /*
2497 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2498 * mark it stale. We should only find clean inodes in this lookup that aren't
2499 * already stale.
2500 */
2501 static void
xfs_ifree_mark_inode_stale(struct xfs_buf * bp,struct xfs_inode * free_ip,xfs_ino_t inum)2502 xfs_ifree_mark_inode_stale(
2503 struct xfs_buf *bp,
2504 struct xfs_inode *free_ip,
2505 xfs_ino_t inum)
2506 {
2507 struct xfs_mount *mp = bp->b_mount;
2508 struct xfs_perag *pag = bp->b_pag;
2509 struct xfs_inode_log_item *iip;
2510 struct xfs_inode *ip;
2511
2512 retry:
2513 rcu_read_lock();
2514 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2515
2516 /* Inode not in memory, nothing to do */
2517 if (!ip) {
2518 rcu_read_unlock();
2519 return;
2520 }
2521
2522 /*
2523 * because this is an RCU protected lookup, we could find a recently
2524 * freed or even reallocated inode during the lookup. We need to check
2525 * under the i_flags_lock for a valid inode here. Skip it if it is not
2526 * valid, the wrong inode or stale.
2527 */
2528 spin_lock(&ip->i_flags_lock);
2529 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2530 goto out_iflags_unlock;
2531
2532 /*
2533 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2534 * other inodes that we did not find in the list attached to the buffer
2535 * and are not already marked stale. If we can't lock it, back off and
2536 * retry.
2537 */
2538 if (ip != free_ip) {
2539 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2540 spin_unlock(&ip->i_flags_lock);
2541 rcu_read_unlock();
2542 delay(1);
2543 goto retry;
2544 }
2545 }
2546 ip->i_flags |= XFS_ISTALE;
2547
2548 /*
2549 * If the inode is flushing, it is already attached to the buffer. All
2550 * we needed to do here is mark the inode stale so buffer IO completion
2551 * will remove it from the AIL.
2552 */
2553 iip = ip->i_itemp;
2554 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2555 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2556 ASSERT(iip->ili_last_fields);
2557 goto out_iunlock;
2558 }
2559
2560 /*
2561 * Inodes not attached to the buffer can be released immediately.
2562 * Everything else has to go through xfs_iflush_abort() on journal
2563 * commit as the flock synchronises removal of the inode from the
2564 * cluster buffer against inode reclaim.
2565 */
2566 if (!iip || list_empty(&iip->ili_item.li_bio_list))
2567 goto out_iunlock;
2568
2569 __xfs_iflags_set(ip, XFS_IFLUSHING);
2570 spin_unlock(&ip->i_flags_lock);
2571 rcu_read_unlock();
2572
2573 /* we have a dirty inode in memory that has not yet been flushed. */
2574 spin_lock(&iip->ili_lock);
2575 iip->ili_last_fields = iip->ili_fields;
2576 iip->ili_fields = 0;
2577 iip->ili_fsync_fields = 0;
2578 spin_unlock(&iip->ili_lock);
2579 ASSERT(iip->ili_last_fields);
2580
2581 if (ip != free_ip)
2582 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2583 return;
2584
2585 out_iunlock:
2586 if (ip != free_ip)
2587 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2588 out_iflags_unlock:
2589 spin_unlock(&ip->i_flags_lock);
2590 rcu_read_unlock();
2591 }
2592
2593 /*
2594 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2595 * inodes that are in memory - they all must be marked stale and attached to
2596 * the cluster buffer.
2597 */
2598 STATIC int
xfs_ifree_cluster(struct xfs_inode * free_ip,struct xfs_trans * tp,struct xfs_icluster * xic)2599 xfs_ifree_cluster(
2600 struct xfs_inode *free_ip,
2601 struct xfs_trans *tp,
2602 struct xfs_icluster *xic)
2603 {
2604 struct xfs_mount *mp = free_ip->i_mount;
2605 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2606 struct xfs_buf *bp;
2607 xfs_daddr_t blkno;
2608 xfs_ino_t inum = xic->first_ino;
2609 int nbufs;
2610 int i, j;
2611 int ioffset;
2612 int error;
2613
2614 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2615
2616 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2617 /*
2618 * The allocation bitmap tells us which inodes of the chunk were
2619 * physically allocated. Skip the cluster if an inode falls into
2620 * a sparse region.
2621 */
2622 ioffset = inum - xic->first_ino;
2623 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2624 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2625 continue;
2626 }
2627
2628 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2629 XFS_INO_TO_AGBNO(mp, inum));
2630
2631 /*
2632 * We obtain and lock the backing buffer first in the process
2633 * here to ensure dirty inodes attached to the buffer remain in
2634 * the flushing state while we mark them stale.
2635 *
2636 * If we scan the in-memory inodes first, then buffer IO can
2637 * complete before we get a lock on it, and hence we may fail
2638 * to mark all the active inodes on the buffer stale.
2639 */
2640 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2641 mp->m_bsize * igeo->blocks_per_cluster,
2642 XBF_UNMAPPED, &bp);
2643 if (error)
2644 return error;
2645
2646 /*
2647 * This buffer may not have been correctly initialised as we
2648 * didn't read it from disk. That's not important because we are
2649 * only using to mark the buffer as stale in the log, and to
2650 * attach stale cached inodes on it. That means it will never be
2651 * dispatched for IO. If it is, we want to know about it, and we
2652 * want it to fail. We can acheive this by adding a write
2653 * verifier to the buffer.
2654 */
2655 bp->b_ops = &xfs_inode_buf_ops;
2656
2657 /*
2658 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2659 * too. This requires lookups, and will skip inodes that we've
2660 * already marked XFS_ISTALE.
2661 */
2662 for (i = 0; i < igeo->inodes_per_cluster; i++)
2663 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2664
2665 xfs_trans_stale_inode_buf(tp, bp);
2666 xfs_trans_binval(tp, bp);
2667 }
2668 return 0;
2669 }
2670
2671 /*
2672 * This is called to return an inode to the inode free list.
2673 * The inode should already be truncated to 0 length and have
2674 * no pages associated with it. This routine also assumes that
2675 * the inode is already a part of the transaction.
2676 *
2677 * The on-disk copy of the inode will have been added to the list
2678 * of unlinked inodes in the AGI. We need to remove the inode from
2679 * that list atomically with respect to freeing it here.
2680 */
2681 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)2682 xfs_ifree(
2683 struct xfs_trans *tp,
2684 struct xfs_inode *ip)
2685 {
2686 int error;
2687 struct xfs_icluster xic = { 0 };
2688 struct xfs_inode_log_item *iip = ip->i_itemp;
2689
2690 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2691 ASSERT(VFS_I(ip)->i_nlink == 0);
2692 ASSERT(ip->i_df.if_nextents == 0);
2693 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2694 ASSERT(ip->i_d.di_nblocks == 0);
2695
2696 /*
2697 * Pull the on-disk inode from the AGI unlinked list.
2698 */
2699 error = xfs_iunlink_remove(tp, ip);
2700 if (error)
2701 return error;
2702
2703 error = xfs_difree(tp, ip->i_ino, &xic);
2704 if (error)
2705 return error;
2706
2707 /*
2708 * Free any local-format data sitting around before we reset the
2709 * data fork to extents format. Note that the attr fork data has
2710 * already been freed by xfs_attr_inactive.
2711 */
2712 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2713 kmem_free(ip->i_df.if_u1.if_data);
2714 ip->i_df.if_u1.if_data = NULL;
2715 ip->i_df.if_bytes = 0;
2716 }
2717
2718 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2719 ip->i_d.di_flags = 0;
2720 ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2;
2721 ip->i_d.di_dmevmask = 0;
2722 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2723 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2724
2725 /* Don't attempt to replay owner changes for a deleted inode */
2726 spin_lock(&iip->ili_lock);
2727 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2728 spin_unlock(&iip->ili_lock);
2729
2730 /*
2731 * Bump the generation count so no one will be confused
2732 * by reincarnations of this inode.
2733 */
2734 VFS_I(ip)->i_generation++;
2735 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2736
2737 if (xic.deleted)
2738 error = xfs_ifree_cluster(ip, tp, &xic);
2739
2740 return error;
2741 }
2742
2743 /*
2744 * This is called to unpin an inode. The caller must have the inode locked
2745 * in at least shared mode so that the buffer cannot be subsequently pinned
2746 * once someone is waiting for it to be unpinned.
2747 */
2748 static void
xfs_iunpin(struct xfs_inode * ip)2749 xfs_iunpin(
2750 struct xfs_inode *ip)
2751 {
2752 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2753
2754 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2755
2756 /* Give the log a push to start the unpinning I/O */
2757 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2758
2759 }
2760
2761 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2762 __xfs_iunpin_wait(
2763 struct xfs_inode *ip)
2764 {
2765 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2766 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2767
2768 xfs_iunpin(ip);
2769
2770 do {
2771 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2772 if (xfs_ipincount(ip))
2773 io_schedule();
2774 } while (xfs_ipincount(ip));
2775 finish_wait(wq, &wait.wq_entry);
2776 }
2777
2778 void
xfs_iunpin_wait(struct xfs_inode * ip)2779 xfs_iunpin_wait(
2780 struct xfs_inode *ip)
2781 {
2782 if (xfs_ipincount(ip))
2783 __xfs_iunpin_wait(ip);
2784 }
2785
2786 /*
2787 * Removing an inode from the namespace involves removing the directory entry
2788 * and dropping the link count on the inode. Removing the directory entry can
2789 * result in locking an AGF (directory blocks were freed) and removing a link
2790 * count can result in placing the inode on an unlinked list which results in
2791 * locking an AGI.
2792 *
2793 * The big problem here is that we have an ordering constraint on AGF and AGI
2794 * locking - inode allocation locks the AGI, then can allocate a new extent for
2795 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2796 * removes the inode from the unlinked list, requiring that we lock the AGI
2797 * first, and then freeing the inode can result in an inode chunk being freed
2798 * and hence freeing disk space requiring that we lock an AGF.
2799 *
2800 * Hence the ordering that is imposed by other parts of the code is AGI before
2801 * AGF. This means we cannot remove the directory entry before we drop the inode
2802 * reference count and put it on the unlinked list as this results in a lock
2803 * order of AGF then AGI, and this can deadlock against inode allocation and
2804 * freeing. Therefore we must drop the link counts before we remove the
2805 * directory entry.
2806 *
2807 * This is still safe from a transactional point of view - it is not until we
2808 * get to xfs_defer_finish() that we have the possibility of multiple
2809 * transactions in this operation. Hence as long as we remove the directory
2810 * entry and drop the link count in the first transaction of the remove
2811 * operation, there are no transactional constraints on the ordering here.
2812 */
2813 int
xfs_remove(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t * ip)2814 xfs_remove(
2815 xfs_inode_t *dp,
2816 struct xfs_name *name,
2817 xfs_inode_t *ip)
2818 {
2819 xfs_mount_t *mp = dp->i_mount;
2820 xfs_trans_t *tp = NULL;
2821 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2822 int error = 0;
2823 uint resblks;
2824
2825 trace_xfs_remove(dp, name);
2826
2827 if (XFS_FORCED_SHUTDOWN(mp))
2828 return -EIO;
2829
2830 error = xfs_qm_dqattach(dp);
2831 if (error)
2832 goto std_return;
2833
2834 error = xfs_qm_dqattach(ip);
2835 if (error)
2836 goto std_return;
2837
2838 /*
2839 * We try to get the real space reservation first,
2840 * allowing for directory btree deletion(s) implying
2841 * possible bmap insert(s). If we can't get the space
2842 * reservation then we use 0 instead, and avoid the bmap
2843 * btree insert(s) in the directory code by, if the bmap
2844 * insert tries to happen, instead trimming the LAST
2845 * block from the directory.
2846 */
2847 resblks = XFS_REMOVE_SPACE_RES(mp);
2848 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2849 if (error == -ENOSPC) {
2850 resblks = 0;
2851 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2852 &tp);
2853 }
2854 if (error) {
2855 ASSERT(error != -ENOSPC);
2856 goto std_return;
2857 }
2858
2859 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2860
2861 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2862 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2863
2864 /*
2865 * If we're removing a directory perform some additional validation.
2866 */
2867 if (is_dir) {
2868 ASSERT(VFS_I(ip)->i_nlink >= 2);
2869 if (VFS_I(ip)->i_nlink != 2) {
2870 error = -ENOTEMPTY;
2871 goto out_trans_cancel;
2872 }
2873 if (!xfs_dir_isempty(ip)) {
2874 error = -ENOTEMPTY;
2875 goto out_trans_cancel;
2876 }
2877
2878 /* Drop the link from ip's "..". */
2879 error = xfs_droplink(tp, dp);
2880 if (error)
2881 goto out_trans_cancel;
2882
2883 /* Drop the "." link from ip to self. */
2884 error = xfs_droplink(tp, ip);
2885 if (error)
2886 goto out_trans_cancel;
2887 } else {
2888 /*
2889 * When removing a non-directory we need to log the parent
2890 * inode here. For a directory this is done implicitly
2891 * by the xfs_droplink call for the ".." entry.
2892 */
2893 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2894 }
2895 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2896
2897 /* Drop the link from dp to ip. */
2898 error = xfs_droplink(tp, ip);
2899 if (error)
2900 goto out_trans_cancel;
2901
2902 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2903 if (error) {
2904 ASSERT(error != -ENOENT);
2905 goto out_trans_cancel;
2906 }
2907
2908 /*
2909 * If this is a synchronous mount, make sure that the
2910 * remove transaction goes to disk before returning to
2911 * the user.
2912 */
2913 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2914 xfs_trans_set_sync(tp);
2915
2916 error = xfs_trans_commit(tp);
2917 if (error)
2918 goto std_return;
2919
2920 if (is_dir && xfs_inode_is_filestream(ip))
2921 xfs_filestream_deassociate(ip);
2922
2923 return 0;
2924
2925 out_trans_cancel:
2926 xfs_trans_cancel(tp);
2927 std_return:
2928 return error;
2929 }
2930
2931 /*
2932 * Enter all inodes for a rename transaction into a sorted array.
2933 */
2934 #define __XFS_SORT_INODES 5
2935 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2936 xfs_sort_for_rename(
2937 struct xfs_inode *dp1, /* in: old (source) directory inode */
2938 struct xfs_inode *dp2, /* in: new (target) directory inode */
2939 struct xfs_inode *ip1, /* in: inode of old entry */
2940 struct xfs_inode *ip2, /* in: inode of new entry */
2941 struct xfs_inode *wip, /* in: whiteout inode */
2942 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2943 int *num_inodes) /* in/out: inodes in array */
2944 {
2945 int i, j;
2946
2947 ASSERT(*num_inodes == __XFS_SORT_INODES);
2948 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2949
2950 /*
2951 * i_tab contains a list of pointers to inodes. We initialize
2952 * the table here & we'll sort it. We will then use it to
2953 * order the acquisition of the inode locks.
2954 *
2955 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2956 */
2957 i = 0;
2958 i_tab[i++] = dp1;
2959 i_tab[i++] = dp2;
2960 i_tab[i++] = ip1;
2961 if (ip2)
2962 i_tab[i++] = ip2;
2963 if (wip)
2964 i_tab[i++] = wip;
2965 *num_inodes = i;
2966
2967 /*
2968 * Sort the elements via bubble sort. (Remember, there are at
2969 * most 5 elements to sort, so this is adequate.)
2970 */
2971 for (i = 0; i < *num_inodes; i++) {
2972 for (j = 1; j < *num_inodes; j++) {
2973 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2974 struct xfs_inode *temp = i_tab[j];
2975 i_tab[j] = i_tab[j-1];
2976 i_tab[j-1] = temp;
2977 }
2978 }
2979 }
2980 }
2981
2982 static int
xfs_finish_rename(struct xfs_trans * tp)2983 xfs_finish_rename(
2984 struct xfs_trans *tp)
2985 {
2986 /*
2987 * If this is a synchronous mount, make sure that the rename transaction
2988 * goes to disk before returning to the user.
2989 */
2990 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2991 xfs_trans_set_sync(tp);
2992
2993 return xfs_trans_commit(tp);
2994 }
2995
2996 /*
2997 * xfs_cross_rename()
2998 *
2999 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3000 */
3001 STATIC int
xfs_cross_rename(struct xfs_trans * tp,struct xfs_inode * dp1,struct xfs_name * name1,struct xfs_inode * ip1,struct xfs_inode * dp2,struct xfs_name * name2,struct xfs_inode * ip2,int spaceres)3002 xfs_cross_rename(
3003 struct xfs_trans *tp,
3004 struct xfs_inode *dp1,
3005 struct xfs_name *name1,
3006 struct xfs_inode *ip1,
3007 struct xfs_inode *dp2,
3008 struct xfs_name *name2,
3009 struct xfs_inode *ip2,
3010 int spaceres)
3011 {
3012 int error = 0;
3013 int ip1_flags = 0;
3014 int ip2_flags = 0;
3015 int dp2_flags = 0;
3016
3017 /* Swap inode number for dirent in first parent */
3018 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3019 if (error)
3020 goto out_trans_abort;
3021
3022 /* Swap inode number for dirent in second parent */
3023 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3024 if (error)
3025 goto out_trans_abort;
3026
3027 /*
3028 * If we're renaming one or more directories across different parents,
3029 * update the respective ".." entries (and link counts) to match the new
3030 * parents.
3031 */
3032 if (dp1 != dp2) {
3033 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3034
3035 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3036 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3037 dp1->i_ino, spaceres);
3038 if (error)
3039 goto out_trans_abort;
3040
3041 /* transfer ip2 ".." reference to dp1 */
3042 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3043 error = xfs_droplink(tp, dp2);
3044 if (error)
3045 goto out_trans_abort;
3046 xfs_bumplink(tp, dp1);
3047 }
3048
3049 /*
3050 * Although ip1 isn't changed here, userspace needs
3051 * to be warned about the change, so that applications
3052 * relying on it (like backup ones), will properly
3053 * notify the change
3054 */
3055 ip1_flags |= XFS_ICHGTIME_CHG;
3056 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3057 }
3058
3059 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3060 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3061 dp2->i_ino, spaceres);
3062 if (error)
3063 goto out_trans_abort;
3064
3065 /* transfer ip1 ".." reference to dp2 */
3066 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3067 error = xfs_droplink(tp, dp1);
3068 if (error)
3069 goto out_trans_abort;
3070 xfs_bumplink(tp, dp2);
3071 }
3072
3073 /*
3074 * Although ip2 isn't changed here, userspace needs
3075 * to be warned about the change, so that applications
3076 * relying on it (like backup ones), will properly
3077 * notify the change
3078 */
3079 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3080 ip2_flags |= XFS_ICHGTIME_CHG;
3081 }
3082 }
3083
3084 if (ip1_flags) {
3085 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3086 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3087 }
3088 if (ip2_flags) {
3089 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3090 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3091 }
3092 if (dp2_flags) {
3093 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3094 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3095 }
3096 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3097 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3098 return xfs_finish_rename(tp);
3099
3100 out_trans_abort:
3101 xfs_trans_cancel(tp);
3102 return error;
3103 }
3104
3105 /*
3106 * xfs_rename_alloc_whiteout()
3107 *
3108 * Return a referenced, unlinked, unlocked inode that can be used as a
3109 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3110 * crash between allocating the inode and linking it into the rename transaction
3111 * recovery will free the inode and we won't leak it.
3112 */
3113 static int
xfs_rename_alloc_whiteout(struct xfs_inode * dp,struct xfs_inode ** wip)3114 xfs_rename_alloc_whiteout(
3115 struct xfs_inode *dp,
3116 struct xfs_inode **wip)
3117 {
3118 struct xfs_inode *tmpfile;
3119 int error;
3120
3121 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3122 if (error)
3123 return error;
3124
3125 /*
3126 * Prepare the tmpfile inode as if it were created through the VFS.
3127 * Complete the inode setup and flag it as linkable. nlink is already
3128 * zero, so we can skip the drop_nlink.
3129 */
3130 xfs_setup_iops(tmpfile);
3131 xfs_finish_inode_setup(tmpfile);
3132 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3133
3134 *wip = tmpfile;
3135 return 0;
3136 }
3137
3138 /*
3139 * xfs_rename
3140 */
3141 int
xfs_rename(struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)3142 xfs_rename(
3143 struct xfs_inode *src_dp,
3144 struct xfs_name *src_name,
3145 struct xfs_inode *src_ip,
3146 struct xfs_inode *target_dp,
3147 struct xfs_name *target_name,
3148 struct xfs_inode *target_ip,
3149 unsigned int flags)
3150 {
3151 struct xfs_mount *mp = src_dp->i_mount;
3152 struct xfs_trans *tp;
3153 struct xfs_inode *wip = NULL; /* whiteout inode */
3154 struct xfs_inode *inodes[__XFS_SORT_INODES];
3155 struct xfs_buf *agibp;
3156 int num_inodes = __XFS_SORT_INODES;
3157 bool new_parent = (src_dp != target_dp);
3158 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3159 int spaceres;
3160 int error;
3161
3162 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3163
3164 if ((flags & RENAME_EXCHANGE) && !target_ip)
3165 return -EINVAL;
3166
3167 /*
3168 * If we are doing a whiteout operation, allocate the whiteout inode
3169 * we will be placing at the target and ensure the type is set
3170 * appropriately.
3171 */
3172 if (flags & RENAME_WHITEOUT) {
3173 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3174 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3175 if (error)
3176 return error;
3177
3178 /* setup target dirent info as whiteout */
3179 src_name->type = XFS_DIR3_FT_CHRDEV;
3180 }
3181
3182 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3183 inodes, &num_inodes);
3184
3185 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3186 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3187 if (error == -ENOSPC) {
3188 spaceres = 0;
3189 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3190 &tp);
3191 }
3192 if (error)
3193 goto out_release_wip;
3194
3195 /*
3196 * Attach the dquots to the inodes
3197 */
3198 error = xfs_qm_vop_rename_dqattach(inodes);
3199 if (error)
3200 goto out_trans_cancel;
3201
3202 /*
3203 * Lock all the participating inodes. Depending upon whether
3204 * the target_name exists in the target directory, and
3205 * whether the target directory is the same as the source
3206 * directory, we can lock from 2 to 4 inodes.
3207 */
3208 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3209
3210 /*
3211 * Join all the inodes to the transaction. From this point on,
3212 * we can rely on either trans_commit or trans_cancel to unlock
3213 * them.
3214 */
3215 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3216 if (new_parent)
3217 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3218 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3219 if (target_ip)
3220 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3221 if (wip)
3222 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3223
3224 /*
3225 * If we are using project inheritance, we only allow renames
3226 * into our tree when the project IDs are the same; else the
3227 * tree quota mechanism would be circumvented.
3228 */
3229 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3230 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3231 error = -EXDEV;
3232 goto out_trans_cancel;
3233 }
3234
3235 /* RENAME_EXCHANGE is unique from here on. */
3236 if (flags & RENAME_EXCHANGE)
3237 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3238 target_dp, target_name, target_ip,
3239 spaceres);
3240
3241 /*
3242 * Check for expected errors before we dirty the transaction
3243 * so we can return an error without a transaction abort.
3244 */
3245 if (target_ip == NULL) {
3246 /*
3247 * If there's no space reservation, check the entry will
3248 * fit before actually inserting it.
3249 */
3250 if (!spaceres) {
3251 error = xfs_dir_canenter(tp, target_dp, target_name);
3252 if (error)
3253 goto out_trans_cancel;
3254 }
3255 } else {
3256 /*
3257 * If target exists and it's a directory, check that whether
3258 * it can be destroyed.
3259 */
3260 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3261 (!xfs_dir_isempty(target_ip) ||
3262 (VFS_I(target_ip)->i_nlink > 2))) {
3263 error = -EEXIST;
3264 goto out_trans_cancel;
3265 }
3266 }
3267
3268 /*
3269 * Directory entry creation below may acquire the AGF. Remove
3270 * the whiteout from the unlinked list first to preserve correct
3271 * AGI/AGF locking order. This dirties the transaction so failures
3272 * after this point will abort and log recovery will clean up the
3273 * mess.
3274 *
3275 * For whiteouts, we need to bump the link count on the whiteout
3276 * inode. After this point, we have a real link, clear the tmpfile
3277 * state flag from the inode so it doesn't accidentally get misused
3278 * in future.
3279 */
3280 if (wip) {
3281 ASSERT(VFS_I(wip)->i_nlink == 0);
3282 error = xfs_iunlink_remove(tp, wip);
3283 if (error)
3284 goto out_trans_cancel;
3285
3286 xfs_bumplink(tp, wip);
3287 VFS_I(wip)->i_state &= ~I_LINKABLE;
3288 }
3289
3290 /*
3291 * Set up the target.
3292 */
3293 if (target_ip == NULL) {
3294 /*
3295 * If target does not exist and the rename crosses
3296 * directories, adjust the target directory link count
3297 * to account for the ".." reference from the new entry.
3298 */
3299 error = xfs_dir_createname(tp, target_dp, target_name,
3300 src_ip->i_ino, spaceres);
3301 if (error)
3302 goto out_trans_cancel;
3303
3304 xfs_trans_ichgtime(tp, target_dp,
3305 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3306
3307 if (new_parent && src_is_directory) {
3308 xfs_bumplink(tp, target_dp);
3309 }
3310 } else { /* target_ip != NULL */
3311 /*
3312 * Link the source inode under the target name.
3313 * If the source inode is a directory and we are moving
3314 * it across directories, its ".." entry will be
3315 * inconsistent until we replace that down below.
3316 *
3317 * In case there is already an entry with the same
3318 * name at the destination directory, remove it first.
3319 */
3320
3321 /*
3322 * Check whether the replace operation will need to allocate
3323 * blocks. This happens when the shortform directory lacks
3324 * space and we have to convert it to a block format directory.
3325 * When more blocks are necessary, we must lock the AGI first
3326 * to preserve locking order (AGI -> AGF).
3327 */
3328 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3329 error = xfs_read_agi(mp, tp,
3330 XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3331 &agibp);
3332 if (error)
3333 goto out_trans_cancel;
3334 }
3335
3336 error = xfs_dir_replace(tp, target_dp, target_name,
3337 src_ip->i_ino, spaceres);
3338 if (error)
3339 goto out_trans_cancel;
3340
3341 xfs_trans_ichgtime(tp, target_dp,
3342 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3343
3344 /*
3345 * Decrement the link count on the target since the target
3346 * dir no longer points to it.
3347 */
3348 error = xfs_droplink(tp, target_ip);
3349 if (error)
3350 goto out_trans_cancel;
3351
3352 if (src_is_directory) {
3353 /*
3354 * Drop the link from the old "." entry.
3355 */
3356 error = xfs_droplink(tp, target_ip);
3357 if (error)
3358 goto out_trans_cancel;
3359 }
3360 } /* target_ip != NULL */
3361
3362 /*
3363 * Remove the source.
3364 */
3365 if (new_parent && src_is_directory) {
3366 /*
3367 * Rewrite the ".." entry to point to the new
3368 * directory.
3369 */
3370 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3371 target_dp->i_ino, spaceres);
3372 ASSERT(error != -EEXIST);
3373 if (error)
3374 goto out_trans_cancel;
3375 }
3376
3377 /*
3378 * We always want to hit the ctime on the source inode.
3379 *
3380 * This isn't strictly required by the standards since the source
3381 * inode isn't really being changed, but old unix file systems did
3382 * it and some incremental backup programs won't work without it.
3383 */
3384 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3385 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3386
3387 /*
3388 * Adjust the link count on src_dp. This is necessary when
3389 * renaming a directory, either within one parent when
3390 * the target existed, or across two parent directories.
3391 */
3392 if (src_is_directory && (new_parent || target_ip != NULL)) {
3393
3394 /*
3395 * Decrement link count on src_directory since the
3396 * entry that's moved no longer points to it.
3397 */
3398 error = xfs_droplink(tp, src_dp);
3399 if (error)
3400 goto out_trans_cancel;
3401 }
3402
3403 /*
3404 * For whiteouts, we only need to update the source dirent with the
3405 * inode number of the whiteout inode rather than removing it
3406 * altogether.
3407 */
3408 if (wip) {
3409 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3410 spaceres);
3411 } else
3412 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3413 spaceres);
3414 if (error)
3415 goto out_trans_cancel;
3416
3417 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3418 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3419 if (new_parent)
3420 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3421
3422 error = xfs_finish_rename(tp);
3423 if (wip)
3424 xfs_irele(wip);
3425 return error;
3426
3427 out_trans_cancel:
3428 xfs_trans_cancel(tp);
3429 out_release_wip:
3430 if (wip)
3431 xfs_irele(wip);
3432 return error;
3433 }
3434
3435 static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)3436 xfs_iflush(
3437 struct xfs_inode *ip,
3438 struct xfs_buf *bp)
3439 {
3440 struct xfs_inode_log_item *iip = ip->i_itemp;
3441 struct xfs_dinode *dip;
3442 struct xfs_mount *mp = ip->i_mount;
3443 int error;
3444
3445 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3446 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3447 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3448 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3449 ASSERT(iip->ili_item.li_buf == bp);
3450
3451 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3452
3453 /*
3454 * We don't flush the inode if any of the following checks fail, but we
3455 * do still update the log item and attach to the backing buffer as if
3456 * the flush happened. This is a formality to facilitate predictable
3457 * error handling as the caller will shutdown and fail the buffer.
3458 */
3459 error = -EFSCORRUPTED;
3460 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3461 mp, XFS_ERRTAG_IFLUSH_1)) {
3462 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3463 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3464 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3465 goto flush_out;
3466 }
3467 if (S_ISREG(VFS_I(ip)->i_mode)) {
3468 if (XFS_TEST_ERROR(
3469 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3470 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3471 mp, XFS_ERRTAG_IFLUSH_3)) {
3472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3473 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3474 __func__, ip->i_ino, ip);
3475 goto flush_out;
3476 }
3477 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3478 if (XFS_TEST_ERROR(
3479 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3480 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3481 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3482 mp, XFS_ERRTAG_IFLUSH_4)) {
3483 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3484 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3485 __func__, ip->i_ino, ip);
3486 goto flush_out;
3487 }
3488 }
3489 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3490 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3491 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3492 "%s: detected corrupt incore inode %Lu, "
3493 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3494 __func__, ip->i_ino,
3495 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3496 ip->i_d.di_nblocks, ip);
3497 goto flush_out;
3498 }
3499 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3500 mp, XFS_ERRTAG_IFLUSH_6)) {
3501 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3502 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3503 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3504 goto flush_out;
3505 }
3506
3507 /*
3508 * Inode item log recovery for v2 inodes are dependent on the
3509 * di_flushiter count for correct sequencing. We bump the flush
3510 * iteration count so we can detect flushes which postdate a log record
3511 * during recovery. This is redundant as we now log every change and
3512 * hence this can't happen but we need to still do it to ensure
3513 * backwards compatibility with old kernels that predate logging all
3514 * inode changes.
3515 */
3516 if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3517 ip->i_d.di_flushiter++;
3518
3519 /*
3520 * If there are inline format data / attr forks attached to this inode,
3521 * make sure they are not corrupt.
3522 */
3523 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3524 xfs_ifork_verify_local_data(ip))
3525 goto flush_out;
3526 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3527 xfs_ifork_verify_local_attr(ip))
3528 goto flush_out;
3529
3530 /*
3531 * Copy the dirty parts of the inode into the on-disk inode. We always
3532 * copy out the core of the inode, because if the inode is dirty at all
3533 * the core must be.
3534 */
3535 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3536
3537 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3538 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3539 ip->i_d.di_flushiter = 0;
3540
3541 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3542 if (XFS_IFORK_Q(ip))
3543 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3544
3545 /*
3546 * We've recorded everything logged in the inode, so we'd like to clear
3547 * the ili_fields bits so we don't log and flush things unnecessarily.
3548 * However, we can't stop logging all this information until the data
3549 * we've copied into the disk buffer is written to disk. If we did we
3550 * might overwrite the copy of the inode in the log with all the data
3551 * after re-logging only part of it, and in the face of a crash we
3552 * wouldn't have all the data we need to recover.
3553 *
3554 * What we do is move the bits to the ili_last_fields field. When
3555 * logging the inode, these bits are moved back to the ili_fields field.
3556 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3557 * we know that the information those bits represent is permanently on
3558 * disk. As long as the flush completes before the inode is logged
3559 * again, then both ili_fields and ili_last_fields will be cleared.
3560 */
3561 error = 0;
3562 flush_out:
3563 spin_lock(&iip->ili_lock);
3564 iip->ili_last_fields = iip->ili_fields;
3565 iip->ili_fields = 0;
3566 iip->ili_fsync_fields = 0;
3567 spin_unlock(&iip->ili_lock);
3568
3569 /*
3570 * Store the current LSN of the inode so that we can tell whether the
3571 * item has moved in the AIL from xfs_buf_inode_iodone().
3572 */
3573 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3574 &iip->ili_item.li_lsn);
3575
3576 /* generate the checksum. */
3577 xfs_dinode_calc_crc(mp, dip);
3578 return error;
3579 }
3580
3581 /*
3582 * Non-blocking flush of dirty inode metadata into the backing buffer.
3583 *
3584 * The caller must have a reference to the inode and hold the cluster buffer
3585 * locked. The function will walk across all the inodes on the cluster buffer it
3586 * can find and lock without blocking, and flush them to the cluster buffer.
3587 *
3588 * On successful flushing of at least one inode, the caller must write out the
3589 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3590 * the caller needs to release the buffer. On failure, the filesystem will be
3591 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3592 * will be returned.
3593 */
3594 int
xfs_iflush_cluster(struct xfs_buf * bp)3595 xfs_iflush_cluster(
3596 struct xfs_buf *bp)
3597 {
3598 struct xfs_mount *mp = bp->b_mount;
3599 struct xfs_log_item *lip, *n;
3600 struct xfs_inode *ip;
3601 struct xfs_inode_log_item *iip;
3602 int clcount = 0;
3603 int error = 0;
3604
3605 /*
3606 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3607 * can remove itself from the list.
3608 */
3609 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3610 iip = (struct xfs_inode_log_item *)lip;
3611 ip = iip->ili_inode;
3612
3613 /*
3614 * Quick and dirty check to avoid locks if possible.
3615 */
3616 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3617 continue;
3618 if (xfs_ipincount(ip))
3619 continue;
3620
3621 /*
3622 * The inode is still attached to the buffer, which means it is
3623 * dirty but reclaim might try to grab it. Check carefully for
3624 * that, and grab the ilock while still holding the i_flags_lock
3625 * to guarantee reclaim will not be able to reclaim this inode
3626 * once we drop the i_flags_lock.
3627 */
3628 spin_lock(&ip->i_flags_lock);
3629 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3630 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3631 spin_unlock(&ip->i_flags_lock);
3632 continue;
3633 }
3634
3635 /*
3636 * ILOCK will pin the inode against reclaim and prevent
3637 * concurrent transactions modifying the inode while we are
3638 * flushing the inode. If we get the lock, set the flushing
3639 * state before we drop the i_flags_lock.
3640 */
3641 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3642 spin_unlock(&ip->i_flags_lock);
3643 continue;
3644 }
3645 __xfs_iflags_set(ip, XFS_IFLUSHING);
3646 spin_unlock(&ip->i_flags_lock);
3647
3648 /*
3649 * Abort flushing this inode if we are shut down because the
3650 * inode may not currently be in the AIL. This can occur when
3651 * log I/O failure unpins the inode without inserting into the
3652 * AIL, leaving a dirty/unpinned inode attached to the buffer
3653 * that otherwise looks like it should be flushed.
3654 */
3655 if (XFS_FORCED_SHUTDOWN(mp)) {
3656 xfs_iunpin_wait(ip);
3657 xfs_iflush_abort(ip);
3658 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3659 error = -EIO;
3660 continue;
3661 }
3662
3663 /* don't block waiting on a log force to unpin dirty inodes */
3664 if (xfs_ipincount(ip)) {
3665 xfs_iflags_clear(ip, XFS_IFLUSHING);
3666 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3667 continue;
3668 }
3669
3670 if (!xfs_inode_clean(ip))
3671 error = xfs_iflush(ip, bp);
3672 else
3673 xfs_iflags_clear(ip, XFS_IFLUSHING);
3674 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3675 if (error)
3676 break;
3677 clcount++;
3678 }
3679
3680 if (error) {
3681 bp->b_flags |= XBF_ASYNC;
3682 xfs_buf_ioend_fail(bp);
3683 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3684 return error;
3685 }
3686
3687 if (!clcount)
3688 return -EAGAIN;
3689
3690 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3691 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3692 return 0;
3693
3694 }
3695
3696 /* Release an inode. */
3697 void
xfs_irele(struct xfs_inode * ip)3698 xfs_irele(
3699 struct xfs_inode *ip)
3700 {
3701 trace_xfs_irele(ip, _RET_IP_);
3702 iput(VFS_I(ip));
3703 }
3704
3705 /*
3706 * Ensure all commited transactions touching the inode are written to the log.
3707 */
3708 int
xfs_log_force_inode(struct xfs_inode * ip)3709 xfs_log_force_inode(
3710 struct xfs_inode *ip)
3711 {
3712 xfs_lsn_t lsn = 0;
3713
3714 xfs_ilock(ip, XFS_ILOCK_SHARED);
3715 if (xfs_ipincount(ip))
3716 lsn = ip->i_itemp->ili_last_lsn;
3717 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3718
3719 if (!lsn)
3720 return 0;
3721 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3722 }
3723
3724 /*
3725 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3726 * abide vfs locking order (lowest pointer value goes first) and breaking the
3727 * layout leases before proceeding. The loop is needed because we cannot call
3728 * the blocking break_layout() with the iolocks held, and therefore have to
3729 * back out both locks.
3730 */
3731 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)3732 xfs_iolock_two_inodes_and_break_layout(
3733 struct inode *src,
3734 struct inode *dest)
3735 {
3736 int error;
3737
3738 if (src > dest)
3739 swap(src, dest);
3740
3741 retry:
3742 /* Wait to break both inodes' layouts before we start locking. */
3743 error = break_layout(src, true);
3744 if (error)
3745 return error;
3746 if (src != dest) {
3747 error = break_layout(dest, true);
3748 if (error)
3749 return error;
3750 }
3751
3752 /* Lock one inode and make sure nobody got in and leased it. */
3753 inode_lock(src);
3754 error = break_layout(src, false);
3755 if (error) {
3756 inode_unlock(src);
3757 if (error == -EWOULDBLOCK)
3758 goto retry;
3759 return error;
3760 }
3761
3762 if (src == dest)
3763 return 0;
3764
3765 /* Lock the other inode and make sure nobody got in and leased it. */
3766 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3767 error = break_layout(dest, false);
3768 if (error) {
3769 inode_unlock(src);
3770 inode_unlock(dest);
3771 if (error == -EWOULDBLOCK)
3772 goto retry;
3773 return error;
3774 }
3775
3776 return 0;
3777 }
3778
3779 /*
3780 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3781 * mmap activity.
3782 */
3783 int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)3784 xfs_ilock2_io_mmap(
3785 struct xfs_inode *ip1,
3786 struct xfs_inode *ip2)
3787 {
3788 int ret;
3789
3790 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3791 if (ret)
3792 return ret;
3793 if (ip1 == ip2)
3794 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3795 else
3796 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3797 ip2, XFS_MMAPLOCK_EXCL);
3798 return 0;
3799 }
3800
3801 /* Unlock both inodes to allow IO and mmap activity. */
3802 void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)3803 xfs_iunlock2_io_mmap(
3804 struct xfs_inode *ip1,
3805 struct xfs_inode *ip2)
3806 {
3807 bool same_inode = (ip1 == ip2);
3808
3809 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3810 if (!same_inode)
3811 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3812 inode_unlock(VFS_I(ip2));
3813 if (!same_inode)
3814 inode_unlock(VFS_I(ip1));
3815 }
3816