1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24
25 /*
26 * Cursor allocation zone.
27 */
28 kmem_zone_t *xfs_btree_cur_zone;
29
30 /*
31 * Btree magic numbers.
32 */
33 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
34 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
35 XFS_FIBT_MAGIC, 0 },
36 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
37 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
38 XFS_REFC_CRC_MAGIC }
39 };
40
41 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)42 xfs_btree_magic(
43 int crc,
44 xfs_btnum_t btnum)
45 {
46 uint32_t magic = xfs_magics[crc][btnum];
47
48 /* Ensure we asked for crc for crc-only magics. */
49 ASSERT(magic != 0);
50 return magic;
51 }
52
53 /*
54 * Check a long btree block header. Return the address of the failing check,
55 * or NULL if everything is ok.
56 */
57 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)58 __xfs_btree_check_lblock(
59 struct xfs_btree_cur *cur,
60 struct xfs_btree_block *block,
61 int level,
62 struct xfs_buf *bp)
63 {
64 struct xfs_mount *mp = cur->bc_mp;
65 xfs_btnum_t btnum = cur->bc_btnum;
66 int crc = xfs_sb_version_hascrc(&mp->m_sb);
67
68 if (crc) {
69 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
70 return __this_address;
71 if (block->bb_u.l.bb_blkno !=
72 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
73 return __this_address;
74 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
75 return __this_address;
76 }
77
78 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
79 return __this_address;
80 if (be16_to_cpu(block->bb_level) != level)
81 return __this_address;
82 if (be16_to_cpu(block->bb_numrecs) >
83 cur->bc_ops->get_maxrecs(cur, level))
84 return __this_address;
85 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
86 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
87 level + 1))
88 return __this_address;
89 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
90 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
91 level + 1))
92 return __this_address;
93
94 return NULL;
95 }
96
97 /* Check a long btree block header. */
98 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)99 xfs_btree_check_lblock(
100 struct xfs_btree_cur *cur,
101 struct xfs_btree_block *block,
102 int level,
103 struct xfs_buf *bp)
104 {
105 struct xfs_mount *mp = cur->bc_mp;
106 xfs_failaddr_t fa;
107
108 fa = __xfs_btree_check_lblock(cur, block, level, bp);
109 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
110 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
111 if (bp)
112 trace_xfs_btree_corrupt(bp, _RET_IP_);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116 }
117
118 /*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128 {
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158 }
159
160 /* Check a short btree block header. */
161 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)162 xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167 {
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
173 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 return -EFSCORRUPTED;
177 }
178 return 0;
179 }
180
181 /*
182 * Debug routine: check that block header is ok.
183 */
184 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)185 xfs_btree_check_block(
186 struct xfs_btree_cur *cur, /* btree cursor */
187 struct xfs_btree_block *block, /* generic btree block pointer */
188 int level, /* level of the btree block */
189 struct xfs_buf *bp) /* buffer containing block, if any */
190 {
191 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
192 return xfs_btree_check_lblock(cur, block, level, bp);
193 else
194 return xfs_btree_check_sblock(cur, block, level, bp);
195 }
196
197 /* Check that this long pointer is valid and points within the fs. */
198 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)199 xfs_btree_check_lptr(
200 struct xfs_btree_cur *cur,
201 xfs_fsblock_t fsbno,
202 int level)
203 {
204 if (level <= 0)
205 return false;
206 return xfs_verify_fsbno(cur->bc_mp, fsbno);
207 }
208
209 /* Check that this short pointer is valid and points within the AG. */
210 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)211 xfs_btree_check_sptr(
212 struct xfs_btree_cur *cur,
213 xfs_agblock_t agbno,
214 int level)
215 {
216 if (level <= 0)
217 return false;
218 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno);
219 }
220
221 /*
222 * Check that a given (indexed) btree pointer at a certain level of a
223 * btree is valid and doesn't point past where it should.
224 */
225 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int index,int level)226 xfs_btree_check_ptr(
227 struct xfs_btree_cur *cur,
228 union xfs_btree_ptr *ptr,
229 int index,
230 int level)
231 {
232 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
233 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
234 level))
235 return 0;
236 xfs_err(cur->bc_mp,
237 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238 cur->bc_ino.ip->i_ino,
239 cur->bc_ino.whichfork, cur->bc_btnum,
240 level, index);
241 } else {
242 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
243 level))
244 return 0;
245 xfs_err(cur->bc_mp,
246 "AG %u: Corrupt btree %d pointer at level %d index %d.",
247 cur->bc_ag.agno, cur->bc_btnum,
248 level, index);
249 }
250
251 return -EFSCORRUPTED;
252 }
253
254 #ifdef DEBUG
255 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
256 #else
257 # define xfs_btree_debug_check_ptr(...) (0)
258 #endif
259
260 /*
261 * Calculate CRC on the whole btree block and stuff it into the
262 * long-form btree header.
263 *
264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265 * it into the buffer so recovery knows what the last modification was that made
266 * it to disk.
267 */
268 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)269 xfs_btree_lblock_calc_crc(
270 struct xfs_buf *bp)
271 {
272 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
273 struct xfs_buf_log_item *bip = bp->b_log_item;
274
275 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
276 return;
277 if (bip)
278 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
280 }
281
282 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)283 xfs_btree_lblock_verify_crc(
284 struct xfs_buf *bp)
285 {
286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
287 struct xfs_mount *mp = bp->b_mount;
288
289 if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
291 return false;
292 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
293 }
294
295 return true;
296 }
297
298 /*
299 * Calculate CRC on the whole btree block and stuff it into the
300 * short-form btree header.
301 *
302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303 * it into the buffer so recovery knows what the last modification was that made
304 * it to disk.
305 */
306 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)307 xfs_btree_sblock_calc_crc(
308 struct xfs_buf *bp)
309 {
310 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
311 struct xfs_buf_log_item *bip = bp->b_log_item;
312
313 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
314 return;
315 if (bip)
316 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
317 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
318 }
319
320 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)321 xfs_btree_sblock_verify_crc(
322 struct xfs_buf *bp)
323 {
324 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
325 struct xfs_mount *mp = bp->b_mount;
326
327 if (xfs_sb_version_hascrc(&mp->m_sb)) {
328 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
329 return false;
330 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
331 }
332
333 return true;
334 }
335
336 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)337 xfs_btree_free_block(
338 struct xfs_btree_cur *cur,
339 struct xfs_buf *bp)
340 {
341 int error;
342
343 error = cur->bc_ops->free_block(cur, bp);
344 if (!error) {
345 xfs_trans_binval(cur->bc_tp, bp);
346 XFS_BTREE_STATS_INC(cur, free);
347 }
348 return error;
349 }
350
351 /*
352 * Delete the btree cursor.
353 */
354 void
xfs_btree_del_cursor(xfs_btree_cur_t * cur,int error)355 xfs_btree_del_cursor(
356 xfs_btree_cur_t *cur, /* btree cursor */
357 int error) /* del because of error */
358 {
359 int i; /* btree level */
360
361 /*
362 * Clear the buffer pointers, and release the buffers.
363 * If we're doing this in the face of an error, we
364 * need to make sure to inspect all of the entries
365 * in the bc_bufs array for buffers to be unlocked.
366 * This is because some of the btree code works from
367 * level n down to 0, and if we get an error along
368 * the way we won't have initialized all the entries
369 * down to 0.
370 */
371 for (i = 0; i < cur->bc_nlevels; i++) {
372 if (cur->bc_bufs[i])
373 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
374 else if (!error)
375 break;
376 }
377 /*
378 * Can't free a bmap cursor without having dealt with the
379 * allocated indirect blocks' accounting.
380 */
381 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
382 cur->bc_ino.allocated == 0);
383 /*
384 * Free the cursor.
385 */
386 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
387 kmem_free((void *)cur->bc_ops);
388 kmem_cache_free(xfs_btree_cur_zone, cur);
389 }
390
391 /*
392 * Duplicate the btree cursor.
393 * Allocate a new one, copy the record, re-get the buffers.
394 */
395 int /* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)396 xfs_btree_dup_cursor(
397 xfs_btree_cur_t *cur, /* input cursor */
398 xfs_btree_cur_t **ncur) /* output cursor */
399 {
400 xfs_buf_t *bp; /* btree block's buffer pointer */
401 int error; /* error return value */
402 int i; /* level number of btree block */
403 xfs_mount_t *mp; /* mount structure for filesystem */
404 xfs_btree_cur_t *new; /* new cursor value */
405 xfs_trans_t *tp; /* transaction pointer, can be NULL */
406
407 tp = cur->bc_tp;
408 mp = cur->bc_mp;
409
410 /*
411 * Allocate a new cursor like the old one.
412 */
413 new = cur->bc_ops->dup_cursor(cur);
414
415 /*
416 * Copy the record currently in the cursor.
417 */
418 new->bc_rec = cur->bc_rec;
419
420 /*
421 * For each level current, re-get the buffer and copy the ptr value.
422 */
423 for (i = 0; i < new->bc_nlevels; i++) {
424 new->bc_ptrs[i] = cur->bc_ptrs[i];
425 new->bc_ra[i] = cur->bc_ra[i];
426 bp = cur->bc_bufs[i];
427 if (bp) {
428 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
429 XFS_BUF_ADDR(bp), mp->m_bsize,
430 0, &bp,
431 cur->bc_ops->buf_ops);
432 if (error) {
433 xfs_btree_del_cursor(new, error);
434 *ncur = NULL;
435 return error;
436 }
437 }
438 new->bc_bufs[i] = bp;
439 }
440 *ncur = new;
441 return 0;
442 }
443
444 /*
445 * XFS btree block layout and addressing:
446 *
447 * There are two types of blocks in the btree: leaf and non-leaf blocks.
448 *
449 * The leaf record start with a header then followed by records containing
450 * the values. A non-leaf block also starts with the same header, and
451 * then first contains lookup keys followed by an equal number of pointers
452 * to the btree blocks at the previous level.
453 *
454 * +--------+-------+-------+-------+-------+-------+-------+
455 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
456 * +--------+-------+-------+-------+-------+-------+-------+
457 *
458 * +--------+-------+-------+-------+-------+-------+-------+
459 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
460 * +--------+-------+-------+-------+-------+-------+-------+
461 *
462 * The header is called struct xfs_btree_block for reasons better left unknown
463 * and comes in different versions for short (32bit) and long (64bit) block
464 * pointers. The record and key structures are defined by the btree instances
465 * and opaque to the btree core. The block pointers are simple disk endian
466 * integers, available in a short (32bit) and long (64bit) variant.
467 *
468 * The helpers below calculate the offset of a given record, key or pointer
469 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
470 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
471 * inside the btree block is done using indices starting at one, not zero!
472 *
473 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
474 * overlapping intervals. In such a tree, records are still sorted lowest to
475 * highest and indexed by the smallest key value that refers to the record.
476 * However, nodes are different: each pointer has two associated keys -- one
477 * indexing the lowest key available in the block(s) below (the same behavior
478 * as the key in a regular btree) and another indexing the highest key
479 * available in the block(s) below. Because records are /not/ sorted by the
480 * highest key, all leaf block updates require us to compute the highest key
481 * that matches any record in the leaf and to recursively update the high keys
482 * in the nodes going further up in the tree, if necessary. Nodes look like
483 * this:
484 *
485 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
486 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
487 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
488 *
489 * To perform an interval query on an overlapped tree, perform the usual
490 * depth-first search and use the low and high keys to decide if we can skip
491 * that particular node. If a leaf node is reached, return the records that
492 * intersect the interval. Note that an interval query may return numerous
493 * entries. For a non-overlapped tree, simply search for the record associated
494 * with the lowest key and iterate forward until a non-matching record is
495 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
496 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
497 * more detail.
498 *
499 * Why do we care about overlapping intervals? Let's say you have a bunch of
500 * reverse mapping records on a reflink filesystem:
501 *
502 * 1: +- file A startblock B offset C length D -----------+
503 * 2: +- file E startblock F offset G length H --------------+
504 * 3: +- file I startblock F offset J length K --+
505 * 4: +- file L... --+
506 *
507 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
508 * we'd simply increment the length of record 1. But how do we find the record
509 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
510 * record 3 because the keys are ordered first by startblock. An interval
511 * query would return records 1 and 2 because they both overlap (B+D-1), and
512 * from that we can pick out record 1 as the appropriate left neighbor.
513 *
514 * In the non-overlapped case you can do a LE lookup and decrement the cursor
515 * because a record's interval must end before the next record.
516 */
517
518 /*
519 * Return size of the btree block header for this btree instance.
520 */
xfs_btree_block_len(struct xfs_btree_cur * cur)521 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
522 {
523 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
524 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
525 return XFS_BTREE_LBLOCK_CRC_LEN;
526 return XFS_BTREE_LBLOCK_LEN;
527 }
528 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
529 return XFS_BTREE_SBLOCK_CRC_LEN;
530 return XFS_BTREE_SBLOCK_LEN;
531 }
532
533 /*
534 * Return size of btree block pointers for this btree instance.
535 */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)536 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
537 {
538 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
539 sizeof(__be64) : sizeof(__be32);
540 }
541
542 /*
543 * Calculate offset of the n-th record in a btree block.
544 */
545 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)546 xfs_btree_rec_offset(
547 struct xfs_btree_cur *cur,
548 int n)
549 {
550 return xfs_btree_block_len(cur) +
551 (n - 1) * cur->bc_ops->rec_len;
552 }
553
554 /*
555 * Calculate offset of the n-th key in a btree block.
556 */
557 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)558 xfs_btree_key_offset(
559 struct xfs_btree_cur *cur,
560 int n)
561 {
562 return xfs_btree_block_len(cur) +
563 (n - 1) * cur->bc_ops->key_len;
564 }
565
566 /*
567 * Calculate offset of the n-th high key in a btree block.
568 */
569 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)570 xfs_btree_high_key_offset(
571 struct xfs_btree_cur *cur,
572 int n)
573 {
574 return xfs_btree_block_len(cur) +
575 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
576 }
577
578 /*
579 * Calculate offset of the n-th block pointer in a btree block.
580 */
581 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)582 xfs_btree_ptr_offset(
583 struct xfs_btree_cur *cur,
584 int n,
585 int level)
586 {
587 return xfs_btree_block_len(cur) +
588 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
589 (n - 1) * xfs_btree_ptr_len(cur);
590 }
591
592 /*
593 * Return a pointer to the n-th record in the btree block.
594 */
595 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)596 xfs_btree_rec_addr(
597 struct xfs_btree_cur *cur,
598 int n,
599 struct xfs_btree_block *block)
600 {
601 return (union xfs_btree_rec *)
602 ((char *)block + xfs_btree_rec_offset(cur, n));
603 }
604
605 /*
606 * Return a pointer to the n-th key in the btree block.
607 */
608 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)609 xfs_btree_key_addr(
610 struct xfs_btree_cur *cur,
611 int n,
612 struct xfs_btree_block *block)
613 {
614 return (union xfs_btree_key *)
615 ((char *)block + xfs_btree_key_offset(cur, n));
616 }
617
618 /*
619 * Return a pointer to the n-th high key in the btree block.
620 */
621 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)622 xfs_btree_high_key_addr(
623 struct xfs_btree_cur *cur,
624 int n,
625 struct xfs_btree_block *block)
626 {
627 return (union xfs_btree_key *)
628 ((char *)block + xfs_btree_high_key_offset(cur, n));
629 }
630
631 /*
632 * Return a pointer to the n-th block pointer in the btree block.
633 */
634 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)635 xfs_btree_ptr_addr(
636 struct xfs_btree_cur *cur,
637 int n,
638 struct xfs_btree_block *block)
639 {
640 int level = xfs_btree_get_level(block);
641
642 ASSERT(block->bb_level != 0);
643
644 return (union xfs_btree_ptr *)
645 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
646 }
647
648 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)649 xfs_btree_ifork_ptr(
650 struct xfs_btree_cur *cur)
651 {
652 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
653
654 if (cur->bc_flags & XFS_BTREE_STAGING)
655 return cur->bc_ino.ifake->if_fork;
656 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
657 }
658
659 /*
660 * Get the root block which is stored in the inode.
661 *
662 * For now this btree implementation assumes the btree root is always
663 * stored in the if_broot field of an inode fork.
664 */
665 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)666 xfs_btree_get_iroot(
667 struct xfs_btree_cur *cur)
668 {
669 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
670
671 return (struct xfs_btree_block *)ifp->if_broot;
672 }
673
674 /*
675 * Retrieve the block pointer from the cursor at the given level.
676 * This may be an inode btree root or from a buffer.
677 */
678 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)679 xfs_btree_get_block(
680 struct xfs_btree_cur *cur, /* btree cursor */
681 int level, /* level in btree */
682 struct xfs_buf **bpp) /* buffer containing the block */
683 {
684 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
685 (level == cur->bc_nlevels - 1)) {
686 *bpp = NULL;
687 return xfs_btree_get_iroot(cur);
688 }
689
690 *bpp = cur->bc_bufs[level];
691 return XFS_BUF_TO_BLOCK(*bpp);
692 }
693
694 /*
695 * Change the cursor to point to the first record at the given level.
696 * Other levels are unaffected.
697 */
698 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)699 xfs_btree_firstrec(
700 xfs_btree_cur_t *cur, /* btree cursor */
701 int level) /* level to change */
702 {
703 struct xfs_btree_block *block; /* generic btree block pointer */
704 xfs_buf_t *bp; /* buffer containing block */
705
706 /*
707 * Get the block pointer for this level.
708 */
709 block = xfs_btree_get_block(cur, level, &bp);
710 if (xfs_btree_check_block(cur, block, level, bp))
711 return 0;
712 /*
713 * It's empty, there is no such record.
714 */
715 if (!block->bb_numrecs)
716 return 0;
717 /*
718 * Set the ptr value to 1, that's the first record/key.
719 */
720 cur->bc_ptrs[level] = 1;
721 return 1;
722 }
723
724 /*
725 * Change the cursor to point to the last record in the current block
726 * at the given level. Other levels are unaffected.
727 */
728 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)729 xfs_btree_lastrec(
730 xfs_btree_cur_t *cur, /* btree cursor */
731 int level) /* level to change */
732 {
733 struct xfs_btree_block *block; /* generic btree block pointer */
734 xfs_buf_t *bp; /* buffer containing block */
735
736 /*
737 * Get the block pointer for this level.
738 */
739 block = xfs_btree_get_block(cur, level, &bp);
740 if (xfs_btree_check_block(cur, block, level, bp))
741 return 0;
742 /*
743 * It's empty, there is no such record.
744 */
745 if (!block->bb_numrecs)
746 return 0;
747 /*
748 * Set the ptr value to numrecs, that's the last record/key.
749 */
750 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
751 return 1;
752 }
753
754 /*
755 * Compute first and last byte offsets for the fields given.
756 * Interprets the offsets table, which contains struct field offsets.
757 */
758 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)759 xfs_btree_offsets(
760 int64_t fields, /* bitmask of fields */
761 const short *offsets, /* table of field offsets */
762 int nbits, /* number of bits to inspect */
763 int *first, /* output: first byte offset */
764 int *last) /* output: last byte offset */
765 {
766 int i; /* current bit number */
767 int64_t imask; /* mask for current bit number */
768
769 ASSERT(fields != 0);
770 /*
771 * Find the lowest bit, so the first byte offset.
772 */
773 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
774 if (imask & fields) {
775 *first = offsets[i];
776 break;
777 }
778 }
779 /*
780 * Find the highest bit, so the last byte offset.
781 */
782 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
783 if (imask & fields) {
784 *last = offsets[i + 1] - 1;
785 break;
786 }
787 }
788 }
789
790 /*
791 * Get a buffer for the block, return it read in.
792 * Long-form addressing.
793 */
794 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)795 xfs_btree_read_bufl(
796 struct xfs_mount *mp, /* file system mount point */
797 struct xfs_trans *tp, /* transaction pointer */
798 xfs_fsblock_t fsbno, /* file system block number */
799 struct xfs_buf **bpp, /* buffer for fsbno */
800 int refval, /* ref count value for buffer */
801 const struct xfs_buf_ops *ops)
802 {
803 struct xfs_buf *bp; /* return value */
804 xfs_daddr_t d; /* real disk block address */
805 int error;
806
807 if (!xfs_verify_fsbno(mp, fsbno))
808 return -EFSCORRUPTED;
809 d = XFS_FSB_TO_DADDR(mp, fsbno);
810 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
811 mp->m_bsize, 0, &bp, ops);
812 if (error)
813 return error;
814 if (bp)
815 xfs_buf_set_ref(bp, refval);
816 *bpp = bp;
817 return 0;
818 }
819
820 /*
821 * Read-ahead the block, don't wait for it, don't return a buffer.
822 * Long-form addressing.
823 */
824 /* ARGSUSED */
825 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)826 xfs_btree_reada_bufl(
827 struct xfs_mount *mp, /* file system mount point */
828 xfs_fsblock_t fsbno, /* file system block number */
829 xfs_extlen_t count, /* count of filesystem blocks */
830 const struct xfs_buf_ops *ops)
831 {
832 xfs_daddr_t d;
833
834 ASSERT(fsbno != NULLFSBLOCK);
835 d = XFS_FSB_TO_DADDR(mp, fsbno);
836 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
837 }
838
839 /*
840 * Read-ahead the block, don't wait for it, don't return a buffer.
841 * Short-form addressing.
842 */
843 /* ARGSUSED */
844 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)845 xfs_btree_reada_bufs(
846 struct xfs_mount *mp, /* file system mount point */
847 xfs_agnumber_t agno, /* allocation group number */
848 xfs_agblock_t agbno, /* allocation group block number */
849 xfs_extlen_t count, /* count of filesystem blocks */
850 const struct xfs_buf_ops *ops)
851 {
852 xfs_daddr_t d;
853
854 ASSERT(agno != NULLAGNUMBER);
855 ASSERT(agbno != NULLAGBLOCK);
856 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
857 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
858 }
859
860 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)861 xfs_btree_readahead_lblock(
862 struct xfs_btree_cur *cur,
863 int lr,
864 struct xfs_btree_block *block)
865 {
866 int rval = 0;
867 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
868 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
869
870 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
871 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
872 cur->bc_ops->buf_ops);
873 rval++;
874 }
875
876 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
877 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
878 cur->bc_ops->buf_ops);
879 rval++;
880 }
881
882 return rval;
883 }
884
885 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)886 xfs_btree_readahead_sblock(
887 struct xfs_btree_cur *cur,
888 int lr,
889 struct xfs_btree_block *block)
890 {
891 int rval = 0;
892 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
893 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
894
895
896 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
898 left, 1, cur->bc_ops->buf_ops);
899 rval++;
900 }
901
902 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
903 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
904 right, 1, cur->bc_ops->buf_ops);
905 rval++;
906 }
907
908 return rval;
909 }
910
911 /*
912 * Read-ahead btree blocks, at the given level.
913 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
914 */
915 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)916 xfs_btree_readahead(
917 struct xfs_btree_cur *cur, /* btree cursor */
918 int lev, /* level in btree */
919 int lr) /* left/right bits */
920 {
921 struct xfs_btree_block *block;
922
923 /*
924 * No readahead needed if we are at the root level and the
925 * btree root is stored in the inode.
926 */
927 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
928 (lev == cur->bc_nlevels - 1))
929 return 0;
930
931 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
932 return 0;
933
934 cur->bc_ra[lev] |= lr;
935 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
936
937 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
938 return xfs_btree_readahead_lblock(cur, lr, block);
939 return xfs_btree_readahead_sblock(cur, lr, block);
940 }
941
942 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)943 xfs_btree_ptr_to_daddr(
944 struct xfs_btree_cur *cur,
945 union xfs_btree_ptr *ptr,
946 xfs_daddr_t *daddr)
947 {
948 xfs_fsblock_t fsbno;
949 xfs_agblock_t agbno;
950 int error;
951
952 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
953 if (error)
954 return error;
955
956 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
957 fsbno = be64_to_cpu(ptr->l);
958 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
959 } else {
960 agbno = be32_to_cpu(ptr->s);
961 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno,
962 agbno);
963 }
964
965 return 0;
966 }
967
968 /*
969 * Readahead @count btree blocks at the given @ptr location.
970 *
971 * We don't need to care about long or short form btrees here as we have a
972 * method of converting the ptr directly to a daddr available to us.
973 */
974 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)975 xfs_btree_readahead_ptr(
976 struct xfs_btree_cur *cur,
977 union xfs_btree_ptr *ptr,
978 xfs_extlen_t count)
979 {
980 xfs_daddr_t daddr;
981
982 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
983 return;
984 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
985 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
986 }
987
988 /*
989 * Set the buffer for level "lev" in the cursor to bp, releasing
990 * any previous buffer.
991 */
992 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,xfs_buf_t * bp)993 xfs_btree_setbuf(
994 xfs_btree_cur_t *cur, /* btree cursor */
995 int lev, /* level in btree */
996 xfs_buf_t *bp) /* new buffer to set */
997 {
998 struct xfs_btree_block *b; /* btree block */
999
1000 if (cur->bc_bufs[lev])
1001 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1002 cur->bc_bufs[lev] = bp;
1003 cur->bc_ra[lev] = 0;
1004
1005 b = XFS_BUF_TO_BLOCK(bp);
1006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1007 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1008 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1009 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1010 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1011 } else {
1012 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1013 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1014 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1015 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1016 }
1017 }
1018
1019 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1020 xfs_btree_ptr_is_null(
1021 struct xfs_btree_cur *cur,
1022 union xfs_btree_ptr *ptr)
1023 {
1024 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1025 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1026 else
1027 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1028 }
1029
1030 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1031 xfs_btree_set_ptr_null(
1032 struct xfs_btree_cur *cur,
1033 union xfs_btree_ptr *ptr)
1034 {
1035 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1036 ptr->l = cpu_to_be64(NULLFSBLOCK);
1037 else
1038 ptr->s = cpu_to_be32(NULLAGBLOCK);
1039 }
1040
1041 /*
1042 * Get/set/init sibling pointers
1043 */
1044 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1045 xfs_btree_get_sibling(
1046 struct xfs_btree_cur *cur,
1047 struct xfs_btree_block *block,
1048 union xfs_btree_ptr *ptr,
1049 int lr)
1050 {
1051 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1052
1053 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1054 if (lr == XFS_BB_RIGHTSIB)
1055 ptr->l = block->bb_u.l.bb_rightsib;
1056 else
1057 ptr->l = block->bb_u.l.bb_leftsib;
1058 } else {
1059 if (lr == XFS_BB_RIGHTSIB)
1060 ptr->s = block->bb_u.s.bb_rightsib;
1061 else
1062 ptr->s = block->bb_u.s.bb_leftsib;
1063 }
1064 }
1065
1066 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1067 xfs_btree_set_sibling(
1068 struct xfs_btree_cur *cur,
1069 struct xfs_btree_block *block,
1070 union xfs_btree_ptr *ptr,
1071 int lr)
1072 {
1073 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1074
1075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 if (lr == XFS_BB_RIGHTSIB)
1077 block->bb_u.l.bb_rightsib = ptr->l;
1078 else
1079 block->bb_u.l.bb_leftsib = ptr->l;
1080 } else {
1081 if (lr == XFS_BB_RIGHTSIB)
1082 block->bb_u.s.bb_rightsib = ptr->s;
1083 else
1084 block->bb_u.s.bb_leftsib = ptr->s;
1085 }
1086 }
1087
1088 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1089 xfs_btree_init_block_int(
1090 struct xfs_mount *mp,
1091 struct xfs_btree_block *buf,
1092 xfs_daddr_t blkno,
1093 xfs_btnum_t btnum,
1094 __u16 level,
1095 __u16 numrecs,
1096 __u64 owner,
1097 unsigned int flags)
1098 {
1099 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1100 __u32 magic = xfs_btree_magic(crc, btnum);
1101
1102 buf->bb_magic = cpu_to_be32(magic);
1103 buf->bb_level = cpu_to_be16(level);
1104 buf->bb_numrecs = cpu_to_be16(numrecs);
1105
1106 if (flags & XFS_BTREE_LONG_PTRS) {
1107 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1108 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1109 if (crc) {
1110 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1111 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1112 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1113 buf->bb_u.l.bb_pad = 0;
1114 buf->bb_u.l.bb_lsn = 0;
1115 }
1116 } else {
1117 /* owner is a 32 bit value on short blocks */
1118 __u32 __owner = (__u32)owner;
1119
1120 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1121 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1122 if (crc) {
1123 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1124 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1125 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1126 buf->bb_u.s.bb_lsn = 0;
1127 }
1128 }
1129 }
1130
1131 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1132 xfs_btree_init_block(
1133 struct xfs_mount *mp,
1134 struct xfs_buf *bp,
1135 xfs_btnum_t btnum,
1136 __u16 level,
1137 __u16 numrecs,
1138 __u64 owner)
1139 {
1140 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1141 btnum, level, numrecs, owner, 0);
1142 }
1143
1144 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1145 xfs_btree_init_block_cur(
1146 struct xfs_btree_cur *cur,
1147 struct xfs_buf *bp,
1148 int level,
1149 int numrecs)
1150 {
1151 __u64 owner;
1152
1153 /*
1154 * we can pull the owner from the cursor right now as the different
1155 * owners align directly with the pointer size of the btree. This may
1156 * change in future, but is safe for current users of the generic btree
1157 * code.
1158 */
1159 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1160 owner = cur->bc_ino.ip->i_ino;
1161 else
1162 owner = cur->bc_ag.agno;
1163
1164 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1165 cur->bc_btnum, level, numrecs,
1166 owner, cur->bc_flags);
1167 }
1168
1169 /*
1170 * Return true if ptr is the last record in the btree and
1171 * we need to track updates to this record. The decision
1172 * will be further refined in the update_lastrec method.
1173 */
1174 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1175 xfs_btree_is_lastrec(
1176 struct xfs_btree_cur *cur,
1177 struct xfs_btree_block *block,
1178 int level)
1179 {
1180 union xfs_btree_ptr ptr;
1181
1182 if (level > 0)
1183 return 0;
1184 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1185 return 0;
1186
1187 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1188 if (!xfs_btree_ptr_is_null(cur, &ptr))
1189 return 0;
1190 return 1;
1191 }
1192
1193 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1194 xfs_btree_buf_to_ptr(
1195 struct xfs_btree_cur *cur,
1196 struct xfs_buf *bp,
1197 union xfs_btree_ptr *ptr)
1198 {
1199 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1200 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1201 XFS_BUF_ADDR(bp)));
1202 else {
1203 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1204 XFS_BUF_ADDR(bp)));
1205 }
1206 }
1207
1208 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1209 xfs_btree_set_refs(
1210 struct xfs_btree_cur *cur,
1211 struct xfs_buf *bp)
1212 {
1213 switch (cur->bc_btnum) {
1214 case XFS_BTNUM_BNO:
1215 case XFS_BTNUM_CNT:
1216 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1217 break;
1218 case XFS_BTNUM_INO:
1219 case XFS_BTNUM_FINO:
1220 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1221 break;
1222 case XFS_BTNUM_BMAP:
1223 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1224 break;
1225 case XFS_BTNUM_RMAP:
1226 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1227 break;
1228 case XFS_BTNUM_REFC:
1229 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1230 break;
1231 default:
1232 ASSERT(0);
1233 }
1234 }
1235
1236 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1237 xfs_btree_get_buf_block(
1238 struct xfs_btree_cur *cur,
1239 union xfs_btree_ptr *ptr,
1240 struct xfs_btree_block **block,
1241 struct xfs_buf **bpp)
1242 {
1243 struct xfs_mount *mp = cur->bc_mp;
1244 xfs_daddr_t d;
1245 int error;
1246
1247 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1248 if (error)
1249 return error;
1250 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1251 0, bpp);
1252 if (error)
1253 return error;
1254
1255 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1256 *block = XFS_BUF_TO_BLOCK(*bpp);
1257 return 0;
1258 }
1259
1260 /*
1261 * Read in the buffer at the given ptr and return the buffer and
1262 * the block pointer within the buffer.
1263 */
1264 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1265 xfs_btree_read_buf_block(
1266 struct xfs_btree_cur *cur,
1267 union xfs_btree_ptr *ptr,
1268 int flags,
1269 struct xfs_btree_block **block,
1270 struct xfs_buf **bpp)
1271 {
1272 struct xfs_mount *mp = cur->bc_mp;
1273 xfs_daddr_t d;
1274 int error;
1275
1276 /* need to sort out how callers deal with failures first */
1277 ASSERT(!(flags & XBF_TRYLOCK));
1278
1279 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1280 if (error)
1281 return error;
1282 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1283 mp->m_bsize, flags, bpp,
1284 cur->bc_ops->buf_ops);
1285 if (error)
1286 return error;
1287
1288 xfs_btree_set_refs(cur, *bpp);
1289 *block = XFS_BUF_TO_BLOCK(*bpp);
1290 return 0;
1291 }
1292
1293 /*
1294 * Copy keys from one btree block to another.
1295 */
1296 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,union xfs_btree_key * src_key,int numkeys)1297 xfs_btree_copy_keys(
1298 struct xfs_btree_cur *cur,
1299 union xfs_btree_key *dst_key,
1300 union xfs_btree_key *src_key,
1301 int numkeys)
1302 {
1303 ASSERT(numkeys >= 0);
1304 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1305 }
1306
1307 /*
1308 * Copy records from one btree block to another.
1309 */
1310 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1311 xfs_btree_copy_recs(
1312 struct xfs_btree_cur *cur,
1313 union xfs_btree_rec *dst_rec,
1314 union xfs_btree_rec *src_rec,
1315 int numrecs)
1316 {
1317 ASSERT(numrecs >= 0);
1318 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1319 }
1320
1321 /*
1322 * Copy block pointers from one btree block to another.
1323 */
1324 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1325 xfs_btree_copy_ptrs(
1326 struct xfs_btree_cur *cur,
1327 union xfs_btree_ptr *dst_ptr,
1328 const union xfs_btree_ptr *src_ptr,
1329 int numptrs)
1330 {
1331 ASSERT(numptrs >= 0);
1332 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1333 }
1334
1335 /*
1336 * Shift keys one index left/right inside a single btree block.
1337 */
1338 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1339 xfs_btree_shift_keys(
1340 struct xfs_btree_cur *cur,
1341 union xfs_btree_key *key,
1342 int dir,
1343 int numkeys)
1344 {
1345 char *dst_key;
1346
1347 ASSERT(numkeys >= 0);
1348 ASSERT(dir == 1 || dir == -1);
1349
1350 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1351 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1352 }
1353
1354 /*
1355 * Shift records one index left/right inside a single btree block.
1356 */
1357 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1358 xfs_btree_shift_recs(
1359 struct xfs_btree_cur *cur,
1360 union xfs_btree_rec *rec,
1361 int dir,
1362 int numrecs)
1363 {
1364 char *dst_rec;
1365
1366 ASSERT(numrecs >= 0);
1367 ASSERT(dir == 1 || dir == -1);
1368
1369 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1370 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1371 }
1372
1373 /*
1374 * Shift block pointers one index left/right inside a single btree block.
1375 */
1376 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1377 xfs_btree_shift_ptrs(
1378 struct xfs_btree_cur *cur,
1379 union xfs_btree_ptr *ptr,
1380 int dir,
1381 int numptrs)
1382 {
1383 char *dst_ptr;
1384
1385 ASSERT(numptrs >= 0);
1386 ASSERT(dir == 1 || dir == -1);
1387
1388 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1389 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1390 }
1391
1392 /*
1393 * Log key values from the btree block.
1394 */
1395 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1396 xfs_btree_log_keys(
1397 struct xfs_btree_cur *cur,
1398 struct xfs_buf *bp,
1399 int first,
1400 int last)
1401 {
1402
1403 if (bp) {
1404 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1405 xfs_trans_log_buf(cur->bc_tp, bp,
1406 xfs_btree_key_offset(cur, first),
1407 xfs_btree_key_offset(cur, last + 1) - 1);
1408 } else {
1409 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1410 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1411 }
1412 }
1413
1414 /*
1415 * Log record values from the btree block.
1416 */
1417 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1418 xfs_btree_log_recs(
1419 struct xfs_btree_cur *cur,
1420 struct xfs_buf *bp,
1421 int first,
1422 int last)
1423 {
1424
1425 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1426 xfs_trans_log_buf(cur->bc_tp, bp,
1427 xfs_btree_rec_offset(cur, first),
1428 xfs_btree_rec_offset(cur, last + 1) - 1);
1429
1430 }
1431
1432 /*
1433 * Log block pointer fields from a btree block (nonleaf).
1434 */
1435 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1436 xfs_btree_log_ptrs(
1437 struct xfs_btree_cur *cur, /* btree cursor */
1438 struct xfs_buf *bp, /* buffer containing btree block */
1439 int first, /* index of first pointer to log */
1440 int last) /* index of last pointer to log */
1441 {
1442
1443 if (bp) {
1444 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1445 int level = xfs_btree_get_level(block);
1446
1447 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1448 xfs_trans_log_buf(cur->bc_tp, bp,
1449 xfs_btree_ptr_offset(cur, first, level),
1450 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1451 } else {
1452 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1453 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1454 }
1455
1456 }
1457
1458 /*
1459 * Log fields from a btree block header.
1460 */
1461 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1462 xfs_btree_log_block(
1463 struct xfs_btree_cur *cur, /* btree cursor */
1464 struct xfs_buf *bp, /* buffer containing btree block */
1465 int fields) /* mask of fields: XFS_BB_... */
1466 {
1467 int first; /* first byte offset logged */
1468 int last; /* last byte offset logged */
1469 static const short soffsets[] = { /* table of offsets (short) */
1470 offsetof(struct xfs_btree_block, bb_magic),
1471 offsetof(struct xfs_btree_block, bb_level),
1472 offsetof(struct xfs_btree_block, bb_numrecs),
1473 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1474 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1475 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1476 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1477 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1478 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1479 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1480 XFS_BTREE_SBLOCK_CRC_LEN
1481 };
1482 static const short loffsets[] = { /* table of offsets (long) */
1483 offsetof(struct xfs_btree_block, bb_magic),
1484 offsetof(struct xfs_btree_block, bb_level),
1485 offsetof(struct xfs_btree_block, bb_numrecs),
1486 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1487 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1488 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1489 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1490 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1491 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1492 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1493 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1494 XFS_BTREE_LBLOCK_CRC_LEN
1495 };
1496
1497 if (bp) {
1498 int nbits;
1499
1500 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1501 /*
1502 * We don't log the CRC when updating a btree
1503 * block but instead recreate it during log
1504 * recovery. As the log buffers have checksums
1505 * of their own this is safe and avoids logging a crc
1506 * update in a lot of places.
1507 */
1508 if (fields == XFS_BB_ALL_BITS)
1509 fields = XFS_BB_ALL_BITS_CRC;
1510 nbits = XFS_BB_NUM_BITS_CRC;
1511 } else {
1512 nbits = XFS_BB_NUM_BITS;
1513 }
1514 xfs_btree_offsets(fields,
1515 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1516 loffsets : soffsets,
1517 nbits, &first, &last);
1518 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1519 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1520 } else {
1521 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 }
1524 }
1525
1526 /*
1527 * Increment cursor by one record at the level.
1528 * For nonzero levels the leaf-ward information is untouched.
1529 */
1530 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1531 xfs_btree_increment(
1532 struct xfs_btree_cur *cur,
1533 int level,
1534 int *stat) /* success/failure */
1535 {
1536 struct xfs_btree_block *block;
1537 union xfs_btree_ptr ptr;
1538 struct xfs_buf *bp;
1539 int error; /* error return value */
1540 int lev;
1541
1542 ASSERT(level < cur->bc_nlevels);
1543
1544 /* Read-ahead to the right at this level. */
1545 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1546
1547 /* Get a pointer to the btree block. */
1548 block = xfs_btree_get_block(cur, level, &bp);
1549
1550 #ifdef DEBUG
1551 error = xfs_btree_check_block(cur, block, level, bp);
1552 if (error)
1553 goto error0;
1554 #endif
1555
1556 /* We're done if we remain in the block after the increment. */
1557 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1558 goto out1;
1559
1560 /* Fail if we just went off the right edge of the tree. */
1561 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1562 if (xfs_btree_ptr_is_null(cur, &ptr))
1563 goto out0;
1564
1565 XFS_BTREE_STATS_INC(cur, increment);
1566
1567 /*
1568 * March up the tree incrementing pointers.
1569 * Stop when we don't go off the right edge of a block.
1570 */
1571 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1572 block = xfs_btree_get_block(cur, lev, &bp);
1573
1574 #ifdef DEBUG
1575 error = xfs_btree_check_block(cur, block, lev, bp);
1576 if (error)
1577 goto error0;
1578 #endif
1579
1580 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1581 break;
1582
1583 /* Read-ahead the right block for the next loop. */
1584 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1585 }
1586
1587 /*
1588 * If we went off the root then we are either seriously
1589 * confused or have the tree root in an inode.
1590 */
1591 if (lev == cur->bc_nlevels) {
1592 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1593 goto out0;
1594 ASSERT(0);
1595 error = -EFSCORRUPTED;
1596 goto error0;
1597 }
1598 ASSERT(lev < cur->bc_nlevels);
1599
1600 /*
1601 * Now walk back down the tree, fixing up the cursor's buffer
1602 * pointers and key numbers.
1603 */
1604 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1605 union xfs_btree_ptr *ptrp;
1606
1607 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1608 --lev;
1609 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1610 if (error)
1611 goto error0;
1612
1613 xfs_btree_setbuf(cur, lev, bp);
1614 cur->bc_ptrs[lev] = 1;
1615 }
1616 out1:
1617 *stat = 1;
1618 return 0;
1619
1620 out0:
1621 *stat = 0;
1622 return 0;
1623
1624 error0:
1625 return error;
1626 }
1627
1628 /*
1629 * Decrement cursor by one record at the level.
1630 * For nonzero levels the leaf-ward information is untouched.
1631 */
1632 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1633 xfs_btree_decrement(
1634 struct xfs_btree_cur *cur,
1635 int level,
1636 int *stat) /* success/failure */
1637 {
1638 struct xfs_btree_block *block;
1639 xfs_buf_t *bp;
1640 int error; /* error return value */
1641 int lev;
1642 union xfs_btree_ptr ptr;
1643
1644 ASSERT(level < cur->bc_nlevels);
1645
1646 /* Read-ahead to the left at this level. */
1647 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1648
1649 /* We're done if we remain in the block after the decrement. */
1650 if (--cur->bc_ptrs[level] > 0)
1651 goto out1;
1652
1653 /* Get a pointer to the btree block. */
1654 block = xfs_btree_get_block(cur, level, &bp);
1655
1656 #ifdef DEBUG
1657 error = xfs_btree_check_block(cur, block, level, bp);
1658 if (error)
1659 goto error0;
1660 #endif
1661
1662 /* Fail if we just went off the left edge of the tree. */
1663 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1664 if (xfs_btree_ptr_is_null(cur, &ptr))
1665 goto out0;
1666
1667 XFS_BTREE_STATS_INC(cur, decrement);
1668
1669 /*
1670 * March up the tree decrementing pointers.
1671 * Stop when we don't go off the left edge of a block.
1672 */
1673 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1674 if (--cur->bc_ptrs[lev] > 0)
1675 break;
1676 /* Read-ahead the left block for the next loop. */
1677 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1678 }
1679
1680 /*
1681 * If we went off the root then we are seriously confused.
1682 * or the root of the tree is in an inode.
1683 */
1684 if (lev == cur->bc_nlevels) {
1685 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1686 goto out0;
1687 ASSERT(0);
1688 error = -EFSCORRUPTED;
1689 goto error0;
1690 }
1691 ASSERT(lev < cur->bc_nlevels);
1692
1693 /*
1694 * Now walk back down the tree, fixing up the cursor's buffer
1695 * pointers and key numbers.
1696 */
1697 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1698 union xfs_btree_ptr *ptrp;
1699
1700 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1701 --lev;
1702 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1703 if (error)
1704 goto error0;
1705 xfs_btree_setbuf(cur, lev, bp);
1706 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1707 }
1708 out1:
1709 *stat = 1;
1710 return 0;
1711
1712 out0:
1713 *stat = 0;
1714 return 0;
1715
1716 error0:
1717 return error;
1718 }
1719
1720 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1721 xfs_btree_lookup_get_block(
1722 struct xfs_btree_cur *cur, /* btree cursor */
1723 int level, /* level in the btree */
1724 union xfs_btree_ptr *pp, /* ptr to btree block */
1725 struct xfs_btree_block **blkp) /* return btree block */
1726 {
1727 struct xfs_buf *bp; /* buffer pointer for btree block */
1728 xfs_daddr_t daddr;
1729 int error = 0;
1730
1731 /* special case the root block if in an inode */
1732 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1733 (level == cur->bc_nlevels - 1)) {
1734 *blkp = xfs_btree_get_iroot(cur);
1735 return 0;
1736 }
1737
1738 /*
1739 * If the old buffer at this level for the disk address we are
1740 * looking for re-use it.
1741 *
1742 * Otherwise throw it away and get a new one.
1743 */
1744 bp = cur->bc_bufs[level];
1745 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1746 if (error)
1747 return error;
1748 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1749 *blkp = XFS_BUF_TO_BLOCK(bp);
1750 return 0;
1751 }
1752
1753 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1754 if (error)
1755 return error;
1756
1757 /* Check the inode owner since the verifiers don't. */
1758 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1759 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1760 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1761 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1762 cur->bc_ino.ip->i_ino)
1763 goto out_bad;
1764
1765 /* Did we get the level we were looking for? */
1766 if (be16_to_cpu((*blkp)->bb_level) != level)
1767 goto out_bad;
1768
1769 /* Check that internal nodes have at least one record. */
1770 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1771 goto out_bad;
1772
1773 xfs_btree_setbuf(cur, level, bp);
1774 return 0;
1775
1776 out_bad:
1777 *blkp = NULL;
1778 xfs_buf_mark_corrupt(bp);
1779 xfs_trans_brelse(cur->bc_tp, bp);
1780 return -EFSCORRUPTED;
1781 }
1782
1783 /*
1784 * Get current search key. For level 0 we don't actually have a key
1785 * structure so we make one up from the record. For all other levels
1786 * we just return the right key.
1787 */
1788 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1789 xfs_lookup_get_search_key(
1790 struct xfs_btree_cur *cur,
1791 int level,
1792 int keyno,
1793 struct xfs_btree_block *block,
1794 union xfs_btree_key *kp)
1795 {
1796 if (level == 0) {
1797 cur->bc_ops->init_key_from_rec(kp,
1798 xfs_btree_rec_addr(cur, keyno, block));
1799 return kp;
1800 }
1801
1802 return xfs_btree_key_addr(cur, keyno, block);
1803 }
1804
1805 /*
1806 * Lookup the record. The cursor is made to point to it, based on dir.
1807 * stat is set to 0 if can't find any such record, 1 for success.
1808 */
1809 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1810 xfs_btree_lookup(
1811 struct xfs_btree_cur *cur, /* btree cursor */
1812 xfs_lookup_t dir, /* <=, ==, or >= */
1813 int *stat) /* success/failure */
1814 {
1815 struct xfs_btree_block *block; /* current btree block */
1816 int64_t diff; /* difference for the current key */
1817 int error; /* error return value */
1818 int keyno; /* current key number */
1819 int level; /* level in the btree */
1820 union xfs_btree_ptr *pp; /* ptr to btree block */
1821 union xfs_btree_ptr ptr; /* ptr to btree block */
1822
1823 XFS_BTREE_STATS_INC(cur, lookup);
1824
1825 /* No such thing as a zero-level tree. */
1826 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1827 return -EFSCORRUPTED;
1828
1829 block = NULL;
1830 keyno = 0;
1831
1832 /* initialise start pointer from cursor */
1833 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1834 pp = &ptr;
1835
1836 /*
1837 * Iterate over each level in the btree, starting at the root.
1838 * For each level above the leaves, find the key we need, based
1839 * on the lookup record, then follow the corresponding block
1840 * pointer down to the next level.
1841 */
1842 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1843 /* Get the block we need to do the lookup on. */
1844 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1845 if (error)
1846 goto error0;
1847
1848 if (diff == 0) {
1849 /*
1850 * If we already had a key match at a higher level, we
1851 * know we need to use the first entry in this block.
1852 */
1853 keyno = 1;
1854 } else {
1855 /* Otherwise search this block. Do a binary search. */
1856
1857 int high; /* high entry number */
1858 int low; /* low entry number */
1859
1860 /* Set low and high entry numbers, 1-based. */
1861 low = 1;
1862 high = xfs_btree_get_numrecs(block);
1863 if (!high) {
1864 /* Block is empty, must be an empty leaf. */
1865 if (level != 0 || cur->bc_nlevels != 1) {
1866 XFS_CORRUPTION_ERROR(__func__,
1867 XFS_ERRLEVEL_LOW,
1868 cur->bc_mp, block,
1869 sizeof(*block));
1870 return -EFSCORRUPTED;
1871 }
1872
1873 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1874 *stat = 0;
1875 return 0;
1876 }
1877
1878 /* Binary search the block. */
1879 while (low <= high) {
1880 union xfs_btree_key key;
1881 union xfs_btree_key *kp;
1882
1883 XFS_BTREE_STATS_INC(cur, compare);
1884
1885 /* keyno is average of low and high. */
1886 keyno = (low + high) >> 1;
1887
1888 /* Get current search key */
1889 kp = xfs_lookup_get_search_key(cur, level,
1890 keyno, block, &key);
1891
1892 /*
1893 * Compute difference to get next direction:
1894 * - less than, move right
1895 * - greater than, move left
1896 * - equal, we're done
1897 */
1898 diff = cur->bc_ops->key_diff(cur, kp);
1899 if (diff < 0)
1900 low = keyno + 1;
1901 else if (diff > 0)
1902 high = keyno - 1;
1903 else
1904 break;
1905 }
1906 }
1907
1908 /*
1909 * If there are more levels, set up for the next level
1910 * by getting the block number and filling in the cursor.
1911 */
1912 if (level > 0) {
1913 /*
1914 * If we moved left, need the previous key number,
1915 * unless there isn't one.
1916 */
1917 if (diff > 0 && --keyno < 1)
1918 keyno = 1;
1919 pp = xfs_btree_ptr_addr(cur, keyno, block);
1920
1921 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1922 if (error)
1923 goto error0;
1924
1925 cur->bc_ptrs[level] = keyno;
1926 }
1927 }
1928
1929 /* Done with the search. See if we need to adjust the results. */
1930 if (dir != XFS_LOOKUP_LE && diff < 0) {
1931 keyno++;
1932 /*
1933 * If ge search and we went off the end of the block, but it's
1934 * not the last block, we're in the wrong block.
1935 */
1936 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1937 if (dir == XFS_LOOKUP_GE &&
1938 keyno > xfs_btree_get_numrecs(block) &&
1939 !xfs_btree_ptr_is_null(cur, &ptr)) {
1940 int i;
1941
1942 cur->bc_ptrs[0] = keyno;
1943 error = xfs_btree_increment(cur, 0, &i);
1944 if (error)
1945 goto error0;
1946 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1947 return -EFSCORRUPTED;
1948 *stat = 1;
1949 return 0;
1950 }
1951 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1952 keyno--;
1953 cur->bc_ptrs[0] = keyno;
1954
1955 /* Return if we succeeded or not. */
1956 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1957 *stat = 0;
1958 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1959 *stat = 1;
1960 else
1961 *stat = 0;
1962 return 0;
1963
1964 error0:
1965 return error;
1966 }
1967
1968 /* Find the high key storage area from a regular key. */
1969 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)1970 xfs_btree_high_key_from_key(
1971 struct xfs_btree_cur *cur,
1972 union xfs_btree_key *key)
1973 {
1974 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1975 return (union xfs_btree_key *)((char *)key +
1976 (cur->bc_ops->key_len / 2));
1977 }
1978
1979 /* Determine the low (and high if overlapped) keys of a leaf block */
1980 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)1981 xfs_btree_get_leaf_keys(
1982 struct xfs_btree_cur *cur,
1983 struct xfs_btree_block *block,
1984 union xfs_btree_key *key)
1985 {
1986 union xfs_btree_key max_hkey;
1987 union xfs_btree_key hkey;
1988 union xfs_btree_rec *rec;
1989 union xfs_btree_key *high;
1990 int n;
1991
1992 rec = xfs_btree_rec_addr(cur, 1, block);
1993 cur->bc_ops->init_key_from_rec(key, rec);
1994
1995 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1996
1997 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1998 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1999 rec = xfs_btree_rec_addr(cur, n, block);
2000 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2001 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2002 > 0)
2003 max_hkey = hkey;
2004 }
2005
2006 high = xfs_btree_high_key_from_key(cur, key);
2007 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2008 }
2009 }
2010
2011 /* Determine the low (and high if overlapped) keys of a node block */
2012 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2013 xfs_btree_get_node_keys(
2014 struct xfs_btree_cur *cur,
2015 struct xfs_btree_block *block,
2016 union xfs_btree_key *key)
2017 {
2018 union xfs_btree_key *hkey;
2019 union xfs_btree_key *max_hkey;
2020 union xfs_btree_key *high;
2021 int n;
2022
2023 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2024 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2025 cur->bc_ops->key_len / 2);
2026
2027 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2028 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2029 hkey = xfs_btree_high_key_addr(cur, n, block);
2030 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2031 max_hkey = hkey;
2032 }
2033
2034 high = xfs_btree_high_key_from_key(cur, key);
2035 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2036 } else {
2037 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2038 cur->bc_ops->key_len);
2039 }
2040 }
2041
2042 /* Derive the keys for any btree block. */
2043 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2044 xfs_btree_get_keys(
2045 struct xfs_btree_cur *cur,
2046 struct xfs_btree_block *block,
2047 union xfs_btree_key *key)
2048 {
2049 if (be16_to_cpu(block->bb_level) == 0)
2050 xfs_btree_get_leaf_keys(cur, block, key);
2051 else
2052 xfs_btree_get_node_keys(cur, block, key);
2053 }
2054
2055 /*
2056 * Decide if we need to update the parent keys of a btree block. For
2057 * a standard btree this is only necessary if we're updating the first
2058 * record/key. For an overlapping btree, we must always update the
2059 * keys because the highest key can be in any of the records or keys
2060 * in the block.
2061 */
2062 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2063 xfs_btree_needs_key_update(
2064 struct xfs_btree_cur *cur,
2065 int ptr)
2066 {
2067 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2068 }
2069
2070 /*
2071 * Update the low and high parent keys of the given level, progressing
2072 * towards the root. If force_all is false, stop if the keys for a given
2073 * level do not need updating.
2074 */
2075 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2076 __xfs_btree_updkeys(
2077 struct xfs_btree_cur *cur,
2078 int level,
2079 struct xfs_btree_block *block,
2080 struct xfs_buf *bp0,
2081 bool force_all)
2082 {
2083 union xfs_btree_key key; /* keys from current level */
2084 union xfs_btree_key *lkey; /* keys from the next level up */
2085 union xfs_btree_key *hkey;
2086 union xfs_btree_key *nlkey; /* keys from the next level up */
2087 union xfs_btree_key *nhkey;
2088 struct xfs_buf *bp;
2089 int ptr;
2090
2091 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2092
2093 /* Exit if there aren't any parent levels to update. */
2094 if (level + 1 >= cur->bc_nlevels)
2095 return 0;
2096
2097 trace_xfs_btree_updkeys(cur, level, bp0);
2098
2099 lkey = &key;
2100 hkey = xfs_btree_high_key_from_key(cur, lkey);
2101 xfs_btree_get_keys(cur, block, lkey);
2102 for (level++; level < cur->bc_nlevels; level++) {
2103 #ifdef DEBUG
2104 int error;
2105 #endif
2106 block = xfs_btree_get_block(cur, level, &bp);
2107 trace_xfs_btree_updkeys(cur, level, bp);
2108 #ifdef DEBUG
2109 error = xfs_btree_check_block(cur, block, level, bp);
2110 if (error)
2111 return error;
2112 #endif
2113 ptr = cur->bc_ptrs[level];
2114 nlkey = xfs_btree_key_addr(cur, ptr, block);
2115 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2116 if (!force_all &&
2117 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2118 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2119 break;
2120 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2121 xfs_btree_log_keys(cur, bp, ptr, ptr);
2122 if (level + 1 >= cur->bc_nlevels)
2123 break;
2124 xfs_btree_get_node_keys(cur, block, lkey);
2125 }
2126
2127 return 0;
2128 }
2129
2130 /* Update all the keys from some level in cursor back to the root. */
2131 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2132 xfs_btree_updkeys_force(
2133 struct xfs_btree_cur *cur,
2134 int level)
2135 {
2136 struct xfs_buf *bp;
2137 struct xfs_btree_block *block;
2138
2139 block = xfs_btree_get_block(cur, level, &bp);
2140 return __xfs_btree_updkeys(cur, level, block, bp, true);
2141 }
2142
2143 /*
2144 * Update the parent keys of the given level, progressing towards the root.
2145 */
2146 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2147 xfs_btree_update_keys(
2148 struct xfs_btree_cur *cur,
2149 int level)
2150 {
2151 struct xfs_btree_block *block;
2152 struct xfs_buf *bp;
2153 union xfs_btree_key *kp;
2154 union xfs_btree_key key;
2155 int ptr;
2156
2157 ASSERT(level >= 0);
2158
2159 block = xfs_btree_get_block(cur, level, &bp);
2160 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2161 return __xfs_btree_updkeys(cur, level, block, bp, false);
2162
2163 /*
2164 * Go up the tree from this level toward the root.
2165 * At each level, update the key value to the value input.
2166 * Stop when we reach a level where the cursor isn't pointing
2167 * at the first entry in the block.
2168 */
2169 xfs_btree_get_keys(cur, block, &key);
2170 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2171 #ifdef DEBUG
2172 int error;
2173 #endif
2174 block = xfs_btree_get_block(cur, level, &bp);
2175 #ifdef DEBUG
2176 error = xfs_btree_check_block(cur, block, level, bp);
2177 if (error)
2178 return error;
2179 #endif
2180 ptr = cur->bc_ptrs[level];
2181 kp = xfs_btree_key_addr(cur, ptr, block);
2182 xfs_btree_copy_keys(cur, kp, &key, 1);
2183 xfs_btree_log_keys(cur, bp, ptr, ptr);
2184 }
2185
2186 return 0;
2187 }
2188
2189 /*
2190 * Update the record referred to by cur to the value in the
2191 * given record. This either works (return 0) or gets an
2192 * EFSCORRUPTED error.
2193 */
2194 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2195 xfs_btree_update(
2196 struct xfs_btree_cur *cur,
2197 union xfs_btree_rec *rec)
2198 {
2199 struct xfs_btree_block *block;
2200 struct xfs_buf *bp;
2201 int error;
2202 int ptr;
2203 union xfs_btree_rec *rp;
2204
2205 /* Pick up the current block. */
2206 block = xfs_btree_get_block(cur, 0, &bp);
2207
2208 #ifdef DEBUG
2209 error = xfs_btree_check_block(cur, block, 0, bp);
2210 if (error)
2211 goto error0;
2212 #endif
2213 /* Get the address of the rec to be updated. */
2214 ptr = cur->bc_ptrs[0];
2215 rp = xfs_btree_rec_addr(cur, ptr, block);
2216
2217 /* Fill in the new contents and log them. */
2218 xfs_btree_copy_recs(cur, rp, rec, 1);
2219 xfs_btree_log_recs(cur, bp, ptr, ptr);
2220
2221 /*
2222 * If we are tracking the last record in the tree and
2223 * we are at the far right edge of the tree, update it.
2224 */
2225 if (xfs_btree_is_lastrec(cur, block, 0)) {
2226 cur->bc_ops->update_lastrec(cur, block, rec,
2227 ptr, LASTREC_UPDATE);
2228 }
2229
2230 /* Pass new key value up to our parent. */
2231 if (xfs_btree_needs_key_update(cur, ptr)) {
2232 error = xfs_btree_update_keys(cur, 0);
2233 if (error)
2234 goto error0;
2235 }
2236
2237 return 0;
2238
2239 error0:
2240 return error;
2241 }
2242
2243 /*
2244 * Move 1 record left from cur/level if possible.
2245 * Update cur to reflect the new path.
2246 */
2247 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2248 xfs_btree_lshift(
2249 struct xfs_btree_cur *cur,
2250 int level,
2251 int *stat) /* success/failure */
2252 {
2253 struct xfs_buf *lbp; /* left buffer pointer */
2254 struct xfs_btree_block *left; /* left btree block */
2255 int lrecs; /* left record count */
2256 struct xfs_buf *rbp; /* right buffer pointer */
2257 struct xfs_btree_block *right; /* right btree block */
2258 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2259 int rrecs; /* right record count */
2260 union xfs_btree_ptr lptr; /* left btree pointer */
2261 union xfs_btree_key *rkp = NULL; /* right btree key */
2262 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2263 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2264 int error; /* error return value */
2265 int i;
2266
2267 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2268 level == cur->bc_nlevels - 1)
2269 goto out0;
2270
2271 /* Set up variables for this block as "right". */
2272 right = xfs_btree_get_block(cur, level, &rbp);
2273
2274 #ifdef DEBUG
2275 error = xfs_btree_check_block(cur, right, level, rbp);
2276 if (error)
2277 goto error0;
2278 #endif
2279
2280 /* If we've got no left sibling then we can't shift an entry left. */
2281 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2282 if (xfs_btree_ptr_is_null(cur, &lptr))
2283 goto out0;
2284
2285 /*
2286 * If the cursor entry is the one that would be moved, don't
2287 * do it... it's too complicated.
2288 */
2289 if (cur->bc_ptrs[level] <= 1)
2290 goto out0;
2291
2292 /* Set up the left neighbor as "left". */
2293 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2294 if (error)
2295 goto error0;
2296
2297 /* If it's full, it can't take another entry. */
2298 lrecs = xfs_btree_get_numrecs(left);
2299 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2300 goto out0;
2301
2302 rrecs = xfs_btree_get_numrecs(right);
2303
2304 /*
2305 * We add one entry to the left side and remove one for the right side.
2306 * Account for it here, the changes will be updated on disk and logged
2307 * later.
2308 */
2309 lrecs++;
2310 rrecs--;
2311
2312 XFS_BTREE_STATS_INC(cur, lshift);
2313 XFS_BTREE_STATS_ADD(cur, moves, 1);
2314
2315 /*
2316 * If non-leaf, copy a key and a ptr to the left block.
2317 * Log the changes to the left block.
2318 */
2319 if (level > 0) {
2320 /* It's a non-leaf. Move keys and pointers. */
2321 union xfs_btree_key *lkp; /* left btree key */
2322 union xfs_btree_ptr *lpp; /* left address pointer */
2323
2324 lkp = xfs_btree_key_addr(cur, lrecs, left);
2325 rkp = xfs_btree_key_addr(cur, 1, right);
2326
2327 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2328 rpp = xfs_btree_ptr_addr(cur, 1, right);
2329
2330 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2331 if (error)
2332 goto error0;
2333
2334 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2335 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2336
2337 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2338 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2339
2340 ASSERT(cur->bc_ops->keys_inorder(cur,
2341 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2342 } else {
2343 /* It's a leaf. Move records. */
2344 union xfs_btree_rec *lrp; /* left record pointer */
2345
2346 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2347 rrp = xfs_btree_rec_addr(cur, 1, right);
2348
2349 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2350 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2351
2352 ASSERT(cur->bc_ops->recs_inorder(cur,
2353 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2354 }
2355
2356 xfs_btree_set_numrecs(left, lrecs);
2357 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2358
2359 xfs_btree_set_numrecs(right, rrecs);
2360 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2361
2362 /*
2363 * Slide the contents of right down one entry.
2364 */
2365 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2366 if (level > 0) {
2367 /* It's a nonleaf. operate on keys and ptrs */
2368 for (i = 0; i < rrecs; i++) {
2369 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2370 if (error)
2371 goto error0;
2372 }
2373
2374 xfs_btree_shift_keys(cur,
2375 xfs_btree_key_addr(cur, 2, right),
2376 -1, rrecs);
2377 xfs_btree_shift_ptrs(cur,
2378 xfs_btree_ptr_addr(cur, 2, right),
2379 -1, rrecs);
2380
2381 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2382 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2383 } else {
2384 /* It's a leaf. operate on records */
2385 xfs_btree_shift_recs(cur,
2386 xfs_btree_rec_addr(cur, 2, right),
2387 -1, rrecs);
2388 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2389 }
2390
2391 /*
2392 * Using a temporary cursor, update the parent key values of the
2393 * block on the left.
2394 */
2395 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2396 error = xfs_btree_dup_cursor(cur, &tcur);
2397 if (error)
2398 goto error0;
2399 i = xfs_btree_firstrec(tcur, level);
2400 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2401 error = -EFSCORRUPTED;
2402 goto error0;
2403 }
2404
2405 error = xfs_btree_decrement(tcur, level, &i);
2406 if (error)
2407 goto error1;
2408
2409 /* Update the parent high keys of the left block, if needed. */
2410 error = xfs_btree_update_keys(tcur, level);
2411 if (error)
2412 goto error1;
2413
2414 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2415 }
2416
2417 /* Update the parent keys of the right block. */
2418 error = xfs_btree_update_keys(cur, level);
2419 if (error)
2420 goto error0;
2421
2422 /* Slide the cursor value left one. */
2423 cur->bc_ptrs[level]--;
2424
2425 *stat = 1;
2426 return 0;
2427
2428 out0:
2429 *stat = 0;
2430 return 0;
2431
2432 error0:
2433 return error;
2434
2435 error1:
2436 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2437 return error;
2438 }
2439
2440 /*
2441 * Move 1 record right from cur/level if possible.
2442 * Update cur to reflect the new path.
2443 */
2444 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2445 xfs_btree_rshift(
2446 struct xfs_btree_cur *cur,
2447 int level,
2448 int *stat) /* success/failure */
2449 {
2450 struct xfs_buf *lbp; /* left buffer pointer */
2451 struct xfs_btree_block *left; /* left btree block */
2452 struct xfs_buf *rbp; /* right buffer pointer */
2453 struct xfs_btree_block *right; /* right btree block */
2454 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2455 union xfs_btree_ptr rptr; /* right block pointer */
2456 union xfs_btree_key *rkp; /* right btree key */
2457 int rrecs; /* right record count */
2458 int lrecs; /* left record count */
2459 int error; /* error return value */
2460 int i; /* loop counter */
2461
2462 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2463 (level == cur->bc_nlevels - 1))
2464 goto out0;
2465
2466 /* Set up variables for this block as "left". */
2467 left = xfs_btree_get_block(cur, level, &lbp);
2468
2469 #ifdef DEBUG
2470 error = xfs_btree_check_block(cur, left, level, lbp);
2471 if (error)
2472 goto error0;
2473 #endif
2474
2475 /* If we've got no right sibling then we can't shift an entry right. */
2476 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2477 if (xfs_btree_ptr_is_null(cur, &rptr))
2478 goto out0;
2479
2480 /*
2481 * If the cursor entry is the one that would be moved, don't
2482 * do it... it's too complicated.
2483 */
2484 lrecs = xfs_btree_get_numrecs(left);
2485 if (cur->bc_ptrs[level] >= lrecs)
2486 goto out0;
2487
2488 /* Set up the right neighbor as "right". */
2489 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2490 if (error)
2491 goto error0;
2492
2493 /* If it's full, it can't take another entry. */
2494 rrecs = xfs_btree_get_numrecs(right);
2495 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2496 goto out0;
2497
2498 XFS_BTREE_STATS_INC(cur, rshift);
2499 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2500
2501 /*
2502 * Make a hole at the start of the right neighbor block, then
2503 * copy the last left block entry to the hole.
2504 */
2505 if (level > 0) {
2506 /* It's a nonleaf. make a hole in the keys and ptrs */
2507 union xfs_btree_key *lkp;
2508 union xfs_btree_ptr *lpp;
2509 union xfs_btree_ptr *rpp;
2510
2511 lkp = xfs_btree_key_addr(cur, lrecs, left);
2512 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2513 rkp = xfs_btree_key_addr(cur, 1, right);
2514 rpp = xfs_btree_ptr_addr(cur, 1, right);
2515
2516 for (i = rrecs - 1; i >= 0; i--) {
2517 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2518 if (error)
2519 goto error0;
2520 }
2521
2522 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2523 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2524
2525 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2526 if (error)
2527 goto error0;
2528
2529 /* Now put the new data in, and log it. */
2530 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2531 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2532
2533 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2534 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2535
2536 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2537 xfs_btree_key_addr(cur, 2, right)));
2538 } else {
2539 /* It's a leaf. make a hole in the records */
2540 union xfs_btree_rec *lrp;
2541 union xfs_btree_rec *rrp;
2542
2543 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2544 rrp = xfs_btree_rec_addr(cur, 1, right);
2545
2546 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2547
2548 /* Now put the new data in, and log it. */
2549 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2550 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2551 }
2552
2553 /*
2554 * Decrement and log left's numrecs, bump and log right's numrecs.
2555 */
2556 xfs_btree_set_numrecs(left, --lrecs);
2557 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2558
2559 xfs_btree_set_numrecs(right, ++rrecs);
2560 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2561
2562 /*
2563 * Using a temporary cursor, update the parent key values of the
2564 * block on the right.
2565 */
2566 error = xfs_btree_dup_cursor(cur, &tcur);
2567 if (error)
2568 goto error0;
2569 i = xfs_btree_lastrec(tcur, level);
2570 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2571 error = -EFSCORRUPTED;
2572 goto error0;
2573 }
2574
2575 error = xfs_btree_increment(tcur, level, &i);
2576 if (error)
2577 goto error1;
2578
2579 /* Update the parent high keys of the left block, if needed. */
2580 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2581 error = xfs_btree_update_keys(cur, level);
2582 if (error)
2583 goto error1;
2584 }
2585
2586 /* Update the parent keys of the right block. */
2587 error = xfs_btree_update_keys(tcur, level);
2588 if (error)
2589 goto error1;
2590
2591 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2592
2593 *stat = 1;
2594 return 0;
2595
2596 out0:
2597 *stat = 0;
2598 return 0;
2599
2600 error0:
2601 return error;
2602
2603 error1:
2604 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2605 return error;
2606 }
2607
2608 /*
2609 * Split cur/level block in half.
2610 * Return new block number and the key to its first
2611 * record (to be inserted into parent).
2612 */
2613 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2614 __xfs_btree_split(
2615 struct xfs_btree_cur *cur,
2616 int level,
2617 union xfs_btree_ptr *ptrp,
2618 union xfs_btree_key *key,
2619 struct xfs_btree_cur **curp,
2620 int *stat) /* success/failure */
2621 {
2622 union xfs_btree_ptr lptr; /* left sibling block ptr */
2623 struct xfs_buf *lbp; /* left buffer pointer */
2624 struct xfs_btree_block *left; /* left btree block */
2625 union xfs_btree_ptr rptr; /* right sibling block ptr */
2626 struct xfs_buf *rbp; /* right buffer pointer */
2627 struct xfs_btree_block *right; /* right btree block */
2628 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2629 struct xfs_buf *rrbp; /* right-right buffer pointer */
2630 struct xfs_btree_block *rrblock; /* right-right btree block */
2631 int lrecs;
2632 int rrecs;
2633 int src_index;
2634 int error; /* error return value */
2635 int i;
2636
2637 XFS_BTREE_STATS_INC(cur, split);
2638
2639 /* Set up left block (current one). */
2640 left = xfs_btree_get_block(cur, level, &lbp);
2641
2642 #ifdef DEBUG
2643 error = xfs_btree_check_block(cur, left, level, lbp);
2644 if (error)
2645 goto error0;
2646 #endif
2647
2648 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2649
2650 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2651 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2652 if (error)
2653 goto error0;
2654 if (*stat == 0)
2655 goto out0;
2656 XFS_BTREE_STATS_INC(cur, alloc);
2657
2658 /* Set up the new block as "right". */
2659 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2660 if (error)
2661 goto error0;
2662
2663 /* Fill in the btree header for the new right block. */
2664 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2665
2666 /*
2667 * Split the entries between the old and the new block evenly.
2668 * Make sure that if there's an odd number of entries now, that
2669 * each new block will have the same number of entries.
2670 */
2671 lrecs = xfs_btree_get_numrecs(left);
2672 rrecs = lrecs / 2;
2673 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2674 rrecs++;
2675 src_index = (lrecs - rrecs + 1);
2676
2677 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2678
2679 /* Adjust numrecs for the later get_*_keys() calls. */
2680 lrecs -= rrecs;
2681 xfs_btree_set_numrecs(left, lrecs);
2682 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2683
2684 /*
2685 * Copy btree block entries from the left block over to the
2686 * new block, the right. Update the right block and log the
2687 * changes.
2688 */
2689 if (level > 0) {
2690 /* It's a non-leaf. Move keys and pointers. */
2691 union xfs_btree_key *lkp; /* left btree key */
2692 union xfs_btree_ptr *lpp; /* left address pointer */
2693 union xfs_btree_key *rkp; /* right btree key */
2694 union xfs_btree_ptr *rpp; /* right address pointer */
2695
2696 lkp = xfs_btree_key_addr(cur, src_index, left);
2697 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2698 rkp = xfs_btree_key_addr(cur, 1, right);
2699 rpp = xfs_btree_ptr_addr(cur, 1, right);
2700
2701 for (i = src_index; i < rrecs; i++) {
2702 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2703 if (error)
2704 goto error0;
2705 }
2706
2707 /* Copy the keys & pointers to the new block. */
2708 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2709 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2710
2711 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2712 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2713
2714 /* Stash the keys of the new block for later insertion. */
2715 xfs_btree_get_node_keys(cur, right, key);
2716 } else {
2717 /* It's a leaf. Move records. */
2718 union xfs_btree_rec *lrp; /* left record pointer */
2719 union xfs_btree_rec *rrp; /* right record pointer */
2720
2721 lrp = xfs_btree_rec_addr(cur, src_index, left);
2722 rrp = xfs_btree_rec_addr(cur, 1, right);
2723
2724 /* Copy records to the new block. */
2725 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2726 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2727
2728 /* Stash the keys of the new block for later insertion. */
2729 xfs_btree_get_leaf_keys(cur, right, key);
2730 }
2731
2732 /*
2733 * Find the left block number by looking in the buffer.
2734 * Adjust sibling pointers.
2735 */
2736 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2737 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2738 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2739 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2740
2741 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2742 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2743
2744 /*
2745 * If there's a block to the new block's right, make that block
2746 * point back to right instead of to left.
2747 */
2748 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2749 error = xfs_btree_read_buf_block(cur, &rrptr,
2750 0, &rrblock, &rrbp);
2751 if (error)
2752 goto error0;
2753 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2754 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2755 }
2756
2757 /* Update the parent high keys of the left block, if needed. */
2758 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2759 error = xfs_btree_update_keys(cur, level);
2760 if (error)
2761 goto error0;
2762 }
2763
2764 /*
2765 * If the cursor is really in the right block, move it there.
2766 * If it's just pointing past the last entry in left, then we'll
2767 * insert there, so don't change anything in that case.
2768 */
2769 if (cur->bc_ptrs[level] > lrecs + 1) {
2770 xfs_btree_setbuf(cur, level, rbp);
2771 cur->bc_ptrs[level] -= lrecs;
2772 }
2773 /*
2774 * If there are more levels, we'll need another cursor which refers
2775 * the right block, no matter where this cursor was.
2776 */
2777 if (level + 1 < cur->bc_nlevels) {
2778 error = xfs_btree_dup_cursor(cur, curp);
2779 if (error)
2780 goto error0;
2781 (*curp)->bc_ptrs[level + 1]++;
2782 }
2783 *ptrp = rptr;
2784 *stat = 1;
2785 return 0;
2786 out0:
2787 *stat = 0;
2788 return 0;
2789
2790 error0:
2791 return error;
2792 }
2793
2794 struct xfs_btree_split_args {
2795 struct xfs_btree_cur *cur;
2796 int level;
2797 union xfs_btree_ptr *ptrp;
2798 union xfs_btree_key *key;
2799 struct xfs_btree_cur **curp;
2800 int *stat; /* success/failure */
2801 int result;
2802 bool kswapd; /* allocation in kswapd context */
2803 struct completion *done;
2804 struct work_struct work;
2805 };
2806
2807 /*
2808 * Stack switching interfaces for allocation
2809 */
2810 static void
xfs_btree_split_worker(struct work_struct * work)2811 xfs_btree_split_worker(
2812 struct work_struct *work)
2813 {
2814 struct xfs_btree_split_args *args = container_of(work,
2815 struct xfs_btree_split_args, work);
2816 unsigned long pflags;
2817 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2818
2819 /*
2820 * we are in a transaction context here, but may also be doing work
2821 * in kswapd context, and hence we may need to inherit that state
2822 * temporarily to ensure that we don't block waiting for memory reclaim
2823 * in any way.
2824 */
2825 if (args->kswapd)
2826 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2827
2828 current_set_flags_nested(&pflags, new_pflags);
2829
2830 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2831 args->key, args->curp, args->stat);
2832 complete(args->done);
2833
2834 current_restore_flags_nested(&pflags, new_pflags);
2835 }
2836
2837 /*
2838 * BMBT split requests often come in with little stack to work on. Push
2839 * them off to a worker thread so there is lots of stack to use. For the other
2840 * btree types, just call directly to avoid the context switch overhead here.
2841 */
2842 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2843 xfs_btree_split(
2844 struct xfs_btree_cur *cur,
2845 int level,
2846 union xfs_btree_ptr *ptrp,
2847 union xfs_btree_key *key,
2848 struct xfs_btree_cur **curp,
2849 int *stat) /* success/failure */
2850 {
2851 struct xfs_btree_split_args args;
2852 DECLARE_COMPLETION_ONSTACK(done);
2853
2854 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2855 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2856
2857 args.cur = cur;
2858 args.level = level;
2859 args.ptrp = ptrp;
2860 args.key = key;
2861 args.curp = curp;
2862 args.stat = stat;
2863 args.done = &done;
2864 args.kswapd = current_is_kswapd();
2865 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2866 queue_work(xfs_alloc_wq, &args.work);
2867 wait_for_completion(&done);
2868 destroy_work_on_stack(&args.work);
2869 return args.result;
2870 }
2871
2872
2873 /*
2874 * Copy the old inode root contents into a real block and make the
2875 * broot point to it.
2876 */
2877 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2878 xfs_btree_new_iroot(
2879 struct xfs_btree_cur *cur, /* btree cursor */
2880 int *logflags, /* logging flags for inode */
2881 int *stat) /* return status - 0 fail */
2882 {
2883 struct xfs_buf *cbp; /* buffer for cblock */
2884 struct xfs_btree_block *block; /* btree block */
2885 struct xfs_btree_block *cblock; /* child btree block */
2886 union xfs_btree_key *ckp; /* child key pointer */
2887 union xfs_btree_ptr *cpp; /* child ptr pointer */
2888 union xfs_btree_key *kp; /* pointer to btree key */
2889 union xfs_btree_ptr *pp; /* pointer to block addr */
2890 union xfs_btree_ptr nptr; /* new block addr */
2891 int level; /* btree level */
2892 int error; /* error return code */
2893 int i; /* loop counter */
2894
2895 XFS_BTREE_STATS_INC(cur, newroot);
2896
2897 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2898
2899 level = cur->bc_nlevels - 1;
2900
2901 block = xfs_btree_get_iroot(cur);
2902 pp = xfs_btree_ptr_addr(cur, 1, block);
2903
2904 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2905 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2906 if (error)
2907 goto error0;
2908 if (*stat == 0)
2909 return 0;
2910
2911 XFS_BTREE_STATS_INC(cur, alloc);
2912
2913 /* Copy the root into a real block. */
2914 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2915 if (error)
2916 goto error0;
2917
2918 /*
2919 * we can't just memcpy() the root in for CRC enabled btree blocks.
2920 * In that case have to also ensure the blkno remains correct
2921 */
2922 memcpy(cblock, block, xfs_btree_block_len(cur));
2923 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2924 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2925 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2926 else
2927 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2928 }
2929
2930 be16_add_cpu(&block->bb_level, 1);
2931 xfs_btree_set_numrecs(block, 1);
2932 cur->bc_nlevels++;
2933 cur->bc_ptrs[level + 1] = 1;
2934
2935 kp = xfs_btree_key_addr(cur, 1, block);
2936 ckp = xfs_btree_key_addr(cur, 1, cblock);
2937 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2938
2939 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2940 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2941 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2942 if (error)
2943 goto error0;
2944 }
2945
2946 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2947
2948 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2949 if (error)
2950 goto error0;
2951
2952 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2953
2954 xfs_iroot_realloc(cur->bc_ino.ip,
2955 1 - xfs_btree_get_numrecs(cblock),
2956 cur->bc_ino.whichfork);
2957
2958 xfs_btree_setbuf(cur, level, cbp);
2959
2960 /*
2961 * Do all this logging at the end so that
2962 * the root is at the right level.
2963 */
2964 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2965 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2966 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2967
2968 *logflags |=
2969 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2970 *stat = 1;
2971 return 0;
2972 error0:
2973 return error;
2974 }
2975
2976 /*
2977 * Allocate a new root block, fill it in.
2978 */
2979 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)2980 xfs_btree_new_root(
2981 struct xfs_btree_cur *cur, /* btree cursor */
2982 int *stat) /* success/failure */
2983 {
2984 struct xfs_btree_block *block; /* one half of the old root block */
2985 struct xfs_buf *bp; /* buffer containing block */
2986 int error; /* error return value */
2987 struct xfs_buf *lbp; /* left buffer pointer */
2988 struct xfs_btree_block *left; /* left btree block */
2989 struct xfs_buf *nbp; /* new (root) buffer */
2990 struct xfs_btree_block *new; /* new (root) btree block */
2991 int nptr; /* new value for key index, 1 or 2 */
2992 struct xfs_buf *rbp; /* right buffer pointer */
2993 struct xfs_btree_block *right; /* right btree block */
2994 union xfs_btree_ptr rptr;
2995 union xfs_btree_ptr lptr;
2996
2997 XFS_BTREE_STATS_INC(cur, newroot);
2998
2999 /* initialise our start point from the cursor */
3000 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3001
3002 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3003 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3004 if (error)
3005 goto error0;
3006 if (*stat == 0)
3007 goto out0;
3008 XFS_BTREE_STATS_INC(cur, alloc);
3009
3010 /* Set up the new block. */
3011 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3012 if (error)
3013 goto error0;
3014
3015 /* Set the root in the holding structure increasing the level by 1. */
3016 cur->bc_ops->set_root(cur, &lptr, 1);
3017
3018 /*
3019 * At the previous root level there are now two blocks: the old root,
3020 * and the new block generated when it was split. We don't know which
3021 * one the cursor is pointing at, so we set up variables "left" and
3022 * "right" for each case.
3023 */
3024 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3025
3026 #ifdef DEBUG
3027 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3028 if (error)
3029 goto error0;
3030 #endif
3031
3032 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3033 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3034 /* Our block is left, pick up the right block. */
3035 lbp = bp;
3036 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3037 left = block;
3038 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3039 if (error)
3040 goto error0;
3041 bp = rbp;
3042 nptr = 1;
3043 } else {
3044 /* Our block is right, pick up the left block. */
3045 rbp = bp;
3046 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3047 right = block;
3048 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3049 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3050 if (error)
3051 goto error0;
3052 bp = lbp;
3053 nptr = 2;
3054 }
3055
3056 /* Fill in the new block's btree header and log it. */
3057 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3058 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3059 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3060 !xfs_btree_ptr_is_null(cur, &rptr));
3061
3062 /* Fill in the key data in the new root. */
3063 if (xfs_btree_get_level(left) > 0) {
3064 /*
3065 * Get the keys for the left block's keys and put them directly
3066 * in the parent block. Do the same for the right block.
3067 */
3068 xfs_btree_get_node_keys(cur, left,
3069 xfs_btree_key_addr(cur, 1, new));
3070 xfs_btree_get_node_keys(cur, right,
3071 xfs_btree_key_addr(cur, 2, new));
3072 } else {
3073 /*
3074 * Get the keys for the left block's records and put them
3075 * directly in the parent block. Do the same for the right
3076 * block.
3077 */
3078 xfs_btree_get_leaf_keys(cur, left,
3079 xfs_btree_key_addr(cur, 1, new));
3080 xfs_btree_get_leaf_keys(cur, right,
3081 xfs_btree_key_addr(cur, 2, new));
3082 }
3083 xfs_btree_log_keys(cur, nbp, 1, 2);
3084
3085 /* Fill in the pointer data in the new root. */
3086 xfs_btree_copy_ptrs(cur,
3087 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3088 xfs_btree_copy_ptrs(cur,
3089 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3090 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3091
3092 /* Fix up the cursor. */
3093 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3094 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3095 cur->bc_nlevels++;
3096 *stat = 1;
3097 return 0;
3098 error0:
3099 return error;
3100 out0:
3101 *stat = 0;
3102 return 0;
3103 }
3104
3105 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3106 xfs_btree_make_block_unfull(
3107 struct xfs_btree_cur *cur, /* btree cursor */
3108 int level, /* btree level */
3109 int numrecs,/* # of recs in block */
3110 int *oindex,/* old tree index */
3111 int *index, /* new tree index */
3112 union xfs_btree_ptr *nptr, /* new btree ptr */
3113 struct xfs_btree_cur **ncur, /* new btree cursor */
3114 union xfs_btree_key *key, /* key of new block */
3115 int *stat)
3116 {
3117 int error = 0;
3118
3119 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3120 level == cur->bc_nlevels - 1) {
3121 struct xfs_inode *ip = cur->bc_ino.ip;
3122
3123 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3124 /* A root block that can be made bigger. */
3125 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3126 *stat = 1;
3127 } else {
3128 /* A root block that needs replacing */
3129 int logflags = 0;
3130
3131 error = xfs_btree_new_iroot(cur, &logflags, stat);
3132 if (error || *stat == 0)
3133 return error;
3134
3135 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3136 }
3137
3138 return 0;
3139 }
3140
3141 /* First, try shifting an entry to the right neighbor. */
3142 error = xfs_btree_rshift(cur, level, stat);
3143 if (error || *stat)
3144 return error;
3145
3146 /* Next, try shifting an entry to the left neighbor. */
3147 error = xfs_btree_lshift(cur, level, stat);
3148 if (error)
3149 return error;
3150
3151 if (*stat) {
3152 *oindex = *index = cur->bc_ptrs[level];
3153 return 0;
3154 }
3155
3156 /*
3157 * Next, try splitting the current block in half.
3158 *
3159 * If this works we have to re-set our variables because we
3160 * could be in a different block now.
3161 */
3162 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3163 if (error || *stat == 0)
3164 return error;
3165
3166
3167 *index = cur->bc_ptrs[level];
3168 return 0;
3169 }
3170
3171 /*
3172 * Insert one record/level. Return information to the caller
3173 * allowing the next level up to proceed if necessary.
3174 */
3175 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3176 xfs_btree_insrec(
3177 struct xfs_btree_cur *cur, /* btree cursor */
3178 int level, /* level to insert record at */
3179 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3180 union xfs_btree_rec *rec, /* record to insert */
3181 union xfs_btree_key *key, /* i/o: block key for ptrp */
3182 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3183 int *stat) /* success/failure */
3184 {
3185 struct xfs_btree_block *block; /* btree block */
3186 struct xfs_buf *bp; /* buffer for block */
3187 union xfs_btree_ptr nptr; /* new block ptr */
3188 struct xfs_btree_cur *ncur; /* new btree cursor */
3189 union xfs_btree_key nkey; /* new block key */
3190 union xfs_btree_key *lkey;
3191 int optr; /* old key/record index */
3192 int ptr; /* key/record index */
3193 int numrecs;/* number of records */
3194 int error; /* error return value */
3195 int i;
3196 xfs_daddr_t old_bn;
3197
3198 ncur = NULL;
3199 lkey = &nkey;
3200
3201 /*
3202 * If we have an external root pointer, and we've made it to the
3203 * root level, allocate a new root block and we're done.
3204 */
3205 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3206 (level >= cur->bc_nlevels)) {
3207 error = xfs_btree_new_root(cur, stat);
3208 xfs_btree_set_ptr_null(cur, ptrp);
3209
3210 return error;
3211 }
3212
3213 /* If we're off the left edge, return failure. */
3214 ptr = cur->bc_ptrs[level];
3215 if (ptr == 0) {
3216 *stat = 0;
3217 return 0;
3218 }
3219
3220 optr = ptr;
3221
3222 XFS_BTREE_STATS_INC(cur, insrec);
3223
3224 /* Get pointers to the btree buffer and block. */
3225 block = xfs_btree_get_block(cur, level, &bp);
3226 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3227 numrecs = xfs_btree_get_numrecs(block);
3228
3229 #ifdef DEBUG
3230 error = xfs_btree_check_block(cur, block, level, bp);
3231 if (error)
3232 goto error0;
3233
3234 /* Check that the new entry is being inserted in the right place. */
3235 if (ptr <= numrecs) {
3236 if (level == 0) {
3237 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3238 xfs_btree_rec_addr(cur, ptr, block)));
3239 } else {
3240 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3241 xfs_btree_key_addr(cur, ptr, block)));
3242 }
3243 }
3244 #endif
3245
3246 /*
3247 * If the block is full, we can't insert the new entry until we
3248 * make the block un-full.
3249 */
3250 xfs_btree_set_ptr_null(cur, &nptr);
3251 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3252 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3253 &optr, &ptr, &nptr, &ncur, lkey, stat);
3254 if (error || *stat == 0)
3255 goto error0;
3256 }
3257
3258 /*
3259 * The current block may have changed if the block was
3260 * previously full and we have just made space in it.
3261 */
3262 block = xfs_btree_get_block(cur, level, &bp);
3263 numrecs = xfs_btree_get_numrecs(block);
3264
3265 #ifdef DEBUG
3266 error = xfs_btree_check_block(cur, block, level, bp);
3267 if (error)
3268 return error;
3269 #endif
3270
3271 /*
3272 * At this point we know there's room for our new entry in the block
3273 * we're pointing at.
3274 */
3275 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3276
3277 if (level > 0) {
3278 /* It's a nonleaf. make a hole in the keys and ptrs */
3279 union xfs_btree_key *kp;
3280 union xfs_btree_ptr *pp;
3281
3282 kp = xfs_btree_key_addr(cur, ptr, block);
3283 pp = xfs_btree_ptr_addr(cur, ptr, block);
3284
3285 for (i = numrecs - ptr; i >= 0; i--) {
3286 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3287 if (error)
3288 return error;
3289 }
3290
3291 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3292 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3293
3294 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3295 if (error)
3296 goto error0;
3297
3298 /* Now put the new data in, bump numrecs and log it. */
3299 xfs_btree_copy_keys(cur, kp, key, 1);
3300 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3301 numrecs++;
3302 xfs_btree_set_numrecs(block, numrecs);
3303 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3304 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3305 #ifdef DEBUG
3306 if (ptr < numrecs) {
3307 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3308 xfs_btree_key_addr(cur, ptr + 1, block)));
3309 }
3310 #endif
3311 } else {
3312 /* It's a leaf. make a hole in the records */
3313 union xfs_btree_rec *rp;
3314
3315 rp = xfs_btree_rec_addr(cur, ptr, block);
3316
3317 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3318
3319 /* Now put the new data in, bump numrecs and log it. */
3320 xfs_btree_copy_recs(cur, rp, rec, 1);
3321 xfs_btree_set_numrecs(block, ++numrecs);
3322 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3323 #ifdef DEBUG
3324 if (ptr < numrecs) {
3325 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3326 xfs_btree_rec_addr(cur, ptr + 1, block)));
3327 }
3328 #endif
3329 }
3330
3331 /* Log the new number of records in the btree header. */
3332 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3333
3334 /*
3335 * If we just inserted into a new tree block, we have to
3336 * recalculate nkey here because nkey is out of date.
3337 *
3338 * Otherwise we're just updating an existing block (having shoved
3339 * some records into the new tree block), so use the regular key
3340 * update mechanism.
3341 */
3342 if (bp && bp->b_bn != old_bn) {
3343 xfs_btree_get_keys(cur, block, lkey);
3344 } else if (xfs_btree_needs_key_update(cur, optr)) {
3345 error = xfs_btree_update_keys(cur, level);
3346 if (error)
3347 goto error0;
3348 }
3349
3350 /*
3351 * If we are tracking the last record in the tree and
3352 * we are at the far right edge of the tree, update it.
3353 */
3354 if (xfs_btree_is_lastrec(cur, block, level)) {
3355 cur->bc_ops->update_lastrec(cur, block, rec,
3356 ptr, LASTREC_INSREC);
3357 }
3358
3359 /*
3360 * Return the new block number, if any.
3361 * If there is one, give back a record value and a cursor too.
3362 */
3363 *ptrp = nptr;
3364 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3365 xfs_btree_copy_keys(cur, key, lkey, 1);
3366 *curp = ncur;
3367 }
3368
3369 *stat = 1;
3370 return 0;
3371
3372 error0:
3373 return error;
3374 }
3375
3376 /*
3377 * Insert the record at the point referenced by cur.
3378 *
3379 * A multi-level split of the tree on insert will invalidate the original
3380 * cursor. All callers of this function should assume that the cursor is
3381 * no longer valid and revalidate it.
3382 */
3383 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3384 xfs_btree_insert(
3385 struct xfs_btree_cur *cur,
3386 int *stat)
3387 {
3388 int error; /* error return value */
3389 int i; /* result value, 0 for failure */
3390 int level; /* current level number in btree */
3391 union xfs_btree_ptr nptr; /* new block number (split result) */
3392 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3393 struct xfs_btree_cur *pcur; /* previous level's cursor */
3394 union xfs_btree_key bkey; /* key of block to insert */
3395 union xfs_btree_key *key;
3396 union xfs_btree_rec rec; /* record to insert */
3397
3398 level = 0;
3399 ncur = NULL;
3400 pcur = cur;
3401 key = &bkey;
3402
3403 xfs_btree_set_ptr_null(cur, &nptr);
3404
3405 /* Make a key out of the record data to be inserted, and save it. */
3406 cur->bc_ops->init_rec_from_cur(cur, &rec);
3407 cur->bc_ops->init_key_from_rec(key, &rec);
3408
3409 /*
3410 * Loop going up the tree, starting at the leaf level.
3411 * Stop when we don't get a split block, that must mean that
3412 * the insert is finished with this level.
3413 */
3414 do {
3415 /*
3416 * Insert nrec/nptr into this level of the tree.
3417 * Note if we fail, nptr will be null.
3418 */
3419 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3420 &ncur, &i);
3421 if (error) {
3422 if (pcur != cur)
3423 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3424 goto error0;
3425 }
3426
3427 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3428 error = -EFSCORRUPTED;
3429 goto error0;
3430 }
3431 level++;
3432
3433 /*
3434 * See if the cursor we just used is trash.
3435 * Can't trash the caller's cursor, but otherwise we should
3436 * if ncur is a new cursor or we're about to be done.
3437 */
3438 if (pcur != cur &&
3439 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3440 /* Save the state from the cursor before we trash it */
3441 if (cur->bc_ops->update_cursor)
3442 cur->bc_ops->update_cursor(pcur, cur);
3443 cur->bc_nlevels = pcur->bc_nlevels;
3444 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3445 }
3446 /* If we got a new cursor, switch to it. */
3447 if (ncur) {
3448 pcur = ncur;
3449 ncur = NULL;
3450 }
3451 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3452
3453 *stat = i;
3454 return 0;
3455 error0:
3456 return error;
3457 }
3458
3459 /*
3460 * Try to merge a non-leaf block back into the inode root.
3461 *
3462 * Note: the killroot names comes from the fact that we're effectively
3463 * killing the old root block. But because we can't just delete the
3464 * inode we have to copy the single block it was pointing to into the
3465 * inode.
3466 */
3467 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3468 xfs_btree_kill_iroot(
3469 struct xfs_btree_cur *cur)
3470 {
3471 int whichfork = cur->bc_ino.whichfork;
3472 struct xfs_inode *ip = cur->bc_ino.ip;
3473 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3474 struct xfs_btree_block *block;
3475 struct xfs_btree_block *cblock;
3476 union xfs_btree_key *kp;
3477 union xfs_btree_key *ckp;
3478 union xfs_btree_ptr *pp;
3479 union xfs_btree_ptr *cpp;
3480 struct xfs_buf *cbp;
3481 int level;
3482 int index;
3483 int numrecs;
3484 int error;
3485 #ifdef DEBUG
3486 union xfs_btree_ptr ptr;
3487 #endif
3488 int i;
3489
3490 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3491 ASSERT(cur->bc_nlevels > 1);
3492
3493 /*
3494 * Don't deal with the root block needs to be a leaf case.
3495 * We're just going to turn the thing back into extents anyway.
3496 */
3497 level = cur->bc_nlevels - 1;
3498 if (level == 1)
3499 goto out0;
3500
3501 /*
3502 * Give up if the root has multiple children.
3503 */
3504 block = xfs_btree_get_iroot(cur);
3505 if (xfs_btree_get_numrecs(block) != 1)
3506 goto out0;
3507
3508 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3509 numrecs = xfs_btree_get_numrecs(cblock);
3510
3511 /*
3512 * Only do this if the next level will fit.
3513 * Then the data must be copied up to the inode,
3514 * instead of freeing the root you free the next level.
3515 */
3516 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3517 goto out0;
3518
3519 XFS_BTREE_STATS_INC(cur, killroot);
3520
3521 #ifdef DEBUG
3522 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3523 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3524 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3525 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3526 #endif
3527
3528 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3529 if (index) {
3530 xfs_iroot_realloc(cur->bc_ino.ip, index,
3531 cur->bc_ino.whichfork);
3532 block = ifp->if_broot;
3533 }
3534
3535 be16_add_cpu(&block->bb_numrecs, index);
3536 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3537
3538 kp = xfs_btree_key_addr(cur, 1, block);
3539 ckp = xfs_btree_key_addr(cur, 1, cblock);
3540 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3541
3542 pp = xfs_btree_ptr_addr(cur, 1, block);
3543 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3544
3545 for (i = 0; i < numrecs; i++) {
3546 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3547 if (error)
3548 return error;
3549 }
3550
3551 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3552
3553 error = xfs_btree_free_block(cur, cbp);
3554 if (error)
3555 return error;
3556
3557 cur->bc_bufs[level - 1] = NULL;
3558 be16_add_cpu(&block->bb_level, -1);
3559 xfs_trans_log_inode(cur->bc_tp, ip,
3560 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3561 cur->bc_nlevels--;
3562 out0:
3563 return 0;
3564 }
3565
3566 /*
3567 * Kill the current root node, and replace it with it's only child node.
3568 */
3569 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3570 xfs_btree_kill_root(
3571 struct xfs_btree_cur *cur,
3572 struct xfs_buf *bp,
3573 int level,
3574 union xfs_btree_ptr *newroot)
3575 {
3576 int error;
3577
3578 XFS_BTREE_STATS_INC(cur, killroot);
3579
3580 /*
3581 * Update the root pointer, decreasing the level by 1 and then
3582 * free the old root.
3583 */
3584 cur->bc_ops->set_root(cur, newroot, -1);
3585
3586 error = xfs_btree_free_block(cur, bp);
3587 if (error)
3588 return error;
3589
3590 cur->bc_bufs[level] = NULL;
3591 cur->bc_ra[level] = 0;
3592 cur->bc_nlevels--;
3593
3594 return 0;
3595 }
3596
3597 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3598 xfs_btree_dec_cursor(
3599 struct xfs_btree_cur *cur,
3600 int level,
3601 int *stat)
3602 {
3603 int error;
3604 int i;
3605
3606 if (level > 0) {
3607 error = xfs_btree_decrement(cur, level, &i);
3608 if (error)
3609 return error;
3610 }
3611
3612 *stat = 1;
3613 return 0;
3614 }
3615
3616 /*
3617 * Single level of the btree record deletion routine.
3618 * Delete record pointed to by cur/level.
3619 * Remove the record from its block then rebalance the tree.
3620 * Return 0 for error, 1 for done, 2 to go on to the next level.
3621 */
3622 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3623 xfs_btree_delrec(
3624 struct xfs_btree_cur *cur, /* btree cursor */
3625 int level, /* level removing record from */
3626 int *stat) /* fail/done/go-on */
3627 {
3628 struct xfs_btree_block *block; /* btree block */
3629 union xfs_btree_ptr cptr; /* current block ptr */
3630 struct xfs_buf *bp; /* buffer for block */
3631 int error; /* error return value */
3632 int i; /* loop counter */
3633 union xfs_btree_ptr lptr; /* left sibling block ptr */
3634 struct xfs_buf *lbp; /* left buffer pointer */
3635 struct xfs_btree_block *left; /* left btree block */
3636 int lrecs = 0; /* left record count */
3637 int ptr; /* key/record index */
3638 union xfs_btree_ptr rptr; /* right sibling block ptr */
3639 struct xfs_buf *rbp; /* right buffer pointer */
3640 struct xfs_btree_block *right; /* right btree block */
3641 struct xfs_btree_block *rrblock; /* right-right btree block */
3642 struct xfs_buf *rrbp; /* right-right buffer pointer */
3643 int rrecs = 0; /* right record count */
3644 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3645 int numrecs; /* temporary numrec count */
3646
3647 tcur = NULL;
3648
3649 /* Get the index of the entry being deleted, check for nothing there. */
3650 ptr = cur->bc_ptrs[level];
3651 if (ptr == 0) {
3652 *stat = 0;
3653 return 0;
3654 }
3655
3656 /* Get the buffer & block containing the record or key/ptr. */
3657 block = xfs_btree_get_block(cur, level, &bp);
3658 numrecs = xfs_btree_get_numrecs(block);
3659
3660 #ifdef DEBUG
3661 error = xfs_btree_check_block(cur, block, level, bp);
3662 if (error)
3663 goto error0;
3664 #endif
3665
3666 /* Fail if we're off the end of the block. */
3667 if (ptr > numrecs) {
3668 *stat = 0;
3669 return 0;
3670 }
3671
3672 XFS_BTREE_STATS_INC(cur, delrec);
3673 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3674
3675 /* Excise the entries being deleted. */
3676 if (level > 0) {
3677 /* It's a nonleaf. operate on keys and ptrs */
3678 union xfs_btree_key *lkp;
3679 union xfs_btree_ptr *lpp;
3680
3681 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3682 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3683
3684 for (i = 0; i < numrecs - ptr; i++) {
3685 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3686 if (error)
3687 goto error0;
3688 }
3689
3690 if (ptr < numrecs) {
3691 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3692 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3693 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3694 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3695 }
3696 } else {
3697 /* It's a leaf. operate on records */
3698 if (ptr < numrecs) {
3699 xfs_btree_shift_recs(cur,
3700 xfs_btree_rec_addr(cur, ptr + 1, block),
3701 -1, numrecs - ptr);
3702 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3703 }
3704 }
3705
3706 /*
3707 * Decrement and log the number of entries in the block.
3708 */
3709 xfs_btree_set_numrecs(block, --numrecs);
3710 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3711
3712 /*
3713 * If we are tracking the last record in the tree and
3714 * we are at the far right edge of the tree, update it.
3715 */
3716 if (xfs_btree_is_lastrec(cur, block, level)) {
3717 cur->bc_ops->update_lastrec(cur, block, NULL,
3718 ptr, LASTREC_DELREC);
3719 }
3720
3721 /*
3722 * We're at the root level. First, shrink the root block in-memory.
3723 * Try to get rid of the next level down. If we can't then there's
3724 * nothing left to do.
3725 */
3726 if (level == cur->bc_nlevels - 1) {
3727 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3728 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3729 cur->bc_ino.whichfork);
3730
3731 error = xfs_btree_kill_iroot(cur);
3732 if (error)
3733 goto error0;
3734
3735 error = xfs_btree_dec_cursor(cur, level, stat);
3736 if (error)
3737 goto error0;
3738 *stat = 1;
3739 return 0;
3740 }
3741
3742 /*
3743 * If this is the root level, and there's only one entry left,
3744 * and it's NOT the leaf level, then we can get rid of this
3745 * level.
3746 */
3747 if (numrecs == 1 && level > 0) {
3748 union xfs_btree_ptr *pp;
3749 /*
3750 * pp is still set to the first pointer in the block.
3751 * Make it the new root of the btree.
3752 */
3753 pp = xfs_btree_ptr_addr(cur, 1, block);
3754 error = xfs_btree_kill_root(cur, bp, level, pp);
3755 if (error)
3756 goto error0;
3757 } else if (level > 0) {
3758 error = xfs_btree_dec_cursor(cur, level, stat);
3759 if (error)
3760 goto error0;
3761 }
3762 *stat = 1;
3763 return 0;
3764 }
3765
3766 /*
3767 * If we deleted the leftmost entry in the block, update the
3768 * key values above us in the tree.
3769 */
3770 if (xfs_btree_needs_key_update(cur, ptr)) {
3771 error = xfs_btree_update_keys(cur, level);
3772 if (error)
3773 goto error0;
3774 }
3775
3776 /*
3777 * If the number of records remaining in the block is at least
3778 * the minimum, we're done.
3779 */
3780 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3781 error = xfs_btree_dec_cursor(cur, level, stat);
3782 if (error)
3783 goto error0;
3784 return 0;
3785 }
3786
3787 /*
3788 * Otherwise, we have to move some records around to keep the
3789 * tree balanced. Look at the left and right sibling blocks to
3790 * see if we can re-balance by moving only one record.
3791 */
3792 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3793 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3794
3795 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3796 /*
3797 * One child of root, need to get a chance to copy its contents
3798 * into the root and delete it. Can't go up to next level,
3799 * there's nothing to delete there.
3800 */
3801 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3802 xfs_btree_ptr_is_null(cur, &lptr) &&
3803 level == cur->bc_nlevels - 2) {
3804 error = xfs_btree_kill_iroot(cur);
3805 if (!error)
3806 error = xfs_btree_dec_cursor(cur, level, stat);
3807 if (error)
3808 goto error0;
3809 return 0;
3810 }
3811 }
3812
3813 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3814 !xfs_btree_ptr_is_null(cur, &lptr));
3815
3816 /*
3817 * Duplicate the cursor so our btree manipulations here won't
3818 * disrupt the next level up.
3819 */
3820 error = xfs_btree_dup_cursor(cur, &tcur);
3821 if (error)
3822 goto error0;
3823
3824 /*
3825 * If there's a right sibling, see if it's ok to shift an entry
3826 * out of it.
3827 */
3828 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3829 /*
3830 * Move the temp cursor to the last entry in the next block.
3831 * Actually any entry but the first would suffice.
3832 */
3833 i = xfs_btree_lastrec(tcur, level);
3834 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3835 error = -EFSCORRUPTED;
3836 goto error0;
3837 }
3838
3839 error = xfs_btree_increment(tcur, level, &i);
3840 if (error)
3841 goto error0;
3842 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3843 error = -EFSCORRUPTED;
3844 goto error0;
3845 }
3846
3847 i = xfs_btree_lastrec(tcur, level);
3848 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3849 error = -EFSCORRUPTED;
3850 goto error0;
3851 }
3852
3853 /* Grab a pointer to the block. */
3854 right = xfs_btree_get_block(tcur, level, &rbp);
3855 #ifdef DEBUG
3856 error = xfs_btree_check_block(tcur, right, level, rbp);
3857 if (error)
3858 goto error0;
3859 #endif
3860 /* Grab the current block number, for future use. */
3861 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3862
3863 /*
3864 * If right block is full enough so that removing one entry
3865 * won't make it too empty, and left-shifting an entry out
3866 * of right to us works, we're done.
3867 */
3868 if (xfs_btree_get_numrecs(right) - 1 >=
3869 cur->bc_ops->get_minrecs(tcur, level)) {
3870 error = xfs_btree_lshift(tcur, level, &i);
3871 if (error)
3872 goto error0;
3873 if (i) {
3874 ASSERT(xfs_btree_get_numrecs(block) >=
3875 cur->bc_ops->get_minrecs(tcur, level));
3876
3877 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3878 tcur = NULL;
3879
3880 error = xfs_btree_dec_cursor(cur, level, stat);
3881 if (error)
3882 goto error0;
3883 return 0;
3884 }
3885 }
3886
3887 /*
3888 * Otherwise, grab the number of records in right for
3889 * future reference, and fix up the temp cursor to point
3890 * to our block again (last record).
3891 */
3892 rrecs = xfs_btree_get_numrecs(right);
3893 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3894 i = xfs_btree_firstrec(tcur, level);
3895 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3896 error = -EFSCORRUPTED;
3897 goto error0;
3898 }
3899
3900 error = xfs_btree_decrement(tcur, level, &i);
3901 if (error)
3902 goto error0;
3903 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3904 error = -EFSCORRUPTED;
3905 goto error0;
3906 }
3907 }
3908 }
3909
3910 /*
3911 * If there's a left sibling, see if it's ok to shift an entry
3912 * out of it.
3913 */
3914 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3915 /*
3916 * Move the temp cursor to the first entry in the
3917 * previous block.
3918 */
3919 i = xfs_btree_firstrec(tcur, level);
3920 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3921 error = -EFSCORRUPTED;
3922 goto error0;
3923 }
3924
3925 error = xfs_btree_decrement(tcur, level, &i);
3926 if (error)
3927 goto error0;
3928 i = xfs_btree_firstrec(tcur, level);
3929 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3930 error = -EFSCORRUPTED;
3931 goto error0;
3932 }
3933
3934 /* Grab a pointer to the block. */
3935 left = xfs_btree_get_block(tcur, level, &lbp);
3936 #ifdef DEBUG
3937 error = xfs_btree_check_block(cur, left, level, lbp);
3938 if (error)
3939 goto error0;
3940 #endif
3941 /* Grab the current block number, for future use. */
3942 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3943
3944 /*
3945 * If left block is full enough so that removing one entry
3946 * won't make it too empty, and right-shifting an entry out
3947 * of left to us works, we're done.
3948 */
3949 if (xfs_btree_get_numrecs(left) - 1 >=
3950 cur->bc_ops->get_minrecs(tcur, level)) {
3951 error = xfs_btree_rshift(tcur, level, &i);
3952 if (error)
3953 goto error0;
3954 if (i) {
3955 ASSERT(xfs_btree_get_numrecs(block) >=
3956 cur->bc_ops->get_minrecs(tcur, level));
3957 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3958 tcur = NULL;
3959 if (level == 0)
3960 cur->bc_ptrs[0]++;
3961
3962 *stat = 1;
3963 return 0;
3964 }
3965 }
3966
3967 /*
3968 * Otherwise, grab the number of records in right for
3969 * future reference.
3970 */
3971 lrecs = xfs_btree_get_numrecs(left);
3972 }
3973
3974 /* Delete the temp cursor, we're done with it. */
3975 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3976 tcur = NULL;
3977
3978 /* If here, we need to do a join to keep the tree balanced. */
3979 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3980
3981 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3982 lrecs + xfs_btree_get_numrecs(block) <=
3983 cur->bc_ops->get_maxrecs(cur, level)) {
3984 /*
3985 * Set "right" to be the starting block,
3986 * "left" to be the left neighbor.
3987 */
3988 rptr = cptr;
3989 right = block;
3990 rbp = bp;
3991 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3992 if (error)
3993 goto error0;
3994
3995 /*
3996 * If that won't work, see if we can join with the right neighbor block.
3997 */
3998 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
3999 rrecs + xfs_btree_get_numrecs(block) <=
4000 cur->bc_ops->get_maxrecs(cur, level)) {
4001 /*
4002 * Set "left" to be the starting block,
4003 * "right" to be the right neighbor.
4004 */
4005 lptr = cptr;
4006 left = block;
4007 lbp = bp;
4008 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4009 if (error)
4010 goto error0;
4011
4012 /*
4013 * Otherwise, we can't fix the imbalance.
4014 * Just return. This is probably a logic error, but it's not fatal.
4015 */
4016 } else {
4017 error = xfs_btree_dec_cursor(cur, level, stat);
4018 if (error)
4019 goto error0;
4020 return 0;
4021 }
4022
4023 rrecs = xfs_btree_get_numrecs(right);
4024 lrecs = xfs_btree_get_numrecs(left);
4025
4026 /*
4027 * We're now going to join "left" and "right" by moving all the stuff
4028 * in "right" to "left" and deleting "right".
4029 */
4030 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4031 if (level > 0) {
4032 /* It's a non-leaf. Move keys and pointers. */
4033 union xfs_btree_key *lkp; /* left btree key */
4034 union xfs_btree_ptr *lpp; /* left address pointer */
4035 union xfs_btree_key *rkp; /* right btree key */
4036 union xfs_btree_ptr *rpp; /* right address pointer */
4037
4038 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4039 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4040 rkp = xfs_btree_key_addr(cur, 1, right);
4041 rpp = xfs_btree_ptr_addr(cur, 1, right);
4042
4043 for (i = 1; i < rrecs; i++) {
4044 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4045 if (error)
4046 goto error0;
4047 }
4048
4049 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4050 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4051
4052 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4053 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4054 } else {
4055 /* It's a leaf. Move records. */
4056 union xfs_btree_rec *lrp; /* left record pointer */
4057 union xfs_btree_rec *rrp; /* right record pointer */
4058
4059 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4060 rrp = xfs_btree_rec_addr(cur, 1, right);
4061
4062 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4063 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4064 }
4065
4066 XFS_BTREE_STATS_INC(cur, join);
4067
4068 /*
4069 * Fix up the number of records and right block pointer in the
4070 * surviving block, and log it.
4071 */
4072 xfs_btree_set_numrecs(left, lrecs + rrecs);
4073 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4074 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4075 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4076
4077 /* If there is a right sibling, point it to the remaining block. */
4078 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4079 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4080 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4081 if (error)
4082 goto error0;
4083 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4084 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4085 }
4086
4087 /* Free the deleted block. */
4088 error = xfs_btree_free_block(cur, rbp);
4089 if (error)
4090 goto error0;
4091
4092 /*
4093 * If we joined with the left neighbor, set the buffer in the
4094 * cursor to the left block, and fix up the index.
4095 */
4096 if (bp != lbp) {
4097 cur->bc_bufs[level] = lbp;
4098 cur->bc_ptrs[level] += lrecs;
4099 cur->bc_ra[level] = 0;
4100 }
4101 /*
4102 * If we joined with the right neighbor and there's a level above
4103 * us, increment the cursor at that level.
4104 */
4105 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4106 (level + 1 < cur->bc_nlevels)) {
4107 error = xfs_btree_increment(cur, level + 1, &i);
4108 if (error)
4109 goto error0;
4110 }
4111
4112 /*
4113 * Readjust the ptr at this level if it's not a leaf, since it's
4114 * still pointing at the deletion point, which makes the cursor
4115 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4116 * We can't use decrement because it would change the next level up.
4117 */
4118 if (level > 0)
4119 cur->bc_ptrs[level]--;
4120
4121 /*
4122 * We combined blocks, so we have to update the parent keys if the
4123 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4124 * points to the old block so that the caller knows which record to
4125 * delete. Therefore, the caller must be savvy enough to call updkeys
4126 * for us if we return stat == 2. The other exit points from this
4127 * function don't require deletions further up the tree, so they can
4128 * call updkeys directly.
4129 */
4130
4131 /* Return value means the next level up has something to do. */
4132 *stat = 2;
4133 return 0;
4134
4135 error0:
4136 if (tcur)
4137 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4138 return error;
4139 }
4140
4141 /*
4142 * Delete the record pointed to by cur.
4143 * The cursor refers to the place where the record was (could be inserted)
4144 * when the operation returns.
4145 */
4146 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4147 xfs_btree_delete(
4148 struct xfs_btree_cur *cur,
4149 int *stat) /* success/failure */
4150 {
4151 int error; /* error return value */
4152 int level;
4153 int i;
4154 bool joined = false;
4155
4156 /*
4157 * Go up the tree, starting at leaf level.
4158 *
4159 * If 2 is returned then a join was done; go to the next level.
4160 * Otherwise we are done.
4161 */
4162 for (level = 0, i = 2; i == 2; level++) {
4163 error = xfs_btree_delrec(cur, level, &i);
4164 if (error)
4165 goto error0;
4166 if (i == 2)
4167 joined = true;
4168 }
4169
4170 /*
4171 * If we combined blocks as part of deleting the record, delrec won't
4172 * have updated the parent high keys so we have to do that here.
4173 */
4174 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4175 error = xfs_btree_updkeys_force(cur, 0);
4176 if (error)
4177 goto error0;
4178 }
4179
4180 if (i == 0) {
4181 for (level = 1; level < cur->bc_nlevels; level++) {
4182 if (cur->bc_ptrs[level] == 0) {
4183 error = xfs_btree_decrement(cur, level, &i);
4184 if (error)
4185 goto error0;
4186 break;
4187 }
4188 }
4189 }
4190
4191 *stat = i;
4192 return 0;
4193 error0:
4194 return error;
4195 }
4196
4197 /*
4198 * Get the data from the pointed-to record.
4199 */
4200 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4201 xfs_btree_get_rec(
4202 struct xfs_btree_cur *cur, /* btree cursor */
4203 union xfs_btree_rec **recp, /* output: btree record */
4204 int *stat) /* output: success/failure */
4205 {
4206 struct xfs_btree_block *block; /* btree block */
4207 struct xfs_buf *bp; /* buffer pointer */
4208 int ptr; /* record number */
4209 #ifdef DEBUG
4210 int error; /* error return value */
4211 #endif
4212
4213 ptr = cur->bc_ptrs[0];
4214 block = xfs_btree_get_block(cur, 0, &bp);
4215
4216 #ifdef DEBUG
4217 error = xfs_btree_check_block(cur, block, 0, bp);
4218 if (error)
4219 return error;
4220 #endif
4221
4222 /*
4223 * Off the right end or left end, return failure.
4224 */
4225 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4226 *stat = 0;
4227 return 0;
4228 }
4229
4230 /*
4231 * Point to the record and extract its data.
4232 */
4233 *recp = xfs_btree_rec_addr(cur, ptr, block);
4234 *stat = 1;
4235 return 0;
4236 }
4237
4238 /* Visit a block in a btree. */
4239 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4240 xfs_btree_visit_block(
4241 struct xfs_btree_cur *cur,
4242 int level,
4243 xfs_btree_visit_blocks_fn fn,
4244 void *data)
4245 {
4246 struct xfs_btree_block *block;
4247 struct xfs_buf *bp;
4248 union xfs_btree_ptr rptr;
4249 int error;
4250
4251 /* do right sibling readahead */
4252 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4253 block = xfs_btree_get_block(cur, level, &bp);
4254
4255 /* process the block */
4256 error = fn(cur, level, data);
4257 if (error)
4258 return error;
4259
4260 /* now read rh sibling block for next iteration */
4261 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4262 if (xfs_btree_ptr_is_null(cur, &rptr))
4263 return -ENOENT;
4264
4265 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4266 }
4267
4268
4269 /* Visit every block in a btree. */
4270 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4271 xfs_btree_visit_blocks(
4272 struct xfs_btree_cur *cur,
4273 xfs_btree_visit_blocks_fn fn,
4274 unsigned int flags,
4275 void *data)
4276 {
4277 union xfs_btree_ptr lptr;
4278 int level;
4279 struct xfs_btree_block *block = NULL;
4280 int error = 0;
4281
4282 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4283
4284 /* for each level */
4285 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4286 /* grab the left hand block */
4287 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4288 if (error)
4289 return error;
4290
4291 /* readahead the left most block for the next level down */
4292 if (level > 0) {
4293 union xfs_btree_ptr *ptr;
4294
4295 ptr = xfs_btree_ptr_addr(cur, 1, block);
4296 xfs_btree_readahead_ptr(cur, ptr, 1);
4297
4298 /* save for the next iteration of the loop */
4299 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4300
4301 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4302 continue;
4303 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4304 continue;
4305 }
4306
4307 /* for each buffer in the level */
4308 do {
4309 error = xfs_btree_visit_block(cur, level, fn, data);
4310 } while (!error);
4311
4312 if (error != -ENOENT)
4313 return error;
4314 }
4315
4316 return 0;
4317 }
4318
4319 /*
4320 * Change the owner of a btree.
4321 *
4322 * The mechanism we use here is ordered buffer logging. Because we don't know
4323 * how many buffers were are going to need to modify, we don't really want to
4324 * have to make transaction reservations for the worst case of every buffer in a
4325 * full size btree as that may be more space that we can fit in the log....
4326 *
4327 * We do the btree walk in the most optimal manner possible - we have sibling
4328 * pointers so we can just walk all the blocks on each level from left to right
4329 * in a single pass, and then move to the next level and do the same. We can
4330 * also do readahead on the sibling pointers to get IO moving more quickly,
4331 * though for slow disks this is unlikely to make much difference to performance
4332 * as the amount of CPU work we have to do before moving to the next block is
4333 * relatively small.
4334 *
4335 * For each btree block that we load, modify the owner appropriately, set the
4336 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4337 * we mark the region we change dirty so that if the buffer is relogged in
4338 * a subsequent transaction the changes we make here as an ordered buffer are
4339 * correctly relogged in that transaction. If we are in recovery context, then
4340 * just queue the modified buffer as delayed write buffer so the transaction
4341 * recovery completion writes the changes to disk.
4342 */
4343 struct xfs_btree_block_change_owner_info {
4344 uint64_t new_owner;
4345 struct list_head *buffer_list;
4346 };
4347
4348 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4349 xfs_btree_block_change_owner(
4350 struct xfs_btree_cur *cur,
4351 int level,
4352 void *data)
4353 {
4354 struct xfs_btree_block_change_owner_info *bbcoi = data;
4355 struct xfs_btree_block *block;
4356 struct xfs_buf *bp;
4357
4358 /* modify the owner */
4359 block = xfs_btree_get_block(cur, level, &bp);
4360 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4361 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4362 return 0;
4363 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4364 } else {
4365 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4366 return 0;
4367 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4368 }
4369
4370 /*
4371 * If the block is a root block hosted in an inode, we might not have a
4372 * buffer pointer here and we shouldn't attempt to log the change as the
4373 * information is already held in the inode and discarded when the root
4374 * block is formatted into the on-disk inode fork. We still change it,
4375 * though, so everything is consistent in memory.
4376 */
4377 if (!bp) {
4378 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4379 ASSERT(level == cur->bc_nlevels - 1);
4380 return 0;
4381 }
4382
4383 if (cur->bc_tp) {
4384 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4385 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4386 return -EAGAIN;
4387 }
4388 } else {
4389 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4390 }
4391
4392 return 0;
4393 }
4394
4395 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4396 xfs_btree_change_owner(
4397 struct xfs_btree_cur *cur,
4398 uint64_t new_owner,
4399 struct list_head *buffer_list)
4400 {
4401 struct xfs_btree_block_change_owner_info bbcoi;
4402
4403 bbcoi.new_owner = new_owner;
4404 bbcoi.buffer_list = buffer_list;
4405
4406 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4407 XFS_BTREE_VISIT_ALL, &bbcoi);
4408 }
4409
4410 /* Verify the v5 fields of a long-format btree block. */
4411 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4412 xfs_btree_lblock_v5hdr_verify(
4413 struct xfs_buf *bp,
4414 uint64_t owner)
4415 {
4416 struct xfs_mount *mp = bp->b_mount;
4417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4418
4419 if (!xfs_sb_version_hascrc(&mp->m_sb))
4420 return __this_address;
4421 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4422 return __this_address;
4423 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4424 return __this_address;
4425 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4426 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4427 return __this_address;
4428 return NULL;
4429 }
4430
4431 /* Verify a long-format btree block. */
4432 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4433 xfs_btree_lblock_verify(
4434 struct xfs_buf *bp,
4435 unsigned int max_recs)
4436 {
4437 struct xfs_mount *mp = bp->b_mount;
4438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4439
4440 /* numrecs verification */
4441 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4442 return __this_address;
4443
4444 /* sibling pointer verification */
4445 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4446 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4447 return __this_address;
4448 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4449 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4450 return __this_address;
4451
4452 return NULL;
4453 }
4454
4455 /**
4456 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4457 * btree block
4458 *
4459 * @bp: buffer containing the btree block
4460 */
4461 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4462 xfs_btree_sblock_v5hdr_verify(
4463 struct xfs_buf *bp)
4464 {
4465 struct xfs_mount *mp = bp->b_mount;
4466 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4467 struct xfs_perag *pag = bp->b_pag;
4468
4469 if (!xfs_sb_version_hascrc(&mp->m_sb))
4470 return __this_address;
4471 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4472 return __this_address;
4473 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4474 return __this_address;
4475 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4476 return __this_address;
4477 return NULL;
4478 }
4479
4480 /**
4481 * xfs_btree_sblock_verify() -- verify a short-format btree block
4482 *
4483 * @bp: buffer containing the btree block
4484 * @max_recs: maximum records allowed in this btree node
4485 */
4486 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4487 xfs_btree_sblock_verify(
4488 struct xfs_buf *bp,
4489 unsigned int max_recs)
4490 {
4491 struct xfs_mount *mp = bp->b_mount;
4492 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4493 xfs_agblock_t agno;
4494
4495 /* numrecs verification */
4496 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4497 return __this_address;
4498
4499 /* sibling pointer verification */
4500 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4501 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4502 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4503 return __this_address;
4504 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4505 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4506 return __this_address;
4507
4508 return NULL;
4509 }
4510
4511 /*
4512 * Calculate the number of btree levels needed to store a given number of
4513 * records in a short-format btree.
4514 */
4515 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4516 xfs_btree_compute_maxlevels(
4517 uint *limits,
4518 unsigned long len)
4519 {
4520 uint level;
4521 unsigned long maxblocks;
4522
4523 maxblocks = (len + limits[0] - 1) / limits[0];
4524 for (level = 1; maxblocks > 1; level++)
4525 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4526 return level;
4527 }
4528
4529 /*
4530 * Query a regular btree for all records overlapping a given interval.
4531 * Start with a LE lookup of the key of low_rec and return all records
4532 * until we find a record with a key greater than the key of high_rec.
4533 */
4534 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4535 xfs_btree_simple_query_range(
4536 struct xfs_btree_cur *cur,
4537 union xfs_btree_key *low_key,
4538 union xfs_btree_key *high_key,
4539 xfs_btree_query_range_fn fn,
4540 void *priv)
4541 {
4542 union xfs_btree_rec *recp;
4543 union xfs_btree_key rec_key;
4544 int64_t diff;
4545 int stat;
4546 bool firstrec = true;
4547 int error;
4548
4549 ASSERT(cur->bc_ops->init_high_key_from_rec);
4550 ASSERT(cur->bc_ops->diff_two_keys);
4551
4552 /*
4553 * Find the leftmost record. The btree cursor must be set
4554 * to the low record used to generate low_key.
4555 */
4556 stat = 0;
4557 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4558 if (error)
4559 goto out;
4560
4561 /* Nothing? See if there's anything to the right. */
4562 if (!stat) {
4563 error = xfs_btree_increment(cur, 0, &stat);
4564 if (error)
4565 goto out;
4566 }
4567
4568 while (stat) {
4569 /* Find the record. */
4570 error = xfs_btree_get_rec(cur, &recp, &stat);
4571 if (error || !stat)
4572 break;
4573
4574 /* Skip if high_key(rec) < low_key. */
4575 if (firstrec) {
4576 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4577 firstrec = false;
4578 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4579 &rec_key);
4580 if (diff > 0)
4581 goto advloop;
4582 }
4583
4584 /* Stop if high_key < low_key(rec). */
4585 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4586 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4587 if (diff > 0)
4588 break;
4589
4590 /* Callback */
4591 error = fn(cur, recp, priv);
4592 if (error)
4593 break;
4594
4595 advloop:
4596 /* Move on to the next record. */
4597 error = xfs_btree_increment(cur, 0, &stat);
4598 if (error)
4599 break;
4600 }
4601
4602 out:
4603 return error;
4604 }
4605
4606 /*
4607 * Query an overlapped interval btree for all records overlapping a given
4608 * interval. This function roughly follows the algorithm given in
4609 * "Interval Trees" of _Introduction to Algorithms_, which is section
4610 * 14.3 in the 2nd and 3rd editions.
4611 *
4612 * First, generate keys for the low and high records passed in.
4613 *
4614 * For any leaf node, generate the high and low keys for the record.
4615 * If the record keys overlap with the query low/high keys, pass the
4616 * record to the function iterator.
4617 *
4618 * For any internal node, compare the low and high keys of each
4619 * pointer against the query low/high keys. If there's an overlap,
4620 * follow the pointer.
4621 *
4622 * As an optimization, we stop scanning a block when we find a low key
4623 * that is greater than the query's high key.
4624 */
4625 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4626 xfs_btree_overlapped_query_range(
4627 struct xfs_btree_cur *cur,
4628 union xfs_btree_key *low_key,
4629 union xfs_btree_key *high_key,
4630 xfs_btree_query_range_fn fn,
4631 void *priv)
4632 {
4633 union xfs_btree_ptr ptr;
4634 union xfs_btree_ptr *pp;
4635 union xfs_btree_key rec_key;
4636 union xfs_btree_key rec_hkey;
4637 union xfs_btree_key *lkp;
4638 union xfs_btree_key *hkp;
4639 union xfs_btree_rec *recp;
4640 struct xfs_btree_block *block;
4641 int64_t ldiff;
4642 int64_t hdiff;
4643 int level;
4644 struct xfs_buf *bp;
4645 int i;
4646 int error;
4647
4648 /* Load the root of the btree. */
4649 level = cur->bc_nlevels - 1;
4650 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4651 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4652 if (error)
4653 return error;
4654 xfs_btree_get_block(cur, level, &bp);
4655 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4656 #ifdef DEBUG
4657 error = xfs_btree_check_block(cur, block, level, bp);
4658 if (error)
4659 goto out;
4660 #endif
4661 cur->bc_ptrs[level] = 1;
4662
4663 while (level < cur->bc_nlevels) {
4664 block = xfs_btree_get_block(cur, level, &bp);
4665
4666 /* End of node, pop back towards the root. */
4667 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4668 pop_up:
4669 if (level < cur->bc_nlevels - 1)
4670 cur->bc_ptrs[level + 1]++;
4671 level++;
4672 continue;
4673 }
4674
4675 if (level == 0) {
4676 /* Handle a leaf node. */
4677 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4678
4679 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4680 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4681 low_key);
4682
4683 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4684 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4685 &rec_key);
4686
4687 /*
4688 * If (record's high key >= query's low key) and
4689 * (query's high key >= record's low key), then
4690 * this record overlaps the query range; callback.
4691 */
4692 if (ldiff >= 0 && hdiff >= 0) {
4693 error = fn(cur, recp, priv);
4694 if (error)
4695 break;
4696 } else if (hdiff < 0) {
4697 /* Record is larger than high key; pop. */
4698 goto pop_up;
4699 }
4700 cur->bc_ptrs[level]++;
4701 continue;
4702 }
4703
4704 /* Handle an internal node. */
4705 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4706 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4707 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4708
4709 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4710 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4711
4712 /*
4713 * If (pointer's high key >= query's low key) and
4714 * (query's high key >= pointer's low key), then
4715 * this record overlaps the query range; follow pointer.
4716 */
4717 if (ldiff >= 0 && hdiff >= 0) {
4718 level--;
4719 error = xfs_btree_lookup_get_block(cur, level, pp,
4720 &block);
4721 if (error)
4722 goto out;
4723 xfs_btree_get_block(cur, level, &bp);
4724 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4725 #ifdef DEBUG
4726 error = xfs_btree_check_block(cur, block, level, bp);
4727 if (error)
4728 goto out;
4729 #endif
4730 cur->bc_ptrs[level] = 1;
4731 continue;
4732 } else if (hdiff < 0) {
4733 /* The low key is larger than the upper range; pop. */
4734 goto pop_up;
4735 }
4736 cur->bc_ptrs[level]++;
4737 }
4738
4739 out:
4740 /*
4741 * If we don't end this function with the cursor pointing at a record
4742 * block, a subsequent non-error cursor deletion will not release
4743 * node-level buffers, causing a buffer leak. This is quite possible
4744 * with a zero-results range query, so release the buffers if we
4745 * failed to return any results.
4746 */
4747 if (cur->bc_bufs[0] == NULL) {
4748 for (i = 0; i < cur->bc_nlevels; i++) {
4749 if (cur->bc_bufs[i]) {
4750 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4751 cur->bc_bufs[i] = NULL;
4752 cur->bc_ptrs[i] = 0;
4753 cur->bc_ra[i] = 0;
4754 }
4755 }
4756 }
4757
4758 return error;
4759 }
4760
4761 /*
4762 * Query a btree for all records overlapping a given interval of keys. The
4763 * supplied function will be called with each record found; return one of the
4764 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4765 * code. This function returns -ECANCELED, zero, or a negative error code.
4766 */
4767 int
xfs_btree_query_range(struct xfs_btree_cur * cur,union xfs_btree_irec * low_rec,union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4768 xfs_btree_query_range(
4769 struct xfs_btree_cur *cur,
4770 union xfs_btree_irec *low_rec,
4771 union xfs_btree_irec *high_rec,
4772 xfs_btree_query_range_fn fn,
4773 void *priv)
4774 {
4775 union xfs_btree_rec rec;
4776 union xfs_btree_key low_key;
4777 union xfs_btree_key high_key;
4778
4779 /* Find the keys of both ends of the interval. */
4780 cur->bc_rec = *high_rec;
4781 cur->bc_ops->init_rec_from_cur(cur, &rec);
4782 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4783
4784 cur->bc_rec = *low_rec;
4785 cur->bc_ops->init_rec_from_cur(cur, &rec);
4786 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4787
4788 /* Enforce low key < high key. */
4789 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4790 return -EINVAL;
4791
4792 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4793 return xfs_btree_simple_query_range(cur, &low_key,
4794 &high_key, fn, priv);
4795 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4796 fn, priv);
4797 }
4798
4799 /* Query a btree for all records. */
4800 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4801 xfs_btree_query_all(
4802 struct xfs_btree_cur *cur,
4803 xfs_btree_query_range_fn fn,
4804 void *priv)
4805 {
4806 union xfs_btree_key low_key;
4807 union xfs_btree_key high_key;
4808
4809 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4810 memset(&low_key, 0, sizeof(low_key));
4811 memset(&high_key, 0xFF, sizeof(high_key));
4812
4813 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4814 }
4815
4816 /*
4817 * Calculate the number of blocks needed to store a given number of records
4818 * in a short-format (per-AG metadata) btree.
4819 */
4820 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4821 xfs_btree_calc_size(
4822 uint *limits,
4823 unsigned long long len)
4824 {
4825 int level;
4826 int maxrecs;
4827 unsigned long long rval;
4828
4829 maxrecs = limits[0];
4830 for (level = 0, rval = 0; len > 1; level++) {
4831 len += maxrecs - 1;
4832 do_div(len, maxrecs);
4833 maxrecs = limits[1];
4834 rval += len;
4835 }
4836 return rval;
4837 }
4838
4839 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4840 xfs_btree_count_blocks_helper(
4841 struct xfs_btree_cur *cur,
4842 int level,
4843 void *data)
4844 {
4845 xfs_extlen_t *blocks = data;
4846 (*blocks)++;
4847
4848 return 0;
4849 }
4850
4851 /* Count the blocks in a btree and return the result in *blocks. */
4852 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4853 xfs_btree_count_blocks(
4854 struct xfs_btree_cur *cur,
4855 xfs_extlen_t *blocks)
4856 {
4857 *blocks = 0;
4858 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4859 XFS_BTREE_VISIT_ALL, blocks);
4860 }
4861
4862 /* Compare two btree pointers. */
4863 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4864 xfs_btree_diff_two_ptrs(
4865 struct xfs_btree_cur *cur,
4866 const union xfs_btree_ptr *a,
4867 const union xfs_btree_ptr *b)
4868 {
4869 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4870 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4871 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4872 }
4873
4874 /* If there's an extent, we're done. */
4875 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,void * priv)4876 xfs_btree_has_record_helper(
4877 struct xfs_btree_cur *cur,
4878 union xfs_btree_rec *rec,
4879 void *priv)
4880 {
4881 return -ECANCELED;
4882 }
4883
4884 /* Is there a record covering a given range of keys? */
4885 int
xfs_btree_has_record(struct xfs_btree_cur * cur,union xfs_btree_irec * low,union xfs_btree_irec * high,bool * exists)4886 xfs_btree_has_record(
4887 struct xfs_btree_cur *cur,
4888 union xfs_btree_irec *low,
4889 union xfs_btree_irec *high,
4890 bool *exists)
4891 {
4892 int error;
4893
4894 error = xfs_btree_query_range(cur, low, high,
4895 &xfs_btree_has_record_helper, NULL);
4896 if (error == -ECANCELED) {
4897 *exists = true;
4898 return 0;
4899 }
4900 *exists = false;
4901 return error;
4902 }
4903
4904 /* Are there more records in this btree? */
4905 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)4906 xfs_btree_has_more_records(
4907 struct xfs_btree_cur *cur)
4908 {
4909 struct xfs_btree_block *block;
4910 struct xfs_buf *bp;
4911
4912 block = xfs_btree_get_block(cur, 0, &bp);
4913
4914 /* There are still records in this block. */
4915 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4916 return true;
4917
4918 /* There are more record blocks. */
4919 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4920 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4921 else
4922 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4923 }
4924