1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 #include "xfs_ag.h"
36
37 static DEFINE_MUTEX(xfs_uuid_table_mutex);
38 static int xfs_uuid_table_size;
39 static uuid_t *xfs_uuid_table;
40
41 void
xfs_uuid_table_free(void)42 xfs_uuid_table_free(void)
43 {
44 if (xfs_uuid_table_size == 0)
45 return;
46 kmem_free(xfs_uuid_table);
47 xfs_uuid_table = NULL;
48 xfs_uuid_table_size = 0;
49 }
50
51 /*
52 * See if the UUID is unique among mounted XFS filesystems.
53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54 */
55 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)56 xfs_uuid_mount(
57 struct xfs_mount *mp)
58 {
59 uuid_t *uuid = &mp->m_sb.sb_uuid;
60 int hole, i;
61
62 /* Publish UUID in struct super_block */
63 uuid_copy(&mp->m_super->s_uuid, uuid);
64
65 if (xfs_has_nouuid(mp))
66 return 0;
67
68 if (uuid_is_null(uuid)) {
69 xfs_warn(mp, "Filesystem has null UUID - can't mount");
70 return -EINVAL;
71 }
72
73 mutex_lock(&xfs_uuid_table_mutex);
74 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
75 if (uuid_is_null(&xfs_uuid_table[i])) {
76 hole = i;
77 continue;
78 }
79 if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 goto out_duplicate;
81 }
82
83 if (hole < 0) {
84 xfs_uuid_table = krealloc(xfs_uuid_table,
85 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
86 GFP_KERNEL | __GFP_NOFAIL);
87 hole = xfs_uuid_table_size++;
88 }
89 xfs_uuid_table[hole] = *uuid;
90 mutex_unlock(&xfs_uuid_table_mutex);
91
92 return 0;
93
94 out_duplicate:
95 mutex_unlock(&xfs_uuid_table_mutex);
96 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
97 return -EINVAL;
98 }
99
100 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)101 xfs_uuid_unmount(
102 struct xfs_mount *mp)
103 {
104 uuid_t *uuid = &mp->m_sb.sb_uuid;
105 int i;
106
107 if (xfs_has_nouuid(mp))
108 return;
109
110 mutex_lock(&xfs_uuid_table_mutex);
111 for (i = 0; i < xfs_uuid_table_size; i++) {
112 if (uuid_is_null(&xfs_uuid_table[i]))
113 continue;
114 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 continue;
116 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 break;
118 }
119 ASSERT(i < xfs_uuid_table_size);
120 mutex_unlock(&xfs_uuid_table_mutex);
121 }
122
123 /*
124 * Check size of device based on the (data/realtime) block count.
125 * Note: this check is used by the growfs code as well as mount.
126 */
127 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)128 xfs_sb_validate_fsb_count(
129 xfs_sb_t *sbp,
130 uint64_t nblocks)
131 {
132 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 ASSERT(sbp->sb_blocklog >= BBSHIFT);
134
135 /* Limited by ULONG_MAX of page cache index */
136 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
137 return -EFBIG;
138 return 0;
139 }
140
141 /*
142 * xfs_readsb
143 *
144 * Does the initial read of the superblock.
145 */
146 int
xfs_readsb(struct xfs_mount * mp,int flags)147 xfs_readsb(
148 struct xfs_mount *mp,
149 int flags)
150 {
151 unsigned int sector_size;
152 struct xfs_buf *bp;
153 struct xfs_sb *sbp = &mp->m_sb;
154 int error;
155 int loud = !(flags & XFS_MFSI_QUIET);
156 const struct xfs_buf_ops *buf_ops;
157
158 ASSERT(mp->m_sb_bp == NULL);
159 ASSERT(mp->m_ddev_targp != NULL);
160
161 /*
162 * For the initial read, we must guess at the sector
163 * size based on the block device. It's enough to
164 * get the sb_sectsize out of the superblock and
165 * then reread with the proper length.
166 * We don't verify it yet, because it may not be complete.
167 */
168 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
169 buf_ops = NULL;
170
171 /*
172 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 * around at all times to optimize access to the superblock. Therefore,
174 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
175 * elevated.
176 */
177 reread:
178 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
179 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
180 buf_ops);
181 if (error) {
182 if (loud)
183 xfs_warn(mp, "SB validate failed with error %d.", error);
184 /* bad CRC means corrupted metadata */
185 if (error == -EFSBADCRC)
186 error = -EFSCORRUPTED;
187 return error;
188 }
189
190 /*
191 * Initialize the mount structure from the superblock.
192 */
193 xfs_sb_from_disk(sbp, bp->b_addr);
194
195 /*
196 * If we haven't validated the superblock, do so now before we try
197 * to check the sector size and reread the superblock appropriately.
198 */
199 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
200 if (loud)
201 xfs_warn(mp, "Invalid superblock magic number");
202 error = -EINVAL;
203 goto release_buf;
204 }
205
206 /*
207 * We must be able to do sector-sized and sector-aligned IO.
208 */
209 if (sector_size > sbp->sb_sectsize) {
210 if (loud)
211 xfs_warn(mp, "device supports %u byte sectors (not %u)",
212 sector_size, sbp->sb_sectsize);
213 error = -ENOSYS;
214 goto release_buf;
215 }
216
217 if (buf_ops == NULL) {
218 /*
219 * Re-read the superblock so the buffer is correctly sized,
220 * and properly verified.
221 */
222 xfs_buf_relse(bp);
223 sector_size = sbp->sb_sectsize;
224 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
225 goto reread;
226 }
227
228 mp->m_features |= xfs_sb_version_to_features(sbp);
229 xfs_reinit_percpu_counters(mp);
230
231 /* no need to be quiet anymore, so reset the buf ops */
232 bp->b_ops = &xfs_sb_buf_ops;
233
234 mp->m_sb_bp = bp;
235 xfs_buf_unlock(bp);
236 return 0;
237
238 release_buf:
239 xfs_buf_relse(bp);
240 return error;
241 }
242
243 /*
244 * If the sunit/swidth change would move the precomputed root inode value, we
245 * must reject the ondisk change because repair will stumble over that.
246 * However, we allow the mount to proceed because we never rejected this
247 * combination before. Returns true to update the sb, false otherwise.
248 */
249 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)250 xfs_check_new_dalign(
251 struct xfs_mount *mp,
252 int new_dalign,
253 bool *update_sb)
254 {
255 struct xfs_sb *sbp = &mp->m_sb;
256 xfs_ino_t calc_ino;
257
258 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
259 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
260
261 if (sbp->sb_rootino == calc_ino) {
262 *update_sb = true;
263 return 0;
264 }
265
266 xfs_warn(mp,
267 "Cannot change stripe alignment; would require moving root inode.");
268
269 /*
270 * XXX: Next time we add a new incompat feature, this should start
271 * returning -EINVAL to fail the mount. Until then, spit out a warning
272 * that we're ignoring the administrator's instructions.
273 */
274 xfs_warn(mp, "Skipping superblock stripe alignment update.");
275 *update_sb = false;
276 return 0;
277 }
278
279 /*
280 * If we were provided with new sunit/swidth values as mount options, make sure
281 * that they pass basic alignment and superblock feature checks, and convert
282 * them into the same units (FSB) that everything else expects. This step
283 * /must/ be done before computing the inode geometry.
284 */
285 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)286 xfs_validate_new_dalign(
287 struct xfs_mount *mp)
288 {
289 if (mp->m_dalign == 0)
290 return 0;
291
292 /*
293 * If stripe unit and stripe width are not multiples
294 * of the fs blocksize turn off alignment.
295 */
296 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
297 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
298 xfs_warn(mp,
299 "alignment check failed: sunit/swidth vs. blocksize(%d)",
300 mp->m_sb.sb_blocksize);
301 return -EINVAL;
302 } else {
303 /*
304 * Convert the stripe unit and width to FSBs.
305 */
306 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
307 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
308 xfs_warn(mp,
309 "alignment check failed: sunit/swidth vs. agsize(%d)",
310 mp->m_sb.sb_agblocks);
311 return -EINVAL;
312 } else if (mp->m_dalign) {
313 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
314 } else {
315 xfs_warn(mp,
316 "alignment check failed: sunit(%d) less than bsize(%d)",
317 mp->m_dalign, mp->m_sb.sb_blocksize);
318 return -EINVAL;
319 }
320 }
321
322 if (!xfs_has_dalign(mp)) {
323 xfs_warn(mp,
324 "cannot change alignment: superblock does not support data alignment");
325 return -EINVAL;
326 }
327
328 return 0;
329 }
330
331 /* Update alignment values based on mount options and sb values. */
332 STATIC int
xfs_update_alignment(struct xfs_mount * mp)333 xfs_update_alignment(
334 struct xfs_mount *mp)
335 {
336 struct xfs_sb *sbp = &mp->m_sb;
337
338 if (mp->m_dalign) {
339 bool update_sb;
340 int error;
341
342 if (sbp->sb_unit == mp->m_dalign &&
343 sbp->sb_width == mp->m_swidth)
344 return 0;
345
346 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
347 if (error || !update_sb)
348 return error;
349
350 sbp->sb_unit = mp->m_dalign;
351 sbp->sb_width = mp->m_swidth;
352 mp->m_update_sb = true;
353 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
354 mp->m_dalign = sbp->sb_unit;
355 mp->m_swidth = sbp->sb_width;
356 }
357
358 return 0;
359 }
360
361 /*
362 * precalculate the low space thresholds for dynamic speculative preallocation.
363 */
364 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)365 xfs_set_low_space_thresholds(
366 struct xfs_mount *mp)
367 {
368 uint64_t dblocks = mp->m_sb.sb_dblocks;
369 uint64_t rtexts = mp->m_sb.sb_rextents;
370 int i;
371
372 do_div(dblocks, 100);
373 do_div(rtexts, 100);
374
375 for (i = 0; i < XFS_LOWSP_MAX; i++) {
376 mp->m_low_space[i] = dblocks * (i + 1);
377 mp->m_low_rtexts[i] = rtexts * (i + 1);
378 }
379 }
380
381 /*
382 * Check that the data (and log if separate) is an ok size.
383 */
384 STATIC int
xfs_check_sizes(struct xfs_mount * mp)385 xfs_check_sizes(
386 struct xfs_mount *mp)
387 {
388 struct xfs_buf *bp;
389 xfs_daddr_t d;
390 int error;
391
392 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
393 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
394 xfs_warn(mp, "filesystem size mismatch detected");
395 return -EFBIG;
396 }
397 error = xfs_buf_read_uncached(mp->m_ddev_targp,
398 d - XFS_FSS_TO_BB(mp, 1),
399 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
400 if (error) {
401 xfs_warn(mp, "last sector read failed");
402 return error;
403 }
404 xfs_buf_relse(bp);
405
406 if (mp->m_logdev_targp == mp->m_ddev_targp)
407 return 0;
408
409 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
410 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
411 xfs_warn(mp, "log size mismatch detected");
412 return -EFBIG;
413 }
414 error = xfs_buf_read_uncached(mp->m_logdev_targp,
415 d - XFS_FSB_TO_BB(mp, 1),
416 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
417 if (error) {
418 xfs_warn(mp, "log device read failed");
419 return error;
420 }
421 xfs_buf_relse(bp);
422 return 0;
423 }
424
425 /*
426 * Clear the quotaflags in memory and in the superblock.
427 */
428 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)429 xfs_mount_reset_sbqflags(
430 struct xfs_mount *mp)
431 {
432 mp->m_qflags = 0;
433
434 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
435 if (mp->m_sb.sb_qflags == 0)
436 return 0;
437 spin_lock(&mp->m_sb_lock);
438 mp->m_sb.sb_qflags = 0;
439 spin_unlock(&mp->m_sb_lock);
440
441 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
442 return 0;
443
444 return xfs_sync_sb(mp, false);
445 }
446
447 uint64_t
xfs_default_resblks(xfs_mount_t * mp)448 xfs_default_resblks(xfs_mount_t *mp)
449 {
450 uint64_t resblks;
451
452 /*
453 * We default to 5% or 8192 fsbs of space reserved, whichever is
454 * smaller. This is intended to cover concurrent allocation
455 * transactions when we initially hit enospc. These each require a 4
456 * block reservation. Hence by default we cover roughly 2000 concurrent
457 * allocation reservations.
458 */
459 resblks = mp->m_sb.sb_dblocks;
460 do_div(resblks, 20);
461 resblks = min_t(uint64_t, resblks, 8192);
462 return resblks;
463 }
464
465 /* Ensure the summary counts are correct. */
466 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)467 xfs_check_summary_counts(
468 struct xfs_mount *mp)
469 {
470 /*
471 * The AG0 superblock verifier rejects in-progress filesystems,
472 * so we should never see the flag set this far into mounting.
473 */
474 if (mp->m_sb.sb_inprogress) {
475 xfs_err(mp, "sb_inprogress set after log recovery??");
476 WARN_ON(1);
477 return -EFSCORRUPTED;
478 }
479
480 /*
481 * Now the log is mounted, we know if it was an unclean shutdown or
482 * not. If it was, with the first phase of recovery has completed, we
483 * have consistent AG blocks on disk. We have not recovered EFIs yet,
484 * but they are recovered transactionally in the second recovery phase
485 * later.
486 *
487 * If the log was clean when we mounted, we can check the summary
488 * counters. If any of them are obviously incorrect, we can recompute
489 * them from the AGF headers in the next step.
490 */
491 if (xfs_is_clean(mp) &&
492 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
493 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
494 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
495 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
496
497 /*
498 * We can safely re-initialise incore superblock counters from the
499 * per-ag data. These may not be correct if the filesystem was not
500 * cleanly unmounted, so we waited for recovery to finish before doing
501 * this.
502 *
503 * If the filesystem was cleanly unmounted or the previous check did
504 * not flag anything weird, then we can trust the values in the
505 * superblock to be correct and we don't need to do anything here.
506 * Otherwise, recalculate the summary counters.
507 */
508 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) &&
509 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
510 return 0;
511
512 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
513 }
514
515 /*
516 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
517 * internal inode structures can be sitting in the CIL and AIL at this point,
518 * so we need to unpin them, write them back and/or reclaim them before unmount
519 * can proceed. In other words, callers are required to have inactivated all
520 * inodes.
521 *
522 * An inode cluster that has been freed can have its buffer still pinned in
523 * memory because the transaction is still sitting in a iclog. The stale inodes
524 * on that buffer will be pinned to the buffer until the transaction hits the
525 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
526 * may never see the pinned buffer, so nothing will push out the iclog and
527 * unpin the buffer.
528 *
529 * Hence we need to force the log to unpin everything first. However, log
530 * forces don't wait for the discards they issue to complete, so we have to
531 * explicitly wait for them to complete here as well.
532 *
533 * Then we can tell the world we are unmounting so that error handling knows
534 * that the filesystem is going away and we should error out anything that we
535 * have been retrying in the background. This will prevent never-ending
536 * retries in AIL pushing from hanging the unmount.
537 *
538 * Finally, we can push the AIL to clean all the remaining dirty objects, then
539 * reclaim the remaining inodes that are still in memory at this point in time.
540 */
541 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)542 xfs_unmount_flush_inodes(
543 struct xfs_mount *mp)
544 {
545 xfs_log_force(mp, XFS_LOG_SYNC);
546 xfs_extent_busy_wait_all(mp);
547 flush_workqueue(xfs_discard_wq);
548
549 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
550
551 xfs_ail_push_all_sync(mp->m_ail);
552 xfs_inodegc_stop(mp);
553 cancel_delayed_work_sync(&mp->m_reclaim_work);
554 xfs_reclaim_inodes(mp);
555 xfs_health_unmount(mp);
556 }
557
558 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)559 xfs_mount_setup_inode_geom(
560 struct xfs_mount *mp)
561 {
562 struct xfs_ino_geometry *igeo = M_IGEO(mp);
563
564 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
565 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
566
567 xfs_ialloc_setup_geometry(mp);
568 }
569
570 /*
571 * This function does the following on an initial mount of a file system:
572 * - reads the superblock from disk and init the mount struct
573 * - if we're a 32-bit kernel, do a size check on the superblock
574 * so we don't mount terabyte filesystems
575 * - init mount struct realtime fields
576 * - allocate inode hash table for fs
577 * - init directory manager
578 * - perform recovery and init the log manager
579 */
580 int
xfs_mountfs(struct xfs_mount * mp)581 xfs_mountfs(
582 struct xfs_mount *mp)
583 {
584 struct xfs_sb *sbp = &(mp->m_sb);
585 struct xfs_inode *rip;
586 struct xfs_ino_geometry *igeo = M_IGEO(mp);
587 uint64_t resblks;
588 uint quotamount = 0;
589 uint quotaflags = 0;
590 int error = 0;
591
592 xfs_sb_mount_common(mp, sbp);
593
594 /*
595 * Check for a mismatched features2 values. Older kernels read & wrote
596 * into the wrong sb offset for sb_features2 on some platforms due to
597 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
598 * which made older superblock reading/writing routines swap it as a
599 * 64-bit value.
600 *
601 * For backwards compatibility, we make both slots equal.
602 *
603 * If we detect a mismatched field, we OR the set bits into the existing
604 * features2 field in case it has already been modified; we don't want
605 * to lose any features. We then update the bad location with the ORed
606 * value so that older kernels will see any features2 flags. The
607 * superblock writeback code ensures the new sb_features2 is copied to
608 * sb_bad_features2 before it is logged or written to disk.
609 */
610 if (xfs_sb_has_mismatched_features2(sbp)) {
611 xfs_warn(mp, "correcting sb_features alignment problem");
612 sbp->sb_features2 |= sbp->sb_bad_features2;
613 mp->m_update_sb = true;
614 }
615
616
617 /* always use v2 inodes by default now */
618 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
619 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
620 mp->m_features |= XFS_FEAT_NLINK;
621 mp->m_update_sb = true;
622 }
623
624 /*
625 * If we were given new sunit/swidth options, do some basic validation
626 * checks and convert the incore dalign and swidth values to the
627 * same units (FSB) that everything else uses. This /must/ happen
628 * before computing the inode geometry.
629 */
630 error = xfs_validate_new_dalign(mp);
631 if (error)
632 goto out;
633
634 xfs_alloc_compute_maxlevels(mp);
635 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
636 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
637 xfs_mount_setup_inode_geom(mp);
638 xfs_rmapbt_compute_maxlevels(mp);
639 xfs_refcountbt_compute_maxlevels(mp);
640
641 /*
642 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
643 * is NOT aligned turn off m_dalign since allocator alignment is within
644 * an ag, therefore ag has to be aligned at stripe boundary. Note that
645 * we must compute the free space and rmap btree geometry before doing
646 * this.
647 */
648 error = xfs_update_alignment(mp);
649 if (error)
650 goto out;
651
652 /* enable fail_at_unmount as default */
653 mp->m_fail_unmount = true;
654
655 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
656 NULL, mp->m_super->s_id);
657 if (error)
658 goto out;
659
660 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
661 &mp->m_kobj, "stats");
662 if (error)
663 goto out_remove_sysfs;
664
665 error = xfs_error_sysfs_init(mp);
666 if (error)
667 goto out_del_stats;
668
669 error = xfs_errortag_init(mp);
670 if (error)
671 goto out_remove_error_sysfs;
672
673 error = xfs_uuid_mount(mp);
674 if (error)
675 goto out_remove_errortag;
676
677 /*
678 * Update the preferred write size based on the information from the
679 * on-disk superblock.
680 */
681 mp->m_allocsize_log =
682 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
683 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
684
685 /* set the low space thresholds for dynamic preallocation */
686 xfs_set_low_space_thresholds(mp);
687
688 /*
689 * If enabled, sparse inode chunk alignment is expected to match the
690 * cluster size. Full inode chunk alignment must match the chunk size,
691 * but that is checked on sb read verification...
692 */
693 if (xfs_has_sparseinodes(mp) &&
694 mp->m_sb.sb_spino_align !=
695 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
696 xfs_warn(mp,
697 "Sparse inode block alignment (%u) must match cluster size (%llu).",
698 mp->m_sb.sb_spino_align,
699 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
700 error = -EINVAL;
701 goto out_remove_uuid;
702 }
703
704 /*
705 * Check that the data (and log if separate) is an ok size.
706 */
707 error = xfs_check_sizes(mp);
708 if (error)
709 goto out_remove_uuid;
710
711 /*
712 * Initialize realtime fields in the mount structure
713 */
714 error = xfs_rtmount_init(mp);
715 if (error) {
716 xfs_warn(mp, "RT mount failed");
717 goto out_remove_uuid;
718 }
719
720 /*
721 * Copies the low order bits of the timestamp and the randomly
722 * set "sequence" number out of a UUID.
723 */
724 mp->m_fixedfsid[0] =
725 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
726 get_unaligned_be16(&sbp->sb_uuid.b[4]);
727 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
728
729 error = xfs_da_mount(mp);
730 if (error) {
731 xfs_warn(mp, "Failed dir/attr init: %d", error);
732 goto out_remove_uuid;
733 }
734
735 /*
736 * Initialize the precomputed transaction reservations values.
737 */
738 xfs_trans_init(mp);
739
740 /*
741 * Allocate and initialize the per-ag data.
742 */
743 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
744 if (error) {
745 xfs_warn(mp, "Failed per-ag init: %d", error);
746 goto out_free_dir;
747 }
748
749 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
750 xfs_warn(mp, "no log defined");
751 error = -EFSCORRUPTED;
752 goto out_free_perag;
753 }
754
755 error = xfs_inodegc_register_shrinker(mp);
756 if (error)
757 goto out_fail_wait;
758
759 /*
760 * Log's mount-time initialization. The first part of recovery can place
761 * some items on the AIL, to be handled when recovery is finished or
762 * cancelled.
763 */
764 error = xfs_log_mount(mp, mp->m_logdev_targp,
765 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
766 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
767 if (error) {
768 xfs_warn(mp, "log mount failed");
769 goto out_inodegc_shrinker;
770 }
771
772 /* Make sure the summary counts are ok. */
773 error = xfs_check_summary_counts(mp);
774 if (error)
775 goto out_log_dealloc;
776
777 /* Enable background inode inactivation workers. */
778 xfs_inodegc_start(mp);
779 xfs_blockgc_start(mp);
780
781 /*
782 * Now that we've recovered any pending superblock feature bit
783 * additions, we can finish setting up the attr2 behaviour for the
784 * mount. The noattr2 option overrides the superblock flag, so only
785 * check the superblock feature flag if the mount option is not set.
786 */
787 if (xfs_has_noattr2(mp)) {
788 mp->m_features &= ~XFS_FEAT_ATTR2;
789 } else if (!xfs_has_attr2(mp) &&
790 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
791 mp->m_features |= XFS_FEAT_ATTR2;
792 }
793
794 /*
795 * Get and sanity-check the root inode.
796 * Save the pointer to it in the mount structure.
797 */
798 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
799 XFS_ILOCK_EXCL, &rip);
800 if (error) {
801 xfs_warn(mp,
802 "Failed to read root inode 0x%llx, error %d",
803 sbp->sb_rootino, -error);
804 goto out_log_dealloc;
805 }
806
807 ASSERT(rip != NULL);
808
809 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
810 xfs_warn(mp, "corrupted root inode %llu: not a directory",
811 (unsigned long long)rip->i_ino);
812 xfs_iunlock(rip, XFS_ILOCK_EXCL);
813 error = -EFSCORRUPTED;
814 goto out_rele_rip;
815 }
816 mp->m_rootip = rip; /* save it */
817
818 xfs_iunlock(rip, XFS_ILOCK_EXCL);
819
820 /*
821 * Initialize realtime inode pointers in the mount structure
822 */
823 error = xfs_rtmount_inodes(mp);
824 if (error) {
825 /*
826 * Free up the root inode.
827 */
828 xfs_warn(mp, "failed to read RT inodes");
829 goto out_rele_rip;
830 }
831
832 /*
833 * If this is a read-only mount defer the superblock updates until
834 * the next remount into writeable mode. Otherwise we would never
835 * perform the update e.g. for the root filesystem.
836 */
837 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
838 error = xfs_sync_sb(mp, false);
839 if (error) {
840 xfs_warn(mp, "failed to write sb changes");
841 goto out_rtunmount;
842 }
843 }
844
845 /*
846 * Initialise the XFS quota management subsystem for this mount
847 */
848 if (XFS_IS_QUOTA_ON(mp)) {
849 error = xfs_qm_newmount(mp, "amount, "aflags);
850 if (error)
851 goto out_rtunmount;
852 } else {
853 /*
854 * If a file system had quotas running earlier, but decided to
855 * mount without -o uquota/pquota/gquota options, revoke the
856 * quotachecked license.
857 */
858 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
859 xfs_notice(mp, "resetting quota flags");
860 error = xfs_mount_reset_sbqflags(mp);
861 if (error)
862 goto out_rtunmount;
863 }
864 }
865
866 /*
867 * Finish recovering the file system. This part needed to be delayed
868 * until after the root and real-time bitmap inodes were consistently
869 * read in. Temporarily create per-AG space reservations for metadata
870 * btree shape changes because space freeing transactions (for inode
871 * inactivation) require the per-AG reservation in lieu of reserving
872 * blocks.
873 */
874 error = xfs_fs_reserve_ag_blocks(mp);
875 if (error && error == -ENOSPC)
876 xfs_warn(mp,
877 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
878 error = xfs_log_mount_finish(mp);
879 xfs_fs_unreserve_ag_blocks(mp);
880 if (error) {
881 xfs_warn(mp, "log mount finish failed");
882 goto out_rtunmount;
883 }
884
885 /*
886 * Now the log is fully replayed, we can transition to full read-only
887 * mode for read-only mounts. This will sync all the metadata and clean
888 * the log so that the recovery we just performed does not have to be
889 * replayed again on the next mount.
890 *
891 * We use the same quiesce mechanism as the rw->ro remount, as they are
892 * semantically identical operations.
893 */
894 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
895 xfs_log_clean(mp);
896
897 /*
898 * Complete the quota initialisation, post-log-replay component.
899 */
900 if (quotamount) {
901 ASSERT(mp->m_qflags == 0);
902 mp->m_qflags = quotaflags;
903
904 xfs_qm_mount_quotas(mp);
905 }
906
907 /*
908 * Now we are mounted, reserve a small amount of unused space for
909 * privileged transactions. This is needed so that transaction
910 * space required for critical operations can dip into this pool
911 * when at ENOSPC. This is needed for operations like create with
912 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
913 * are not allowed to use this reserved space.
914 *
915 * This may drive us straight to ENOSPC on mount, but that implies
916 * we were already there on the last unmount. Warn if this occurs.
917 */
918 if (!xfs_is_readonly(mp)) {
919 resblks = xfs_default_resblks(mp);
920 error = xfs_reserve_blocks(mp, &resblks, NULL);
921 if (error)
922 xfs_warn(mp,
923 "Unable to allocate reserve blocks. Continuing without reserve pool.");
924
925 /* Recover any CoW blocks that never got remapped. */
926 error = xfs_reflink_recover_cow(mp);
927 if (error) {
928 xfs_err(mp,
929 "Error %d recovering leftover CoW allocations.", error);
930 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
931 goto out_quota;
932 }
933
934 /* Reserve AG blocks for future btree expansion. */
935 error = xfs_fs_reserve_ag_blocks(mp);
936 if (error && error != -ENOSPC)
937 goto out_agresv;
938 }
939
940 return 0;
941
942 out_agresv:
943 xfs_fs_unreserve_ag_blocks(mp);
944 out_quota:
945 xfs_qm_unmount_quotas(mp);
946 out_rtunmount:
947 xfs_rtunmount_inodes(mp);
948 out_rele_rip:
949 xfs_irele(rip);
950 /* Clean out dquots that might be in memory after quotacheck. */
951 xfs_qm_unmount(mp);
952
953 /*
954 * Inactivate all inodes that might still be in memory after a log
955 * intent recovery failure so that reclaim can free them. Metadata
956 * inodes and the root directory shouldn't need inactivation, but the
957 * mount failed for some reason, so pull down all the state and flee.
958 */
959 xfs_inodegc_flush(mp);
960
961 /*
962 * Flush all inode reclamation work and flush the log.
963 * We have to do this /after/ rtunmount and qm_unmount because those
964 * two will have scheduled delayed reclaim for the rt/quota inodes.
965 *
966 * This is slightly different from the unmountfs call sequence
967 * because we could be tearing down a partially set up mount. In
968 * particular, if log_mount_finish fails we bail out without calling
969 * qm_unmount_quotas and therefore rely on qm_unmount to release the
970 * quota inodes.
971 */
972 xfs_unmount_flush_inodes(mp);
973 out_log_dealloc:
974 xfs_log_mount_cancel(mp);
975 out_inodegc_shrinker:
976 unregister_shrinker(&mp->m_inodegc_shrinker);
977 out_fail_wait:
978 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
979 xfs_buftarg_drain(mp->m_logdev_targp);
980 xfs_buftarg_drain(mp->m_ddev_targp);
981 out_free_perag:
982 xfs_free_perag(mp);
983 out_free_dir:
984 xfs_da_unmount(mp);
985 out_remove_uuid:
986 xfs_uuid_unmount(mp);
987 out_remove_errortag:
988 xfs_errortag_del(mp);
989 out_remove_error_sysfs:
990 xfs_error_sysfs_del(mp);
991 out_del_stats:
992 xfs_sysfs_del(&mp->m_stats.xs_kobj);
993 out_remove_sysfs:
994 xfs_sysfs_del(&mp->m_kobj);
995 out:
996 return error;
997 }
998
999 /*
1000 * This flushes out the inodes,dquots and the superblock, unmounts the
1001 * log and makes sure that incore structures are freed.
1002 */
1003 void
xfs_unmountfs(struct xfs_mount * mp)1004 xfs_unmountfs(
1005 struct xfs_mount *mp)
1006 {
1007 uint64_t resblks;
1008 int error;
1009
1010 /*
1011 * Perform all on-disk metadata updates required to inactivate inodes
1012 * that the VFS evicted earlier in the unmount process. Freeing inodes
1013 * and discarding CoW fork preallocations can cause shape changes to
1014 * the free inode and refcount btrees, respectively, so we must finish
1015 * this before we discard the metadata space reservations. Metadata
1016 * inodes and the root directory do not require inactivation.
1017 */
1018 xfs_inodegc_flush(mp);
1019
1020 xfs_blockgc_stop(mp);
1021 xfs_fs_unreserve_ag_blocks(mp);
1022 xfs_qm_unmount_quotas(mp);
1023 xfs_rtunmount_inodes(mp);
1024 xfs_irele(mp->m_rootip);
1025
1026 xfs_unmount_flush_inodes(mp);
1027
1028 xfs_qm_unmount(mp);
1029
1030 /*
1031 * Unreserve any blocks we have so that when we unmount we don't account
1032 * the reserved free space as used. This is really only necessary for
1033 * lazy superblock counting because it trusts the incore superblock
1034 * counters to be absolutely correct on clean unmount.
1035 *
1036 * We don't bother correcting this elsewhere for lazy superblock
1037 * counting because on mount of an unclean filesystem we reconstruct the
1038 * correct counter value and this is irrelevant.
1039 *
1040 * For non-lazy counter filesystems, this doesn't matter at all because
1041 * we only every apply deltas to the superblock and hence the incore
1042 * value does not matter....
1043 */
1044 resblks = 0;
1045 error = xfs_reserve_blocks(mp, &resblks, NULL);
1046 if (error)
1047 xfs_warn(mp, "Unable to free reserved block pool. "
1048 "Freespace may not be correct on next mount.");
1049
1050 xfs_log_unmount(mp);
1051 xfs_da_unmount(mp);
1052 xfs_uuid_unmount(mp);
1053
1054 #if defined(DEBUG)
1055 xfs_errortag_clearall(mp);
1056 #endif
1057 unregister_shrinker(&mp->m_inodegc_shrinker);
1058 xfs_free_perag(mp);
1059
1060 xfs_errortag_del(mp);
1061 xfs_error_sysfs_del(mp);
1062 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1063 xfs_sysfs_del(&mp->m_kobj);
1064 }
1065
1066 /*
1067 * Determine whether modifications can proceed. The caller specifies the minimum
1068 * freeze level for which modifications should not be allowed. This allows
1069 * certain operations to proceed while the freeze sequence is in progress, if
1070 * necessary.
1071 */
1072 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1073 xfs_fs_writable(
1074 struct xfs_mount *mp,
1075 int level)
1076 {
1077 ASSERT(level > SB_UNFROZEN);
1078 if ((mp->m_super->s_writers.frozen >= level) ||
1079 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1080 return false;
1081
1082 return true;
1083 }
1084
1085 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1086 xfs_mod_fdblocks(
1087 struct xfs_mount *mp,
1088 int64_t delta,
1089 bool rsvd)
1090 {
1091 int64_t lcounter;
1092 long long res_used;
1093 s32 batch;
1094 uint64_t set_aside;
1095
1096 if (delta > 0) {
1097 /*
1098 * If the reserve pool is depleted, put blocks back into it
1099 * first. Most of the time the pool is full.
1100 */
1101 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1102 percpu_counter_add(&mp->m_fdblocks, delta);
1103 return 0;
1104 }
1105
1106 spin_lock(&mp->m_sb_lock);
1107 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1108
1109 if (res_used > delta) {
1110 mp->m_resblks_avail += delta;
1111 } else {
1112 delta -= res_used;
1113 mp->m_resblks_avail = mp->m_resblks;
1114 percpu_counter_add(&mp->m_fdblocks, delta);
1115 }
1116 spin_unlock(&mp->m_sb_lock);
1117 return 0;
1118 }
1119
1120 /*
1121 * Taking blocks away, need to be more accurate the closer we
1122 * are to zero.
1123 *
1124 * If the counter has a value of less than 2 * max batch size,
1125 * then make everything serialise as we are real close to
1126 * ENOSPC.
1127 */
1128 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1129 XFS_FDBLOCKS_BATCH) < 0)
1130 batch = 1;
1131 else
1132 batch = XFS_FDBLOCKS_BATCH;
1133
1134 /*
1135 * Set aside allocbt blocks because these blocks are tracked as free
1136 * space but not available for allocation. Technically this means that a
1137 * single reservation cannot consume all remaining free space, but the
1138 * ratio of allocbt blocks to usable free blocks should be rather small.
1139 * The tradeoff without this is that filesystems that maintain high
1140 * perag block reservations can over reserve physical block availability
1141 * and fail physical allocation, which leads to much more serious
1142 * problems (i.e. transaction abort, pagecache discards, etc.) than
1143 * slightly premature -ENOSPC.
1144 */
1145 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1146 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1147 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1148 XFS_FDBLOCKS_BATCH) >= 0) {
1149 /* we had space! */
1150 return 0;
1151 }
1152
1153 /*
1154 * lock up the sb for dipping into reserves before releasing the space
1155 * that took us to ENOSPC.
1156 */
1157 spin_lock(&mp->m_sb_lock);
1158 percpu_counter_add(&mp->m_fdblocks, -delta);
1159 if (!rsvd)
1160 goto fdblocks_enospc;
1161
1162 lcounter = (long long)mp->m_resblks_avail + delta;
1163 if (lcounter >= 0) {
1164 mp->m_resblks_avail = lcounter;
1165 spin_unlock(&mp->m_sb_lock);
1166 return 0;
1167 }
1168 xfs_warn_once(mp,
1169 "Reserve blocks depleted! Consider increasing reserve pool size.");
1170
1171 fdblocks_enospc:
1172 spin_unlock(&mp->m_sb_lock);
1173 return -ENOSPC;
1174 }
1175
1176 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1177 xfs_mod_frextents(
1178 struct xfs_mount *mp,
1179 int64_t delta)
1180 {
1181 int64_t lcounter;
1182 int ret = 0;
1183
1184 spin_lock(&mp->m_sb_lock);
1185 lcounter = mp->m_sb.sb_frextents + delta;
1186 if (lcounter < 0)
1187 ret = -ENOSPC;
1188 else
1189 mp->m_sb.sb_frextents = lcounter;
1190 spin_unlock(&mp->m_sb_lock);
1191 return ret;
1192 }
1193
1194 /*
1195 * Used to free the superblock along various error paths.
1196 */
1197 void
xfs_freesb(struct xfs_mount * mp)1198 xfs_freesb(
1199 struct xfs_mount *mp)
1200 {
1201 struct xfs_buf *bp = mp->m_sb_bp;
1202
1203 xfs_buf_lock(bp);
1204 mp->m_sb_bp = NULL;
1205 xfs_buf_relse(bp);
1206 }
1207
1208 /*
1209 * If the underlying (data/log/rt) device is readonly, there are some
1210 * operations that cannot proceed.
1211 */
1212 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1213 xfs_dev_is_read_only(
1214 struct xfs_mount *mp,
1215 char *message)
1216 {
1217 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1218 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1219 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1220 xfs_notice(mp, "%s required on read-only device.", message);
1221 xfs_notice(mp, "write access unavailable, cannot proceed.");
1222 return -EROFS;
1223 }
1224 return 0;
1225 }
1226
1227 /* Force the summary counters to be recalculated at next mount. */
1228 void
xfs_force_summary_recalc(struct xfs_mount * mp)1229 xfs_force_summary_recalc(
1230 struct xfs_mount *mp)
1231 {
1232 if (!xfs_has_lazysbcount(mp))
1233 return;
1234
1235 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1236 }
1237
1238 /*
1239 * Enable a log incompat feature flag in the primary superblock. The caller
1240 * cannot have any other transactions in progress.
1241 */
1242 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1243 xfs_add_incompat_log_feature(
1244 struct xfs_mount *mp,
1245 uint32_t feature)
1246 {
1247 struct xfs_dsb *dsb;
1248 int error;
1249
1250 ASSERT(hweight32(feature) == 1);
1251 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1252
1253 /*
1254 * Force the log to disk and kick the background AIL thread to reduce
1255 * the chances that the bwrite will stall waiting for the AIL to unpin
1256 * the primary superblock buffer. This isn't a data integrity
1257 * operation, so we don't need a synchronous push.
1258 */
1259 error = xfs_log_force(mp, XFS_LOG_SYNC);
1260 if (error)
1261 return error;
1262 xfs_ail_push_all(mp->m_ail);
1263
1264 /*
1265 * Lock the primary superblock buffer to serialize all callers that
1266 * are trying to set feature bits.
1267 */
1268 xfs_buf_lock(mp->m_sb_bp);
1269 xfs_buf_hold(mp->m_sb_bp);
1270
1271 if (xfs_is_shutdown(mp)) {
1272 error = -EIO;
1273 goto rele;
1274 }
1275
1276 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1277 goto rele;
1278
1279 /*
1280 * Write the primary superblock to disk immediately, because we need
1281 * the log_incompat bit to be set in the primary super now to protect
1282 * the log items that we're going to commit later.
1283 */
1284 dsb = mp->m_sb_bp->b_addr;
1285 xfs_sb_to_disk(dsb, &mp->m_sb);
1286 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1287 error = xfs_bwrite(mp->m_sb_bp);
1288 if (error)
1289 goto shutdown;
1290
1291 /*
1292 * Add the feature bits to the incore superblock before we unlock the
1293 * buffer.
1294 */
1295 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1296 xfs_buf_relse(mp->m_sb_bp);
1297
1298 /* Log the superblock to disk. */
1299 return xfs_sync_sb(mp, false);
1300 shutdown:
1301 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1302 rele:
1303 xfs_buf_relse(mp->m_sb_bp);
1304 return error;
1305 }
1306
1307 /*
1308 * Clear all the log incompat flags from the superblock.
1309 *
1310 * The caller cannot be in a transaction, must ensure that the log does not
1311 * contain any log items protected by any log incompat bit, and must ensure
1312 * that there are no other threads that depend on the state of the log incompat
1313 * feature flags in the primary super.
1314 *
1315 * Returns true if the superblock is dirty.
1316 */
1317 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1318 xfs_clear_incompat_log_features(
1319 struct xfs_mount *mp)
1320 {
1321 bool ret = false;
1322
1323 if (!xfs_has_crc(mp) ||
1324 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1325 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1326 xfs_is_shutdown(mp))
1327 return false;
1328
1329 /*
1330 * Update the incore superblock. We synchronize on the primary super
1331 * buffer lock to be consistent with the add function, though at least
1332 * in theory this shouldn't be necessary.
1333 */
1334 xfs_buf_lock(mp->m_sb_bp);
1335 xfs_buf_hold(mp->m_sb_bp);
1336
1337 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1338 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1339 xfs_info(mp, "Clearing log incompat feature flags.");
1340 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1341 ret = true;
1342 }
1343
1344 xfs_buf_relse(mp->m_sb_bp);
1345 return ret;
1346 }
1347
1348 /*
1349 * Update the in-core delayed block counter.
1350 *
1351 * We prefer to update the counter without having to take a spinlock for every
1352 * counter update (i.e. batching). Each change to delayed allocation
1353 * reservations can change can easily exceed the default percpu counter
1354 * batching, so we use a larger batch factor here.
1355 *
1356 * Note that we don't currently have any callers requiring fast summation
1357 * (e.g. percpu_counter_read) so we can use a big batch value here.
1358 */
1359 #define XFS_DELALLOC_BATCH (4096)
1360 void
xfs_mod_delalloc(struct xfs_mount * mp,int64_t delta)1361 xfs_mod_delalloc(
1362 struct xfs_mount *mp,
1363 int64_t delta)
1364 {
1365 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1366 XFS_DELALLOC_BATCH);
1367 }
1368