1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34
35 static kmem_zone_t *xfs_buf_zone;
36
37 #define xb_to_gfp(flags) \
38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39
40
41 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)42 xfs_buf_is_vmapped(
43 struct xfs_buf *bp)
44 {
45 /*
46 * Return true if the buffer is vmapped.
47 *
48 * b_addr is null if the buffer is not mapped, but the code is clever
49 * enough to know it doesn't have to map a single page, so the check has
50 * to be both for b_addr and bp->b_page_count > 1.
51 */
52 return bp->b_addr && bp->b_page_count > 1;
53 }
54
55 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)56 xfs_buf_vmap_len(
57 struct xfs_buf *bp)
58 {
59 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
60 }
61
62 /*
63 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
64 * this buffer. The count is incremented once per buffer (per hold cycle)
65 * because the corresponding decrement is deferred to buffer release. Buffers
66 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
67 * tracking adds unnecessary overhead. This is used for sychronization purposes
68 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
69 * in-flight buffers.
70 *
71 * Buffers that are never released (e.g., superblock, iclog buffers) must set
72 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
73 * never reaches zero and unmount hangs indefinitely.
74 */
75 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)76 xfs_buf_ioacct_inc(
77 struct xfs_buf *bp)
78 {
79 if (bp->b_flags & XBF_NO_IOACCT)
80 return;
81
82 ASSERT(bp->b_flags & XBF_ASYNC);
83 spin_lock(&bp->b_lock);
84 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
85 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
86 percpu_counter_inc(&bp->b_target->bt_io_count);
87 }
88 spin_unlock(&bp->b_lock);
89 }
90
91 /*
92 * Clear the in-flight state on a buffer about to be released to the LRU or
93 * freed and unaccount from the buftarg.
94 */
95 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)96 __xfs_buf_ioacct_dec(
97 struct xfs_buf *bp)
98 {
99 lockdep_assert_held(&bp->b_lock);
100
101 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
102 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
103 percpu_counter_dec(&bp->b_target->bt_io_count);
104 }
105 }
106
107 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)108 xfs_buf_ioacct_dec(
109 struct xfs_buf *bp)
110 {
111 spin_lock(&bp->b_lock);
112 __xfs_buf_ioacct_dec(bp);
113 spin_unlock(&bp->b_lock);
114 }
115
116 /*
117 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
118 * b_lru_ref count so that the buffer is freed immediately when the buffer
119 * reference count falls to zero. If the buffer is already on the LRU, we need
120 * to remove the reference that LRU holds on the buffer.
121 *
122 * This prevents build-up of stale buffers on the LRU.
123 */
124 void
xfs_buf_stale(struct xfs_buf * bp)125 xfs_buf_stale(
126 struct xfs_buf *bp)
127 {
128 ASSERT(xfs_buf_islocked(bp));
129
130 bp->b_flags |= XBF_STALE;
131
132 /*
133 * Clear the delwri status so that a delwri queue walker will not
134 * flush this buffer to disk now that it is stale. The delwri queue has
135 * a reference to the buffer, so this is safe to do.
136 */
137 bp->b_flags &= ~_XBF_DELWRI_Q;
138
139 /*
140 * Once the buffer is marked stale and unlocked, a subsequent lookup
141 * could reset b_flags. There is no guarantee that the buffer is
142 * unaccounted (released to LRU) before that occurs. Drop in-flight
143 * status now to preserve accounting consistency.
144 */
145 spin_lock(&bp->b_lock);
146 __xfs_buf_ioacct_dec(bp);
147
148 atomic_set(&bp->b_lru_ref, 0);
149 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
150 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
151 atomic_dec(&bp->b_hold);
152
153 ASSERT(atomic_read(&bp->b_hold) >= 1);
154 spin_unlock(&bp->b_lock);
155 }
156
157 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)158 xfs_buf_get_maps(
159 struct xfs_buf *bp,
160 int map_count)
161 {
162 ASSERT(bp->b_maps == NULL);
163 bp->b_map_count = map_count;
164
165 if (map_count == 1) {
166 bp->b_maps = &bp->__b_map;
167 return 0;
168 }
169
170 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
171 KM_NOFS);
172 if (!bp->b_maps)
173 return -ENOMEM;
174 return 0;
175 }
176
177 /*
178 * Frees b_pages if it was allocated.
179 */
180 static void
xfs_buf_free_maps(struct xfs_buf * bp)181 xfs_buf_free_maps(
182 struct xfs_buf *bp)
183 {
184 if (bp->b_maps != &bp->__b_map) {
185 kmem_free(bp->b_maps);
186 bp->b_maps = NULL;
187 }
188 }
189
190 struct xfs_buf *
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)191 _xfs_buf_alloc(
192 struct xfs_buftarg *target,
193 struct xfs_buf_map *map,
194 int nmaps,
195 xfs_buf_flags_t flags)
196 {
197 struct xfs_buf *bp;
198 int error;
199 int i;
200
201 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
202 if (unlikely(!bp))
203 return NULL;
204
205 /*
206 * We don't want certain flags to appear in b_flags unless they are
207 * specifically set by later operations on the buffer.
208 */
209 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
210
211 atomic_set(&bp->b_hold, 1);
212 atomic_set(&bp->b_lru_ref, 1);
213 init_completion(&bp->b_iowait);
214 INIT_LIST_HEAD(&bp->b_lru);
215 INIT_LIST_HEAD(&bp->b_list);
216 INIT_LIST_HEAD(&bp->b_li_list);
217 sema_init(&bp->b_sema, 0); /* held, no waiters */
218 spin_lock_init(&bp->b_lock);
219 bp->b_target = target;
220 bp->b_flags = flags;
221
222 /*
223 * Set length and io_length to the same value initially.
224 * I/O routines should use io_length, which will be the same in
225 * most cases but may be reset (e.g. XFS recovery).
226 */
227 error = xfs_buf_get_maps(bp, nmaps);
228 if (error) {
229 kmem_zone_free(xfs_buf_zone, bp);
230 return NULL;
231 }
232
233 bp->b_bn = map[0].bm_bn;
234 bp->b_length = 0;
235 for (i = 0; i < nmaps; i++) {
236 bp->b_maps[i].bm_bn = map[i].bm_bn;
237 bp->b_maps[i].bm_len = map[i].bm_len;
238 bp->b_length += map[i].bm_len;
239 }
240 bp->b_io_length = bp->b_length;
241
242 atomic_set(&bp->b_pin_count, 0);
243 init_waitqueue_head(&bp->b_waiters);
244
245 XFS_STATS_INC(target->bt_mount, xb_create);
246 trace_xfs_buf_init(bp, _RET_IP_);
247
248 return bp;
249 }
250
251 /*
252 * Allocate a page array capable of holding a specified number
253 * of pages, and point the page buf at it.
254 */
255 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count)256 _xfs_buf_get_pages(
257 xfs_buf_t *bp,
258 int page_count)
259 {
260 /* Make sure that we have a page list */
261 if (bp->b_pages == NULL) {
262 bp->b_page_count = page_count;
263 if (page_count <= XB_PAGES) {
264 bp->b_pages = bp->b_page_array;
265 } else {
266 bp->b_pages = kmem_alloc(sizeof(struct page *) *
267 page_count, KM_NOFS);
268 if (bp->b_pages == NULL)
269 return -ENOMEM;
270 }
271 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
272 }
273 return 0;
274 }
275
276 /*
277 * Frees b_pages if it was allocated.
278 */
279 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)280 _xfs_buf_free_pages(
281 xfs_buf_t *bp)
282 {
283 if (bp->b_pages != bp->b_page_array) {
284 kmem_free(bp->b_pages);
285 bp->b_pages = NULL;
286 }
287 }
288
289 /*
290 * Releases the specified buffer.
291 *
292 * The modification state of any associated pages is left unchanged.
293 * The buffer must not be on any hash - use xfs_buf_rele instead for
294 * hashed and refcounted buffers
295 */
296 void
xfs_buf_free(xfs_buf_t * bp)297 xfs_buf_free(
298 xfs_buf_t *bp)
299 {
300 trace_xfs_buf_free(bp, _RET_IP_);
301
302 ASSERT(list_empty(&bp->b_lru));
303
304 if (bp->b_flags & _XBF_PAGES) {
305 uint i;
306
307 if (xfs_buf_is_vmapped(bp))
308 vm_unmap_ram(bp->b_addr - bp->b_offset,
309 bp->b_page_count);
310
311 for (i = 0; i < bp->b_page_count; i++) {
312 struct page *page = bp->b_pages[i];
313
314 __free_page(page);
315 }
316 } else if (bp->b_flags & _XBF_KMEM)
317 kmem_free(bp->b_addr);
318 _xfs_buf_free_pages(bp);
319 xfs_buf_free_maps(bp);
320 kmem_zone_free(xfs_buf_zone, bp);
321 }
322
323 /*
324 * Allocates all the pages for buffer in question and builds it's page list.
325 */
326 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)327 xfs_buf_allocate_memory(
328 xfs_buf_t *bp,
329 uint flags)
330 {
331 size_t size;
332 size_t nbytes, offset;
333 gfp_t gfp_mask = xb_to_gfp(flags);
334 unsigned short page_count, i;
335 xfs_off_t start, end;
336 int error;
337
338 /*
339 * for buffers that are contained within a single page, just allocate
340 * the memory from the heap - there's no need for the complexity of
341 * page arrays to keep allocation down to order 0.
342 */
343 size = BBTOB(bp->b_length);
344 if (size < PAGE_SIZE) {
345 bp->b_addr = kmem_alloc(size, KM_NOFS);
346 if (!bp->b_addr) {
347 /* low memory - use alloc_page loop instead */
348 goto use_alloc_page;
349 }
350
351 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
352 ((unsigned long)bp->b_addr & PAGE_MASK)) {
353 /* b_addr spans two pages - use alloc_page instead */
354 kmem_free(bp->b_addr);
355 bp->b_addr = NULL;
356 goto use_alloc_page;
357 }
358 bp->b_offset = offset_in_page(bp->b_addr);
359 bp->b_pages = bp->b_page_array;
360 bp->b_pages[0] = virt_to_page(bp->b_addr);
361 bp->b_page_count = 1;
362 bp->b_flags |= _XBF_KMEM;
363 return 0;
364 }
365
366 use_alloc_page:
367 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
368 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
369 >> PAGE_SHIFT;
370 page_count = end - start;
371 error = _xfs_buf_get_pages(bp, page_count);
372 if (unlikely(error))
373 return error;
374
375 offset = bp->b_offset;
376 bp->b_flags |= _XBF_PAGES;
377
378 for (i = 0; i < bp->b_page_count; i++) {
379 struct page *page;
380 uint retries = 0;
381 retry:
382 page = alloc_page(gfp_mask);
383 if (unlikely(page == NULL)) {
384 if (flags & XBF_READ_AHEAD) {
385 bp->b_page_count = i;
386 error = -ENOMEM;
387 goto out_free_pages;
388 }
389
390 /*
391 * This could deadlock.
392 *
393 * But until all the XFS lowlevel code is revamped to
394 * handle buffer allocation failures we can't do much.
395 */
396 if (!(++retries % 100))
397 xfs_err(NULL,
398 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
399 current->comm, current->pid,
400 __func__, gfp_mask);
401
402 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
403 congestion_wait(BLK_RW_ASYNC, HZ/50);
404 goto retry;
405 }
406
407 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
408
409 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
410 size -= nbytes;
411 bp->b_pages[i] = page;
412 offset = 0;
413 }
414 return 0;
415
416 out_free_pages:
417 for (i = 0; i < bp->b_page_count; i++)
418 __free_page(bp->b_pages[i]);
419 bp->b_flags &= ~_XBF_PAGES;
420 return error;
421 }
422
423 /*
424 * Map buffer into kernel address-space if necessary.
425 */
426 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)427 _xfs_buf_map_pages(
428 xfs_buf_t *bp,
429 uint flags)
430 {
431 ASSERT(bp->b_flags & _XBF_PAGES);
432 if (bp->b_page_count == 1) {
433 /* A single page buffer is always mappable */
434 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
435 } else if (flags & XBF_UNMAPPED) {
436 bp->b_addr = NULL;
437 } else {
438 int retried = 0;
439 unsigned nofs_flag;
440
441 /*
442 * vm_map_ram() will allocate auxillary structures (e.g.
443 * pagetables) with GFP_KERNEL, yet we are likely to be under
444 * GFP_NOFS context here. Hence we need to tell memory reclaim
445 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
446 * memory reclaim re-entering the filesystem here and
447 * potentially deadlocking.
448 */
449 nofs_flag = memalloc_nofs_save();
450 do {
451 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
452 -1, PAGE_KERNEL);
453 if (bp->b_addr)
454 break;
455 vm_unmap_aliases();
456 } while (retried++ <= 1);
457 memalloc_nofs_restore(nofs_flag);
458
459 if (!bp->b_addr)
460 return -ENOMEM;
461 bp->b_addr += bp->b_offset;
462 }
463
464 return 0;
465 }
466
467 /*
468 * Finding and Reading Buffers
469 */
470 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)471 _xfs_buf_obj_cmp(
472 struct rhashtable_compare_arg *arg,
473 const void *obj)
474 {
475 const struct xfs_buf_map *map = arg->key;
476 const struct xfs_buf *bp = obj;
477
478 /*
479 * The key hashing in the lookup path depends on the key being the
480 * first element of the compare_arg, make sure to assert this.
481 */
482 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
483
484 if (bp->b_bn != map->bm_bn)
485 return 1;
486
487 if (unlikely(bp->b_length != map->bm_len)) {
488 /*
489 * found a block number match. If the range doesn't
490 * match, the only way this is allowed is if the buffer
491 * in the cache is stale and the transaction that made
492 * it stale has not yet committed. i.e. we are
493 * reallocating a busy extent. Skip this buffer and
494 * continue searching for an exact match.
495 */
496 ASSERT(bp->b_flags & XBF_STALE);
497 return 1;
498 }
499 return 0;
500 }
501
502 static const struct rhashtable_params xfs_buf_hash_params = {
503 .min_size = 32, /* empty AGs have minimal footprint */
504 .nelem_hint = 16,
505 .key_len = sizeof(xfs_daddr_t),
506 .key_offset = offsetof(struct xfs_buf, b_bn),
507 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
508 .automatic_shrinking = true,
509 .obj_cmpfn = _xfs_buf_obj_cmp,
510 };
511
512 int
xfs_buf_hash_init(struct xfs_perag * pag)513 xfs_buf_hash_init(
514 struct xfs_perag *pag)
515 {
516 spin_lock_init(&pag->pag_buf_lock);
517 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
518 }
519
520 void
xfs_buf_hash_destroy(struct xfs_perag * pag)521 xfs_buf_hash_destroy(
522 struct xfs_perag *pag)
523 {
524 rhashtable_destroy(&pag->pag_buf_hash);
525 }
526
527 /*
528 * Look up a buffer in the buffer cache and return it referenced and locked
529 * in @found_bp.
530 *
531 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
532 * cache.
533 *
534 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
535 * -EAGAIN if we fail to lock it.
536 *
537 * Return values are:
538 * -EFSCORRUPTED if have been supplied with an invalid address
539 * -EAGAIN on trylock failure
540 * -ENOENT if we fail to find a match and @new_bp was NULL
541 * 0, with @found_bp:
542 * - @new_bp if we inserted it into the cache
543 * - the buffer we found and locked.
544 */
545 static int
xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf * new_bp,struct xfs_buf ** found_bp)546 xfs_buf_find(
547 struct xfs_buftarg *btp,
548 struct xfs_buf_map *map,
549 int nmaps,
550 xfs_buf_flags_t flags,
551 struct xfs_buf *new_bp,
552 struct xfs_buf **found_bp)
553 {
554 struct xfs_perag *pag;
555 xfs_buf_t *bp;
556 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
557 xfs_daddr_t eofs;
558 int i;
559
560 *found_bp = NULL;
561
562 for (i = 0; i < nmaps; i++)
563 cmap.bm_len += map[i].bm_len;
564
565 /* Check for IOs smaller than the sector size / not sector aligned */
566 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
567 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
568
569 /*
570 * Corrupted block numbers can get through to here, unfortunately, so we
571 * have to check that the buffer falls within the filesystem bounds.
572 */
573 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
574 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
575 xfs_alert(btp->bt_mount,
576 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
577 __func__, cmap.bm_bn, eofs);
578 WARN_ON(1);
579 return -EFSCORRUPTED;
580 }
581
582 pag = xfs_perag_get(btp->bt_mount,
583 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
584
585 spin_lock(&pag->pag_buf_lock);
586 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
587 xfs_buf_hash_params);
588 if (bp) {
589 atomic_inc(&bp->b_hold);
590 goto found;
591 }
592
593 /* No match found */
594 if (!new_bp) {
595 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
596 spin_unlock(&pag->pag_buf_lock);
597 xfs_perag_put(pag);
598 return -ENOENT;
599 }
600
601 /* the buffer keeps the perag reference until it is freed */
602 new_bp->b_pag = pag;
603 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
604 xfs_buf_hash_params);
605 spin_unlock(&pag->pag_buf_lock);
606 *found_bp = new_bp;
607 return 0;
608
609 found:
610 spin_unlock(&pag->pag_buf_lock);
611 xfs_perag_put(pag);
612
613 if (!xfs_buf_trylock(bp)) {
614 if (flags & XBF_TRYLOCK) {
615 xfs_buf_rele(bp);
616 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
617 return -EAGAIN;
618 }
619 xfs_buf_lock(bp);
620 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
621 }
622
623 /*
624 * if the buffer is stale, clear all the external state associated with
625 * it. We need to keep flags such as how we allocated the buffer memory
626 * intact here.
627 */
628 if (bp->b_flags & XBF_STALE) {
629 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
630 ASSERT(bp->b_iodone == NULL);
631 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
632 bp->b_ops = NULL;
633 }
634
635 trace_xfs_buf_find(bp, flags, _RET_IP_);
636 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
637 *found_bp = bp;
638 return 0;
639 }
640
641 struct xfs_buf *
xfs_buf_incore(struct xfs_buftarg * target,xfs_daddr_t blkno,size_t numblks,xfs_buf_flags_t flags)642 xfs_buf_incore(
643 struct xfs_buftarg *target,
644 xfs_daddr_t blkno,
645 size_t numblks,
646 xfs_buf_flags_t flags)
647 {
648 struct xfs_buf *bp;
649 int error;
650 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
651
652 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
653 if (error)
654 return NULL;
655 return bp;
656 }
657
658 /*
659 * Assembles a buffer covering the specified range. The code is optimised for
660 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
661 * more hits than misses.
662 */
663 struct xfs_buf *
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)664 xfs_buf_get_map(
665 struct xfs_buftarg *target,
666 struct xfs_buf_map *map,
667 int nmaps,
668 xfs_buf_flags_t flags)
669 {
670 struct xfs_buf *bp;
671 struct xfs_buf *new_bp;
672 int error = 0;
673
674 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
675
676 switch (error) {
677 case 0:
678 /* cache hit */
679 goto found;
680 case -EAGAIN:
681 /* cache hit, trylock failure, caller handles failure */
682 ASSERT(flags & XBF_TRYLOCK);
683 return NULL;
684 case -ENOENT:
685 /* cache miss, go for insert */
686 break;
687 case -EFSCORRUPTED:
688 default:
689 /*
690 * None of the higher layers understand failure types
691 * yet, so return NULL to signal a fatal lookup error.
692 */
693 return NULL;
694 }
695
696 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
697 if (unlikely(!new_bp))
698 return NULL;
699
700 error = xfs_buf_allocate_memory(new_bp, flags);
701 if (error) {
702 xfs_buf_free(new_bp);
703 return NULL;
704 }
705
706 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
707 if (error) {
708 xfs_buf_free(new_bp);
709 return NULL;
710 }
711
712 if (bp != new_bp)
713 xfs_buf_free(new_bp);
714
715 found:
716 if (!bp->b_addr) {
717 error = _xfs_buf_map_pages(bp, flags);
718 if (unlikely(error)) {
719 xfs_warn(target->bt_mount,
720 "%s: failed to map pagesn", __func__);
721 xfs_buf_relse(bp);
722 return NULL;
723 }
724 }
725
726 /*
727 * Clear b_error if this is a lookup from a caller that doesn't expect
728 * valid data to be found in the buffer.
729 */
730 if (!(flags & XBF_READ))
731 xfs_buf_ioerror(bp, 0);
732
733 XFS_STATS_INC(target->bt_mount, xb_get);
734 trace_xfs_buf_get(bp, flags, _RET_IP_);
735 return bp;
736 }
737
738 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)739 _xfs_buf_read(
740 xfs_buf_t *bp,
741 xfs_buf_flags_t flags)
742 {
743 ASSERT(!(flags & XBF_WRITE));
744 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
745
746 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
747 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
748
749 return xfs_buf_submit(bp);
750 }
751
752 xfs_buf_t *
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,const struct xfs_buf_ops * ops)753 xfs_buf_read_map(
754 struct xfs_buftarg *target,
755 struct xfs_buf_map *map,
756 int nmaps,
757 xfs_buf_flags_t flags,
758 const struct xfs_buf_ops *ops)
759 {
760 struct xfs_buf *bp;
761
762 flags |= XBF_READ;
763
764 bp = xfs_buf_get_map(target, map, nmaps, flags);
765 if (bp) {
766 trace_xfs_buf_read(bp, flags, _RET_IP_);
767
768 if (!(bp->b_flags & XBF_DONE)) {
769 XFS_STATS_INC(target->bt_mount, xb_get_read);
770 bp->b_ops = ops;
771 _xfs_buf_read(bp, flags);
772 } else if (flags & XBF_ASYNC) {
773 /*
774 * Read ahead call which is already satisfied,
775 * drop the buffer
776 */
777 xfs_buf_relse(bp);
778 return NULL;
779 } else {
780 /* We do not want read in the flags */
781 bp->b_flags &= ~XBF_READ;
782 }
783 }
784
785 return bp;
786 }
787
788 /*
789 * If we are not low on memory then do the readahead in a deadlock
790 * safe manner.
791 */
792 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)793 xfs_buf_readahead_map(
794 struct xfs_buftarg *target,
795 struct xfs_buf_map *map,
796 int nmaps,
797 const struct xfs_buf_ops *ops)
798 {
799 if (bdi_read_congested(target->bt_bdev->bd_bdi))
800 return;
801
802 xfs_buf_read_map(target, map, nmaps,
803 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
804 }
805
806 /*
807 * Read an uncached buffer from disk. Allocates and returns a locked
808 * buffer containing the disk contents or nothing.
809 */
810 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)811 xfs_buf_read_uncached(
812 struct xfs_buftarg *target,
813 xfs_daddr_t daddr,
814 size_t numblks,
815 int flags,
816 struct xfs_buf **bpp,
817 const struct xfs_buf_ops *ops)
818 {
819 struct xfs_buf *bp;
820
821 *bpp = NULL;
822
823 bp = xfs_buf_get_uncached(target, numblks, flags);
824 if (!bp)
825 return -ENOMEM;
826
827 /* set up the buffer for a read IO */
828 ASSERT(bp->b_map_count == 1);
829 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
830 bp->b_maps[0].bm_bn = daddr;
831 bp->b_flags |= XBF_READ;
832 bp->b_ops = ops;
833
834 xfs_buf_submit(bp);
835 if (bp->b_error) {
836 int error = bp->b_error;
837 xfs_buf_relse(bp);
838 return error;
839 }
840
841 *bpp = bp;
842 return 0;
843 }
844
845 /*
846 * Return a buffer allocated as an empty buffer and associated to external
847 * memory via xfs_buf_associate_memory() back to it's empty state.
848 */
849 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t numblks)850 xfs_buf_set_empty(
851 struct xfs_buf *bp,
852 size_t numblks)
853 {
854 if (bp->b_pages)
855 _xfs_buf_free_pages(bp);
856
857 bp->b_pages = NULL;
858 bp->b_page_count = 0;
859 bp->b_addr = NULL;
860 bp->b_length = numblks;
861 bp->b_io_length = numblks;
862
863 ASSERT(bp->b_map_count == 1);
864 bp->b_bn = XFS_BUF_DADDR_NULL;
865 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
866 bp->b_maps[0].bm_len = bp->b_length;
867 }
868
869 static inline struct page *
mem_to_page(void * addr)870 mem_to_page(
871 void *addr)
872 {
873 if ((!is_vmalloc_addr(addr))) {
874 return virt_to_page(addr);
875 } else {
876 return vmalloc_to_page(addr);
877 }
878 }
879
880 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)881 xfs_buf_associate_memory(
882 xfs_buf_t *bp,
883 void *mem,
884 size_t len)
885 {
886 int rval;
887 int i = 0;
888 unsigned long pageaddr;
889 unsigned long offset;
890 size_t buflen;
891 int page_count;
892
893 pageaddr = (unsigned long)mem & PAGE_MASK;
894 offset = (unsigned long)mem - pageaddr;
895 buflen = PAGE_ALIGN(len + offset);
896 page_count = buflen >> PAGE_SHIFT;
897
898 /* Free any previous set of page pointers */
899 if (bp->b_pages)
900 _xfs_buf_free_pages(bp);
901
902 bp->b_pages = NULL;
903 bp->b_addr = mem;
904
905 rval = _xfs_buf_get_pages(bp, page_count);
906 if (rval)
907 return rval;
908
909 bp->b_offset = offset;
910
911 for (i = 0; i < bp->b_page_count; i++) {
912 bp->b_pages[i] = mem_to_page((void *)pageaddr);
913 pageaddr += PAGE_SIZE;
914 }
915
916 bp->b_io_length = BTOBB(len);
917 bp->b_length = BTOBB(buflen);
918
919 return 0;
920 }
921
922 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags)923 xfs_buf_get_uncached(
924 struct xfs_buftarg *target,
925 size_t numblks,
926 int flags)
927 {
928 unsigned long page_count;
929 int error, i;
930 struct xfs_buf *bp;
931 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
932
933 /* flags might contain irrelevant bits, pass only what we care about */
934 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
935 if (unlikely(bp == NULL))
936 goto fail;
937
938 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
939 error = _xfs_buf_get_pages(bp, page_count);
940 if (error)
941 goto fail_free_buf;
942
943 for (i = 0; i < page_count; i++) {
944 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
945 if (!bp->b_pages[i])
946 goto fail_free_mem;
947 }
948 bp->b_flags |= _XBF_PAGES;
949
950 error = _xfs_buf_map_pages(bp, 0);
951 if (unlikely(error)) {
952 xfs_warn(target->bt_mount,
953 "%s: failed to map pages", __func__);
954 goto fail_free_mem;
955 }
956
957 trace_xfs_buf_get_uncached(bp, _RET_IP_);
958 return bp;
959
960 fail_free_mem:
961 while (--i >= 0)
962 __free_page(bp->b_pages[i]);
963 _xfs_buf_free_pages(bp);
964 fail_free_buf:
965 xfs_buf_free_maps(bp);
966 kmem_zone_free(xfs_buf_zone, bp);
967 fail:
968 return NULL;
969 }
970
971 /*
972 * Increment reference count on buffer, to hold the buffer concurrently
973 * with another thread which may release (free) the buffer asynchronously.
974 * Must hold the buffer already to call this function.
975 */
976 void
xfs_buf_hold(xfs_buf_t * bp)977 xfs_buf_hold(
978 xfs_buf_t *bp)
979 {
980 trace_xfs_buf_hold(bp, _RET_IP_);
981 atomic_inc(&bp->b_hold);
982 }
983
984 /*
985 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
986 * placed on LRU or freed (depending on b_lru_ref).
987 */
988 void
xfs_buf_rele(xfs_buf_t * bp)989 xfs_buf_rele(
990 xfs_buf_t *bp)
991 {
992 struct xfs_perag *pag = bp->b_pag;
993 bool release;
994 bool freebuf = false;
995
996 trace_xfs_buf_rele(bp, _RET_IP_);
997
998 if (!pag) {
999 ASSERT(list_empty(&bp->b_lru));
1000 if (atomic_dec_and_test(&bp->b_hold)) {
1001 xfs_buf_ioacct_dec(bp);
1002 xfs_buf_free(bp);
1003 }
1004 return;
1005 }
1006
1007 ASSERT(atomic_read(&bp->b_hold) > 0);
1008
1009 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1010 spin_lock(&bp->b_lock);
1011 if (!release) {
1012 /*
1013 * Drop the in-flight state if the buffer is already on the LRU
1014 * and it holds the only reference. This is racy because we
1015 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1016 * ensures the decrement occurs only once per-buf.
1017 */
1018 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1019 __xfs_buf_ioacct_dec(bp);
1020 goto out_unlock;
1021 }
1022
1023 /* the last reference has been dropped ... */
1024 __xfs_buf_ioacct_dec(bp);
1025 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1026 /*
1027 * If the buffer is added to the LRU take a new reference to the
1028 * buffer for the LRU and clear the (now stale) dispose list
1029 * state flag
1030 */
1031 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1032 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1033 atomic_inc(&bp->b_hold);
1034 }
1035 spin_unlock(&pag->pag_buf_lock);
1036 } else {
1037 /*
1038 * most of the time buffers will already be removed from the
1039 * LRU, so optimise that case by checking for the
1040 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1041 * was on was the disposal list
1042 */
1043 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1044 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1045 } else {
1046 ASSERT(list_empty(&bp->b_lru));
1047 }
1048
1049 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1050 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1051 xfs_buf_hash_params);
1052 spin_unlock(&pag->pag_buf_lock);
1053 xfs_perag_put(pag);
1054 freebuf = true;
1055 }
1056
1057 out_unlock:
1058 spin_unlock(&bp->b_lock);
1059
1060 if (freebuf)
1061 xfs_buf_free(bp);
1062 }
1063
1064
1065 /*
1066 * Lock a buffer object, if it is not already locked.
1067 *
1068 * If we come across a stale, pinned, locked buffer, we know that we are
1069 * being asked to lock a buffer that has been reallocated. Because it is
1070 * pinned, we know that the log has not been pushed to disk and hence it
1071 * will still be locked. Rather than continuing to have trylock attempts
1072 * fail until someone else pushes the log, push it ourselves before
1073 * returning. This means that the xfsaild will not get stuck trying
1074 * to push on stale inode buffers.
1075 */
1076 int
xfs_buf_trylock(struct xfs_buf * bp)1077 xfs_buf_trylock(
1078 struct xfs_buf *bp)
1079 {
1080 int locked;
1081
1082 locked = down_trylock(&bp->b_sema) == 0;
1083 if (locked)
1084 trace_xfs_buf_trylock(bp, _RET_IP_);
1085 else
1086 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1087 return locked;
1088 }
1089
1090 /*
1091 * Lock a buffer object.
1092 *
1093 * If we come across a stale, pinned, locked buffer, we know that we
1094 * are being asked to lock a buffer that has been reallocated. Because
1095 * it is pinned, we know that the log has not been pushed to disk and
1096 * hence it will still be locked. Rather than sleeping until someone
1097 * else pushes the log, push it ourselves before trying to get the lock.
1098 */
1099 void
xfs_buf_lock(struct xfs_buf * bp)1100 xfs_buf_lock(
1101 struct xfs_buf *bp)
1102 {
1103 trace_xfs_buf_lock(bp, _RET_IP_);
1104
1105 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1106 xfs_log_force(bp->b_target->bt_mount, 0);
1107 down(&bp->b_sema);
1108
1109 trace_xfs_buf_lock_done(bp, _RET_IP_);
1110 }
1111
1112 void
xfs_buf_unlock(struct xfs_buf * bp)1113 xfs_buf_unlock(
1114 struct xfs_buf *bp)
1115 {
1116 ASSERT(xfs_buf_islocked(bp));
1117
1118 up(&bp->b_sema);
1119 trace_xfs_buf_unlock(bp, _RET_IP_);
1120 }
1121
1122 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)1123 xfs_buf_wait_unpin(
1124 xfs_buf_t *bp)
1125 {
1126 DECLARE_WAITQUEUE (wait, current);
1127
1128 if (atomic_read(&bp->b_pin_count) == 0)
1129 return;
1130
1131 add_wait_queue(&bp->b_waiters, &wait);
1132 for (;;) {
1133 set_current_state(TASK_UNINTERRUPTIBLE);
1134 if (atomic_read(&bp->b_pin_count) == 0)
1135 break;
1136 io_schedule();
1137 }
1138 remove_wait_queue(&bp->b_waiters, &wait);
1139 set_current_state(TASK_RUNNING);
1140 }
1141
1142 /*
1143 * Buffer Utility Routines
1144 */
1145
1146 void
xfs_buf_ioend(struct xfs_buf * bp)1147 xfs_buf_ioend(
1148 struct xfs_buf *bp)
1149 {
1150 bool read = bp->b_flags & XBF_READ;
1151
1152 trace_xfs_buf_iodone(bp, _RET_IP_);
1153
1154 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1155
1156 /*
1157 * Pull in IO completion errors now. We are guaranteed to be running
1158 * single threaded, so we don't need the lock to read b_io_error.
1159 */
1160 if (!bp->b_error && bp->b_io_error)
1161 xfs_buf_ioerror(bp, bp->b_io_error);
1162
1163 /* Only validate buffers that were read without errors */
1164 if (read && !bp->b_error && bp->b_ops) {
1165 ASSERT(!bp->b_iodone);
1166 bp->b_ops->verify_read(bp);
1167 }
1168
1169 if (!bp->b_error)
1170 bp->b_flags |= XBF_DONE;
1171
1172 if (bp->b_iodone)
1173 (*(bp->b_iodone))(bp);
1174 else if (bp->b_flags & XBF_ASYNC)
1175 xfs_buf_relse(bp);
1176 else
1177 complete(&bp->b_iowait);
1178 }
1179
1180 static void
xfs_buf_ioend_work(struct work_struct * work)1181 xfs_buf_ioend_work(
1182 struct work_struct *work)
1183 {
1184 struct xfs_buf *bp =
1185 container_of(work, xfs_buf_t, b_ioend_work);
1186
1187 xfs_buf_ioend(bp);
1188 }
1189
1190 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1191 xfs_buf_ioend_async(
1192 struct xfs_buf *bp)
1193 {
1194 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1195 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1196 }
1197
1198 void
__xfs_buf_ioerror(xfs_buf_t * bp,int error,xfs_failaddr_t failaddr)1199 __xfs_buf_ioerror(
1200 xfs_buf_t *bp,
1201 int error,
1202 xfs_failaddr_t failaddr)
1203 {
1204 ASSERT(error <= 0 && error >= -1000);
1205 bp->b_error = error;
1206 trace_xfs_buf_ioerror(bp, error, failaddr);
1207 }
1208
1209 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1210 xfs_buf_ioerror_alert(
1211 struct xfs_buf *bp,
1212 const char *func)
1213 {
1214 xfs_alert(bp->b_target->bt_mount,
1215 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1216 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1217 -bp->b_error);
1218 }
1219
1220 int
xfs_bwrite(struct xfs_buf * bp)1221 xfs_bwrite(
1222 struct xfs_buf *bp)
1223 {
1224 int error;
1225
1226 ASSERT(xfs_buf_islocked(bp));
1227
1228 bp->b_flags |= XBF_WRITE;
1229 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1230 XBF_WRITE_FAIL | XBF_DONE);
1231
1232 error = xfs_buf_submit(bp);
1233 if (error) {
1234 xfs_force_shutdown(bp->b_target->bt_mount,
1235 SHUTDOWN_META_IO_ERROR);
1236 }
1237 return error;
1238 }
1239
1240 static void
xfs_buf_bio_end_io(struct bio * bio)1241 xfs_buf_bio_end_io(
1242 struct bio *bio)
1243 {
1244 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1245
1246 /*
1247 * don't overwrite existing errors - otherwise we can lose errors on
1248 * buffers that require multiple bios to complete.
1249 */
1250 if (bio->bi_status) {
1251 int error = blk_status_to_errno(bio->bi_status);
1252
1253 cmpxchg(&bp->b_io_error, 0, error);
1254 }
1255
1256 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1257 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1258
1259 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1260 xfs_buf_ioend_async(bp);
1261 bio_put(bio);
1262 }
1263
1264 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op,int op_flags)1265 xfs_buf_ioapply_map(
1266 struct xfs_buf *bp,
1267 int map,
1268 int *buf_offset,
1269 int *count,
1270 int op,
1271 int op_flags)
1272 {
1273 int page_index;
1274 int total_nr_pages = bp->b_page_count;
1275 int nr_pages;
1276 struct bio *bio;
1277 sector_t sector = bp->b_maps[map].bm_bn;
1278 int size;
1279 int offset;
1280
1281 /* skip the pages in the buffer before the start offset */
1282 page_index = 0;
1283 offset = *buf_offset;
1284 while (offset >= PAGE_SIZE) {
1285 page_index++;
1286 offset -= PAGE_SIZE;
1287 }
1288
1289 /*
1290 * Limit the IO size to the length of the current vector, and update the
1291 * remaining IO count for the next time around.
1292 */
1293 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1294 *count -= size;
1295 *buf_offset += size;
1296
1297 next_chunk:
1298 atomic_inc(&bp->b_io_remaining);
1299 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1300
1301 bio = bio_alloc(GFP_NOIO, nr_pages);
1302 bio_set_dev(bio, bp->b_target->bt_bdev);
1303 bio->bi_iter.bi_sector = sector;
1304 bio->bi_end_io = xfs_buf_bio_end_io;
1305 bio->bi_private = bp;
1306 bio_set_op_attrs(bio, op, op_flags);
1307
1308 for (; size && nr_pages; nr_pages--, page_index++) {
1309 int rbytes, nbytes = PAGE_SIZE - offset;
1310
1311 if (nbytes > size)
1312 nbytes = size;
1313
1314 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1315 offset);
1316 if (rbytes < nbytes)
1317 break;
1318
1319 offset = 0;
1320 sector += BTOBB(nbytes);
1321 size -= nbytes;
1322 total_nr_pages--;
1323 }
1324
1325 if (likely(bio->bi_iter.bi_size)) {
1326 if (xfs_buf_is_vmapped(bp)) {
1327 flush_kernel_vmap_range(bp->b_addr,
1328 xfs_buf_vmap_len(bp));
1329 }
1330 submit_bio(bio);
1331 if (size)
1332 goto next_chunk;
1333 } else {
1334 /*
1335 * This is guaranteed not to be the last io reference count
1336 * because the caller (xfs_buf_submit) holds a count itself.
1337 */
1338 atomic_dec(&bp->b_io_remaining);
1339 xfs_buf_ioerror(bp, -EIO);
1340 bio_put(bio);
1341 }
1342
1343 }
1344
1345 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1346 _xfs_buf_ioapply(
1347 struct xfs_buf *bp)
1348 {
1349 struct blk_plug plug;
1350 int op;
1351 int op_flags = 0;
1352 int offset;
1353 int size;
1354 int i;
1355
1356 /*
1357 * Make sure we capture only current IO errors rather than stale errors
1358 * left over from previous use of the buffer (e.g. failed readahead).
1359 */
1360 bp->b_error = 0;
1361
1362 /*
1363 * Initialize the I/O completion workqueue if we haven't yet or the
1364 * submitter has not opted to specify a custom one.
1365 */
1366 if (!bp->b_ioend_wq)
1367 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1368
1369 if (bp->b_flags & XBF_WRITE) {
1370 op = REQ_OP_WRITE;
1371 if (bp->b_flags & XBF_SYNCIO)
1372 op_flags = REQ_SYNC;
1373 if (bp->b_flags & XBF_FUA)
1374 op_flags |= REQ_FUA;
1375 if (bp->b_flags & XBF_FLUSH)
1376 op_flags |= REQ_PREFLUSH;
1377
1378 /*
1379 * Run the write verifier callback function if it exists. If
1380 * this function fails it will mark the buffer with an error and
1381 * the IO should not be dispatched.
1382 */
1383 if (bp->b_ops) {
1384 bp->b_ops->verify_write(bp);
1385 if (bp->b_error) {
1386 xfs_force_shutdown(bp->b_target->bt_mount,
1387 SHUTDOWN_CORRUPT_INCORE);
1388 return;
1389 }
1390 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1391 struct xfs_mount *mp = bp->b_target->bt_mount;
1392
1393 /*
1394 * non-crc filesystems don't attach verifiers during
1395 * log recovery, so don't warn for such filesystems.
1396 */
1397 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1398 xfs_warn(mp,
1399 "%s: no buf ops on daddr 0x%llx len %d",
1400 __func__, bp->b_bn, bp->b_length);
1401 xfs_hex_dump(bp->b_addr,
1402 XFS_CORRUPTION_DUMP_LEN);
1403 dump_stack();
1404 }
1405 }
1406 } else if (bp->b_flags & XBF_READ_AHEAD) {
1407 op = REQ_OP_READ;
1408 op_flags = REQ_RAHEAD;
1409 } else {
1410 op = REQ_OP_READ;
1411 }
1412
1413 /* we only use the buffer cache for meta-data */
1414 op_flags |= REQ_META;
1415
1416 /*
1417 * Walk all the vectors issuing IO on them. Set up the initial offset
1418 * into the buffer and the desired IO size before we start -
1419 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1420 * subsequent call.
1421 */
1422 offset = bp->b_offset;
1423 size = BBTOB(bp->b_io_length);
1424 blk_start_plug(&plug);
1425 for (i = 0; i < bp->b_map_count; i++) {
1426 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1427 if (bp->b_error)
1428 break;
1429 if (size <= 0)
1430 break; /* all done */
1431 }
1432 blk_finish_plug(&plug);
1433 }
1434
1435 /*
1436 * Wait for I/O completion of a sync buffer and return the I/O error code.
1437 */
1438 static int
xfs_buf_iowait(struct xfs_buf * bp)1439 xfs_buf_iowait(
1440 struct xfs_buf *bp)
1441 {
1442 ASSERT(!(bp->b_flags & XBF_ASYNC));
1443
1444 trace_xfs_buf_iowait(bp, _RET_IP_);
1445 wait_for_completion(&bp->b_iowait);
1446 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1447
1448 return bp->b_error;
1449 }
1450
1451 /*
1452 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1453 * the buffer lock ownership and the current reference to the IO. It is not
1454 * safe to reference the buffer after a call to this function unless the caller
1455 * holds an additional reference itself.
1456 */
1457 int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1458 __xfs_buf_submit(
1459 struct xfs_buf *bp,
1460 bool wait)
1461 {
1462 int error = 0;
1463
1464 trace_xfs_buf_submit(bp, _RET_IP_);
1465
1466 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1467
1468 /* on shutdown we stale and complete the buffer immediately */
1469 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1470 xfs_buf_ioerror(bp, -EIO);
1471 bp->b_flags &= ~XBF_DONE;
1472 xfs_buf_stale(bp);
1473 if (bp->b_flags & XBF_ASYNC)
1474 xfs_buf_ioend(bp);
1475 return -EIO;
1476 }
1477
1478 /*
1479 * Grab a reference so the buffer does not go away underneath us. For
1480 * async buffers, I/O completion drops the callers reference, which
1481 * could occur before submission returns.
1482 */
1483 xfs_buf_hold(bp);
1484
1485 if (bp->b_flags & XBF_WRITE)
1486 xfs_buf_wait_unpin(bp);
1487
1488 /* clear the internal error state to avoid spurious errors */
1489 bp->b_io_error = 0;
1490
1491 /*
1492 * Set the count to 1 initially, this will stop an I/O completion
1493 * callout which happens before we have started all the I/O from calling
1494 * xfs_buf_ioend too early.
1495 */
1496 atomic_set(&bp->b_io_remaining, 1);
1497 if (bp->b_flags & XBF_ASYNC)
1498 xfs_buf_ioacct_inc(bp);
1499 _xfs_buf_ioapply(bp);
1500
1501 /*
1502 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1503 * reference we took above. If we drop it to zero, run completion so
1504 * that we don't return to the caller with completion still pending.
1505 */
1506 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1507 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1508 xfs_buf_ioend(bp);
1509 else
1510 xfs_buf_ioend_async(bp);
1511 }
1512
1513 if (wait)
1514 error = xfs_buf_iowait(bp);
1515
1516 /*
1517 * Release the hold that keeps the buffer referenced for the entire
1518 * I/O. Note that if the buffer is async, it is not safe to reference
1519 * after this release.
1520 */
1521 xfs_buf_rele(bp);
1522 return error;
1523 }
1524
1525 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1526 xfs_buf_offset(
1527 struct xfs_buf *bp,
1528 size_t offset)
1529 {
1530 struct page *page;
1531
1532 if (bp->b_addr)
1533 return bp->b_addr + offset;
1534
1535 offset += bp->b_offset;
1536 page = bp->b_pages[offset >> PAGE_SHIFT];
1537 return page_address(page) + (offset & (PAGE_SIZE-1));
1538 }
1539
1540 /*
1541 * Move data into or out of a buffer.
1542 */
1543 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1544 xfs_buf_iomove(
1545 xfs_buf_t *bp, /* buffer to process */
1546 size_t boff, /* starting buffer offset */
1547 size_t bsize, /* length to copy */
1548 void *data, /* data address */
1549 xfs_buf_rw_t mode) /* read/write/zero flag */
1550 {
1551 size_t bend;
1552
1553 bend = boff + bsize;
1554 while (boff < bend) {
1555 struct page *page;
1556 int page_index, page_offset, csize;
1557
1558 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1559 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1560 page = bp->b_pages[page_index];
1561 csize = min_t(size_t, PAGE_SIZE - page_offset,
1562 BBTOB(bp->b_io_length) - boff);
1563
1564 ASSERT((csize + page_offset) <= PAGE_SIZE);
1565
1566 switch (mode) {
1567 case XBRW_ZERO:
1568 memset(page_address(page) + page_offset, 0, csize);
1569 break;
1570 case XBRW_READ:
1571 memcpy(data, page_address(page) + page_offset, csize);
1572 break;
1573 case XBRW_WRITE:
1574 memcpy(page_address(page) + page_offset, data, csize);
1575 }
1576
1577 boff += csize;
1578 data += csize;
1579 }
1580 }
1581
1582 /*
1583 * Handling of buffer targets (buftargs).
1584 */
1585
1586 /*
1587 * Wait for any bufs with callbacks that have been submitted but have not yet
1588 * returned. These buffers will have an elevated hold count, so wait on those
1589 * while freeing all the buffers only held by the LRU.
1590 */
1591 static enum lru_status
xfs_buftarg_wait_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1592 xfs_buftarg_wait_rele(
1593 struct list_head *item,
1594 struct list_lru_one *lru,
1595 spinlock_t *lru_lock,
1596 void *arg)
1597
1598 {
1599 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1600 struct list_head *dispose = arg;
1601
1602 if (atomic_read(&bp->b_hold) > 1) {
1603 /* need to wait, so skip it this pass */
1604 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1605 return LRU_SKIP;
1606 }
1607 if (!spin_trylock(&bp->b_lock))
1608 return LRU_SKIP;
1609
1610 /*
1611 * clear the LRU reference count so the buffer doesn't get
1612 * ignored in xfs_buf_rele().
1613 */
1614 atomic_set(&bp->b_lru_ref, 0);
1615 bp->b_state |= XFS_BSTATE_DISPOSE;
1616 list_lru_isolate_move(lru, item, dispose);
1617 spin_unlock(&bp->b_lock);
1618 return LRU_REMOVED;
1619 }
1620
1621 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1622 xfs_wait_buftarg(
1623 struct xfs_buftarg *btp)
1624 {
1625 LIST_HEAD(dispose);
1626 int loop = 0;
1627
1628 /*
1629 * First wait on the buftarg I/O count for all in-flight buffers to be
1630 * released. This is critical as new buffers do not make the LRU until
1631 * they are released.
1632 *
1633 * Next, flush the buffer workqueue to ensure all completion processing
1634 * has finished. Just waiting on buffer locks is not sufficient for
1635 * async IO as the reference count held over IO is not released until
1636 * after the buffer lock is dropped. Hence we need to ensure here that
1637 * all reference counts have been dropped before we start walking the
1638 * LRU list.
1639 */
1640 while (percpu_counter_sum(&btp->bt_io_count))
1641 delay(100);
1642 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1643
1644 /* loop until there is nothing left on the lru list. */
1645 while (list_lru_count(&btp->bt_lru)) {
1646 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1647 &dispose, LONG_MAX);
1648
1649 while (!list_empty(&dispose)) {
1650 struct xfs_buf *bp;
1651 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1652 list_del_init(&bp->b_lru);
1653 if (bp->b_flags & XBF_WRITE_FAIL) {
1654 xfs_alert(btp->bt_mount,
1655 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1656 (long long)bp->b_bn);
1657 xfs_alert(btp->bt_mount,
1658 "Please run xfs_repair to determine the extent of the problem.");
1659 }
1660 xfs_buf_rele(bp);
1661 }
1662 if (loop++ != 0)
1663 delay(100);
1664 }
1665 }
1666
1667 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1668 xfs_buftarg_isolate(
1669 struct list_head *item,
1670 struct list_lru_one *lru,
1671 spinlock_t *lru_lock,
1672 void *arg)
1673 {
1674 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1675 struct list_head *dispose = arg;
1676
1677 /*
1678 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1679 * If we fail to get the lock, just skip it.
1680 */
1681 if (!spin_trylock(&bp->b_lock))
1682 return LRU_SKIP;
1683 /*
1684 * Decrement the b_lru_ref count unless the value is already
1685 * zero. If the value is already zero, we need to reclaim the
1686 * buffer, otherwise it gets another trip through the LRU.
1687 */
1688 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1689 spin_unlock(&bp->b_lock);
1690 return LRU_ROTATE;
1691 }
1692
1693 bp->b_state |= XFS_BSTATE_DISPOSE;
1694 list_lru_isolate_move(lru, item, dispose);
1695 spin_unlock(&bp->b_lock);
1696 return LRU_REMOVED;
1697 }
1698
1699 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1700 xfs_buftarg_shrink_scan(
1701 struct shrinker *shrink,
1702 struct shrink_control *sc)
1703 {
1704 struct xfs_buftarg *btp = container_of(shrink,
1705 struct xfs_buftarg, bt_shrinker);
1706 LIST_HEAD(dispose);
1707 unsigned long freed;
1708
1709 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1710 xfs_buftarg_isolate, &dispose);
1711
1712 while (!list_empty(&dispose)) {
1713 struct xfs_buf *bp;
1714 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1715 list_del_init(&bp->b_lru);
1716 xfs_buf_rele(bp);
1717 }
1718
1719 return freed;
1720 }
1721
1722 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1723 xfs_buftarg_shrink_count(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1726 {
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
1729 return list_lru_shrink_count(&btp->bt_lru, sc);
1730 }
1731
1732 void
xfs_free_buftarg(struct xfs_buftarg * btp)1733 xfs_free_buftarg(
1734 struct xfs_buftarg *btp)
1735 {
1736 unregister_shrinker(&btp->bt_shrinker);
1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 percpu_counter_destroy(&btp->bt_io_count);
1739 list_lru_destroy(&btp->bt_lru);
1740
1741 xfs_blkdev_issue_flush(btp);
1742
1743 kmem_free(btp);
1744 }
1745
1746 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1747 xfs_setsize_buftarg(
1748 xfs_buftarg_t *btp,
1749 unsigned int sectorsize)
1750 {
1751 /* Set up metadata sector size info */
1752 btp->bt_meta_sectorsize = sectorsize;
1753 btp->bt_meta_sectormask = sectorsize - 1;
1754
1755 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 xfs_warn(btp->bt_mount,
1757 "Cannot set_blocksize to %u on device %pg",
1758 sectorsize, btp->bt_bdev);
1759 return -EINVAL;
1760 }
1761
1762 /* Set up device logical sector size mask */
1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765
1766 return 0;
1767 }
1768
1769 /*
1770 * When allocating the initial buffer target we have not yet
1771 * read in the superblock, so don't know what sized sectors
1772 * are being used at this early stage. Play safe.
1773 */
1774 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1775 xfs_setsize_buftarg_early(
1776 xfs_buftarg_t *btp,
1777 struct block_device *bdev)
1778 {
1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780 }
1781
1782 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,struct dax_device * dax_dev)1783 xfs_alloc_buftarg(
1784 struct xfs_mount *mp,
1785 struct block_device *bdev,
1786 struct dax_device *dax_dev)
1787 {
1788 xfs_buftarg_t *btp;
1789
1790 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1791
1792 btp->bt_mount = mp;
1793 btp->bt_dev = bdev->bd_dev;
1794 btp->bt_bdev = bdev;
1795 btp->bt_daxdev = dax_dev;
1796
1797 if (xfs_setsize_buftarg_early(btp, bdev))
1798 goto error_free;
1799
1800 if (list_lru_init(&btp->bt_lru))
1801 goto error_free;
1802
1803 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1804 goto error_lru;
1805
1806 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1807 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1808 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1809 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1810 if (register_shrinker(&btp->bt_shrinker))
1811 goto error_pcpu;
1812 return btp;
1813
1814 error_pcpu:
1815 percpu_counter_destroy(&btp->bt_io_count);
1816 error_lru:
1817 list_lru_destroy(&btp->bt_lru);
1818 error_free:
1819 kmem_free(btp);
1820 return NULL;
1821 }
1822
1823 /*
1824 * Cancel a delayed write list.
1825 *
1826 * Remove each buffer from the list, clear the delwri queue flag and drop the
1827 * associated buffer reference.
1828 */
1829 void
xfs_buf_delwri_cancel(struct list_head * list)1830 xfs_buf_delwri_cancel(
1831 struct list_head *list)
1832 {
1833 struct xfs_buf *bp;
1834
1835 while (!list_empty(list)) {
1836 bp = list_first_entry(list, struct xfs_buf, b_list);
1837
1838 xfs_buf_lock(bp);
1839 bp->b_flags &= ~_XBF_DELWRI_Q;
1840 list_del_init(&bp->b_list);
1841 xfs_buf_relse(bp);
1842 }
1843 }
1844
1845 /*
1846 * Add a buffer to the delayed write list.
1847 *
1848 * This queues a buffer for writeout if it hasn't already been. Note that
1849 * neither this routine nor the buffer list submission functions perform
1850 * any internal synchronization. It is expected that the lists are thread-local
1851 * to the callers.
1852 *
1853 * Returns true if we queued up the buffer, or false if it already had
1854 * been on the buffer list.
1855 */
1856 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1857 xfs_buf_delwri_queue(
1858 struct xfs_buf *bp,
1859 struct list_head *list)
1860 {
1861 ASSERT(xfs_buf_islocked(bp));
1862 ASSERT(!(bp->b_flags & XBF_READ));
1863
1864 /*
1865 * If the buffer is already marked delwri it already is queued up
1866 * by someone else for imediate writeout. Just ignore it in that
1867 * case.
1868 */
1869 if (bp->b_flags & _XBF_DELWRI_Q) {
1870 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1871 return false;
1872 }
1873
1874 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1875
1876 /*
1877 * If a buffer gets written out synchronously or marked stale while it
1878 * is on a delwri list we lazily remove it. To do this, the other party
1879 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1880 * It remains referenced and on the list. In a rare corner case it
1881 * might get readded to a delwri list after the synchronous writeout, in
1882 * which case we need just need to re-add the flag here.
1883 */
1884 bp->b_flags |= _XBF_DELWRI_Q;
1885 if (list_empty(&bp->b_list)) {
1886 atomic_inc(&bp->b_hold);
1887 list_add_tail(&bp->b_list, list);
1888 }
1889
1890 return true;
1891 }
1892
1893 /*
1894 * Compare function is more complex than it needs to be because
1895 * the return value is only 32 bits and we are doing comparisons
1896 * on 64 bit values
1897 */
1898 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1899 xfs_buf_cmp(
1900 void *priv,
1901 struct list_head *a,
1902 struct list_head *b)
1903 {
1904 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1905 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1906 xfs_daddr_t diff;
1907
1908 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1909 if (diff < 0)
1910 return -1;
1911 if (diff > 0)
1912 return 1;
1913 return 0;
1914 }
1915
1916 /*
1917 * Submit buffers for write. If wait_list is specified, the buffers are
1918 * submitted using sync I/O and placed on the wait list such that the caller can
1919 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1920 * at I/O completion time. In either case, buffers remain locked until I/O
1921 * completes and the buffer is released from the queue.
1922 */
1923 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)1924 xfs_buf_delwri_submit_buffers(
1925 struct list_head *buffer_list,
1926 struct list_head *wait_list)
1927 {
1928 struct xfs_buf *bp, *n;
1929 LIST_HEAD (submit_list);
1930 int pinned = 0;
1931 struct blk_plug plug;
1932
1933 list_sort(NULL, buffer_list, xfs_buf_cmp);
1934
1935 blk_start_plug(&plug);
1936 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1937 if (!wait_list) {
1938 if (xfs_buf_ispinned(bp)) {
1939 pinned++;
1940 continue;
1941 }
1942 if (!xfs_buf_trylock(bp))
1943 continue;
1944 } else {
1945 xfs_buf_lock(bp);
1946 }
1947
1948 /*
1949 * Someone else might have written the buffer synchronously or
1950 * marked it stale in the meantime. In that case only the
1951 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1952 * reference and remove it from the list here.
1953 */
1954 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1955 list_del_init(&bp->b_list);
1956 xfs_buf_relse(bp);
1957 continue;
1958 }
1959
1960 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1961
1962 /*
1963 * If we have a wait list, each buffer (and associated delwri
1964 * queue reference) transfers to it and is submitted
1965 * synchronously. Otherwise, drop the buffer from the delwri
1966 * queue and submit async.
1967 */
1968 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1969 bp->b_flags |= XBF_WRITE;
1970 if (wait_list) {
1971 bp->b_flags &= ~XBF_ASYNC;
1972 list_move_tail(&bp->b_list, wait_list);
1973 } else {
1974 bp->b_flags |= XBF_ASYNC;
1975 list_del_init(&bp->b_list);
1976 }
1977 __xfs_buf_submit(bp, false);
1978 }
1979 blk_finish_plug(&plug);
1980
1981 return pinned;
1982 }
1983
1984 /*
1985 * Write out a buffer list asynchronously.
1986 *
1987 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1988 * out and not wait for I/O completion on any of the buffers. This interface
1989 * is only safely useable for callers that can track I/O completion by higher
1990 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1991 * function.
1992 */
1993 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)1994 xfs_buf_delwri_submit_nowait(
1995 struct list_head *buffer_list)
1996 {
1997 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1998 }
1999
2000 /*
2001 * Write out a buffer list synchronously.
2002 *
2003 * This will take the @buffer_list, write all buffers out and wait for I/O
2004 * completion on all of the buffers. @buffer_list is consumed by the function,
2005 * so callers must have some other way of tracking buffers if they require such
2006 * functionality.
2007 */
2008 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2009 xfs_buf_delwri_submit(
2010 struct list_head *buffer_list)
2011 {
2012 LIST_HEAD (wait_list);
2013 int error = 0, error2;
2014 struct xfs_buf *bp;
2015
2016 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2017
2018 /* Wait for IO to complete. */
2019 while (!list_empty(&wait_list)) {
2020 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2021
2022 list_del_init(&bp->b_list);
2023
2024 /*
2025 * Wait on the locked buffer, check for errors and unlock and
2026 * release the delwri queue reference.
2027 */
2028 error2 = xfs_buf_iowait(bp);
2029 xfs_buf_relse(bp);
2030 if (!error)
2031 error = error2;
2032 }
2033
2034 return error;
2035 }
2036
2037 /*
2038 * Push a single buffer on a delwri queue.
2039 *
2040 * The purpose of this function is to submit a single buffer of a delwri queue
2041 * and return with the buffer still on the original queue. The waiting delwri
2042 * buffer submission infrastructure guarantees transfer of the delwri queue
2043 * buffer reference to a temporary wait list. We reuse this infrastructure to
2044 * transfer the buffer back to the original queue.
2045 *
2046 * Note the buffer transitions from the queued state, to the submitted and wait
2047 * listed state and back to the queued state during this call. The buffer
2048 * locking and queue management logic between _delwri_pushbuf() and
2049 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2050 * before returning.
2051 */
2052 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2053 xfs_buf_delwri_pushbuf(
2054 struct xfs_buf *bp,
2055 struct list_head *buffer_list)
2056 {
2057 LIST_HEAD (submit_list);
2058 int error;
2059
2060 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2061
2062 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2063
2064 /*
2065 * Isolate the buffer to a new local list so we can submit it for I/O
2066 * independently from the rest of the original list.
2067 */
2068 xfs_buf_lock(bp);
2069 list_move(&bp->b_list, &submit_list);
2070 xfs_buf_unlock(bp);
2071
2072 /*
2073 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2074 * the buffer on the wait list with the original reference. Rather than
2075 * bounce the buffer from a local wait list back to the original list
2076 * after I/O completion, reuse the original list as the wait list.
2077 */
2078 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2079
2080 /*
2081 * The buffer is now locked, under I/O and wait listed on the original
2082 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2083 * return with the buffer unlocked and on the original queue.
2084 */
2085 error = xfs_buf_iowait(bp);
2086 bp->b_flags |= _XBF_DELWRI_Q;
2087 xfs_buf_unlock(bp);
2088
2089 return error;
2090 }
2091
2092 int __init
xfs_buf_init(void)2093 xfs_buf_init(void)
2094 {
2095 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2096 KM_ZONE_HWALIGN, NULL);
2097 if (!xfs_buf_zone)
2098 goto out;
2099
2100 return 0;
2101
2102 out:
2103 return -ENOMEM;
2104 }
2105
2106 void
xfs_buf_terminate(void)2107 xfs_buf_terminate(void)
2108 {
2109 kmem_zone_destroy(xfs_buf_zone);
2110 }
2111
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2112 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2113 {
2114 /*
2115 * Set the lru reference count to 0 based on the error injection tag.
2116 * This allows userspace to disrupt buffer caching for debug/testing
2117 * purposes.
2118 */
2119 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2120 XFS_ERRTAG_BUF_LRU_REF))
2121 lru_ref = 0;
2122
2123 atomic_set(&bp->b_lru_ref, lru_ref);
2124 }
2125