1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25
26 /*
27 * Cursor allocation zone.
28 */
29 kmem_zone_t *xfs_btree_cur_zone;
30
31 /*
32 * Btree magic numbers.
33 */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 XFS_FIBT_MAGIC, 0 },
37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 XFS_REFC_CRC_MAGIC }
40 };
41
42 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)43 xfs_btree_magic(
44 int crc,
45 xfs_btnum_t btnum)
46 {
47 uint32_t magic = xfs_magics[crc][btnum];
48
49 /* Ensure we asked for crc for crc-only magics. */
50 ASSERT(magic != 0);
51 return magic;
52 }
53
54 /*
55 * Check a long btree block header. Return the address of the failing check,
56 * or NULL if everything is ok.
57 */
58 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)59 __xfs_btree_check_lblock(
60 struct xfs_btree_cur *cur,
61 struct xfs_btree_block *block,
62 int level,
63 struct xfs_buf *bp)
64 {
65 struct xfs_mount *mp = cur->bc_mp;
66 xfs_btnum_t btnum = cur->bc_btnum;
67 int crc = xfs_has_crc(mp);
68
69 if (crc) {
70 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
71 return __this_address;
72 if (block->bb_u.l.bb_blkno !=
73 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
74 return __this_address;
75 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
76 return __this_address;
77 }
78
79 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
80 return __this_address;
81 if (be16_to_cpu(block->bb_level) != level)
82 return __this_address;
83 if (be16_to_cpu(block->bb_numrecs) >
84 cur->bc_ops->get_maxrecs(cur, level))
85 return __this_address;
86 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
87 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
88 level + 1))
89 return __this_address;
90 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
91 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
92 level + 1))
93 return __this_address;
94
95 return NULL;
96 }
97
98 /* Check a long btree block header. */
99 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)100 xfs_btree_check_lblock(
101 struct xfs_btree_cur *cur,
102 struct xfs_btree_block *block,
103 int level,
104 struct xfs_buf *bp)
105 {
106 struct xfs_mount *mp = cur->bc_mp;
107 xfs_failaddr_t fa;
108
109 fa = __xfs_btree_check_lblock(cur, block, level, bp);
110 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
111 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
112 if (bp)
113 trace_xfs_btree_corrupt(bp, _RET_IP_);
114 return -EFSCORRUPTED;
115 }
116 return 0;
117 }
118
119 /*
120 * Check a short btree block header. Return the address of the failing check,
121 * or NULL if everything is ok.
122 */
123 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)124 __xfs_btree_check_sblock(
125 struct xfs_btree_cur *cur,
126 struct xfs_btree_block *block,
127 int level,
128 struct xfs_buf *bp)
129 {
130 struct xfs_mount *mp = cur->bc_mp;
131 xfs_btnum_t btnum = cur->bc_btnum;
132 int crc = xfs_has_crc(mp);
133
134 if (crc) {
135 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
136 return __this_address;
137 if (block->bb_u.s.bb_blkno !=
138 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
139 return __this_address;
140 }
141
142 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
143 return __this_address;
144 if (be16_to_cpu(block->bb_level) != level)
145 return __this_address;
146 if (be16_to_cpu(block->bb_numrecs) >
147 cur->bc_ops->get_maxrecs(cur, level))
148 return __this_address;
149 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
150 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
151 level + 1))
152 return __this_address;
153 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
154 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
155 level + 1))
156 return __this_address;
157
158 return NULL;
159 }
160
161 /* Check a short btree block header. */
162 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)163 xfs_btree_check_sblock(
164 struct xfs_btree_cur *cur,
165 struct xfs_btree_block *block,
166 int level,
167 struct xfs_buf *bp)
168 {
169 struct xfs_mount *mp = cur->bc_mp;
170 xfs_failaddr_t fa;
171
172 fa = __xfs_btree_check_sblock(cur, block, level, bp);
173 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
174 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
175 if (bp)
176 trace_xfs_btree_corrupt(bp, _RET_IP_);
177 return -EFSCORRUPTED;
178 }
179 return 0;
180 }
181
182 /*
183 * Debug routine: check that block header is ok.
184 */
185 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)186 xfs_btree_check_block(
187 struct xfs_btree_cur *cur, /* btree cursor */
188 struct xfs_btree_block *block, /* generic btree block pointer */
189 int level, /* level of the btree block */
190 struct xfs_buf *bp) /* buffer containing block, if any */
191 {
192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 return xfs_btree_check_lblock(cur, block, level, bp);
194 else
195 return xfs_btree_check_sblock(cur, block, level, bp);
196 }
197
198 /* Check that this long pointer is valid and points within the fs. */
199 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)200 xfs_btree_check_lptr(
201 struct xfs_btree_cur *cur,
202 xfs_fsblock_t fsbno,
203 int level)
204 {
205 if (level <= 0)
206 return false;
207 return xfs_verify_fsbno(cur->bc_mp, fsbno);
208 }
209
210 /* Check that this short pointer is valid and points within the AG. */
211 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)212 xfs_btree_check_sptr(
213 struct xfs_btree_cur *cur,
214 xfs_agblock_t agbno,
215 int level)
216 {
217 if (level <= 0)
218 return false;
219 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
220 }
221
222 /*
223 * Check that a given (indexed) btree pointer at a certain level of a
224 * btree is valid and doesn't point past where it should.
225 */
226 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)227 xfs_btree_check_ptr(
228 struct xfs_btree_cur *cur,
229 const union xfs_btree_ptr *ptr,
230 int index,
231 int level)
232 {
233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 level))
236 return 0;
237 xfs_err(cur->bc_mp,
238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 cur->bc_ino.ip->i_ino,
240 cur->bc_ino.whichfork, cur->bc_btnum,
241 level, index);
242 } else {
243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 level))
245 return 0;
246 xfs_err(cur->bc_mp,
247 "AG %u: Corrupt btree %d pointer at level %d index %d.",
248 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
249 level, index);
250 }
251
252 return -EFSCORRUPTED;
253 }
254
255 #ifdef DEBUG
256 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
257 #else
258 # define xfs_btree_debug_check_ptr(...) (0)
259 #endif
260
261 /*
262 * Calculate CRC on the whole btree block and stuff it into the
263 * long-form btree header.
264 *
265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266 * it into the buffer so recovery knows what the last modification was that made
267 * it to disk.
268 */
269 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)270 xfs_btree_lblock_calc_crc(
271 struct xfs_buf *bp)
272 {
273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
274 struct xfs_buf_log_item *bip = bp->b_log_item;
275
276 if (!xfs_has_crc(bp->b_mount))
277 return;
278 if (bip)
279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281 }
282
283 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)284 xfs_btree_lblock_verify_crc(
285 struct xfs_buf *bp)
286 {
287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
288 struct xfs_mount *mp = bp->b_mount;
289
290 if (xfs_has_crc(mp)) {
291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 return false;
293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 }
295
296 return true;
297 }
298
299 /*
300 * Calculate CRC on the whole btree block and stuff it into the
301 * short-form btree header.
302 *
303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304 * it into the buffer so recovery knows what the last modification was that made
305 * it to disk.
306 */
307 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)308 xfs_btree_sblock_calc_crc(
309 struct xfs_buf *bp)
310 {
311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
312 struct xfs_buf_log_item *bip = bp->b_log_item;
313
314 if (!xfs_has_crc(bp->b_mount))
315 return;
316 if (bip)
317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319 }
320
321 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)322 xfs_btree_sblock_verify_crc(
323 struct xfs_buf *bp)
324 {
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_mount *mp = bp->b_mount;
327
328 if (xfs_has_crc(mp)) {
329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 return false;
331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 }
333
334 return true;
335 }
336
337 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)338 xfs_btree_free_block(
339 struct xfs_btree_cur *cur,
340 struct xfs_buf *bp)
341 {
342 int error;
343
344 error = cur->bc_ops->free_block(cur, bp);
345 if (!error) {
346 xfs_trans_binval(cur->bc_tp, bp);
347 XFS_BTREE_STATS_INC(cur, free);
348 }
349 return error;
350 }
351
352 /*
353 * Delete the btree cursor.
354 */
355 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)356 xfs_btree_del_cursor(
357 struct xfs_btree_cur *cur, /* btree cursor */
358 int error) /* del because of error */
359 {
360 int i; /* btree level */
361
362 /*
363 * Clear the buffer pointers and release the buffers. If we're doing
364 * this because of an error, inspect all of the entries in the bc_bufs
365 * array for buffers to be unlocked. This is because some of the btree
366 * code works from level n down to 0, and if we get an error along the
367 * way we won't have initialized all the entries down to 0.
368 */
369 for (i = 0; i < cur->bc_nlevels; i++) {
370 if (cur->bc_bufs[i])
371 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
372 else if (!error)
373 break;
374 }
375
376 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
377 xfs_is_shutdown(cur->bc_mp));
378 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
379 kmem_free(cur->bc_ops);
380 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
381 xfs_perag_put(cur->bc_ag.pag);
382 kmem_cache_free(xfs_btree_cur_zone, cur);
383 }
384
385 /*
386 * Duplicate the btree cursor.
387 * Allocate a new one, copy the record, re-get the buffers.
388 */
389 int /* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)390 xfs_btree_dup_cursor(
391 xfs_btree_cur_t *cur, /* input cursor */
392 xfs_btree_cur_t **ncur) /* output cursor */
393 {
394 struct xfs_buf *bp; /* btree block's buffer pointer */
395 int error; /* error return value */
396 int i; /* level number of btree block */
397 xfs_mount_t *mp; /* mount structure for filesystem */
398 xfs_btree_cur_t *new; /* new cursor value */
399 xfs_trans_t *tp; /* transaction pointer, can be NULL */
400
401 tp = cur->bc_tp;
402 mp = cur->bc_mp;
403
404 /*
405 * Allocate a new cursor like the old one.
406 */
407 new = cur->bc_ops->dup_cursor(cur);
408
409 /*
410 * Copy the record currently in the cursor.
411 */
412 new->bc_rec = cur->bc_rec;
413
414 /*
415 * For each level current, re-get the buffer and copy the ptr value.
416 */
417 for (i = 0; i < new->bc_nlevels; i++) {
418 new->bc_ptrs[i] = cur->bc_ptrs[i];
419 new->bc_ra[i] = cur->bc_ra[i];
420 bp = cur->bc_bufs[i];
421 if (bp) {
422 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
423 xfs_buf_daddr(bp), mp->m_bsize,
424 0, &bp,
425 cur->bc_ops->buf_ops);
426 if (error) {
427 xfs_btree_del_cursor(new, error);
428 *ncur = NULL;
429 return error;
430 }
431 }
432 new->bc_bufs[i] = bp;
433 }
434 *ncur = new;
435 return 0;
436 }
437
438 /*
439 * XFS btree block layout and addressing:
440 *
441 * There are two types of blocks in the btree: leaf and non-leaf blocks.
442 *
443 * The leaf record start with a header then followed by records containing
444 * the values. A non-leaf block also starts with the same header, and
445 * then first contains lookup keys followed by an equal number of pointers
446 * to the btree blocks at the previous level.
447 *
448 * +--------+-------+-------+-------+-------+-------+-------+
449 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
450 * +--------+-------+-------+-------+-------+-------+-------+
451 *
452 * +--------+-------+-------+-------+-------+-------+-------+
453 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
454 * +--------+-------+-------+-------+-------+-------+-------+
455 *
456 * The header is called struct xfs_btree_block for reasons better left unknown
457 * and comes in different versions for short (32bit) and long (64bit) block
458 * pointers. The record and key structures are defined by the btree instances
459 * and opaque to the btree core. The block pointers are simple disk endian
460 * integers, available in a short (32bit) and long (64bit) variant.
461 *
462 * The helpers below calculate the offset of a given record, key or pointer
463 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
464 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
465 * inside the btree block is done using indices starting at one, not zero!
466 *
467 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
468 * overlapping intervals. In such a tree, records are still sorted lowest to
469 * highest and indexed by the smallest key value that refers to the record.
470 * However, nodes are different: each pointer has two associated keys -- one
471 * indexing the lowest key available in the block(s) below (the same behavior
472 * as the key in a regular btree) and another indexing the highest key
473 * available in the block(s) below. Because records are /not/ sorted by the
474 * highest key, all leaf block updates require us to compute the highest key
475 * that matches any record in the leaf and to recursively update the high keys
476 * in the nodes going further up in the tree, if necessary. Nodes look like
477 * this:
478 *
479 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
480 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
481 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
482 *
483 * To perform an interval query on an overlapped tree, perform the usual
484 * depth-first search and use the low and high keys to decide if we can skip
485 * that particular node. If a leaf node is reached, return the records that
486 * intersect the interval. Note that an interval query may return numerous
487 * entries. For a non-overlapped tree, simply search for the record associated
488 * with the lowest key and iterate forward until a non-matching record is
489 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
490 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
491 * more detail.
492 *
493 * Why do we care about overlapping intervals? Let's say you have a bunch of
494 * reverse mapping records on a reflink filesystem:
495 *
496 * 1: +- file A startblock B offset C length D -----------+
497 * 2: +- file E startblock F offset G length H --------------+
498 * 3: +- file I startblock F offset J length K --+
499 * 4: +- file L... --+
500 *
501 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
502 * we'd simply increment the length of record 1. But how do we find the record
503 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
504 * record 3 because the keys are ordered first by startblock. An interval
505 * query would return records 1 and 2 because they both overlap (B+D-1), and
506 * from that we can pick out record 1 as the appropriate left neighbor.
507 *
508 * In the non-overlapped case you can do a LE lookup and decrement the cursor
509 * because a record's interval must end before the next record.
510 */
511
512 /*
513 * Return size of the btree block header for this btree instance.
514 */
xfs_btree_block_len(struct xfs_btree_cur * cur)515 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
516 {
517 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
518 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
519 return XFS_BTREE_LBLOCK_CRC_LEN;
520 return XFS_BTREE_LBLOCK_LEN;
521 }
522 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
523 return XFS_BTREE_SBLOCK_CRC_LEN;
524 return XFS_BTREE_SBLOCK_LEN;
525 }
526
527 /*
528 * Return size of btree block pointers for this btree instance.
529 */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)530 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
531 {
532 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
533 sizeof(__be64) : sizeof(__be32);
534 }
535
536 /*
537 * Calculate offset of the n-th record in a btree block.
538 */
539 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)540 xfs_btree_rec_offset(
541 struct xfs_btree_cur *cur,
542 int n)
543 {
544 return xfs_btree_block_len(cur) +
545 (n - 1) * cur->bc_ops->rec_len;
546 }
547
548 /*
549 * Calculate offset of the n-th key in a btree block.
550 */
551 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)552 xfs_btree_key_offset(
553 struct xfs_btree_cur *cur,
554 int n)
555 {
556 return xfs_btree_block_len(cur) +
557 (n - 1) * cur->bc_ops->key_len;
558 }
559
560 /*
561 * Calculate offset of the n-th high key in a btree block.
562 */
563 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)564 xfs_btree_high_key_offset(
565 struct xfs_btree_cur *cur,
566 int n)
567 {
568 return xfs_btree_block_len(cur) +
569 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
570 }
571
572 /*
573 * Calculate offset of the n-th block pointer in a btree block.
574 */
575 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)576 xfs_btree_ptr_offset(
577 struct xfs_btree_cur *cur,
578 int n,
579 int level)
580 {
581 return xfs_btree_block_len(cur) +
582 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
583 (n - 1) * xfs_btree_ptr_len(cur);
584 }
585
586 /*
587 * Return a pointer to the n-th record in the btree block.
588 */
589 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)590 xfs_btree_rec_addr(
591 struct xfs_btree_cur *cur,
592 int n,
593 struct xfs_btree_block *block)
594 {
595 return (union xfs_btree_rec *)
596 ((char *)block + xfs_btree_rec_offset(cur, n));
597 }
598
599 /*
600 * Return a pointer to the n-th key in the btree block.
601 */
602 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)603 xfs_btree_key_addr(
604 struct xfs_btree_cur *cur,
605 int n,
606 struct xfs_btree_block *block)
607 {
608 return (union xfs_btree_key *)
609 ((char *)block + xfs_btree_key_offset(cur, n));
610 }
611
612 /*
613 * Return a pointer to the n-th high key in the btree block.
614 */
615 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)616 xfs_btree_high_key_addr(
617 struct xfs_btree_cur *cur,
618 int n,
619 struct xfs_btree_block *block)
620 {
621 return (union xfs_btree_key *)
622 ((char *)block + xfs_btree_high_key_offset(cur, n));
623 }
624
625 /*
626 * Return a pointer to the n-th block pointer in the btree block.
627 */
628 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)629 xfs_btree_ptr_addr(
630 struct xfs_btree_cur *cur,
631 int n,
632 struct xfs_btree_block *block)
633 {
634 int level = xfs_btree_get_level(block);
635
636 ASSERT(block->bb_level != 0);
637
638 return (union xfs_btree_ptr *)
639 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
640 }
641
642 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)643 xfs_btree_ifork_ptr(
644 struct xfs_btree_cur *cur)
645 {
646 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
647
648 if (cur->bc_flags & XFS_BTREE_STAGING)
649 return cur->bc_ino.ifake->if_fork;
650 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
651 }
652
653 /*
654 * Get the root block which is stored in the inode.
655 *
656 * For now this btree implementation assumes the btree root is always
657 * stored in the if_broot field of an inode fork.
658 */
659 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)660 xfs_btree_get_iroot(
661 struct xfs_btree_cur *cur)
662 {
663 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
664
665 return (struct xfs_btree_block *)ifp->if_broot;
666 }
667
668 /*
669 * Retrieve the block pointer from the cursor at the given level.
670 * This may be an inode btree root or from a buffer.
671 */
672 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)673 xfs_btree_get_block(
674 struct xfs_btree_cur *cur, /* btree cursor */
675 int level, /* level in btree */
676 struct xfs_buf **bpp) /* buffer containing the block */
677 {
678 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
679 (level == cur->bc_nlevels - 1)) {
680 *bpp = NULL;
681 return xfs_btree_get_iroot(cur);
682 }
683
684 *bpp = cur->bc_bufs[level];
685 return XFS_BUF_TO_BLOCK(*bpp);
686 }
687
688 /*
689 * Change the cursor to point to the first record at the given level.
690 * Other levels are unaffected.
691 */
692 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)693 xfs_btree_firstrec(
694 xfs_btree_cur_t *cur, /* btree cursor */
695 int level) /* level to change */
696 {
697 struct xfs_btree_block *block; /* generic btree block pointer */
698 struct xfs_buf *bp; /* buffer containing block */
699
700 /*
701 * Get the block pointer for this level.
702 */
703 block = xfs_btree_get_block(cur, level, &bp);
704 if (xfs_btree_check_block(cur, block, level, bp))
705 return 0;
706 /*
707 * It's empty, there is no such record.
708 */
709 if (!block->bb_numrecs)
710 return 0;
711 /*
712 * Set the ptr value to 1, that's the first record/key.
713 */
714 cur->bc_ptrs[level] = 1;
715 return 1;
716 }
717
718 /*
719 * Change the cursor to point to the last record in the current block
720 * at the given level. Other levels are unaffected.
721 */
722 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)723 xfs_btree_lastrec(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to change */
726 {
727 struct xfs_btree_block *block; /* generic btree block pointer */
728 struct xfs_buf *bp; /* buffer containing block */
729
730 /*
731 * Get the block pointer for this level.
732 */
733 block = xfs_btree_get_block(cur, level, &bp);
734 if (xfs_btree_check_block(cur, block, level, bp))
735 return 0;
736 /*
737 * It's empty, there is no such record.
738 */
739 if (!block->bb_numrecs)
740 return 0;
741 /*
742 * Set the ptr value to numrecs, that's the last record/key.
743 */
744 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
745 return 1;
746 }
747
748 /*
749 * Compute first and last byte offsets for the fields given.
750 * Interprets the offsets table, which contains struct field offsets.
751 */
752 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)753 xfs_btree_offsets(
754 int64_t fields, /* bitmask of fields */
755 const short *offsets, /* table of field offsets */
756 int nbits, /* number of bits to inspect */
757 int *first, /* output: first byte offset */
758 int *last) /* output: last byte offset */
759 {
760 int i; /* current bit number */
761 int64_t imask; /* mask for current bit number */
762
763 ASSERT(fields != 0);
764 /*
765 * Find the lowest bit, so the first byte offset.
766 */
767 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
768 if (imask & fields) {
769 *first = offsets[i];
770 break;
771 }
772 }
773 /*
774 * Find the highest bit, so the last byte offset.
775 */
776 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
777 if (imask & fields) {
778 *last = offsets[i + 1] - 1;
779 break;
780 }
781 }
782 }
783
784 /*
785 * Get a buffer for the block, return it read in.
786 * Long-form addressing.
787 */
788 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)789 xfs_btree_read_bufl(
790 struct xfs_mount *mp, /* file system mount point */
791 struct xfs_trans *tp, /* transaction pointer */
792 xfs_fsblock_t fsbno, /* file system block number */
793 struct xfs_buf **bpp, /* buffer for fsbno */
794 int refval, /* ref count value for buffer */
795 const struct xfs_buf_ops *ops)
796 {
797 struct xfs_buf *bp; /* return value */
798 xfs_daddr_t d; /* real disk block address */
799 int error;
800
801 if (!xfs_verify_fsbno(mp, fsbno))
802 return -EFSCORRUPTED;
803 d = XFS_FSB_TO_DADDR(mp, fsbno);
804 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
805 mp->m_bsize, 0, &bp, ops);
806 if (error)
807 return error;
808 if (bp)
809 xfs_buf_set_ref(bp, refval);
810 *bpp = bp;
811 return 0;
812 }
813
814 /*
815 * Read-ahead the block, don't wait for it, don't return a buffer.
816 * Long-form addressing.
817 */
818 /* ARGSUSED */
819 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)820 xfs_btree_reada_bufl(
821 struct xfs_mount *mp, /* file system mount point */
822 xfs_fsblock_t fsbno, /* file system block number */
823 xfs_extlen_t count, /* count of filesystem blocks */
824 const struct xfs_buf_ops *ops)
825 {
826 xfs_daddr_t d;
827
828 ASSERT(fsbno != NULLFSBLOCK);
829 d = XFS_FSB_TO_DADDR(mp, fsbno);
830 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
831 }
832
833 /*
834 * Read-ahead the block, don't wait for it, don't return a buffer.
835 * Short-form addressing.
836 */
837 /* ARGSUSED */
838 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)839 xfs_btree_reada_bufs(
840 struct xfs_mount *mp, /* file system mount point */
841 xfs_agnumber_t agno, /* allocation group number */
842 xfs_agblock_t agbno, /* allocation group block number */
843 xfs_extlen_t count, /* count of filesystem blocks */
844 const struct xfs_buf_ops *ops)
845 {
846 xfs_daddr_t d;
847
848 ASSERT(agno != NULLAGNUMBER);
849 ASSERT(agbno != NULLAGBLOCK);
850 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
851 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
852 }
853
854 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)855 xfs_btree_readahead_lblock(
856 struct xfs_btree_cur *cur,
857 int lr,
858 struct xfs_btree_block *block)
859 {
860 int rval = 0;
861 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
862 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
863
864 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
865 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
866 cur->bc_ops->buf_ops);
867 rval++;
868 }
869
870 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
871 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
872 cur->bc_ops->buf_ops);
873 rval++;
874 }
875
876 return rval;
877 }
878
879 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)880 xfs_btree_readahead_sblock(
881 struct xfs_btree_cur *cur,
882 int lr,
883 struct xfs_btree_block *block)
884 {
885 int rval = 0;
886 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
887 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
888
889
890 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
891 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
892 left, 1, cur->bc_ops->buf_ops);
893 rval++;
894 }
895
896 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
898 right, 1, cur->bc_ops->buf_ops);
899 rval++;
900 }
901
902 return rval;
903 }
904
905 /*
906 * Read-ahead btree blocks, at the given level.
907 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
908 */
909 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)910 xfs_btree_readahead(
911 struct xfs_btree_cur *cur, /* btree cursor */
912 int lev, /* level in btree */
913 int lr) /* left/right bits */
914 {
915 struct xfs_btree_block *block;
916
917 /*
918 * No readahead needed if we are at the root level and the
919 * btree root is stored in the inode.
920 */
921 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
922 (lev == cur->bc_nlevels - 1))
923 return 0;
924
925 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
926 return 0;
927
928 cur->bc_ra[lev] |= lr;
929 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
930
931 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
932 return xfs_btree_readahead_lblock(cur, lr, block);
933 return xfs_btree_readahead_sblock(cur, lr, block);
934 }
935
936 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)937 xfs_btree_ptr_to_daddr(
938 struct xfs_btree_cur *cur,
939 const union xfs_btree_ptr *ptr,
940 xfs_daddr_t *daddr)
941 {
942 xfs_fsblock_t fsbno;
943 xfs_agblock_t agbno;
944 int error;
945
946 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
947 if (error)
948 return error;
949
950 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
951 fsbno = be64_to_cpu(ptr->l);
952 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
953 } else {
954 agbno = be32_to_cpu(ptr->s);
955 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
956 agbno);
957 }
958
959 return 0;
960 }
961
962 /*
963 * Readahead @count btree blocks at the given @ptr location.
964 *
965 * We don't need to care about long or short form btrees here as we have a
966 * method of converting the ptr directly to a daddr available to us.
967 */
968 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)969 xfs_btree_readahead_ptr(
970 struct xfs_btree_cur *cur,
971 union xfs_btree_ptr *ptr,
972 xfs_extlen_t count)
973 {
974 xfs_daddr_t daddr;
975
976 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
977 return;
978 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
979 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
980 }
981
982 /*
983 * Set the buffer for level "lev" in the cursor to bp, releasing
984 * any previous buffer.
985 */
986 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,struct xfs_buf * bp)987 xfs_btree_setbuf(
988 xfs_btree_cur_t *cur, /* btree cursor */
989 int lev, /* level in btree */
990 struct xfs_buf *bp) /* new buffer to set */
991 {
992 struct xfs_btree_block *b; /* btree block */
993
994 if (cur->bc_bufs[lev])
995 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
996 cur->bc_bufs[lev] = bp;
997 cur->bc_ra[lev] = 0;
998
999 b = XFS_BUF_TO_BLOCK(bp);
1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1003 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1005 } else {
1006 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1008 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1010 }
1011 }
1012
1013 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr)1014 xfs_btree_ptr_is_null(
1015 struct xfs_btree_cur *cur,
1016 const union xfs_btree_ptr *ptr)
1017 {
1018 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020 else
1021 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022 }
1023
1024 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1025 xfs_btree_set_ptr_null(
1026 struct xfs_btree_cur *cur,
1027 union xfs_btree_ptr *ptr)
1028 {
1029 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030 ptr->l = cpu_to_be64(NULLFSBLOCK);
1031 else
1032 ptr->s = cpu_to_be32(NULLAGBLOCK);
1033 }
1034
1035 /*
1036 * Get/set/init sibling pointers
1037 */
1038 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1039 xfs_btree_get_sibling(
1040 struct xfs_btree_cur *cur,
1041 struct xfs_btree_block *block,
1042 union xfs_btree_ptr *ptr,
1043 int lr)
1044 {
1045 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046
1047 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048 if (lr == XFS_BB_RIGHTSIB)
1049 ptr->l = block->bb_u.l.bb_rightsib;
1050 else
1051 ptr->l = block->bb_u.l.bb_leftsib;
1052 } else {
1053 if (lr == XFS_BB_RIGHTSIB)
1054 ptr->s = block->bb_u.s.bb_rightsib;
1055 else
1056 ptr->s = block->bb_u.s.bb_leftsib;
1057 }
1058 }
1059
1060 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,const union xfs_btree_ptr * ptr,int lr)1061 xfs_btree_set_sibling(
1062 struct xfs_btree_cur *cur,
1063 struct xfs_btree_block *block,
1064 const union xfs_btree_ptr *ptr,
1065 int lr)
1066 {
1067 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068
1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070 if (lr == XFS_BB_RIGHTSIB)
1071 block->bb_u.l.bb_rightsib = ptr->l;
1072 else
1073 block->bb_u.l.bb_leftsib = ptr->l;
1074 } else {
1075 if (lr == XFS_BB_RIGHTSIB)
1076 block->bb_u.s.bb_rightsib = ptr->s;
1077 else
1078 block->bb_u.s.bb_leftsib = ptr->s;
1079 }
1080 }
1081
1082 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1083 xfs_btree_init_block_int(
1084 struct xfs_mount *mp,
1085 struct xfs_btree_block *buf,
1086 xfs_daddr_t blkno,
1087 xfs_btnum_t btnum,
1088 __u16 level,
1089 __u16 numrecs,
1090 __u64 owner,
1091 unsigned int flags)
1092 {
1093 int crc = xfs_has_crc(mp);
1094 __u32 magic = xfs_btree_magic(crc, btnum);
1095
1096 buf->bb_magic = cpu_to_be32(magic);
1097 buf->bb_level = cpu_to_be16(level);
1098 buf->bb_numrecs = cpu_to_be16(numrecs);
1099
1100 if (flags & XFS_BTREE_LONG_PTRS) {
1101 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1102 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1103 if (crc) {
1104 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1105 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1106 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1107 buf->bb_u.l.bb_pad = 0;
1108 buf->bb_u.l.bb_lsn = 0;
1109 }
1110 } else {
1111 /* owner is a 32 bit value on short blocks */
1112 __u32 __owner = (__u32)owner;
1113
1114 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1115 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1116 if (crc) {
1117 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1118 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1119 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1120 buf->bb_u.s.bb_lsn = 0;
1121 }
1122 }
1123 }
1124
1125 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1126 xfs_btree_init_block(
1127 struct xfs_mount *mp,
1128 struct xfs_buf *bp,
1129 xfs_btnum_t btnum,
1130 __u16 level,
1131 __u16 numrecs,
1132 __u64 owner)
1133 {
1134 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1135 btnum, level, numrecs, owner, 0);
1136 }
1137
1138 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1139 xfs_btree_init_block_cur(
1140 struct xfs_btree_cur *cur,
1141 struct xfs_buf *bp,
1142 int level,
1143 int numrecs)
1144 {
1145 __u64 owner;
1146
1147 /*
1148 * we can pull the owner from the cursor right now as the different
1149 * owners align directly with the pointer size of the btree. This may
1150 * change in future, but is safe for current users of the generic btree
1151 * code.
1152 */
1153 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1154 owner = cur->bc_ino.ip->i_ino;
1155 else
1156 owner = cur->bc_ag.pag->pag_agno;
1157
1158 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1159 xfs_buf_daddr(bp), cur->bc_btnum, level,
1160 numrecs, owner, cur->bc_flags);
1161 }
1162
1163 /*
1164 * Return true if ptr is the last record in the btree and
1165 * we need to track updates to this record. The decision
1166 * will be further refined in the update_lastrec method.
1167 */
1168 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1169 xfs_btree_is_lastrec(
1170 struct xfs_btree_cur *cur,
1171 struct xfs_btree_block *block,
1172 int level)
1173 {
1174 union xfs_btree_ptr ptr;
1175
1176 if (level > 0)
1177 return 0;
1178 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1179 return 0;
1180
1181 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1182 if (!xfs_btree_ptr_is_null(cur, &ptr))
1183 return 0;
1184 return 1;
1185 }
1186
1187 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1188 xfs_btree_buf_to_ptr(
1189 struct xfs_btree_cur *cur,
1190 struct xfs_buf *bp,
1191 union xfs_btree_ptr *ptr)
1192 {
1193 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1194 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1195 xfs_buf_daddr(bp)));
1196 else {
1197 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1198 xfs_buf_daddr(bp)));
1199 }
1200 }
1201
1202 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1203 xfs_btree_set_refs(
1204 struct xfs_btree_cur *cur,
1205 struct xfs_buf *bp)
1206 {
1207 switch (cur->bc_btnum) {
1208 case XFS_BTNUM_BNO:
1209 case XFS_BTNUM_CNT:
1210 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1211 break;
1212 case XFS_BTNUM_INO:
1213 case XFS_BTNUM_FINO:
1214 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1215 break;
1216 case XFS_BTNUM_BMAP:
1217 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1218 break;
1219 case XFS_BTNUM_RMAP:
1220 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1221 break;
1222 case XFS_BTNUM_REFC:
1223 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1224 break;
1225 default:
1226 ASSERT(0);
1227 }
1228 }
1229
1230 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1231 xfs_btree_get_buf_block(
1232 struct xfs_btree_cur *cur,
1233 const union xfs_btree_ptr *ptr,
1234 struct xfs_btree_block **block,
1235 struct xfs_buf **bpp)
1236 {
1237 struct xfs_mount *mp = cur->bc_mp;
1238 xfs_daddr_t d;
1239 int error;
1240
1241 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1242 if (error)
1243 return error;
1244 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1245 0, bpp);
1246 if (error)
1247 return error;
1248
1249 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1250 *block = XFS_BUF_TO_BLOCK(*bpp);
1251 return 0;
1252 }
1253
1254 /*
1255 * Read in the buffer at the given ptr and return the buffer and
1256 * the block pointer within the buffer.
1257 */
1258 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1259 xfs_btree_read_buf_block(
1260 struct xfs_btree_cur *cur,
1261 const union xfs_btree_ptr *ptr,
1262 int flags,
1263 struct xfs_btree_block **block,
1264 struct xfs_buf **bpp)
1265 {
1266 struct xfs_mount *mp = cur->bc_mp;
1267 xfs_daddr_t d;
1268 int error;
1269
1270 /* need to sort out how callers deal with failures first */
1271 ASSERT(!(flags & XBF_TRYLOCK));
1272
1273 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1274 if (error)
1275 return error;
1276 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1277 mp->m_bsize, flags, bpp,
1278 cur->bc_ops->buf_ops);
1279 if (error)
1280 return error;
1281
1282 xfs_btree_set_refs(cur, *bpp);
1283 *block = XFS_BUF_TO_BLOCK(*bpp);
1284 return 0;
1285 }
1286
1287 /*
1288 * Copy keys from one btree block to another.
1289 */
1290 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,const union xfs_btree_key * src_key,int numkeys)1291 xfs_btree_copy_keys(
1292 struct xfs_btree_cur *cur,
1293 union xfs_btree_key *dst_key,
1294 const union xfs_btree_key *src_key,
1295 int numkeys)
1296 {
1297 ASSERT(numkeys >= 0);
1298 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1299 }
1300
1301 /*
1302 * Copy records from one btree block to another.
1303 */
1304 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1305 xfs_btree_copy_recs(
1306 struct xfs_btree_cur *cur,
1307 union xfs_btree_rec *dst_rec,
1308 union xfs_btree_rec *src_rec,
1309 int numrecs)
1310 {
1311 ASSERT(numrecs >= 0);
1312 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1313 }
1314
1315 /*
1316 * Copy block pointers from one btree block to another.
1317 */
1318 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1319 xfs_btree_copy_ptrs(
1320 struct xfs_btree_cur *cur,
1321 union xfs_btree_ptr *dst_ptr,
1322 const union xfs_btree_ptr *src_ptr,
1323 int numptrs)
1324 {
1325 ASSERT(numptrs >= 0);
1326 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1327 }
1328
1329 /*
1330 * Shift keys one index left/right inside a single btree block.
1331 */
1332 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1333 xfs_btree_shift_keys(
1334 struct xfs_btree_cur *cur,
1335 union xfs_btree_key *key,
1336 int dir,
1337 int numkeys)
1338 {
1339 char *dst_key;
1340
1341 ASSERT(numkeys >= 0);
1342 ASSERT(dir == 1 || dir == -1);
1343
1344 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1345 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1346 }
1347
1348 /*
1349 * Shift records one index left/right inside a single btree block.
1350 */
1351 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1352 xfs_btree_shift_recs(
1353 struct xfs_btree_cur *cur,
1354 union xfs_btree_rec *rec,
1355 int dir,
1356 int numrecs)
1357 {
1358 char *dst_rec;
1359
1360 ASSERT(numrecs >= 0);
1361 ASSERT(dir == 1 || dir == -1);
1362
1363 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1364 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1365 }
1366
1367 /*
1368 * Shift block pointers one index left/right inside a single btree block.
1369 */
1370 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1371 xfs_btree_shift_ptrs(
1372 struct xfs_btree_cur *cur,
1373 union xfs_btree_ptr *ptr,
1374 int dir,
1375 int numptrs)
1376 {
1377 char *dst_ptr;
1378
1379 ASSERT(numptrs >= 0);
1380 ASSERT(dir == 1 || dir == -1);
1381
1382 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1383 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1384 }
1385
1386 /*
1387 * Log key values from the btree block.
1388 */
1389 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1390 xfs_btree_log_keys(
1391 struct xfs_btree_cur *cur,
1392 struct xfs_buf *bp,
1393 int first,
1394 int last)
1395 {
1396
1397 if (bp) {
1398 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399 xfs_trans_log_buf(cur->bc_tp, bp,
1400 xfs_btree_key_offset(cur, first),
1401 xfs_btree_key_offset(cur, last + 1) - 1);
1402 } else {
1403 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1404 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1405 }
1406 }
1407
1408 /*
1409 * Log record values from the btree block.
1410 */
1411 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1412 xfs_btree_log_recs(
1413 struct xfs_btree_cur *cur,
1414 struct xfs_buf *bp,
1415 int first,
1416 int last)
1417 {
1418
1419 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420 xfs_trans_log_buf(cur->bc_tp, bp,
1421 xfs_btree_rec_offset(cur, first),
1422 xfs_btree_rec_offset(cur, last + 1) - 1);
1423
1424 }
1425
1426 /*
1427 * Log block pointer fields from a btree block (nonleaf).
1428 */
1429 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1430 xfs_btree_log_ptrs(
1431 struct xfs_btree_cur *cur, /* btree cursor */
1432 struct xfs_buf *bp, /* buffer containing btree block */
1433 int first, /* index of first pointer to log */
1434 int last) /* index of last pointer to log */
1435 {
1436
1437 if (bp) {
1438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1439 int level = xfs_btree_get_level(block);
1440
1441 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1442 xfs_trans_log_buf(cur->bc_tp, bp,
1443 xfs_btree_ptr_offset(cur, first, level),
1444 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1445 } else {
1446 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1447 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1448 }
1449
1450 }
1451
1452 /*
1453 * Log fields from a btree block header.
1454 */
1455 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1456 xfs_btree_log_block(
1457 struct xfs_btree_cur *cur, /* btree cursor */
1458 struct xfs_buf *bp, /* buffer containing btree block */
1459 int fields) /* mask of fields: XFS_BB_... */
1460 {
1461 int first; /* first byte offset logged */
1462 int last; /* last byte offset logged */
1463 static const short soffsets[] = { /* table of offsets (short) */
1464 offsetof(struct xfs_btree_block, bb_magic),
1465 offsetof(struct xfs_btree_block, bb_level),
1466 offsetof(struct xfs_btree_block, bb_numrecs),
1467 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1468 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1469 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1470 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1471 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1472 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1473 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1474 XFS_BTREE_SBLOCK_CRC_LEN
1475 };
1476 static const short loffsets[] = { /* table of offsets (long) */
1477 offsetof(struct xfs_btree_block, bb_magic),
1478 offsetof(struct xfs_btree_block, bb_level),
1479 offsetof(struct xfs_btree_block, bb_numrecs),
1480 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1481 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1482 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1483 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1484 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1485 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1486 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1487 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1488 XFS_BTREE_LBLOCK_CRC_LEN
1489 };
1490
1491 if (bp) {
1492 int nbits;
1493
1494 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1495 /*
1496 * We don't log the CRC when updating a btree
1497 * block but instead recreate it during log
1498 * recovery. As the log buffers have checksums
1499 * of their own this is safe and avoids logging a crc
1500 * update in a lot of places.
1501 */
1502 if (fields == XFS_BB_ALL_BITS)
1503 fields = XFS_BB_ALL_BITS_CRC;
1504 nbits = XFS_BB_NUM_BITS_CRC;
1505 } else {
1506 nbits = XFS_BB_NUM_BITS;
1507 }
1508 xfs_btree_offsets(fields,
1509 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1510 loffsets : soffsets,
1511 nbits, &first, &last);
1512 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1513 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1514 } else {
1515 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1516 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1517 }
1518 }
1519
1520 /*
1521 * Increment cursor by one record at the level.
1522 * For nonzero levels the leaf-ward information is untouched.
1523 */
1524 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1525 xfs_btree_increment(
1526 struct xfs_btree_cur *cur,
1527 int level,
1528 int *stat) /* success/failure */
1529 {
1530 struct xfs_btree_block *block;
1531 union xfs_btree_ptr ptr;
1532 struct xfs_buf *bp;
1533 int error; /* error return value */
1534 int lev;
1535
1536 ASSERT(level < cur->bc_nlevels);
1537
1538 /* Read-ahead to the right at this level. */
1539 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1540
1541 /* Get a pointer to the btree block. */
1542 block = xfs_btree_get_block(cur, level, &bp);
1543
1544 #ifdef DEBUG
1545 error = xfs_btree_check_block(cur, block, level, bp);
1546 if (error)
1547 goto error0;
1548 #endif
1549
1550 /* We're done if we remain in the block after the increment. */
1551 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1552 goto out1;
1553
1554 /* Fail if we just went off the right edge of the tree. */
1555 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1556 if (xfs_btree_ptr_is_null(cur, &ptr))
1557 goto out0;
1558
1559 XFS_BTREE_STATS_INC(cur, increment);
1560
1561 /*
1562 * March up the tree incrementing pointers.
1563 * Stop when we don't go off the right edge of a block.
1564 */
1565 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1566 block = xfs_btree_get_block(cur, lev, &bp);
1567
1568 #ifdef DEBUG
1569 error = xfs_btree_check_block(cur, block, lev, bp);
1570 if (error)
1571 goto error0;
1572 #endif
1573
1574 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1575 break;
1576
1577 /* Read-ahead the right block for the next loop. */
1578 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1579 }
1580
1581 /*
1582 * If we went off the root then we are either seriously
1583 * confused or have the tree root in an inode.
1584 */
1585 if (lev == cur->bc_nlevels) {
1586 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1587 goto out0;
1588 ASSERT(0);
1589 error = -EFSCORRUPTED;
1590 goto error0;
1591 }
1592 ASSERT(lev < cur->bc_nlevels);
1593
1594 /*
1595 * Now walk back down the tree, fixing up the cursor's buffer
1596 * pointers and key numbers.
1597 */
1598 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1599 union xfs_btree_ptr *ptrp;
1600
1601 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1602 --lev;
1603 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1604 if (error)
1605 goto error0;
1606
1607 xfs_btree_setbuf(cur, lev, bp);
1608 cur->bc_ptrs[lev] = 1;
1609 }
1610 out1:
1611 *stat = 1;
1612 return 0;
1613
1614 out0:
1615 *stat = 0;
1616 return 0;
1617
1618 error0:
1619 return error;
1620 }
1621
1622 /*
1623 * Decrement cursor by one record at the level.
1624 * For nonzero levels the leaf-ward information is untouched.
1625 */
1626 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1627 xfs_btree_decrement(
1628 struct xfs_btree_cur *cur,
1629 int level,
1630 int *stat) /* success/failure */
1631 {
1632 struct xfs_btree_block *block;
1633 struct xfs_buf *bp;
1634 int error; /* error return value */
1635 int lev;
1636 union xfs_btree_ptr ptr;
1637
1638 ASSERT(level < cur->bc_nlevels);
1639
1640 /* Read-ahead to the left at this level. */
1641 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1642
1643 /* We're done if we remain in the block after the decrement. */
1644 if (--cur->bc_ptrs[level] > 0)
1645 goto out1;
1646
1647 /* Get a pointer to the btree block. */
1648 block = xfs_btree_get_block(cur, level, &bp);
1649
1650 #ifdef DEBUG
1651 error = xfs_btree_check_block(cur, block, level, bp);
1652 if (error)
1653 goto error0;
1654 #endif
1655
1656 /* Fail if we just went off the left edge of the tree. */
1657 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1658 if (xfs_btree_ptr_is_null(cur, &ptr))
1659 goto out0;
1660
1661 XFS_BTREE_STATS_INC(cur, decrement);
1662
1663 /*
1664 * March up the tree decrementing pointers.
1665 * Stop when we don't go off the left edge of a block.
1666 */
1667 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1668 if (--cur->bc_ptrs[lev] > 0)
1669 break;
1670 /* Read-ahead the left block for the next loop. */
1671 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1672 }
1673
1674 /*
1675 * If we went off the root then we are seriously confused.
1676 * or the root of the tree is in an inode.
1677 */
1678 if (lev == cur->bc_nlevels) {
1679 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1680 goto out0;
1681 ASSERT(0);
1682 error = -EFSCORRUPTED;
1683 goto error0;
1684 }
1685 ASSERT(lev < cur->bc_nlevels);
1686
1687 /*
1688 * Now walk back down the tree, fixing up the cursor's buffer
1689 * pointers and key numbers.
1690 */
1691 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1692 union xfs_btree_ptr *ptrp;
1693
1694 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1695 --lev;
1696 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1697 if (error)
1698 goto error0;
1699 xfs_btree_setbuf(cur, lev, bp);
1700 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1701 }
1702 out1:
1703 *stat = 1;
1704 return 0;
1705
1706 out0:
1707 *stat = 0;
1708 return 0;
1709
1710 error0:
1711 return error;
1712 }
1713
1714 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,const union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1715 xfs_btree_lookup_get_block(
1716 struct xfs_btree_cur *cur, /* btree cursor */
1717 int level, /* level in the btree */
1718 const union xfs_btree_ptr *pp, /* ptr to btree block */
1719 struct xfs_btree_block **blkp) /* return btree block */
1720 {
1721 struct xfs_buf *bp; /* buffer pointer for btree block */
1722 xfs_daddr_t daddr;
1723 int error = 0;
1724
1725 /* special case the root block if in an inode */
1726 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1727 (level == cur->bc_nlevels - 1)) {
1728 *blkp = xfs_btree_get_iroot(cur);
1729 return 0;
1730 }
1731
1732 /*
1733 * If the old buffer at this level for the disk address we are
1734 * looking for re-use it.
1735 *
1736 * Otherwise throw it away and get a new one.
1737 */
1738 bp = cur->bc_bufs[level];
1739 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1740 if (error)
1741 return error;
1742 if (bp && xfs_buf_daddr(bp) == daddr) {
1743 *blkp = XFS_BUF_TO_BLOCK(bp);
1744 return 0;
1745 }
1746
1747 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1748 if (error)
1749 return error;
1750
1751 /* Check the inode owner since the verifiers don't. */
1752 if (xfs_has_crc(cur->bc_mp) &&
1753 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1754 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1755 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1756 cur->bc_ino.ip->i_ino)
1757 goto out_bad;
1758
1759 /* Did we get the level we were looking for? */
1760 if (be16_to_cpu((*blkp)->bb_level) != level)
1761 goto out_bad;
1762
1763 /* Check that internal nodes have at least one record. */
1764 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1765 goto out_bad;
1766
1767 xfs_btree_setbuf(cur, level, bp);
1768 return 0;
1769
1770 out_bad:
1771 *blkp = NULL;
1772 xfs_buf_mark_corrupt(bp);
1773 xfs_trans_brelse(cur->bc_tp, bp);
1774 return -EFSCORRUPTED;
1775 }
1776
1777 /*
1778 * Get current search key. For level 0 we don't actually have a key
1779 * structure so we make one up from the record. For all other levels
1780 * we just return the right key.
1781 */
1782 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1783 xfs_lookup_get_search_key(
1784 struct xfs_btree_cur *cur,
1785 int level,
1786 int keyno,
1787 struct xfs_btree_block *block,
1788 union xfs_btree_key *kp)
1789 {
1790 if (level == 0) {
1791 cur->bc_ops->init_key_from_rec(kp,
1792 xfs_btree_rec_addr(cur, keyno, block));
1793 return kp;
1794 }
1795
1796 return xfs_btree_key_addr(cur, keyno, block);
1797 }
1798
1799 /*
1800 * Lookup the record. The cursor is made to point to it, based on dir.
1801 * stat is set to 0 if can't find any such record, 1 for success.
1802 */
1803 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1804 xfs_btree_lookup(
1805 struct xfs_btree_cur *cur, /* btree cursor */
1806 xfs_lookup_t dir, /* <=, ==, or >= */
1807 int *stat) /* success/failure */
1808 {
1809 struct xfs_btree_block *block; /* current btree block */
1810 int64_t diff; /* difference for the current key */
1811 int error; /* error return value */
1812 int keyno; /* current key number */
1813 int level; /* level in the btree */
1814 union xfs_btree_ptr *pp; /* ptr to btree block */
1815 union xfs_btree_ptr ptr; /* ptr to btree block */
1816
1817 XFS_BTREE_STATS_INC(cur, lookup);
1818
1819 /* No such thing as a zero-level tree. */
1820 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1821 return -EFSCORRUPTED;
1822
1823 block = NULL;
1824 keyno = 0;
1825
1826 /* initialise start pointer from cursor */
1827 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1828 pp = &ptr;
1829
1830 /*
1831 * Iterate over each level in the btree, starting at the root.
1832 * For each level above the leaves, find the key we need, based
1833 * on the lookup record, then follow the corresponding block
1834 * pointer down to the next level.
1835 */
1836 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1837 /* Get the block we need to do the lookup on. */
1838 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1839 if (error)
1840 goto error0;
1841
1842 if (diff == 0) {
1843 /*
1844 * If we already had a key match at a higher level, we
1845 * know we need to use the first entry in this block.
1846 */
1847 keyno = 1;
1848 } else {
1849 /* Otherwise search this block. Do a binary search. */
1850
1851 int high; /* high entry number */
1852 int low; /* low entry number */
1853
1854 /* Set low and high entry numbers, 1-based. */
1855 low = 1;
1856 high = xfs_btree_get_numrecs(block);
1857 if (!high) {
1858 /* Block is empty, must be an empty leaf. */
1859 if (level != 0 || cur->bc_nlevels != 1) {
1860 XFS_CORRUPTION_ERROR(__func__,
1861 XFS_ERRLEVEL_LOW,
1862 cur->bc_mp, block,
1863 sizeof(*block));
1864 return -EFSCORRUPTED;
1865 }
1866
1867 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1868 *stat = 0;
1869 return 0;
1870 }
1871
1872 /* Binary search the block. */
1873 while (low <= high) {
1874 union xfs_btree_key key;
1875 union xfs_btree_key *kp;
1876
1877 XFS_BTREE_STATS_INC(cur, compare);
1878
1879 /* keyno is average of low and high. */
1880 keyno = (low + high) >> 1;
1881
1882 /* Get current search key */
1883 kp = xfs_lookup_get_search_key(cur, level,
1884 keyno, block, &key);
1885
1886 /*
1887 * Compute difference to get next direction:
1888 * - less than, move right
1889 * - greater than, move left
1890 * - equal, we're done
1891 */
1892 diff = cur->bc_ops->key_diff(cur, kp);
1893 if (diff < 0)
1894 low = keyno + 1;
1895 else if (diff > 0)
1896 high = keyno - 1;
1897 else
1898 break;
1899 }
1900 }
1901
1902 /*
1903 * If there are more levels, set up for the next level
1904 * by getting the block number and filling in the cursor.
1905 */
1906 if (level > 0) {
1907 /*
1908 * If we moved left, need the previous key number,
1909 * unless there isn't one.
1910 */
1911 if (diff > 0 && --keyno < 1)
1912 keyno = 1;
1913 pp = xfs_btree_ptr_addr(cur, keyno, block);
1914
1915 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1916 if (error)
1917 goto error0;
1918
1919 cur->bc_ptrs[level] = keyno;
1920 }
1921 }
1922
1923 /* Done with the search. See if we need to adjust the results. */
1924 if (dir != XFS_LOOKUP_LE && diff < 0) {
1925 keyno++;
1926 /*
1927 * If ge search and we went off the end of the block, but it's
1928 * not the last block, we're in the wrong block.
1929 */
1930 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1931 if (dir == XFS_LOOKUP_GE &&
1932 keyno > xfs_btree_get_numrecs(block) &&
1933 !xfs_btree_ptr_is_null(cur, &ptr)) {
1934 int i;
1935
1936 cur->bc_ptrs[0] = keyno;
1937 error = xfs_btree_increment(cur, 0, &i);
1938 if (error)
1939 goto error0;
1940 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1941 return -EFSCORRUPTED;
1942 *stat = 1;
1943 return 0;
1944 }
1945 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1946 keyno--;
1947 cur->bc_ptrs[0] = keyno;
1948
1949 /* Return if we succeeded or not. */
1950 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1951 *stat = 0;
1952 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1953 *stat = 1;
1954 else
1955 *stat = 0;
1956 return 0;
1957
1958 error0:
1959 return error;
1960 }
1961
1962 /* Find the high key storage area from a regular key. */
1963 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)1964 xfs_btree_high_key_from_key(
1965 struct xfs_btree_cur *cur,
1966 union xfs_btree_key *key)
1967 {
1968 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1969 return (union xfs_btree_key *)((char *)key +
1970 (cur->bc_ops->key_len / 2));
1971 }
1972
1973 /* Determine the low (and high if overlapped) keys of a leaf block */
1974 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)1975 xfs_btree_get_leaf_keys(
1976 struct xfs_btree_cur *cur,
1977 struct xfs_btree_block *block,
1978 union xfs_btree_key *key)
1979 {
1980 union xfs_btree_key max_hkey;
1981 union xfs_btree_key hkey;
1982 union xfs_btree_rec *rec;
1983 union xfs_btree_key *high;
1984 int n;
1985
1986 rec = xfs_btree_rec_addr(cur, 1, block);
1987 cur->bc_ops->init_key_from_rec(key, rec);
1988
1989 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1990
1991 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1992 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1993 rec = xfs_btree_rec_addr(cur, n, block);
1994 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1995 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1996 > 0)
1997 max_hkey = hkey;
1998 }
1999
2000 high = xfs_btree_high_key_from_key(cur, key);
2001 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2002 }
2003 }
2004
2005 /* Determine the low (and high if overlapped) keys of a node block */
2006 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2007 xfs_btree_get_node_keys(
2008 struct xfs_btree_cur *cur,
2009 struct xfs_btree_block *block,
2010 union xfs_btree_key *key)
2011 {
2012 union xfs_btree_key *hkey;
2013 union xfs_btree_key *max_hkey;
2014 union xfs_btree_key *high;
2015 int n;
2016
2017 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2018 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2019 cur->bc_ops->key_len / 2);
2020
2021 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2022 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2023 hkey = xfs_btree_high_key_addr(cur, n, block);
2024 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2025 max_hkey = hkey;
2026 }
2027
2028 high = xfs_btree_high_key_from_key(cur, key);
2029 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2030 } else {
2031 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2032 cur->bc_ops->key_len);
2033 }
2034 }
2035
2036 /* Derive the keys for any btree block. */
2037 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2038 xfs_btree_get_keys(
2039 struct xfs_btree_cur *cur,
2040 struct xfs_btree_block *block,
2041 union xfs_btree_key *key)
2042 {
2043 if (be16_to_cpu(block->bb_level) == 0)
2044 xfs_btree_get_leaf_keys(cur, block, key);
2045 else
2046 xfs_btree_get_node_keys(cur, block, key);
2047 }
2048
2049 /*
2050 * Decide if we need to update the parent keys of a btree block. For
2051 * a standard btree this is only necessary if we're updating the first
2052 * record/key. For an overlapping btree, we must always update the
2053 * keys because the highest key can be in any of the records or keys
2054 * in the block.
2055 */
2056 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2057 xfs_btree_needs_key_update(
2058 struct xfs_btree_cur *cur,
2059 int ptr)
2060 {
2061 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2062 }
2063
2064 /*
2065 * Update the low and high parent keys of the given level, progressing
2066 * towards the root. If force_all is false, stop if the keys for a given
2067 * level do not need updating.
2068 */
2069 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2070 __xfs_btree_updkeys(
2071 struct xfs_btree_cur *cur,
2072 int level,
2073 struct xfs_btree_block *block,
2074 struct xfs_buf *bp0,
2075 bool force_all)
2076 {
2077 union xfs_btree_key key; /* keys from current level */
2078 union xfs_btree_key *lkey; /* keys from the next level up */
2079 union xfs_btree_key *hkey;
2080 union xfs_btree_key *nlkey; /* keys from the next level up */
2081 union xfs_btree_key *nhkey;
2082 struct xfs_buf *bp;
2083 int ptr;
2084
2085 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2086
2087 /* Exit if there aren't any parent levels to update. */
2088 if (level + 1 >= cur->bc_nlevels)
2089 return 0;
2090
2091 trace_xfs_btree_updkeys(cur, level, bp0);
2092
2093 lkey = &key;
2094 hkey = xfs_btree_high_key_from_key(cur, lkey);
2095 xfs_btree_get_keys(cur, block, lkey);
2096 for (level++; level < cur->bc_nlevels; level++) {
2097 #ifdef DEBUG
2098 int error;
2099 #endif
2100 block = xfs_btree_get_block(cur, level, &bp);
2101 trace_xfs_btree_updkeys(cur, level, bp);
2102 #ifdef DEBUG
2103 error = xfs_btree_check_block(cur, block, level, bp);
2104 if (error)
2105 return error;
2106 #endif
2107 ptr = cur->bc_ptrs[level];
2108 nlkey = xfs_btree_key_addr(cur, ptr, block);
2109 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2110 if (!force_all &&
2111 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2112 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2113 break;
2114 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2115 xfs_btree_log_keys(cur, bp, ptr, ptr);
2116 if (level + 1 >= cur->bc_nlevels)
2117 break;
2118 xfs_btree_get_node_keys(cur, block, lkey);
2119 }
2120
2121 return 0;
2122 }
2123
2124 /* Update all the keys from some level in cursor back to the root. */
2125 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2126 xfs_btree_updkeys_force(
2127 struct xfs_btree_cur *cur,
2128 int level)
2129 {
2130 struct xfs_buf *bp;
2131 struct xfs_btree_block *block;
2132
2133 block = xfs_btree_get_block(cur, level, &bp);
2134 return __xfs_btree_updkeys(cur, level, block, bp, true);
2135 }
2136
2137 /*
2138 * Update the parent keys of the given level, progressing towards the root.
2139 */
2140 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2141 xfs_btree_update_keys(
2142 struct xfs_btree_cur *cur,
2143 int level)
2144 {
2145 struct xfs_btree_block *block;
2146 struct xfs_buf *bp;
2147 union xfs_btree_key *kp;
2148 union xfs_btree_key key;
2149 int ptr;
2150
2151 ASSERT(level >= 0);
2152
2153 block = xfs_btree_get_block(cur, level, &bp);
2154 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2155 return __xfs_btree_updkeys(cur, level, block, bp, false);
2156
2157 /*
2158 * Go up the tree from this level toward the root.
2159 * At each level, update the key value to the value input.
2160 * Stop when we reach a level where the cursor isn't pointing
2161 * at the first entry in the block.
2162 */
2163 xfs_btree_get_keys(cur, block, &key);
2164 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2165 #ifdef DEBUG
2166 int error;
2167 #endif
2168 block = xfs_btree_get_block(cur, level, &bp);
2169 #ifdef DEBUG
2170 error = xfs_btree_check_block(cur, block, level, bp);
2171 if (error)
2172 return error;
2173 #endif
2174 ptr = cur->bc_ptrs[level];
2175 kp = xfs_btree_key_addr(cur, ptr, block);
2176 xfs_btree_copy_keys(cur, kp, &key, 1);
2177 xfs_btree_log_keys(cur, bp, ptr, ptr);
2178 }
2179
2180 return 0;
2181 }
2182
2183 /*
2184 * Update the record referred to by cur to the value in the
2185 * given record. This either works (return 0) or gets an
2186 * EFSCORRUPTED error.
2187 */
2188 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2189 xfs_btree_update(
2190 struct xfs_btree_cur *cur,
2191 union xfs_btree_rec *rec)
2192 {
2193 struct xfs_btree_block *block;
2194 struct xfs_buf *bp;
2195 int error;
2196 int ptr;
2197 union xfs_btree_rec *rp;
2198
2199 /* Pick up the current block. */
2200 block = xfs_btree_get_block(cur, 0, &bp);
2201
2202 #ifdef DEBUG
2203 error = xfs_btree_check_block(cur, block, 0, bp);
2204 if (error)
2205 goto error0;
2206 #endif
2207 /* Get the address of the rec to be updated. */
2208 ptr = cur->bc_ptrs[0];
2209 rp = xfs_btree_rec_addr(cur, ptr, block);
2210
2211 /* Fill in the new contents and log them. */
2212 xfs_btree_copy_recs(cur, rp, rec, 1);
2213 xfs_btree_log_recs(cur, bp, ptr, ptr);
2214
2215 /*
2216 * If we are tracking the last record in the tree and
2217 * we are at the far right edge of the tree, update it.
2218 */
2219 if (xfs_btree_is_lastrec(cur, block, 0)) {
2220 cur->bc_ops->update_lastrec(cur, block, rec,
2221 ptr, LASTREC_UPDATE);
2222 }
2223
2224 /* Pass new key value up to our parent. */
2225 if (xfs_btree_needs_key_update(cur, ptr)) {
2226 error = xfs_btree_update_keys(cur, 0);
2227 if (error)
2228 goto error0;
2229 }
2230
2231 return 0;
2232
2233 error0:
2234 return error;
2235 }
2236
2237 /*
2238 * Move 1 record left from cur/level if possible.
2239 * Update cur to reflect the new path.
2240 */
2241 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2242 xfs_btree_lshift(
2243 struct xfs_btree_cur *cur,
2244 int level,
2245 int *stat) /* success/failure */
2246 {
2247 struct xfs_buf *lbp; /* left buffer pointer */
2248 struct xfs_btree_block *left; /* left btree block */
2249 int lrecs; /* left record count */
2250 struct xfs_buf *rbp; /* right buffer pointer */
2251 struct xfs_btree_block *right; /* right btree block */
2252 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2253 int rrecs; /* right record count */
2254 union xfs_btree_ptr lptr; /* left btree pointer */
2255 union xfs_btree_key *rkp = NULL; /* right btree key */
2256 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2257 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2258 int error; /* error return value */
2259 int i;
2260
2261 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2262 level == cur->bc_nlevels - 1)
2263 goto out0;
2264
2265 /* Set up variables for this block as "right". */
2266 right = xfs_btree_get_block(cur, level, &rbp);
2267
2268 #ifdef DEBUG
2269 error = xfs_btree_check_block(cur, right, level, rbp);
2270 if (error)
2271 goto error0;
2272 #endif
2273
2274 /* If we've got no left sibling then we can't shift an entry left. */
2275 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2276 if (xfs_btree_ptr_is_null(cur, &lptr))
2277 goto out0;
2278
2279 /*
2280 * If the cursor entry is the one that would be moved, don't
2281 * do it... it's too complicated.
2282 */
2283 if (cur->bc_ptrs[level] <= 1)
2284 goto out0;
2285
2286 /* Set up the left neighbor as "left". */
2287 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2288 if (error)
2289 goto error0;
2290
2291 /* If it's full, it can't take another entry. */
2292 lrecs = xfs_btree_get_numrecs(left);
2293 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2294 goto out0;
2295
2296 rrecs = xfs_btree_get_numrecs(right);
2297
2298 /*
2299 * We add one entry to the left side and remove one for the right side.
2300 * Account for it here, the changes will be updated on disk and logged
2301 * later.
2302 */
2303 lrecs++;
2304 rrecs--;
2305
2306 XFS_BTREE_STATS_INC(cur, lshift);
2307 XFS_BTREE_STATS_ADD(cur, moves, 1);
2308
2309 /*
2310 * If non-leaf, copy a key and a ptr to the left block.
2311 * Log the changes to the left block.
2312 */
2313 if (level > 0) {
2314 /* It's a non-leaf. Move keys and pointers. */
2315 union xfs_btree_key *lkp; /* left btree key */
2316 union xfs_btree_ptr *lpp; /* left address pointer */
2317
2318 lkp = xfs_btree_key_addr(cur, lrecs, left);
2319 rkp = xfs_btree_key_addr(cur, 1, right);
2320
2321 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2322 rpp = xfs_btree_ptr_addr(cur, 1, right);
2323
2324 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2325 if (error)
2326 goto error0;
2327
2328 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2329 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2330
2331 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2332 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2333
2334 ASSERT(cur->bc_ops->keys_inorder(cur,
2335 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2336 } else {
2337 /* It's a leaf. Move records. */
2338 union xfs_btree_rec *lrp; /* left record pointer */
2339
2340 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2341 rrp = xfs_btree_rec_addr(cur, 1, right);
2342
2343 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2344 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2345
2346 ASSERT(cur->bc_ops->recs_inorder(cur,
2347 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2348 }
2349
2350 xfs_btree_set_numrecs(left, lrecs);
2351 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2352
2353 xfs_btree_set_numrecs(right, rrecs);
2354 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2355
2356 /*
2357 * Slide the contents of right down one entry.
2358 */
2359 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2360 if (level > 0) {
2361 /* It's a nonleaf. operate on keys and ptrs */
2362 for (i = 0; i < rrecs; i++) {
2363 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2364 if (error)
2365 goto error0;
2366 }
2367
2368 xfs_btree_shift_keys(cur,
2369 xfs_btree_key_addr(cur, 2, right),
2370 -1, rrecs);
2371 xfs_btree_shift_ptrs(cur,
2372 xfs_btree_ptr_addr(cur, 2, right),
2373 -1, rrecs);
2374
2375 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2376 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2377 } else {
2378 /* It's a leaf. operate on records */
2379 xfs_btree_shift_recs(cur,
2380 xfs_btree_rec_addr(cur, 2, right),
2381 -1, rrecs);
2382 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2383 }
2384
2385 /*
2386 * Using a temporary cursor, update the parent key values of the
2387 * block on the left.
2388 */
2389 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2390 error = xfs_btree_dup_cursor(cur, &tcur);
2391 if (error)
2392 goto error0;
2393 i = xfs_btree_firstrec(tcur, level);
2394 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2395 error = -EFSCORRUPTED;
2396 goto error0;
2397 }
2398
2399 error = xfs_btree_decrement(tcur, level, &i);
2400 if (error)
2401 goto error1;
2402
2403 /* Update the parent high keys of the left block, if needed. */
2404 error = xfs_btree_update_keys(tcur, level);
2405 if (error)
2406 goto error1;
2407
2408 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2409 }
2410
2411 /* Update the parent keys of the right block. */
2412 error = xfs_btree_update_keys(cur, level);
2413 if (error)
2414 goto error0;
2415
2416 /* Slide the cursor value left one. */
2417 cur->bc_ptrs[level]--;
2418
2419 *stat = 1;
2420 return 0;
2421
2422 out0:
2423 *stat = 0;
2424 return 0;
2425
2426 error0:
2427 return error;
2428
2429 error1:
2430 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2431 return error;
2432 }
2433
2434 /*
2435 * Move 1 record right from cur/level if possible.
2436 * Update cur to reflect the new path.
2437 */
2438 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2439 xfs_btree_rshift(
2440 struct xfs_btree_cur *cur,
2441 int level,
2442 int *stat) /* success/failure */
2443 {
2444 struct xfs_buf *lbp; /* left buffer pointer */
2445 struct xfs_btree_block *left; /* left btree block */
2446 struct xfs_buf *rbp; /* right buffer pointer */
2447 struct xfs_btree_block *right; /* right btree block */
2448 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2449 union xfs_btree_ptr rptr; /* right block pointer */
2450 union xfs_btree_key *rkp; /* right btree key */
2451 int rrecs; /* right record count */
2452 int lrecs; /* left record count */
2453 int error; /* error return value */
2454 int i; /* loop counter */
2455
2456 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2457 (level == cur->bc_nlevels - 1))
2458 goto out0;
2459
2460 /* Set up variables for this block as "left". */
2461 left = xfs_btree_get_block(cur, level, &lbp);
2462
2463 #ifdef DEBUG
2464 error = xfs_btree_check_block(cur, left, level, lbp);
2465 if (error)
2466 goto error0;
2467 #endif
2468
2469 /* If we've got no right sibling then we can't shift an entry right. */
2470 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2471 if (xfs_btree_ptr_is_null(cur, &rptr))
2472 goto out0;
2473
2474 /*
2475 * If the cursor entry is the one that would be moved, don't
2476 * do it... it's too complicated.
2477 */
2478 lrecs = xfs_btree_get_numrecs(left);
2479 if (cur->bc_ptrs[level] >= lrecs)
2480 goto out0;
2481
2482 /* Set up the right neighbor as "right". */
2483 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2484 if (error)
2485 goto error0;
2486
2487 /* If it's full, it can't take another entry. */
2488 rrecs = xfs_btree_get_numrecs(right);
2489 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2490 goto out0;
2491
2492 XFS_BTREE_STATS_INC(cur, rshift);
2493 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2494
2495 /*
2496 * Make a hole at the start of the right neighbor block, then
2497 * copy the last left block entry to the hole.
2498 */
2499 if (level > 0) {
2500 /* It's a nonleaf. make a hole in the keys and ptrs */
2501 union xfs_btree_key *lkp;
2502 union xfs_btree_ptr *lpp;
2503 union xfs_btree_ptr *rpp;
2504
2505 lkp = xfs_btree_key_addr(cur, lrecs, left);
2506 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2507 rkp = xfs_btree_key_addr(cur, 1, right);
2508 rpp = xfs_btree_ptr_addr(cur, 1, right);
2509
2510 for (i = rrecs - 1; i >= 0; i--) {
2511 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2512 if (error)
2513 goto error0;
2514 }
2515
2516 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2517 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2518
2519 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2520 if (error)
2521 goto error0;
2522
2523 /* Now put the new data in, and log it. */
2524 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2525 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2526
2527 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2528 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2529
2530 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2531 xfs_btree_key_addr(cur, 2, right)));
2532 } else {
2533 /* It's a leaf. make a hole in the records */
2534 union xfs_btree_rec *lrp;
2535 union xfs_btree_rec *rrp;
2536
2537 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2538 rrp = xfs_btree_rec_addr(cur, 1, right);
2539
2540 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2541
2542 /* Now put the new data in, and log it. */
2543 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2544 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2545 }
2546
2547 /*
2548 * Decrement and log left's numrecs, bump and log right's numrecs.
2549 */
2550 xfs_btree_set_numrecs(left, --lrecs);
2551 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2552
2553 xfs_btree_set_numrecs(right, ++rrecs);
2554 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2555
2556 /*
2557 * Using a temporary cursor, update the parent key values of the
2558 * block on the right.
2559 */
2560 error = xfs_btree_dup_cursor(cur, &tcur);
2561 if (error)
2562 goto error0;
2563 i = xfs_btree_lastrec(tcur, level);
2564 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2565 error = -EFSCORRUPTED;
2566 goto error0;
2567 }
2568
2569 error = xfs_btree_increment(tcur, level, &i);
2570 if (error)
2571 goto error1;
2572
2573 /* Update the parent high keys of the left block, if needed. */
2574 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2575 error = xfs_btree_update_keys(cur, level);
2576 if (error)
2577 goto error1;
2578 }
2579
2580 /* Update the parent keys of the right block. */
2581 error = xfs_btree_update_keys(tcur, level);
2582 if (error)
2583 goto error1;
2584
2585 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2586
2587 *stat = 1;
2588 return 0;
2589
2590 out0:
2591 *stat = 0;
2592 return 0;
2593
2594 error0:
2595 return error;
2596
2597 error1:
2598 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2599 return error;
2600 }
2601
2602 /*
2603 * Split cur/level block in half.
2604 * Return new block number and the key to its first
2605 * record (to be inserted into parent).
2606 */
2607 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2608 __xfs_btree_split(
2609 struct xfs_btree_cur *cur,
2610 int level,
2611 union xfs_btree_ptr *ptrp,
2612 union xfs_btree_key *key,
2613 struct xfs_btree_cur **curp,
2614 int *stat) /* success/failure */
2615 {
2616 union xfs_btree_ptr lptr; /* left sibling block ptr */
2617 struct xfs_buf *lbp; /* left buffer pointer */
2618 struct xfs_btree_block *left; /* left btree block */
2619 union xfs_btree_ptr rptr; /* right sibling block ptr */
2620 struct xfs_buf *rbp; /* right buffer pointer */
2621 struct xfs_btree_block *right; /* right btree block */
2622 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2623 struct xfs_buf *rrbp; /* right-right buffer pointer */
2624 struct xfs_btree_block *rrblock; /* right-right btree block */
2625 int lrecs;
2626 int rrecs;
2627 int src_index;
2628 int error; /* error return value */
2629 int i;
2630
2631 XFS_BTREE_STATS_INC(cur, split);
2632
2633 /* Set up left block (current one). */
2634 left = xfs_btree_get_block(cur, level, &lbp);
2635
2636 #ifdef DEBUG
2637 error = xfs_btree_check_block(cur, left, level, lbp);
2638 if (error)
2639 goto error0;
2640 #endif
2641
2642 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2643
2644 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2645 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2646 if (error)
2647 goto error0;
2648 if (*stat == 0)
2649 goto out0;
2650 XFS_BTREE_STATS_INC(cur, alloc);
2651
2652 /* Set up the new block as "right". */
2653 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2654 if (error)
2655 goto error0;
2656
2657 /* Fill in the btree header for the new right block. */
2658 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2659
2660 /*
2661 * Split the entries between the old and the new block evenly.
2662 * Make sure that if there's an odd number of entries now, that
2663 * each new block will have the same number of entries.
2664 */
2665 lrecs = xfs_btree_get_numrecs(left);
2666 rrecs = lrecs / 2;
2667 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2668 rrecs++;
2669 src_index = (lrecs - rrecs + 1);
2670
2671 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2672
2673 /* Adjust numrecs for the later get_*_keys() calls. */
2674 lrecs -= rrecs;
2675 xfs_btree_set_numrecs(left, lrecs);
2676 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2677
2678 /*
2679 * Copy btree block entries from the left block over to the
2680 * new block, the right. Update the right block and log the
2681 * changes.
2682 */
2683 if (level > 0) {
2684 /* It's a non-leaf. Move keys and pointers. */
2685 union xfs_btree_key *lkp; /* left btree key */
2686 union xfs_btree_ptr *lpp; /* left address pointer */
2687 union xfs_btree_key *rkp; /* right btree key */
2688 union xfs_btree_ptr *rpp; /* right address pointer */
2689
2690 lkp = xfs_btree_key_addr(cur, src_index, left);
2691 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2692 rkp = xfs_btree_key_addr(cur, 1, right);
2693 rpp = xfs_btree_ptr_addr(cur, 1, right);
2694
2695 for (i = src_index; i < rrecs; i++) {
2696 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2697 if (error)
2698 goto error0;
2699 }
2700
2701 /* Copy the keys & pointers to the new block. */
2702 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2703 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2704
2705 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2706 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2707
2708 /* Stash the keys of the new block for later insertion. */
2709 xfs_btree_get_node_keys(cur, right, key);
2710 } else {
2711 /* It's a leaf. Move records. */
2712 union xfs_btree_rec *lrp; /* left record pointer */
2713 union xfs_btree_rec *rrp; /* right record pointer */
2714
2715 lrp = xfs_btree_rec_addr(cur, src_index, left);
2716 rrp = xfs_btree_rec_addr(cur, 1, right);
2717
2718 /* Copy records to the new block. */
2719 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2720 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2721
2722 /* Stash the keys of the new block for later insertion. */
2723 xfs_btree_get_leaf_keys(cur, right, key);
2724 }
2725
2726 /*
2727 * Find the left block number by looking in the buffer.
2728 * Adjust sibling pointers.
2729 */
2730 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2731 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2732 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2733 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2734
2735 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2736 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2737
2738 /*
2739 * If there's a block to the new block's right, make that block
2740 * point back to right instead of to left.
2741 */
2742 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2743 error = xfs_btree_read_buf_block(cur, &rrptr,
2744 0, &rrblock, &rrbp);
2745 if (error)
2746 goto error0;
2747 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2748 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2749 }
2750
2751 /* Update the parent high keys of the left block, if needed. */
2752 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2753 error = xfs_btree_update_keys(cur, level);
2754 if (error)
2755 goto error0;
2756 }
2757
2758 /*
2759 * If the cursor is really in the right block, move it there.
2760 * If it's just pointing past the last entry in left, then we'll
2761 * insert there, so don't change anything in that case.
2762 */
2763 if (cur->bc_ptrs[level] > lrecs + 1) {
2764 xfs_btree_setbuf(cur, level, rbp);
2765 cur->bc_ptrs[level] -= lrecs;
2766 }
2767 /*
2768 * If there are more levels, we'll need another cursor which refers
2769 * the right block, no matter where this cursor was.
2770 */
2771 if (level + 1 < cur->bc_nlevels) {
2772 error = xfs_btree_dup_cursor(cur, curp);
2773 if (error)
2774 goto error0;
2775 (*curp)->bc_ptrs[level + 1]++;
2776 }
2777 *ptrp = rptr;
2778 *stat = 1;
2779 return 0;
2780 out0:
2781 *stat = 0;
2782 return 0;
2783
2784 error0:
2785 return error;
2786 }
2787
2788 struct xfs_btree_split_args {
2789 struct xfs_btree_cur *cur;
2790 int level;
2791 union xfs_btree_ptr *ptrp;
2792 union xfs_btree_key *key;
2793 struct xfs_btree_cur **curp;
2794 int *stat; /* success/failure */
2795 int result;
2796 bool kswapd; /* allocation in kswapd context */
2797 struct completion *done;
2798 struct work_struct work;
2799 };
2800
2801 /*
2802 * Stack switching interfaces for allocation
2803 */
2804 static void
xfs_btree_split_worker(struct work_struct * work)2805 xfs_btree_split_worker(
2806 struct work_struct *work)
2807 {
2808 struct xfs_btree_split_args *args = container_of(work,
2809 struct xfs_btree_split_args, work);
2810 unsigned long pflags;
2811 unsigned long new_pflags = 0;
2812
2813 /*
2814 * we are in a transaction context here, but may also be doing work
2815 * in kswapd context, and hence we may need to inherit that state
2816 * temporarily to ensure that we don't block waiting for memory reclaim
2817 * in any way.
2818 */
2819 if (args->kswapd)
2820 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2821
2822 current_set_flags_nested(&pflags, new_pflags);
2823 xfs_trans_set_context(args->cur->bc_tp);
2824
2825 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2826 args->key, args->curp, args->stat);
2827
2828 xfs_trans_clear_context(args->cur->bc_tp);
2829 current_restore_flags_nested(&pflags, new_pflags);
2830
2831 /*
2832 * Do not access args after complete() has run here. We don't own args
2833 * and the owner may run and free args before we return here.
2834 */
2835 complete(args->done);
2836
2837 }
2838
2839 /*
2840 * BMBT split requests often come in with little stack to work on. Push
2841 * them off to a worker thread so there is lots of stack to use. For the other
2842 * btree types, just call directly to avoid the context switch overhead here.
2843 */
2844 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2845 xfs_btree_split(
2846 struct xfs_btree_cur *cur,
2847 int level,
2848 union xfs_btree_ptr *ptrp,
2849 union xfs_btree_key *key,
2850 struct xfs_btree_cur **curp,
2851 int *stat) /* success/failure */
2852 {
2853 struct xfs_btree_split_args args;
2854 DECLARE_COMPLETION_ONSTACK(done);
2855
2856 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2857 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2858
2859 args.cur = cur;
2860 args.level = level;
2861 args.ptrp = ptrp;
2862 args.key = key;
2863 args.curp = curp;
2864 args.stat = stat;
2865 args.done = &done;
2866 args.kswapd = current_is_kswapd();
2867 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2868 queue_work(xfs_alloc_wq, &args.work);
2869 wait_for_completion(&done);
2870 destroy_work_on_stack(&args.work);
2871 return args.result;
2872 }
2873
2874
2875 /*
2876 * Copy the old inode root contents into a real block and make the
2877 * broot point to it.
2878 */
2879 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2880 xfs_btree_new_iroot(
2881 struct xfs_btree_cur *cur, /* btree cursor */
2882 int *logflags, /* logging flags for inode */
2883 int *stat) /* return status - 0 fail */
2884 {
2885 struct xfs_buf *cbp; /* buffer for cblock */
2886 struct xfs_btree_block *block; /* btree block */
2887 struct xfs_btree_block *cblock; /* child btree block */
2888 union xfs_btree_key *ckp; /* child key pointer */
2889 union xfs_btree_ptr *cpp; /* child ptr pointer */
2890 union xfs_btree_key *kp; /* pointer to btree key */
2891 union xfs_btree_ptr *pp; /* pointer to block addr */
2892 union xfs_btree_ptr nptr; /* new block addr */
2893 int level; /* btree level */
2894 int error; /* error return code */
2895 int i; /* loop counter */
2896
2897 XFS_BTREE_STATS_INC(cur, newroot);
2898
2899 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2900
2901 level = cur->bc_nlevels - 1;
2902
2903 block = xfs_btree_get_iroot(cur);
2904 pp = xfs_btree_ptr_addr(cur, 1, block);
2905
2906 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2907 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2908 if (error)
2909 goto error0;
2910 if (*stat == 0)
2911 return 0;
2912
2913 XFS_BTREE_STATS_INC(cur, alloc);
2914
2915 /* Copy the root into a real block. */
2916 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2917 if (error)
2918 goto error0;
2919
2920 /*
2921 * we can't just memcpy() the root in for CRC enabled btree blocks.
2922 * In that case have to also ensure the blkno remains correct
2923 */
2924 memcpy(cblock, block, xfs_btree_block_len(cur));
2925 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2926 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
2927 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2928 cblock->bb_u.l.bb_blkno = bno;
2929 else
2930 cblock->bb_u.s.bb_blkno = bno;
2931 }
2932
2933 be16_add_cpu(&block->bb_level, 1);
2934 xfs_btree_set_numrecs(block, 1);
2935 cur->bc_nlevels++;
2936 cur->bc_ptrs[level + 1] = 1;
2937
2938 kp = xfs_btree_key_addr(cur, 1, block);
2939 ckp = xfs_btree_key_addr(cur, 1, cblock);
2940 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2941
2942 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2943 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2944 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2945 if (error)
2946 goto error0;
2947 }
2948
2949 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2950
2951 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2952 if (error)
2953 goto error0;
2954
2955 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2956
2957 xfs_iroot_realloc(cur->bc_ino.ip,
2958 1 - xfs_btree_get_numrecs(cblock),
2959 cur->bc_ino.whichfork);
2960
2961 xfs_btree_setbuf(cur, level, cbp);
2962
2963 /*
2964 * Do all this logging at the end so that
2965 * the root is at the right level.
2966 */
2967 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2968 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2969 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2970
2971 *logflags |=
2972 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2973 *stat = 1;
2974 return 0;
2975 error0:
2976 return error;
2977 }
2978
2979 /*
2980 * Allocate a new root block, fill it in.
2981 */
2982 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)2983 xfs_btree_new_root(
2984 struct xfs_btree_cur *cur, /* btree cursor */
2985 int *stat) /* success/failure */
2986 {
2987 struct xfs_btree_block *block; /* one half of the old root block */
2988 struct xfs_buf *bp; /* buffer containing block */
2989 int error; /* error return value */
2990 struct xfs_buf *lbp; /* left buffer pointer */
2991 struct xfs_btree_block *left; /* left btree block */
2992 struct xfs_buf *nbp; /* new (root) buffer */
2993 struct xfs_btree_block *new; /* new (root) btree block */
2994 int nptr; /* new value for key index, 1 or 2 */
2995 struct xfs_buf *rbp; /* right buffer pointer */
2996 struct xfs_btree_block *right; /* right btree block */
2997 union xfs_btree_ptr rptr;
2998 union xfs_btree_ptr lptr;
2999
3000 XFS_BTREE_STATS_INC(cur, newroot);
3001
3002 /* initialise our start point from the cursor */
3003 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3004
3005 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3006 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3007 if (error)
3008 goto error0;
3009 if (*stat == 0)
3010 goto out0;
3011 XFS_BTREE_STATS_INC(cur, alloc);
3012
3013 /* Set up the new block. */
3014 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3015 if (error)
3016 goto error0;
3017
3018 /* Set the root in the holding structure increasing the level by 1. */
3019 cur->bc_ops->set_root(cur, &lptr, 1);
3020
3021 /*
3022 * At the previous root level there are now two blocks: the old root,
3023 * and the new block generated when it was split. We don't know which
3024 * one the cursor is pointing at, so we set up variables "left" and
3025 * "right" for each case.
3026 */
3027 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3028
3029 #ifdef DEBUG
3030 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3031 if (error)
3032 goto error0;
3033 #endif
3034
3035 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3036 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3037 /* Our block is left, pick up the right block. */
3038 lbp = bp;
3039 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3040 left = block;
3041 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3042 if (error)
3043 goto error0;
3044 bp = rbp;
3045 nptr = 1;
3046 } else {
3047 /* Our block is right, pick up the left block. */
3048 rbp = bp;
3049 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3050 right = block;
3051 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3052 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3053 if (error)
3054 goto error0;
3055 bp = lbp;
3056 nptr = 2;
3057 }
3058
3059 /* Fill in the new block's btree header and log it. */
3060 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3061 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3062 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3063 !xfs_btree_ptr_is_null(cur, &rptr));
3064
3065 /* Fill in the key data in the new root. */
3066 if (xfs_btree_get_level(left) > 0) {
3067 /*
3068 * Get the keys for the left block's keys and put them directly
3069 * in the parent block. Do the same for the right block.
3070 */
3071 xfs_btree_get_node_keys(cur, left,
3072 xfs_btree_key_addr(cur, 1, new));
3073 xfs_btree_get_node_keys(cur, right,
3074 xfs_btree_key_addr(cur, 2, new));
3075 } else {
3076 /*
3077 * Get the keys for the left block's records and put them
3078 * directly in the parent block. Do the same for the right
3079 * block.
3080 */
3081 xfs_btree_get_leaf_keys(cur, left,
3082 xfs_btree_key_addr(cur, 1, new));
3083 xfs_btree_get_leaf_keys(cur, right,
3084 xfs_btree_key_addr(cur, 2, new));
3085 }
3086 xfs_btree_log_keys(cur, nbp, 1, 2);
3087
3088 /* Fill in the pointer data in the new root. */
3089 xfs_btree_copy_ptrs(cur,
3090 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3091 xfs_btree_copy_ptrs(cur,
3092 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3093 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3094
3095 /* Fix up the cursor. */
3096 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3097 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3098 cur->bc_nlevels++;
3099 *stat = 1;
3100 return 0;
3101 error0:
3102 return error;
3103 out0:
3104 *stat = 0;
3105 return 0;
3106 }
3107
3108 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3109 xfs_btree_make_block_unfull(
3110 struct xfs_btree_cur *cur, /* btree cursor */
3111 int level, /* btree level */
3112 int numrecs,/* # of recs in block */
3113 int *oindex,/* old tree index */
3114 int *index, /* new tree index */
3115 union xfs_btree_ptr *nptr, /* new btree ptr */
3116 struct xfs_btree_cur **ncur, /* new btree cursor */
3117 union xfs_btree_key *key, /* key of new block */
3118 int *stat)
3119 {
3120 int error = 0;
3121
3122 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3123 level == cur->bc_nlevels - 1) {
3124 struct xfs_inode *ip = cur->bc_ino.ip;
3125
3126 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3127 /* A root block that can be made bigger. */
3128 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3129 *stat = 1;
3130 } else {
3131 /* A root block that needs replacing */
3132 int logflags = 0;
3133
3134 error = xfs_btree_new_iroot(cur, &logflags, stat);
3135 if (error || *stat == 0)
3136 return error;
3137
3138 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3139 }
3140
3141 return 0;
3142 }
3143
3144 /* First, try shifting an entry to the right neighbor. */
3145 error = xfs_btree_rshift(cur, level, stat);
3146 if (error || *stat)
3147 return error;
3148
3149 /* Next, try shifting an entry to the left neighbor. */
3150 error = xfs_btree_lshift(cur, level, stat);
3151 if (error)
3152 return error;
3153
3154 if (*stat) {
3155 *oindex = *index = cur->bc_ptrs[level];
3156 return 0;
3157 }
3158
3159 /*
3160 * Next, try splitting the current block in half.
3161 *
3162 * If this works we have to re-set our variables because we
3163 * could be in a different block now.
3164 */
3165 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3166 if (error || *stat == 0)
3167 return error;
3168
3169
3170 *index = cur->bc_ptrs[level];
3171 return 0;
3172 }
3173
3174 /*
3175 * Insert one record/level. Return information to the caller
3176 * allowing the next level up to proceed if necessary.
3177 */
3178 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3179 xfs_btree_insrec(
3180 struct xfs_btree_cur *cur, /* btree cursor */
3181 int level, /* level to insert record at */
3182 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3183 union xfs_btree_rec *rec, /* record to insert */
3184 union xfs_btree_key *key, /* i/o: block key for ptrp */
3185 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3186 int *stat) /* success/failure */
3187 {
3188 struct xfs_btree_block *block; /* btree block */
3189 struct xfs_buf *bp; /* buffer for block */
3190 union xfs_btree_ptr nptr; /* new block ptr */
3191 struct xfs_btree_cur *ncur; /* new btree cursor */
3192 union xfs_btree_key nkey; /* new block key */
3193 union xfs_btree_key *lkey;
3194 int optr; /* old key/record index */
3195 int ptr; /* key/record index */
3196 int numrecs;/* number of records */
3197 int error; /* error return value */
3198 int i;
3199 xfs_daddr_t old_bn;
3200
3201 ncur = NULL;
3202 lkey = &nkey;
3203
3204 /*
3205 * If we have an external root pointer, and we've made it to the
3206 * root level, allocate a new root block and we're done.
3207 */
3208 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3209 (level >= cur->bc_nlevels)) {
3210 error = xfs_btree_new_root(cur, stat);
3211 xfs_btree_set_ptr_null(cur, ptrp);
3212
3213 return error;
3214 }
3215
3216 /* If we're off the left edge, return failure. */
3217 ptr = cur->bc_ptrs[level];
3218 if (ptr == 0) {
3219 *stat = 0;
3220 return 0;
3221 }
3222
3223 optr = ptr;
3224
3225 XFS_BTREE_STATS_INC(cur, insrec);
3226
3227 /* Get pointers to the btree buffer and block. */
3228 block = xfs_btree_get_block(cur, level, &bp);
3229 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3230 numrecs = xfs_btree_get_numrecs(block);
3231
3232 #ifdef DEBUG
3233 error = xfs_btree_check_block(cur, block, level, bp);
3234 if (error)
3235 goto error0;
3236
3237 /* Check that the new entry is being inserted in the right place. */
3238 if (ptr <= numrecs) {
3239 if (level == 0) {
3240 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3241 xfs_btree_rec_addr(cur, ptr, block)));
3242 } else {
3243 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3244 xfs_btree_key_addr(cur, ptr, block)));
3245 }
3246 }
3247 #endif
3248
3249 /*
3250 * If the block is full, we can't insert the new entry until we
3251 * make the block un-full.
3252 */
3253 xfs_btree_set_ptr_null(cur, &nptr);
3254 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3255 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3256 &optr, &ptr, &nptr, &ncur, lkey, stat);
3257 if (error || *stat == 0)
3258 goto error0;
3259 }
3260
3261 /*
3262 * The current block may have changed if the block was
3263 * previously full and we have just made space in it.
3264 */
3265 block = xfs_btree_get_block(cur, level, &bp);
3266 numrecs = xfs_btree_get_numrecs(block);
3267
3268 #ifdef DEBUG
3269 error = xfs_btree_check_block(cur, block, level, bp);
3270 if (error)
3271 return error;
3272 #endif
3273
3274 /*
3275 * At this point we know there's room for our new entry in the block
3276 * we're pointing at.
3277 */
3278 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3279
3280 if (level > 0) {
3281 /* It's a nonleaf. make a hole in the keys and ptrs */
3282 union xfs_btree_key *kp;
3283 union xfs_btree_ptr *pp;
3284
3285 kp = xfs_btree_key_addr(cur, ptr, block);
3286 pp = xfs_btree_ptr_addr(cur, ptr, block);
3287
3288 for (i = numrecs - ptr; i >= 0; i--) {
3289 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3290 if (error)
3291 return error;
3292 }
3293
3294 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3295 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3296
3297 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3298 if (error)
3299 goto error0;
3300
3301 /* Now put the new data in, bump numrecs and log it. */
3302 xfs_btree_copy_keys(cur, kp, key, 1);
3303 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3304 numrecs++;
3305 xfs_btree_set_numrecs(block, numrecs);
3306 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3307 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3308 #ifdef DEBUG
3309 if (ptr < numrecs) {
3310 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3311 xfs_btree_key_addr(cur, ptr + 1, block)));
3312 }
3313 #endif
3314 } else {
3315 /* It's a leaf. make a hole in the records */
3316 union xfs_btree_rec *rp;
3317
3318 rp = xfs_btree_rec_addr(cur, ptr, block);
3319
3320 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3321
3322 /* Now put the new data in, bump numrecs and log it. */
3323 xfs_btree_copy_recs(cur, rp, rec, 1);
3324 xfs_btree_set_numrecs(block, ++numrecs);
3325 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3326 #ifdef DEBUG
3327 if (ptr < numrecs) {
3328 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3329 xfs_btree_rec_addr(cur, ptr + 1, block)));
3330 }
3331 #endif
3332 }
3333
3334 /* Log the new number of records in the btree header. */
3335 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3336
3337 /*
3338 * If we just inserted into a new tree block, we have to
3339 * recalculate nkey here because nkey is out of date.
3340 *
3341 * Otherwise we're just updating an existing block (having shoved
3342 * some records into the new tree block), so use the regular key
3343 * update mechanism.
3344 */
3345 if (bp && xfs_buf_daddr(bp) != old_bn) {
3346 xfs_btree_get_keys(cur, block, lkey);
3347 } else if (xfs_btree_needs_key_update(cur, optr)) {
3348 error = xfs_btree_update_keys(cur, level);
3349 if (error)
3350 goto error0;
3351 }
3352
3353 /*
3354 * If we are tracking the last record in the tree and
3355 * we are at the far right edge of the tree, update it.
3356 */
3357 if (xfs_btree_is_lastrec(cur, block, level)) {
3358 cur->bc_ops->update_lastrec(cur, block, rec,
3359 ptr, LASTREC_INSREC);
3360 }
3361
3362 /*
3363 * Return the new block number, if any.
3364 * If there is one, give back a record value and a cursor too.
3365 */
3366 *ptrp = nptr;
3367 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3368 xfs_btree_copy_keys(cur, key, lkey, 1);
3369 *curp = ncur;
3370 }
3371
3372 *stat = 1;
3373 return 0;
3374
3375 error0:
3376 return error;
3377 }
3378
3379 /*
3380 * Insert the record at the point referenced by cur.
3381 *
3382 * A multi-level split of the tree on insert will invalidate the original
3383 * cursor. All callers of this function should assume that the cursor is
3384 * no longer valid and revalidate it.
3385 */
3386 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3387 xfs_btree_insert(
3388 struct xfs_btree_cur *cur,
3389 int *stat)
3390 {
3391 int error; /* error return value */
3392 int i; /* result value, 0 for failure */
3393 int level; /* current level number in btree */
3394 union xfs_btree_ptr nptr; /* new block number (split result) */
3395 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3396 struct xfs_btree_cur *pcur; /* previous level's cursor */
3397 union xfs_btree_key bkey; /* key of block to insert */
3398 union xfs_btree_key *key;
3399 union xfs_btree_rec rec; /* record to insert */
3400
3401 level = 0;
3402 ncur = NULL;
3403 pcur = cur;
3404 key = &bkey;
3405
3406 xfs_btree_set_ptr_null(cur, &nptr);
3407
3408 /* Make a key out of the record data to be inserted, and save it. */
3409 cur->bc_ops->init_rec_from_cur(cur, &rec);
3410 cur->bc_ops->init_key_from_rec(key, &rec);
3411
3412 /*
3413 * Loop going up the tree, starting at the leaf level.
3414 * Stop when we don't get a split block, that must mean that
3415 * the insert is finished with this level.
3416 */
3417 do {
3418 /*
3419 * Insert nrec/nptr into this level of the tree.
3420 * Note if we fail, nptr will be null.
3421 */
3422 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3423 &ncur, &i);
3424 if (error) {
3425 if (pcur != cur)
3426 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3427 goto error0;
3428 }
3429
3430 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3431 error = -EFSCORRUPTED;
3432 goto error0;
3433 }
3434 level++;
3435
3436 /*
3437 * See if the cursor we just used is trash.
3438 * Can't trash the caller's cursor, but otherwise we should
3439 * if ncur is a new cursor or we're about to be done.
3440 */
3441 if (pcur != cur &&
3442 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3443 /* Save the state from the cursor before we trash it */
3444 if (cur->bc_ops->update_cursor)
3445 cur->bc_ops->update_cursor(pcur, cur);
3446 cur->bc_nlevels = pcur->bc_nlevels;
3447 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3448 }
3449 /* If we got a new cursor, switch to it. */
3450 if (ncur) {
3451 pcur = ncur;
3452 ncur = NULL;
3453 }
3454 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3455
3456 *stat = i;
3457 return 0;
3458 error0:
3459 return error;
3460 }
3461
3462 /*
3463 * Try to merge a non-leaf block back into the inode root.
3464 *
3465 * Note: the killroot names comes from the fact that we're effectively
3466 * killing the old root block. But because we can't just delete the
3467 * inode we have to copy the single block it was pointing to into the
3468 * inode.
3469 */
3470 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3471 xfs_btree_kill_iroot(
3472 struct xfs_btree_cur *cur)
3473 {
3474 int whichfork = cur->bc_ino.whichfork;
3475 struct xfs_inode *ip = cur->bc_ino.ip;
3476 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3477 struct xfs_btree_block *block;
3478 struct xfs_btree_block *cblock;
3479 union xfs_btree_key *kp;
3480 union xfs_btree_key *ckp;
3481 union xfs_btree_ptr *pp;
3482 union xfs_btree_ptr *cpp;
3483 struct xfs_buf *cbp;
3484 int level;
3485 int index;
3486 int numrecs;
3487 int error;
3488 #ifdef DEBUG
3489 union xfs_btree_ptr ptr;
3490 #endif
3491 int i;
3492
3493 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3494 ASSERT(cur->bc_nlevels > 1);
3495
3496 /*
3497 * Don't deal with the root block needs to be a leaf case.
3498 * We're just going to turn the thing back into extents anyway.
3499 */
3500 level = cur->bc_nlevels - 1;
3501 if (level == 1)
3502 goto out0;
3503
3504 /*
3505 * Give up if the root has multiple children.
3506 */
3507 block = xfs_btree_get_iroot(cur);
3508 if (xfs_btree_get_numrecs(block) != 1)
3509 goto out0;
3510
3511 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3512 numrecs = xfs_btree_get_numrecs(cblock);
3513
3514 /*
3515 * Only do this if the next level will fit.
3516 * Then the data must be copied up to the inode,
3517 * instead of freeing the root you free the next level.
3518 */
3519 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3520 goto out0;
3521
3522 XFS_BTREE_STATS_INC(cur, killroot);
3523
3524 #ifdef DEBUG
3525 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3526 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3527 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3528 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3529 #endif
3530
3531 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3532 if (index) {
3533 xfs_iroot_realloc(cur->bc_ino.ip, index,
3534 cur->bc_ino.whichfork);
3535 block = ifp->if_broot;
3536 }
3537
3538 be16_add_cpu(&block->bb_numrecs, index);
3539 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3540
3541 kp = xfs_btree_key_addr(cur, 1, block);
3542 ckp = xfs_btree_key_addr(cur, 1, cblock);
3543 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3544
3545 pp = xfs_btree_ptr_addr(cur, 1, block);
3546 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3547
3548 for (i = 0; i < numrecs; i++) {
3549 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3550 if (error)
3551 return error;
3552 }
3553
3554 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3555
3556 error = xfs_btree_free_block(cur, cbp);
3557 if (error)
3558 return error;
3559
3560 cur->bc_bufs[level - 1] = NULL;
3561 be16_add_cpu(&block->bb_level, -1);
3562 xfs_trans_log_inode(cur->bc_tp, ip,
3563 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3564 cur->bc_nlevels--;
3565 out0:
3566 return 0;
3567 }
3568
3569 /*
3570 * Kill the current root node, and replace it with it's only child node.
3571 */
3572 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3573 xfs_btree_kill_root(
3574 struct xfs_btree_cur *cur,
3575 struct xfs_buf *bp,
3576 int level,
3577 union xfs_btree_ptr *newroot)
3578 {
3579 int error;
3580
3581 XFS_BTREE_STATS_INC(cur, killroot);
3582
3583 /*
3584 * Update the root pointer, decreasing the level by 1 and then
3585 * free the old root.
3586 */
3587 cur->bc_ops->set_root(cur, newroot, -1);
3588
3589 error = xfs_btree_free_block(cur, bp);
3590 if (error)
3591 return error;
3592
3593 cur->bc_bufs[level] = NULL;
3594 cur->bc_ra[level] = 0;
3595 cur->bc_nlevels--;
3596
3597 return 0;
3598 }
3599
3600 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3601 xfs_btree_dec_cursor(
3602 struct xfs_btree_cur *cur,
3603 int level,
3604 int *stat)
3605 {
3606 int error;
3607 int i;
3608
3609 if (level > 0) {
3610 error = xfs_btree_decrement(cur, level, &i);
3611 if (error)
3612 return error;
3613 }
3614
3615 *stat = 1;
3616 return 0;
3617 }
3618
3619 /*
3620 * Single level of the btree record deletion routine.
3621 * Delete record pointed to by cur/level.
3622 * Remove the record from its block then rebalance the tree.
3623 * Return 0 for error, 1 for done, 2 to go on to the next level.
3624 */
3625 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3626 xfs_btree_delrec(
3627 struct xfs_btree_cur *cur, /* btree cursor */
3628 int level, /* level removing record from */
3629 int *stat) /* fail/done/go-on */
3630 {
3631 struct xfs_btree_block *block; /* btree block */
3632 union xfs_btree_ptr cptr; /* current block ptr */
3633 struct xfs_buf *bp; /* buffer for block */
3634 int error; /* error return value */
3635 int i; /* loop counter */
3636 union xfs_btree_ptr lptr; /* left sibling block ptr */
3637 struct xfs_buf *lbp; /* left buffer pointer */
3638 struct xfs_btree_block *left; /* left btree block */
3639 int lrecs = 0; /* left record count */
3640 int ptr; /* key/record index */
3641 union xfs_btree_ptr rptr; /* right sibling block ptr */
3642 struct xfs_buf *rbp; /* right buffer pointer */
3643 struct xfs_btree_block *right; /* right btree block */
3644 struct xfs_btree_block *rrblock; /* right-right btree block */
3645 struct xfs_buf *rrbp; /* right-right buffer pointer */
3646 int rrecs = 0; /* right record count */
3647 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3648 int numrecs; /* temporary numrec count */
3649
3650 tcur = NULL;
3651
3652 /* Get the index of the entry being deleted, check for nothing there. */
3653 ptr = cur->bc_ptrs[level];
3654 if (ptr == 0) {
3655 *stat = 0;
3656 return 0;
3657 }
3658
3659 /* Get the buffer & block containing the record or key/ptr. */
3660 block = xfs_btree_get_block(cur, level, &bp);
3661 numrecs = xfs_btree_get_numrecs(block);
3662
3663 #ifdef DEBUG
3664 error = xfs_btree_check_block(cur, block, level, bp);
3665 if (error)
3666 goto error0;
3667 #endif
3668
3669 /* Fail if we're off the end of the block. */
3670 if (ptr > numrecs) {
3671 *stat = 0;
3672 return 0;
3673 }
3674
3675 XFS_BTREE_STATS_INC(cur, delrec);
3676 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3677
3678 /* Excise the entries being deleted. */
3679 if (level > 0) {
3680 /* It's a nonleaf. operate on keys and ptrs */
3681 union xfs_btree_key *lkp;
3682 union xfs_btree_ptr *lpp;
3683
3684 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3685 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3686
3687 for (i = 0; i < numrecs - ptr; i++) {
3688 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3689 if (error)
3690 goto error0;
3691 }
3692
3693 if (ptr < numrecs) {
3694 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3695 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3696 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3697 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3698 }
3699 } else {
3700 /* It's a leaf. operate on records */
3701 if (ptr < numrecs) {
3702 xfs_btree_shift_recs(cur,
3703 xfs_btree_rec_addr(cur, ptr + 1, block),
3704 -1, numrecs - ptr);
3705 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3706 }
3707 }
3708
3709 /*
3710 * Decrement and log the number of entries in the block.
3711 */
3712 xfs_btree_set_numrecs(block, --numrecs);
3713 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3714
3715 /*
3716 * If we are tracking the last record in the tree and
3717 * we are at the far right edge of the tree, update it.
3718 */
3719 if (xfs_btree_is_lastrec(cur, block, level)) {
3720 cur->bc_ops->update_lastrec(cur, block, NULL,
3721 ptr, LASTREC_DELREC);
3722 }
3723
3724 /*
3725 * We're at the root level. First, shrink the root block in-memory.
3726 * Try to get rid of the next level down. If we can't then there's
3727 * nothing left to do.
3728 */
3729 if (level == cur->bc_nlevels - 1) {
3730 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3731 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3732 cur->bc_ino.whichfork);
3733
3734 error = xfs_btree_kill_iroot(cur);
3735 if (error)
3736 goto error0;
3737
3738 error = xfs_btree_dec_cursor(cur, level, stat);
3739 if (error)
3740 goto error0;
3741 *stat = 1;
3742 return 0;
3743 }
3744
3745 /*
3746 * If this is the root level, and there's only one entry left,
3747 * and it's NOT the leaf level, then we can get rid of this
3748 * level.
3749 */
3750 if (numrecs == 1 && level > 0) {
3751 union xfs_btree_ptr *pp;
3752 /*
3753 * pp is still set to the first pointer in the block.
3754 * Make it the new root of the btree.
3755 */
3756 pp = xfs_btree_ptr_addr(cur, 1, block);
3757 error = xfs_btree_kill_root(cur, bp, level, pp);
3758 if (error)
3759 goto error0;
3760 } else if (level > 0) {
3761 error = xfs_btree_dec_cursor(cur, level, stat);
3762 if (error)
3763 goto error0;
3764 }
3765 *stat = 1;
3766 return 0;
3767 }
3768
3769 /*
3770 * If we deleted the leftmost entry in the block, update the
3771 * key values above us in the tree.
3772 */
3773 if (xfs_btree_needs_key_update(cur, ptr)) {
3774 error = xfs_btree_update_keys(cur, level);
3775 if (error)
3776 goto error0;
3777 }
3778
3779 /*
3780 * If the number of records remaining in the block is at least
3781 * the minimum, we're done.
3782 */
3783 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3784 error = xfs_btree_dec_cursor(cur, level, stat);
3785 if (error)
3786 goto error0;
3787 return 0;
3788 }
3789
3790 /*
3791 * Otherwise, we have to move some records around to keep the
3792 * tree balanced. Look at the left and right sibling blocks to
3793 * see if we can re-balance by moving only one record.
3794 */
3795 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3796 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3797
3798 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3799 /*
3800 * One child of root, need to get a chance to copy its contents
3801 * into the root and delete it. Can't go up to next level,
3802 * there's nothing to delete there.
3803 */
3804 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3805 xfs_btree_ptr_is_null(cur, &lptr) &&
3806 level == cur->bc_nlevels - 2) {
3807 error = xfs_btree_kill_iroot(cur);
3808 if (!error)
3809 error = xfs_btree_dec_cursor(cur, level, stat);
3810 if (error)
3811 goto error0;
3812 return 0;
3813 }
3814 }
3815
3816 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3817 !xfs_btree_ptr_is_null(cur, &lptr));
3818
3819 /*
3820 * Duplicate the cursor so our btree manipulations here won't
3821 * disrupt the next level up.
3822 */
3823 error = xfs_btree_dup_cursor(cur, &tcur);
3824 if (error)
3825 goto error0;
3826
3827 /*
3828 * If there's a right sibling, see if it's ok to shift an entry
3829 * out of it.
3830 */
3831 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3832 /*
3833 * Move the temp cursor to the last entry in the next block.
3834 * Actually any entry but the first would suffice.
3835 */
3836 i = xfs_btree_lastrec(tcur, level);
3837 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3838 error = -EFSCORRUPTED;
3839 goto error0;
3840 }
3841
3842 error = xfs_btree_increment(tcur, level, &i);
3843 if (error)
3844 goto error0;
3845 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3846 error = -EFSCORRUPTED;
3847 goto error0;
3848 }
3849
3850 i = xfs_btree_lastrec(tcur, level);
3851 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3852 error = -EFSCORRUPTED;
3853 goto error0;
3854 }
3855
3856 /* Grab a pointer to the block. */
3857 right = xfs_btree_get_block(tcur, level, &rbp);
3858 #ifdef DEBUG
3859 error = xfs_btree_check_block(tcur, right, level, rbp);
3860 if (error)
3861 goto error0;
3862 #endif
3863 /* Grab the current block number, for future use. */
3864 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3865
3866 /*
3867 * If right block is full enough so that removing one entry
3868 * won't make it too empty, and left-shifting an entry out
3869 * of right to us works, we're done.
3870 */
3871 if (xfs_btree_get_numrecs(right) - 1 >=
3872 cur->bc_ops->get_minrecs(tcur, level)) {
3873 error = xfs_btree_lshift(tcur, level, &i);
3874 if (error)
3875 goto error0;
3876 if (i) {
3877 ASSERT(xfs_btree_get_numrecs(block) >=
3878 cur->bc_ops->get_minrecs(tcur, level));
3879
3880 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3881 tcur = NULL;
3882
3883 error = xfs_btree_dec_cursor(cur, level, stat);
3884 if (error)
3885 goto error0;
3886 return 0;
3887 }
3888 }
3889
3890 /*
3891 * Otherwise, grab the number of records in right for
3892 * future reference, and fix up the temp cursor to point
3893 * to our block again (last record).
3894 */
3895 rrecs = xfs_btree_get_numrecs(right);
3896 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3897 i = xfs_btree_firstrec(tcur, level);
3898 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3899 error = -EFSCORRUPTED;
3900 goto error0;
3901 }
3902
3903 error = xfs_btree_decrement(tcur, level, &i);
3904 if (error)
3905 goto error0;
3906 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3907 error = -EFSCORRUPTED;
3908 goto error0;
3909 }
3910 }
3911 }
3912
3913 /*
3914 * If there's a left sibling, see if it's ok to shift an entry
3915 * out of it.
3916 */
3917 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3918 /*
3919 * Move the temp cursor to the first entry in the
3920 * previous block.
3921 */
3922 i = xfs_btree_firstrec(tcur, level);
3923 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3924 error = -EFSCORRUPTED;
3925 goto error0;
3926 }
3927
3928 error = xfs_btree_decrement(tcur, level, &i);
3929 if (error)
3930 goto error0;
3931 i = xfs_btree_firstrec(tcur, level);
3932 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3933 error = -EFSCORRUPTED;
3934 goto error0;
3935 }
3936
3937 /* Grab a pointer to the block. */
3938 left = xfs_btree_get_block(tcur, level, &lbp);
3939 #ifdef DEBUG
3940 error = xfs_btree_check_block(cur, left, level, lbp);
3941 if (error)
3942 goto error0;
3943 #endif
3944 /* Grab the current block number, for future use. */
3945 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3946
3947 /*
3948 * If left block is full enough so that removing one entry
3949 * won't make it too empty, and right-shifting an entry out
3950 * of left to us works, we're done.
3951 */
3952 if (xfs_btree_get_numrecs(left) - 1 >=
3953 cur->bc_ops->get_minrecs(tcur, level)) {
3954 error = xfs_btree_rshift(tcur, level, &i);
3955 if (error)
3956 goto error0;
3957 if (i) {
3958 ASSERT(xfs_btree_get_numrecs(block) >=
3959 cur->bc_ops->get_minrecs(tcur, level));
3960 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3961 tcur = NULL;
3962 if (level == 0)
3963 cur->bc_ptrs[0]++;
3964
3965 *stat = 1;
3966 return 0;
3967 }
3968 }
3969
3970 /*
3971 * Otherwise, grab the number of records in right for
3972 * future reference.
3973 */
3974 lrecs = xfs_btree_get_numrecs(left);
3975 }
3976
3977 /* Delete the temp cursor, we're done with it. */
3978 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3979 tcur = NULL;
3980
3981 /* If here, we need to do a join to keep the tree balanced. */
3982 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3983
3984 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3985 lrecs + xfs_btree_get_numrecs(block) <=
3986 cur->bc_ops->get_maxrecs(cur, level)) {
3987 /*
3988 * Set "right" to be the starting block,
3989 * "left" to be the left neighbor.
3990 */
3991 rptr = cptr;
3992 right = block;
3993 rbp = bp;
3994 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3995 if (error)
3996 goto error0;
3997
3998 /*
3999 * If that won't work, see if we can join with the right neighbor block.
4000 */
4001 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4002 rrecs + xfs_btree_get_numrecs(block) <=
4003 cur->bc_ops->get_maxrecs(cur, level)) {
4004 /*
4005 * Set "left" to be the starting block,
4006 * "right" to be the right neighbor.
4007 */
4008 lptr = cptr;
4009 left = block;
4010 lbp = bp;
4011 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4012 if (error)
4013 goto error0;
4014
4015 /*
4016 * Otherwise, we can't fix the imbalance.
4017 * Just return. This is probably a logic error, but it's not fatal.
4018 */
4019 } else {
4020 error = xfs_btree_dec_cursor(cur, level, stat);
4021 if (error)
4022 goto error0;
4023 return 0;
4024 }
4025
4026 rrecs = xfs_btree_get_numrecs(right);
4027 lrecs = xfs_btree_get_numrecs(left);
4028
4029 /*
4030 * We're now going to join "left" and "right" by moving all the stuff
4031 * in "right" to "left" and deleting "right".
4032 */
4033 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4034 if (level > 0) {
4035 /* It's a non-leaf. Move keys and pointers. */
4036 union xfs_btree_key *lkp; /* left btree key */
4037 union xfs_btree_ptr *lpp; /* left address pointer */
4038 union xfs_btree_key *rkp; /* right btree key */
4039 union xfs_btree_ptr *rpp; /* right address pointer */
4040
4041 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4042 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4043 rkp = xfs_btree_key_addr(cur, 1, right);
4044 rpp = xfs_btree_ptr_addr(cur, 1, right);
4045
4046 for (i = 1; i < rrecs; i++) {
4047 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4048 if (error)
4049 goto error0;
4050 }
4051
4052 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4053 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4054
4055 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4056 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4057 } else {
4058 /* It's a leaf. Move records. */
4059 union xfs_btree_rec *lrp; /* left record pointer */
4060 union xfs_btree_rec *rrp; /* right record pointer */
4061
4062 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4063 rrp = xfs_btree_rec_addr(cur, 1, right);
4064
4065 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4066 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4067 }
4068
4069 XFS_BTREE_STATS_INC(cur, join);
4070
4071 /*
4072 * Fix up the number of records and right block pointer in the
4073 * surviving block, and log it.
4074 */
4075 xfs_btree_set_numrecs(left, lrecs + rrecs);
4076 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4077 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4078 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4079
4080 /* If there is a right sibling, point it to the remaining block. */
4081 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4082 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4083 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4084 if (error)
4085 goto error0;
4086 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4087 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4088 }
4089
4090 /* Free the deleted block. */
4091 error = xfs_btree_free_block(cur, rbp);
4092 if (error)
4093 goto error0;
4094
4095 /*
4096 * If we joined with the left neighbor, set the buffer in the
4097 * cursor to the left block, and fix up the index.
4098 */
4099 if (bp != lbp) {
4100 cur->bc_bufs[level] = lbp;
4101 cur->bc_ptrs[level] += lrecs;
4102 cur->bc_ra[level] = 0;
4103 }
4104 /*
4105 * If we joined with the right neighbor and there's a level above
4106 * us, increment the cursor at that level.
4107 */
4108 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4109 (level + 1 < cur->bc_nlevels)) {
4110 error = xfs_btree_increment(cur, level + 1, &i);
4111 if (error)
4112 goto error0;
4113 }
4114
4115 /*
4116 * Readjust the ptr at this level if it's not a leaf, since it's
4117 * still pointing at the deletion point, which makes the cursor
4118 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4119 * We can't use decrement because it would change the next level up.
4120 */
4121 if (level > 0)
4122 cur->bc_ptrs[level]--;
4123
4124 /*
4125 * We combined blocks, so we have to update the parent keys if the
4126 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4127 * points to the old block so that the caller knows which record to
4128 * delete. Therefore, the caller must be savvy enough to call updkeys
4129 * for us if we return stat == 2. The other exit points from this
4130 * function don't require deletions further up the tree, so they can
4131 * call updkeys directly.
4132 */
4133
4134 /* Return value means the next level up has something to do. */
4135 *stat = 2;
4136 return 0;
4137
4138 error0:
4139 if (tcur)
4140 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4141 return error;
4142 }
4143
4144 /*
4145 * Delete the record pointed to by cur.
4146 * The cursor refers to the place where the record was (could be inserted)
4147 * when the operation returns.
4148 */
4149 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4150 xfs_btree_delete(
4151 struct xfs_btree_cur *cur,
4152 int *stat) /* success/failure */
4153 {
4154 int error; /* error return value */
4155 int level;
4156 int i;
4157 bool joined = false;
4158
4159 /*
4160 * Go up the tree, starting at leaf level.
4161 *
4162 * If 2 is returned then a join was done; go to the next level.
4163 * Otherwise we are done.
4164 */
4165 for (level = 0, i = 2; i == 2; level++) {
4166 error = xfs_btree_delrec(cur, level, &i);
4167 if (error)
4168 goto error0;
4169 if (i == 2)
4170 joined = true;
4171 }
4172
4173 /*
4174 * If we combined blocks as part of deleting the record, delrec won't
4175 * have updated the parent high keys so we have to do that here.
4176 */
4177 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4178 error = xfs_btree_updkeys_force(cur, 0);
4179 if (error)
4180 goto error0;
4181 }
4182
4183 if (i == 0) {
4184 for (level = 1; level < cur->bc_nlevels; level++) {
4185 if (cur->bc_ptrs[level] == 0) {
4186 error = xfs_btree_decrement(cur, level, &i);
4187 if (error)
4188 goto error0;
4189 break;
4190 }
4191 }
4192 }
4193
4194 *stat = i;
4195 return 0;
4196 error0:
4197 return error;
4198 }
4199
4200 /*
4201 * Get the data from the pointed-to record.
4202 */
4203 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4204 xfs_btree_get_rec(
4205 struct xfs_btree_cur *cur, /* btree cursor */
4206 union xfs_btree_rec **recp, /* output: btree record */
4207 int *stat) /* output: success/failure */
4208 {
4209 struct xfs_btree_block *block; /* btree block */
4210 struct xfs_buf *bp; /* buffer pointer */
4211 int ptr; /* record number */
4212 #ifdef DEBUG
4213 int error; /* error return value */
4214 #endif
4215
4216 ptr = cur->bc_ptrs[0];
4217 block = xfs_btree_get_block(cur, 0, &bp);
4218
4219 #ifdef DEBUG
4220 error = xfs_btree_check_block(cur, block, 0, bp);
4221 if (error)
4222 return error;
4223 #endif
4224
4225 /*
4226 * Off the right end or left end, return failure.
4227 */
4228 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4229 *stat = 0;
4230 return 0;
4231 }
4232
4233 /*
4234 * Point to the record and extract its data.
4235 */
4236 *recp = xfs_btree_rec_addr(cur, ptr, block);
4237 *stat = 1;
4238 return 0;
4239 }
4240
4241 /* Visit a block in a btree. */
4242 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4243 xfs_btree_visit_block(
4244 struct xfs_btree_cur *cur,
4245 int level,
4246 xfs_btree_visit_blocks_fn fn,
4247 void *data)
4248 {
4249 struct xfs_btree_block *block;
4250 struct xfs_buf *bp;
4251 union xfs_btree_ptr rptr;
4252 int error;
4253
4254 /* do right sibling readahead */
4255 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4256 block = xfs_btree_get_block(cur, level, &bp);
4257
4258 /* process the block */
4259 error = fn(cur, level, data);
4260 if (error)
4261 return error;
4262
4263 /* now read rh sibling block for next iteration */
4264 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4265 if (xfs_btree_ptr_is_null(cur, &rptr))
4266 return -ENOENT;
4267
4268 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4269 }
4270
4271
4272 /* Visit every block in a btree. */
4273 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4274 xfs_btree_visit_blocks(
4275 struct xfs_btree_cur *cur,
4276 xfs_btree_visit_blocks_fn fn,
4277 unsigned int flags,
4278 void *data)
4279 {
4280 union xfs_btree_ptr lptr;
4281 int level;
4282 struct xfs_btree_block *block = NULL;
4283 int error = 0;
4284
4285 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4286
4287 /* for each level */
4288 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4289 /* grab the left hand block */
4290 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4291 if (error)
4292 return error;
4293
4294 /* readahead the left most block for the next level down */
4295 if (level > 0) {
4296 union xfs_btree_ptr *ptr;
4297
4298 ptr = xfs_btree_ptr_addr(cur, 1, block);
4299 xfs_btree_readahead_ptr(cur, ptr, 1);
4300
4301 /* save for the next iteration of the loop */
4302 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4303
4304 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4305 continue;
4306 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4307 continue;
4308 }
4309
4310 /* for each buffer in the level */
4311 do {
4312 error = xfs_btree_visit_block(cur, level, fn, data);
4313 } while (!error);
4314
4315 if (error != -ENOENT)
4316 return error;
4317 }
4318
4319 return 0;
4320 }
4321
4322 /*
4323 * Change the owner of a btree.
4324 *
4325 * The mechanism we use here is ordered buffer logging. Because we don't know
4326 * how many buffers were are going to need to modify, we don't really want to
4327 * have to make transaction reservations for the worst case of every buffer in a
4328 * full size btree as that may be more space that we can fit in the log....
4329 *
4330 * We do the btree walk in the most optimal manner possible - we have sibling
4331 * pointers so we can just walk all the blocks on each level from left to right
4332 * in a single pass, and then move to the next level and do the same. We can
4333 * also do readahead on the sibling pointers to get IO moving more quickly,
4334 * though for slow disks this is unlikely to make much difference to performance
4335 * as the amount of CPU work we have to do before moving to the next block is
4336 * relatively small.
4337 *
4338 * For each btree block that we load, modify the owner appropriately, set the
4339 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4340 * we mark the region we change dirty so that if the buffer is relogged in
4341 * a subsequent transaction the changes we make here as an ordered buffer are
4342 * correctly relogged in that transaction. If we are in recovery context, then
4343 * just queue the modified buffer as delayed write buffer so the transaction
4344 * recovery completion writes the changes to disk.
4345 */
4346 struct xfs_btree_block_change_owner_info {
4347 uint64_t new_owner;
4348 struct list_head *buffer_list;
4349 };
4350
4351 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4352 xfs_btree_block_change_owner(
4353 struct xfs_btree_cur *cur,
4354 int level,
4355 void *data)
4356 {
4357 struct xfs_btree_block_change_owner_info *bbcoi = data;
4358 struct xfs_btree_block *block;
4359 struct xfs_buf *bp;
4360
4361 /* modify the owner */
4362 block = xfs_btree_get_block(cur, level, &bp);
4363 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4364 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4365 return 0;
4366 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4367 } else {
4368 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4369 return 0;
4370 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4371 }
4372
4373 /*
4374 * If the block is a root block hosted in an inode, we might not have a
4375 * buffer pointer here and we shouldn't attempt to log the change as the
4376 * information is already held in the inode and discarded when the root
4377 * block is formatted into the on-disk inode fork. We still change it,
4378 * though, so everything is consistent in memory.
4379 */
4380 if (!bp) {
4381 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4382 ASSERT(level == cur->bc_nlevels - 1);
4383 return 0;
4384 }
4385
4386 if (cur->bc_tp) {
4387 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4388 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4389 return -EAGAIN;
4390 }
4391 } else {
4392 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4393 }
4394
4395 return 0;
4396 }
4397
4398 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4399 xfs_btree_change_owner(
4400 struct xfs_btree_cur *cur,
4401 uint64_t new_owner,
4402 struct list_head *buffer_list)
4403 {
4404 struct xfs_btree_block_change_owner_info bbcoi;
4405
4406 bbcoi.new_owner = new_owner;
4407 bbcoi.buffer_list = buffer_list;
4408
4409 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4410 XFS_BTREE_VISIT_ALL, &bbcoi);
4411 }
4412
4413 /* Verify the v5 fields of a long-format btree block. */
4414 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4415 xfs_btree_lblock_v5hdr_verify(
4416 struct xfs_buf *bp,
4417 uint64_t owner)
4418 {
4419 struct xfs_mount *mp = bp->b_mount;
4420 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4421
4422 if (!xfs_has_crc(mp))
4423 return __this_address;
4424 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4425 return __this_address;
4426 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4427 return __this_address;
4428 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4429 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4430 return __this_address;
4431 return NULL;
4432 }
4433
4434 /* Verify a long-format btree block. */
4435 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4436 xfs_btree_lblock_verify(
4437 struct xfs_buf *bp,
4438 unsigned int max_recs)
4439 {
4440 struct xfs_mount *mp = bp->b_mount;
4441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4442
4443 /* numrecs verification */
4444 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4445 return __this_address;
4446
4447 /* sibling pointer verification */
4448 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4449 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4450 return __this_address;
4451 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4452 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4453 return __this_address;
4454
4455 return NULL;
4456 }
4457
4458 /**
4459 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4460 * btree block
4461 *
4462 * @bp: buffer containing the btree block
4463 */
4464 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4465 xfs_btree_sblock_v5hdr_verify(
4466 struct xfs_buf *bp)
4467 {
4468 struct xfs_mount *mp = bp->b_mount;
4469 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4470 struct xfs_perag *pag = bp->b_pag;
4471
4472 if (!xfs_has_crc(mp))
4473 return __this_address;
4474 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4475 return __this_address;
4476 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4477 return __this_address;
4478 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4479 return __this_address;
4480 return NULL;
4481 }
4482
4483 /**
4484 * xfs_btree_sblock_verify() -- verify a short-format btree block
4485 *
4486 * @bp: buffer containing the btree block
4487 * @max_recs: maximum records allowed in this btree node
4488 */
4489 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4490 xfs_btree_sblock_verify(
4491 struct xfs_buf *bp,
4492 unsigned int max_recs)
4493 {
4494 struct xfs_mount *mp = bp->b_mount;
4495 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4496 xfs_agblock_t agno;
4497
4498 /* numrecs verification */
4499 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4500 return __this_address;
4501
4502 /* sibling pointer verification */
4503 agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
4504 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4505 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4506 return __this_address;
4507 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4508 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4509 return __this_address;
4510
4511 return NULL;
4512 }
4513
4514 /*
4515 * Calculate the number of btree levels needed to store a given number of
4516 * records in a short-format btree.
4517 */
4518 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4519 xfs_btree_compute_maxlevels(
4520 uint *limits,
4521 unsigned long len)
4522 {
4523 uint level;
4524 unsigned long maxblocks;
4525
4526 maxblocks = (len + limits[0] - 1) / limits[0];
4527 for (level = 1; maxblocks > 1; level++)
4528 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4529 return level;
4530 }
4531
4532 /*
4533 * Query a regular btree for all records overlapping a given interval.
4534 * Start with a LE lookup of the key of low_rec and return all records
4535 * until we find a record with a key greater than the key of high_rec.
4536 */
4537 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4538 xfs_btree_simple_query_range(
4539 struct xfs_btree_cur *cur,
4540 const union xfs_btree_key *low_key,
4541 const union xfs_btree_key *high_key,
4542 xfs_btree_query_range_fn fn,
4543 void *priv)
4544 {
4545 union xfs_btree_rec *recp;
4546 union xfs_btree_key rec_key;
4547 int64_t diff;
4548 int stat;
4549 bool firstrec = true;
4550 int error;
4551
4552 ASSERT(cur->bc_ops->init_high_key_from_rec);
4553 ASSERT(cur->bc_ops->diff_two_keys);
4554
4555 /*
4556 * Find the leftmost record. The btree cursor must be set
4557 * to the low record used to generate low_key.
4558 */
4559 stat = 0;
4560 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4561 if (error)
4562 goto out;
4563
4564 /* Nothing? See if there's anything to the right. */
4565 if (!stat) {
4566 error = xfs_btree_increment(cur, 0, &stat);
4567 if (error)
4568 goto out;
4569 }
4570
4571 while (stat) {
4572 /* Find the record. */
4573 error = xfs_btree_get_rec(cur, &recp, &stat);
4574 if (error || !stat)
4575 break;
4576
4577 /* Skip if high_key(rec) < low_key. */
4578 if (firstrec) {
4579 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4580 firstrec = false;
4581 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4582 &rec_key);
4583 if (diff > 0)
4584 goto advloop;
4585 }
4586
4587 /* Stop if high_key < low_key(rec). */
4588 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4589 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4590 if (diff > 0)
4591 break;
4592
4593 /* Callback */
4594 error = fn(cur, recp, priv);
4595 if (error)
4596 break;
4597
4598 advloop:
4599 /* Move on to the next record. */
4600 error = xfs_btree_increment(cur, 0, &stat);
4601 if (error)
4602 break;
4603 }
4604
4605 out:
4606 return error;
4607 }
4608
4609 /*
4610 * Query an overlapped interval btree for all records overlapping a given
4611 * interval. This function roughly follows the algorithm given in
4612 * "Interval Trees" of _Introduction to Algorithms_, which is section
4613 * 14.3 in the 2nd and 3rd editions.
4614 *
4615 * First, generate keys for the low and high records passed in.
4616 *
4617 * For any leaf node, generate the high and low keys for the record.
4618 * If the record keys overlap with the query low/high keys, pass the
4619 * record to the function iterator.
4620 *
4621 * For any internal node, compare the low and high keys of each
4622 * pointer against the query low/high keys. If there's an overlap,
4623 * follow the pointer.
4624 *
4625 * As an optimization, we stop scanning a block when we find a low key
4626 * that is greater than the query's high key.
4627 */
4628 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4629 xfs_btree_overlapped_query_range(
4630 struct xfs_btree_cur *cur,
4631 const union xfs_btree_key *low_key,
4632 const union xfs_btree_key *high_key,
4633 xfs_btree_query_range_fn fn,
4634 void *priv)
4635 {
4636 union xfs_btree_ptr ptr;
4637 union xfs_btree_ptr *pp;
4638 union xfs_btree_key rec_key;
4639 union xfs_btree_key rec_hkey;
4640 union xfs_btree_key *lkp;
4641 union xfs_btree_key *hkp;
4642 union xfs_btree_rec *recp;
4643 struct xfs_btree_block *block;
4644 int64_t ldiff;
4645 int64_t hdiff;
4646 int level;
4647 struct xfs_buf *bp;
4648 int i;
4649 int error;
4650
4651 /* Load the root of the btree. */
4652 level = cur->bc_nlevels - 1;
4653 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4654 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4655 if (error)
4656 return error;
4657 xfs_btree_get_block(cur, level, &bp);
4658 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4659 #ifdef DEBUG
4660 error = xfs_btree_check_block(cur, block, level, bp);
4661 if (error)
4662 goto out;
4663 #endif
4664 cur->bc_ptrs[level] = 1;
4665
4666 while (level < cur->bc_nlevels) {
4667 block = xfs_btree_get_block(cur, level, &bp);
4668
4669 /* End of node, pop back towards the root. */
4670 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4671 pop_up:
4672 if (level < cur->bc_nlevels - 1)
4673 cur->bc_ptrs[level + 1]++;
4674 level++;
4675 continue;
4676 }
4677
4678 if (level == 0) {
4679 /* Handle a leaf node. */
4680 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4681
4682 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4683 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4684 low_key);
4685
4686 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4687 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4688 &rec_key);
4689
4690 /*
4691 * If (record's high key >= query's low key) and
4692 * (query's high key >= record's low key), then
4693 * this record overlaps the query range; callback.
4694 */
4695 if (ldiff >= 0 && hdiff >= 0) {
4696 error = fn(cur, recp, priv);
4697 if (error)
4698 break;
4699 } else if (hdiff < 0) {
4700 /* Record is larger than high key; pop. */
4701 goto pop_up;
4702 }
4703 cur->bc_ptrs[level]++;
4704 continue;
4705 }
4706
4707 /* Handle an internal node. */
4708 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4709 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4710 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4711
4712 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4713 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4714
4715 /*
4716 * If (pointer's high key >= query's low key) and
4717 * (query's high key >= pointer's low key), then
4718 * this record overlaps the query range; follow pointer.
4719 */
4720 if (ldiff >= 0 && hdiff >= 0) {
4721 level--;
4722 error = xfs_btree_lookup_get_block(cur, level, pp,
4723 &block);
4724 if (error)
4725 goto out;
4726 xfs_btree_get_block(cur, level, &bp);
4727 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4728 #ifdef DEBUG
4729 error = xfs_btree_check_block(cur, block, level, bp);
4730 if (error)
4731 goto out;
4732 #endif
4733 cur->bc_ptrs[level] = 1;
4734 continue;
4735 } else if (hdiff < 0) {
4736 /* The low key is larger than the upper range; pop. */
4737 goto pop_up;
4738 }
4739 cur->bc_ptrs[level]++;
4740 }
4741
4742 out:
4743 /*
4744 * If we don't end this function with the cursor pointing at a record
4745 * block, a subsequent non-error cursor deletion will not release
4746 * node-level buffers, causing a buffer leak. This is quite possible
4747 * with a zero-results range query, so release the buffers if we
4748 * failed to return any results.
4749 */
4750 if (cur->bc_bufs[0] == NULL) {
4751 for (i = 0; i < cur->bc_nlevels; i++) {
4752 if (cur->bc_bufs[i]) {
4753 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4754 cur->bc_bufs[i] = NULL;
4755 cur->bc_ptrs[i] = 0;
4756 cur->bc_ra[i] = 0;
4757 }
4758 }
4759 }
4760
4761 return error;
4762 }
4763
4764 /*
4765 * Query a btree for all records overlapping a given interval of keys. The
4766 * supplied function will be called with each record found; return one of the
4767 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4768 * code. This function returns -ECANCELED, zero, or a negative error code.
4769 */
4770 int
xfs_btree_query_range(struct xfs_btree_cur * cur,const union xfs_btree_irec * low_rec,const union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4771 xfs_btree_query_range(
4772 struct xfs_btree_cur *cur,
4773 const union xfs_btree_irec *low_rec,
4774 const union xfs_btree_irec *high_rec,
4775 xfs_btree_query_range_fn fn,
4776 void *priv)
4777 {
4778 union xfs_btree_rec rec;
4779 union xfs_btree_key low_key;
4780 union xfs_btree_key high_key;
4781
4782 /* Find the keys of both ends of the interval. */
4783 cur->bc_rec = *high_rec;
4784 cur->bc_ops->init_rec_from_cur(cur, &rec);
4785 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4786
4787 cur->bc_rec = *low_rec;
4788 cur->bc_ops->init_rec_from_cur(cur, &rec);
4789 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4790
4791 /* Enforce low key < high key. */
4792 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4793 return -EINVAL;
4794
4795 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4796 return xfs_btree_simple_query_range(cur, &low_key,
4797 &high_key, fn, priv);
4798 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4799 fn, priv);
4800 }
4801
4802 /* Query a btree for all records. */
4803 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4804 xfs_btree_query_all(
4805 struct xfs_btree_cur *cur,
4806 xfs_btree_query_range_fn fn,
4807 void *priv)
4808 {
4809 union xfs_btree_key low_key;
4810 union xfs_btree_key high_key;
4811
4812 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4813 memset(&low_key, 0, sizeof(low_key));
4814 memset(&high_key, 0xFF, sizeof(high_key));
4815
4816 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4817 }
4818
4819 /*
4820 * Calculate the number of blocks needed to store a given number of records
4821 * in a short-format (per-AG metadata) btree.
4822 */
4823 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4824 xfs_btree_calc_size(
4825 uint *limits,
4826 unsigned long long len)
4827 {
4828 int level;
4829 int maxrecs;
4830 unsigned long long rval;
4831
4832 maxrecs = limits[0];
4833 for (level = 0, rval = 0; len > 1; level++) {
4834 len += maxrecs - 1;
4835 do_div(len, maxrecs);
4836 maxrecs = limits[1];
4837 rval += len;
4838 }
4839 return rval;
4840 }
4841
4842 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4843 xfs_btree_count_blocks_helper(
4844 struct xfs_btree_cur *cur,
4845 int level,
4846 void *data)
4847 {
4848 xfs_extlen_t *blocks = data;
4849 (*blocks)++;
4850
4851 return 0;
4852 }
4853
4854 /* Count the blocks in a btree and return the result in *blocks. */
4855 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4856 xfs_btree_count_blocks(
4857 struct xfs_btree_cur *cur,
4858 xfs_extlen_t *blocks)
4859 {
4860 *blocks = 0;
4861 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4862 XFS_BTREE_VISIT_ALL, blocks);
4863 }
4864
4865 /* Compare two btree pointers. */
4866 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4867 xfs_btree_diff_two_ptrs(
4868 struct xfs_btree_cur *cur,
4869 const union xfs_btree_ptr *a,
4870 const union xfs_btree_ptr *b)
4871 {
4872 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4873 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4874 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4875 }
4876
4877 /* If there's an extent, we're done. */
4878 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)4879 xfs_btree_has_record_helper(
4880 struct xfs_btree_cur *cur,
4881 const union xfs_btree_rec *rec,
4882 void *priv)
4883 {
4884 return -ECANCELED;
4885 }
4886
4887 /* Is there a record covering a given range of keys? */
4888 int
xfs_btree_has_record(struct xfs_btree_cur * cur,const union xfs_btree_irec * low,const union xfs_btree_irec * high,bool * exists)4889 xfs_btree_has_record(
4890 struct xfs_btree_cur *cur,
4891 const union xfs_btree_irec *low,
4892 const union xfs_btree_irec *high,
4893 bool *exists)
4894 {
4895 int error;
4896
4897 error = xfs_btree_query_range(cur, low, high,
4898 &xfs_btree_has_record_helper, NULL);
4899 if (error == -ECANCELED) {
4900 *exists = true;
4901 return 0;
4902 }
4903 *exists = false;
4904 return error;
4905 }
4906
4907 /* Are there more records in this btree? */
4908 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)4909 xfs_btree_has_more_records(
4910 struct xfs_btree_cur *cur)
4911 {
4912 struct xfs_btree_block *block;
4913 struct xfs_buf *bp;
4914
4915 block = xfs_btree_get_block(cur, 0, &bp);
4916
4917 /* There are still records in this block. */
4918 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4919 return true;
4920
4921 /* There are more record blocks. */
4922 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4923 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4924 else
4925 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4926 }
4927