1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 
24 /*
25  * Cursor allocation zone.
26  */
27 kmem_zone_t	*xfs_btree_cur_zone;
28 
29 /*
30  * Btree magic numbers.
31  */
32 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
33 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
34 	  XFS_FIBT_MAGIC, 0 },
35 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
36 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
37 	  XFS_REFC_CRC_MAGIC }
38 };
39 
40 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)41 xfs_btree_magic(
42 	int			crc,
43 	xfs_btnum_t		btnum)
44 {
45 	uint32_t		magic = xfs_magics[crc][btnum];
46 
47 	/* Ensure we asked for crc for crc-only magics. */
48 	ASSERT(magic != 0);
49 	return magic;
50 }
51 
52 /*
53  * Check a long btree block header.  Return the address of the failing check,
54  * or NULL if everything is ok.
55  */
56 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)57 __xfs_btree_check_lblock(
58 	struct xfs_btree_cur	*cur,
59 	struct xfs_btree_block	*block,
60 	int			level,
61 	struct xfs_buf		*bp)
62 {
63 	struct xfs_mount	*mp = cur->bc_mp;
64 	xfs_btnum_t		btnum = cur->bc_btnum;
65 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
66 
67 	if (crc) {
68 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
69 			return __this_address;
70 		if (block->bb_u.l.bb_blkno !=
71 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
72 			return __this_address;
73 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
74 			return __this_address;
75 	}
76 
77 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
78 		return __this_address;
79 	if (be16_to_cpu(block->bb_level) != level)
80 		return __this_address;
81 	if (be16_to_cpu(block->bb_numrecs) >
82 	    cur->bc_ops->get_maxrecs(cur, level))
83 		return __this_address;
84 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
85 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
86 			level + 1))
87 		return __this_address;
88 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
89 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
90 			level + 1))
91 		return __this_address;
92 
93 	return NULL;
94 }
95 
96 /* Check a long btree block header. */
97 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)98 xfs_btree_check_lblock(
99 	struct xfs_btree_cur	*cur,
100 	struct xfs_btree_block	*block,
101 	int			level,
102 	struct xfs_buf		*bp)
103 {
104 	struct xfs_mount	*mp = cur->bc_mp;
105 	xfs_failaddr_t		fa;
106 
107 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
108 	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
109 			XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
110 		if (bp)
111 			trace_xfs_btree_corrupt(bp, _RET_IP_);
112 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
113 		return -EFSCORRUPTED;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Check a short btree block header.  Return the address of the failing check,
120  * or NULL if everything is ok.
121  */
122 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_sblock(
124 	struct xfs_btree_cur	*cur,
125 	struct xfs_btree_block	*block,
126 	int			level,
127 	struct xfs_buf		*bp)
128 {
129 	struct xfs_mount	*mp = cur->bc_mp;
130 	xfs_btnum_t		btnum = cur->bc_btnum;
131 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
132 
133 	if (crc) {
134 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 			return __this_address;
136 		if (block->bb_u.s.bb_blkno !=
137 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 			return __this_address;
139 	}
140 
141 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 		return __this_address;
143 	if (be16_to_cpu(block->bb_level) != level)
144 		return __this_address;
145 	if (be16_to_cpu(block->bb_numrecs) >
146 	    cur->bc_ops->get_maxrecs(cur, level))
147 		return __this_address;
148 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 			level + 1))
151 		return __this_address;
152 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 			level + 1))
155 		return __this_address;
156 
157 	return NULL;
158 }
159 
160 /* Check a short btree block header. */
161 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)162 xfs_btree_check_sblock(
163 	struct xfs_btree_cur	*cur,
164 	struct xfs_btree_block	*block,
165 	int			level,
166 	struct xfs_buf		*bp)
167 {
168 	struct xfs_mount	*mp = cur->bc_mp;
169 	xfs_failaddr_t		fa;
170 
171 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
173 			XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
174 		if (bp)
175 			trace_xfs_btree_corrupt(bp, _RET_IP_);
176 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
177 		return -EFSCORRUPTED;
178 	}
179 	return 0;
180 }
181 
182 /*
183  * Debug routine: check that block header is ok.
184  */
185 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)186 xfs_btree_check_block(
187 	struct xfs_btree_cur	*cur,	/* btree cursor */
188 	struct xfs_btree_block	*block,	/* generic btree block pointer */
189 	int			level,	/* level of the btree block */
190 	struct xfs_buf		*bp)	/* buffer containing block, if any */
191 {
192 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 		return xfs_btree_check_lblock(cur, block, level, bp);
194 	else
195 		return xfs_btree_check_sblock(cur, block, level, bp);
196 }
197 
198 /* Check that this long pointer is valid and points within the fs. */
199 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)200 xfs_btree_check_lptr(
201 	struct xfs_btree_cur	*cur,
202 	xfs_fsblock_t		fsbno,
203 	int			level)
204 {
205 	if (level <= 0)
206 		return false;
207 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
208 }
209 
210 /* Check that this short pointer is valid and points within the AG. */
211 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)212 xfs_btree_check_sptr(
213 	struct xfs_btree_cur	*cur,
214 	xfs_agblock_t		agbno,
215 	int			level)
216 {
217 	if (level <= 0)
218 		return false;
219 	return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
220 }
221 
222 /*
223  * Check that a given (indexed) btree pointer at a certain level of a
224  * btree is valid and doesn't point past where it should.
225  */
226 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int index,int level)227 xfs_btree_check_ptr(
228 	struct xfs_btree_cur	*cur,
229 	union xfs_btree_ptr	*ptr,
230 	int			index,
231 	int			level)
232 {
233 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 				level))
236 			return 0;
237 		xfs_err(cur->bc_mp,
238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 				cur->bc_private.b.ip->i_ino,
240 				cur->bc_private.b.whichfork, cur->bc_btnum,
241 				level, index);
242 	} else {
243 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 				level))
245 			return 0;
246 		xfs_err(cur->bc_mp,
247 "AG %u: Corrupt btree %d pointer at level %d index %d.",
248 				cur->bc_private.a.agno, cur->bc_btnum,
249 				level, index);
250 	}
251 
252 	return -EFSCORRUPTED;
253 }
254 
255 #ifdef DEBUG
256 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
257 #else
258 # define xfs_btree_debug_check_ptr(...)	(0)
259 #endif
260 
261 /*
262  * Calculate CRC on the whole btree block and stuff it into the
263  * long-form btree header.
264  *
265  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266  * it into the buffer so recovery knows what the last modification was that made
267  * it to disk.
268  */
269 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)270 xfs_btree_lblock_calc_crc(
271 	struct xfs_buf		*bp)
272 {
273 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
274 	struct xfs_buf_log_item	*bip = bp->b_log_item;
275 
276 	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
277 		return;
278 	if (bip)
279 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281 }
282 
283 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)284 xfs_btree_lblock_verify_crc(
285 	struct xfs_buf		*bp)
286 {
287 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
288 	struct xfs_mount	*mp = bp->b_mount;
289 
290 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
291 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 			return false;
293 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 	}
295 
296 	return true;
297 }
298 
299 /*
300  * Calculate CRC on the whole btree block and stuff it into the
301  * short-form btree header.
302  *
303  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304  * it into the buffer so recovery knows what the last modification was that made
305  * it to disk.
306  */
307 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)308 xfs_btree_sblock_calc_crc(
309 	struct xfs_buf		*bp)
310 {
311 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
312 	struct xfs_buf_log_item	*bip = bp->b_log_item;
313 
314 	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
315 		return;
316 	if (bip)
317 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319 }
320 
321 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)322 xfs_btree_sblock_verify_crc(
323 	struct xfs_buf		*bp)
324 {
325 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
326 	struct xfs_mount	*mp = bp->b_mount;
327 
328 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
329 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 			return false;
331 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 	}
333 
334 	return true;
335 }
336 
337 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)338 xfs_btree_free_block(
339 	struct xfs_btree_cur	*cur,
340 	struct xfs_buf		*bp)
341 {
342 	int			error;
343 
344 	error = cur->bc_ops->free_block(cur, bp);
345 	if (!error) {
346 		xfs_trans_binval(cur->bc_tp, bp);
347 		XFS_BTREE_STATS_INC(cur, free);
348 	}
349 	return error;
350 }
351 
352 /*
353  * Delete the btree cursor.
354  */
355 void
xfs_btree_del_cursor(xfs_btree_cur_t * cur,int error)356 xfs_btree_del_cursor(
357 	xfs_btree_cur_t	*cur,		/* btree cursor */
358 	int		error)		/* del because of error */
359 {
360 	int		i;		/* btree level */
361 
362 	/*
363 	 * Clear the buffer pointers, and release the buffers.
364 	 * If we're doing this in the face of an error, we
365 	 * need to make sure to inspect all of the entries
366 	 * in the bc_bufs array for buffers to be unlocked.
367 	 * This is because some of the btree code works from
368 	 * level n down to 0, and if we get an error along
369 	 * the way we won't have initialized all the entries
370 	 * down to 0.
371 	 */
372 	for (i = 0; i < cur->bc_nlevels; i++) {
373 		if (cur->bc_bufs[i])
374 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
375 		else if (!error)
376 			break;
377 	}
378 	/*
379 	 * Can't free a bmap cursor without having dealt with the
380 	 * allocated indirect blocks' accounting.
381 	 */
382 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
383 	       cur->bc_private.b.allocated == 0);
384 	/*
385 	 * Free the cursor.
386 	 */
387 	kmem_zone_free(xfs_btree_cur_zone, cur);
388 }
389 
390 /*
391  * Duplicate the btree cursor.
392  * Allocate a new one, copy the record, re-get the buffers.
393  */
394 int					/* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)395 xfs_btree_dup_cursor(
396 	xfs_btree_cur_t	*cur,		/* input cursor */
397 	xfs_btree_cur_t	**ncur)		/* output cursor */
398 {
399 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
400 	int		error;		/* error return value */
401 	int		i;		/* level number of btree block */
402 	xfs_mount_t	*mp;		/* mount structure for filesystem */
403 	xfs_btree_cur_t	*new;		/* new cursor value */
404 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
405 
406 	tp = cur->bc_tp;
407 	mp = cur->bc_mp;
408 
409 	/*
410 	 * Allocate a new cursor like the old one.
411 	 */
412 	new = cur->bc_ops->dup_cursor(cur);
413 
414 	/*
415 	 * Copy the record currently in the cursor.
416 	 */
417 	new->bc_rec = cur->bc_rec;
418 
419 	/*
420 	 * For each level current, re-get the buffer and copy the ptr value.
421 	 */
422 	for (i = 0; i < new->bc_nlevels; i++) {
423 		new->bc_ptrs[i] = cur->bc_ptrs[i];
424 		new->bc_ra[i] = cur->bc_ra[i];
425 		bp = cur->bc_bufs[i];
426 		if (bp) {
427 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
428 						   XFS_BUF_ADDR(bp), mp->m_bsize,
429 						   0, &bp,
430 						   cur->bc_ops->buf_ops);
431 			if (error) {
432 				xfs_btree_del_cursor(new, error);
433 				*ncur = NULL;
434 				return error;
435 			}
436 		}
437 		new->bc_bufs[i] = bp;
438 	}
439 	*ncur = new;
440 	return 0;
441 }
442 
443 /*
444  * XFS btree block layout and addressing:
445  *
446  * There are two types of blocks in the btree: leaf and non-leaf blocks.
447  *
448  * The leaf record start with a header then followed by records containing
449  * the values.  A non-leaf block also starts with the same header, and
450  * then first contains lookup keys followed by an equal number of pointers
451  * to the btree blocks at the previous level.
452  *
453  *		+--------+-------+-------+-------+-------+-------+-------+
454  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
455  *		+--------+-------+-------+-------+-------+-------+-------+
456  *
457  *		+--------+-------+-------+-------+-------+-------+-------+
458  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
459  *		+--------+-------+-------+-------+-------+-------+-------+
460  *
461  * The header is called struct xfs_btree_block for reasons better left unknown
462  * and comes in different versions for short (32bit) and long (64bit) block
463  * pointers.  The record and key structures are defined by the btree instances
464  * and opaque to the btree core.  The block pointers are simple disk endian
465  * integers, available in a short (32bit) and long (64bit) variant.
466  *
467  * The helpers below calculate the offset of a given record, key or pointer
468  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
469  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
470  * inside the btree block is done using indices starting at one, not zero!
471  *
472  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
473  * overlapping intervals.  In such a tree, records are still sorted lowest to
474  * highest and indexed by the smallest key value that refers to the record.
475  * However, nodes are different: each pointer has two associated keys -- one
476  * indexing the lowest key available in the block(s) below (the same behavior
477  * as the key in a regular btree) and another indexing the highest key
478  * available in the block(s) below.  Because records are /not/ sorted by the
479  * highest key, all leaf block updates require us to compute the highest key
480  * that matches any record in the leaf and to recursively update the high keys
481  * in the nodes going further up in the tree, if necessary.  Nodes look like
482  * this:
483  *
484  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
485  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
486  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
487  *
488  * To perform an interval query on an overlapped tree, perform the usual
489  * depth-first search and use the low and high keys to decide if we can skip
490  * that particular node.  If a leaf node is reached, return the records that
491  * intersect the interval.  Note that an interval query may return numerous
492  * entries.  For a non-overlapped tree, simply search for the record associated
493  * with the lowest key and iterate forward until a non-matching record is
494  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
495  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
496  * more detail.
497  *
498  * Why do we care about overlapping intervals?  Let's say you have a bunch of
499  * reverse mapping records on a reflink filesystem:
500  *
501  * 1: +- file A startblock B offset C length D -----------+
502  * 2:      +- file E startblock F offset G length H --------------+
503  * 3:      +- file I startblock F offset J length K --+
504  * 4:                                                        +- file L... --+
505  *
506  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
507  * we'd simply increment the length of record 1.  But how do we find the record
508  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
509  * record 3 because the keys are ordered first by startblock.  An interval
510  * query would return records 1 and 2 because they both overlap (B+D-1), and
511  * from that we can pick out record 1 as the appropriate left neighbor.
512  *
513  * In the non-overlapped case you can do a LE lookup and decrement the cursor
514  * because a record's interval must end before the next record.
515  */
516 
517 /*
518  * Return size of the btree block header for this btree instance.
519  */
xfs_btree_block_len(struct xfs_btree_cur * cur)520 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
521 {
522 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
523 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
524 			return XFS_BTREE_LBLOCK_CRC_LEN;
525 		return XFS_BTREE_LBLOCK_LEN;
526 	}
527 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
528 		return XFS_BTREE_SBLOCK_CRC_LEN;
529 	return XFS_BTREE_SBLOCK_LEN;
530 }
531 
532 /*
533  * Return size of btree block pointers for this btree instance.
534  */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)535 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
536 {
537 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
538 		sizeof(__be64) : sizeof(__be32);
539 }
540 
541 /*
542  * Calculate offset of the n-th record in a btree block.
543  */
544 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)545 xfs_btree_rec_offset(
546 	struct xfs_btree_cur	*cur,
547 	int			n)
548 {
549 	return xfs_btree_block_len(cur) +
550 		(n - 1) * cur->bc_ops->rec_len;
551 }
552 
553 /*
554  * Calculate offset of the n-th key in a btree block.
555  */
556 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)557 xfs_btree_key_offset(
558 	struct xfs_btree_cur	*cur,
559 	int			n)
560 {
561 	return xfs_btree_block_len(cur) +
562 		(n - 1) * cur->bc_ops->key_len;
563 }
564 
565 /*
566  * Calculate offset of the n-th high key in a btree block.
567  */
568 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)569 xfs_btree_high_key_offset(
570 	struct xfs_btree_cur	*cur,
571 	int			n)
572 {
573 	return xfs_btree_block_len(cur) +
574 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
575 }
576 
577 /*
578  * Calculate offset of the n-th block pointer in a btree block.
579  */
580 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)581 xfs_btree_ptr_offset(
582 	struct xfs_btree_cur	*cur,
583 	int			n,
584 	int			level)
585 {
586 	return xfs_btree_block_len(cur) +
587 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
588 		(n - 1) * xfs_btree_ptr_len(cur);
589 }
590 
591 /*
592  * Return a pointer to the n-th record in the btree block.
593  */
594 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)595 xfs_btree_rec_addr(
596 	struct xfs_btree_cur	*cur,
597 	int			n,
598 	struct xfs_btree_block	*block)
599 {
600 	return (union xfs_btree_rec *)
601 		((char *)block + xfs_btree_rec_offset(cur, n));
602 }
603 
604 /*
605  * Return a pointer to the n-th key in the btree block.
606  */
607 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)608 xfs_btree_key_addr(
609 	struct xfs_btree_cur	*cur,
610 	int			n,
611 	struct xfs_btree_block	*block)
612 {
613 	return (union xfs_btree_key *)
614 		((char *)block + xfs_btree_key_offset(cur, n));
615 }
616 
617 /*
618  * Return a pointer to the n-th high key in the btree block.
619  */
620 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)621 xfs_btree_high_key_addr(
622 	struct xfs_btree_cur	*cur,
623 	int			n,
624 	struct xfs_btree_block	*block)
625 {
626 	return (union xfs_btree_key *)
627 		((char *)block + xfs_btree_high_key_offset(cur, n));
628 }
629 
630 /*
631  * Return a pointer to the n-th block pointer in the btree block.
632  */
633 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)634 xfs_btree_ptr_addr(
635 	struct xfs_btree_cur	*cur,
636 	int			n,
637 	struct xfs_btree_block	*block)
638 {
639 	int			level = xfs_btree_get_level(block);
640 
641 	ASSERT(block->bb_level != 0);
642 
643 	return (union xfs_btree_ptr *)
644 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
645 }
646 
647 /*
648  * Get the root block which is stored in the inode.
649  *
650  * For now this btree implementation assumes the btree root is always
651  * stored in the if_broot field of an inode fork.
652  */
653 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)654 xfs_btree_get_iroot(
655 	struct xfs_btree_cur	*cur)
656 {
657 	struct xfs_ifork	*ifp;
658 
659 	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
660 	return (struct xfs_btree_block *)ifp->if_broot;
661 }
662 
663 /*
664  * Retrieve the block pointer from the cursor at the given level.
665  * This may be an inode btree root or from a buffer.
666  */
667 struct xfs_btree_block *		/* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)668 xfs_btree_get_block(
669 	struct xfs_btree_cur	*cur,	/* btree cursor */
670 	int			level,	/* level in btree */
671 	struct xfs_buf		**bpp)	/* buffer containing the block */
672 {
673 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
674 	    (level == cur->bc_nlevels - 1)) {
675 		*bpp = NULL;
676 		return xfs_btree_get_iroot(cur);
677 	}
678 
679 	*bpp = cur->bc_bufs[level];
680 	return XFS_BUF_TO_BLOCK(*bpp);
681 }
682 
683 /*
684  * Get a buffer for the block, return it with no data read.
685  * Long-form addressing.
686  */
687 xfs_buf_t *				/* buffer for fsbno */
xfs_btree_get_bufl(xfs_mount_t * mp,xfs_trans_t * tp,xfs_fsblock_t fsbno)688 xfs_btree_get_bufl(
689 	xfs_mount_t	*mp,		/* file system mount point */
690 	xfs_trans_t	*tp,		/* transaction pointer */
691 	xfs_fsblock_t	fsbno)		/* file system block number */
692 {
693 	xfs_daddr_t		d;		/* real disk block address */
694 
695 	ASSERT(fsbno != NULLFSBLOCK);
696 	d = XFS_FSB_TO_DADDR(mp, fsbno);
697 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
698 }
699 
700 /*
701  * Get a buffer for the block, return it with no data read.
702  * Short-form addressing.
703  */
704 xfs_buf_t *				/* buffer for agno/agbno */
xfs_btree_get_bufs(xfs_mount_t * mp,xfs_trans_t * tp,xfs_agnumber_t agno,xfs_agblock_t agbno)705 xfs_btree_get_bufs(
706 	xfs_mount_t	*mp,		/* file system mount point */
707 	xfs_trans_t	*tp,		/* transaction pointer */
708 	xfs_agnumber_t	agno,		/* allocation group number */
709 	xfs_agblock_t	agbno)		/* allocation group block number */
710 {
711 	xfs_daddr_t		d;		/* real disk block address */
712 
713 	ASSERT(agno != NULLAGNUMBER);
714 	ASSERT(agbno != NULLAGBLOCK);
715 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
716 	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
717 }
718 
719 /*
720  * Check for the cursor referring to the last block at the given level.
721  */
722 int					/* 1=is last block, 0=not last block */
xfs_btree_islastblock(xfs_btree_cur_t * cur,int level)723 xfs_btree_islastblock(
724 	xfs_btree_cur_t		*cur,	/* btree cursor */
725 	int			level)	/* level to check */
726 {
727 	struct xfs_btree_block	*block;	/* generic btree block pointer */
728 	xfs_buf_t		*bp;	/* buffer containing block */
729 
730 	block = xfs_btree_get_block(cur, level, &bp);
731 	xfs_btree_check_block(cur, block, level, bp);
732 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
733 		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
734 	else
735 		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
736 }
737 
738 /*
739  * Change the cursor to point to the first record at the given level.
740  * Other levels are unaffected.
741  */
742 STATIC int				/* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)743 xfs_btree_firstrec(
744 	xfs_btree_cur_t		*cur,	/* btree cursor */
745 	int			level)	/* level to change */
746 {
747 	struct xfs_btree_block	*block;	/* generic btree block pointer */
748 	xfs_buf_t		*bp;	/* buffer containing block */
749 
750 	/*
751 	 * Get the block pointer for this level.
752 	 */
753 	block = xfs_btree_get_block(cur, level, &bp);
754 	if (xfs_btree_check_block(cur, block, level, bp))
755 		return 0;
756 	/*
757 	 * It's empty, there is no such record.
758 	 */
759 	if (!block->bb_numrecs)
760 		return 0;
761 	/*
762 	 * Set the ptr value to 1, that's the first record/key.
763 	 */
764 	cur->bc_ptrs[level] = 1;
765 	return 1;
766 }
767 
768 /*
769  * Change the cursor to point to the last record in the current block
770  * at the given level.  Other levels are unaffected.
771  */
772 STATIC int				/* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)773 xfs_btree_lastrec(
774 	xfs_btree_cur_t		*cur,	/* btree cursor */
775 	int			level)	/* level to change */
776 {
777 	struct xfs_btree_block	*block;	/* generic btree block pointer */
778 	xfs_buf_t		*bp;	/* buffer containing block */
779 
780 	/*
781 	 * Get the block pointer for this level.
782 	 */
783 	block = xfs_btree_get_block(cur, level, &bp);
784 	if (xfs_btree_check_block(cur, block, level, bp))
785 		return 0;
786 	/*
787 	 * It's empty, there is no such record.
788 	 */
789 	if (!block->bb_numrecs)
790 		return 0;
791 	/*
792 	 * Set the ptr value to numrecs, that's the last record/key.
793 	 */
794 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
795 	return 1;
796 }
797 
798 /*
799  * Compute first and last byte offsets for the fields given.
800  * Interprets the offsets table, which contains struct field offsets.
801  */
802 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)803 xfs_btree_offsets(
804 	int64_t		fields,		/* bitmask of fields */
805 	const short	*offsets,	/* table of field offsets */
806 	int		nbits,		/* number of bits to inspect */
807 	int		*first,		/* output: first byte offset */
808 	int		*last)		/* output: last byte offset */
809 {
810 	int		i;		/* current bit number */
811 	int64_t		imask;		/* mask for current bit number */
812 
813 	ASSERT(fields != 0);
814 	/*
815 	 * Find the lowest bit, so the first byte offset.
816 	 */
817 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
818 		if (imask & fields) {
819 			*first = offsets[i];
820 			break;
821 		}
822 	}
823 	/*
824 	 * Find the highest bit, so the last byte offset.
825 	 */
826 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
827 		if (imask & fields) {
828 			*last = offsets[i + 1] - 1;
829 			break;
830 		}
831 	}
832 }
833 
834 /*
835  * Get a buffer for the block, return it read in.
836  * Long-form addressing.
837  */
838 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)839 xfs_btree_read_bufl(
840 	struct xfs_mount	*mp,		/* file system mount point */
841 	struct xfs_trans	*tp,		/* transaction pointer */
842 	xfs_fsblock_t		fsbno,		/* file system block number */
843 	struct xfs_buf		**bpp,		/* buffer for fsbno */
844 	int			refval,		/* ref count value for buffer */
845 	const struct xfs_buf_ops *ops)
846 {
847 	struct xfs_buf		*bp;		/* return value */
848 	xfs_daddr_t		d;		/* real disk block address */
849 	int			error;
850 
851 	if (!xfs_verify_fsbno(mp, fsbno))
852 		return -EFSCORRUPTED;
853 	d = XFS_FSB_TO_DADDR(mp, fsbno);
854 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
855 				   mp->m_bsize, 0, &bp, ops);
856 	if (error)
857 		return error;
858 	if (bp)
859 		xfs_buf_set_ref(bp, refval);
860 	*bpp = bp;
861 	return 0;
862 }
863 
864 /*
865  * Read-ahead the block, don't wait for it, don't return a buffer.
866  * Long-form addressing.
867  */
868 /* ARGSUSED */
869 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)870 xfs_btree_reada_bufl(
871 	struct xfs_mount	*mp,		/* file system mount point */
872 	xfs_fsblock_t		fsbno,		/* file system block number */
873 	xfs_extlen_t		count,		/* count of filesystem blocks */
874 	const struct xfs_buf_ops *ops)
875 {
876 	xfs_daddr_t		d;
877 
878 	ASSERT(fsbno != NULLFSBLOCK);
879 	d = XFS_FSB_TO_DADDR(mp, fsbno);
880 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
881 }
882 
883 /*
884  * Read-ahead the block, don't wait for it, don't return a buffer.
885  * Short-form addressing.
886  */
887 /* ARGSUSED */
888 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)889 xfs_btree_reada_bufs(
890 	struct xfs_mount	*mp,		/* file system mount point */
891 	xfs_agnumber_t		agno,		/* allocation group number */
892 	xfs_agblock_t		agbno,		/* allocation group block number */
893 	xfs_extlen_t		count,		/* count of filesystem blocks */
894 	const struct xfs_buf_ops *ops)
895 {
896 	xfs_daddr_t		d;
897 
898 	ASSERT(agno != NULLAGNUMBER);
899 	ASSERT(agbno != NULLAGBLOCK);
900 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
901 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
902 }
903 
904 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)905 xfs_btree_readahead_lblock(
906 	struct xfs_btree_cur	*cur,
907 	int			lr,
908 	struct xfs_btree_block	*block)
909 {
910 	int			rval = 0;
911 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
912 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
913 
914 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
915 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
916 				     cur->bc_ops->buf_ops);
917 		rval++;
918 	}
919 
920 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
921 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
922 				     cur->bc_ops->buf_ops);
923 		rval++;
924 	}
925 
926 	return rval;
927 }
928 
929 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)930 xfs_btree_readahead_sblock(
931 	struct xfs_btree_cur	*cur,
932 	int			lr,
933 	struct xfs_btree_block *block)
934 {
935 	int			rval = 0;
936 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
937 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
938 
939 
940 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
941 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
942 				     left, 1, cur->bc_ops->buf_ops);
943 		rval++;
944 	}
945 
946 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
947 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
948 				     right, 1, cur->bc_ops->buf_ops);
949 		rval++;
950 	}
951 
952 	return rval;
953 }
954 
955 /*
956  * Read-ahead btree blocks, at the given level.
957  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
958  */
959 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)960 xfs_btree_readahead(
961 	struct xfs_btree_cur	*cur,		/* btree cursor */
962 	int			lev,		/* level in btree */
963 	int			lr)		/* left/right bits */
964 {
965 	struct xfs_btree_block	*block;
966 
967 	/*
968 	 * No readahead needed if we are at the root level and the
969 	 * btree root is stored in the inode.
970 	 */
971 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
972 	    (lev == cur->bc_nlevels - 1))
973 		return 0;
974 
975 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
976 		return 0;
977 
978 	cur->bc_ra[lev] |= lr;
979 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
980 
981 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
982 		return xfs_btree_readahead_lblock(cur, lr, block);
983 	return xfs_btree_readahead_sblock(cur, lr, block);
984 }
985 
986 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)987 xfs_btree_ptr_to_daddr(
988 	struct xfs_btree_cur	*cur,
989 	union xfs_btree_ptr	*ptr,
990 	xfs_daddr_t		*daddr)
991 {
992 	xfs_fsblock_t		fsbno;
993 	xfs_agblock_t		agbno;
994 	int			error;
995 
996 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
997 	if (error)
998 		return error;
999 
1000 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 		fsbno = be64_to_cpu(ptr->l);
1002 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1003 	} else {
1004 		agbno = be32_to_cpu(ptr->s);
1005 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1006 				agbno);
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * Readahead @count btree blocks at the given @ptr location.
1014  *
1015  * We don't need to care about long or short form btrees here as we have a
1016  * method of converting the ptr directly to a daddr available to us.
1017  */
1018 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1019 xfs_btree_readahead_ptr(
1020 	struct xfs_btree_cur	*cur,
1021 	union xfs_btree_ptr	*ptr,
1022 	xfs_extlen_t		count)
1023 {
1024 	xfs_daddr_t		daddr;
1025 
1026 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1027 		return;
1028 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1029 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1030 }
1031 
1032 /*
1033  * Set the buffer for level "lev" in the cursor to bp, releasing
1034  * any previous buffer.
1035  */
1036 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,xfs_buf_t * bp)1037 xfs_btree_setbuf(
1038 	xfs_btree_cur_t		*cur,	/* btree cursor */
1039 	int			lev,	/* level in btree */
1040 	xfs_buf_t		*bp)	/* new buffer to set */
1041 {
1042 	struct xfs_btree_block	*b;	/* btree block */
1043 
1044 	if (cur->bc_bufs[lev])
1045 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1046 	cur->bc_bufs[lev] = bp;
1047 	cur->bc_ra[lev] = 0;
1048 
1049 	b = XFS_BUF_TO_BLOCK(bp);
1050 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1052 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1053 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1054 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1055 	} else {
1056 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1057 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1058 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1059 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1060 	}
1061 }
1062 
1063 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1064 xfs_btree_ptr_is_null(
1065 	struct xfs_btree_cur	*cur,
1066 	union xfs_btree_ptr	*ptr)
1067 {
1068 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1069 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1070 	else
1071 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1072 }
1073 
1074 STATIC void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1075 xfs_btree_set_ptr_null(
1076 	struct xfs_btree_cur	*cur,
1077 	union xfs_btree_ptr	*ptr)
1078 {
1079 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1080 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1081 	else
1082 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1083 }
1084 
1085 /*
1086  * Get/set/init sibling pointers
1087  */
1088 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1089 xfs_btree_get_sibling(
1090 	struct xfs_btree_cur	*cur,
1091 	struct xfs_btree_block	*block,
1092 	union xfs_btree_ptr	*ptr,
1093 	int			lr)
1094 {
1095 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1096 
1097 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1098 		if (lr == XFS_BB_RIGHTSIB)
1099 			ptr->l = block->bb_u.l.bb_rightsib;
1100 		else
1101 			ptr->l = block->bb_u.l.bb_leftsib;
1102 	} else {
1103 		if (lr == XFS_BB_RIGHTSIB)
1104 			ptr->s = block->bb_u.s.bb_rightsib;
1105 		else
1106 			ptr->s = block->bb_u.s.bb_leftsib;
1107 	}
1108 }
1109 
1110 STATIC void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1111 xfs_btree_set_sibling(
1112 	struct xfs_btree_cur	*cur,
1113 	struct xfs_btree_block	*block,
1114 	union xfs_btree_ptr	*ptr,
1115 	int			lr)
1116 {
1117 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1118 
1119 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1120 		if (lr == XFS_BB_RIGHTSIB)
1121 			block->bb_u.l.bb_rightsib = ptr->l;
1122 		else
1123 			block->bb_u.l.bb_leftsib = ptr->l;
1124 	} else {
1125 		if (lr == XFS_BB_RIGHTSIB)
1126 			block->bb_u.s.bb_rightsib = ptr->s;
1127 		else
1128 			block->bb_u.s.bb_leftsib = ptr->s;
1129 	}
1130 }
1131 
1132 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1133 xfs_btree_init_block_int(
1134 	struct xfs_mount	*mp,
1135 	struct xfs_btree_block	*buf,
1136 	xfs_daddr_t		blkno,
1137 	xfs_btnum_t		btnum,
1138 	__u16			level,
1139 	__u16			numrecs,
1140 	__u64			owner,
1141 	unsigned int		flags)
1142 {
1143 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1144 	__u32			magic = xfs_btree_magic(crc, btnum);
1145 
1146 	buf->bb_magic = cpu_to_be32(magic);
1147 	buf->bb_level = cpu_to_be16(level);
1148 	buf->bb_numrecs = cpu_to_be16(numrecs);
1149 
1150 	if (flags & XFS_BTREE_LONG_PTRS) {
1151 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1152 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1153 		if (crc) {
1154 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1155 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1156 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1157 			buf->bb_u.l.bb_pad = 0;
1158 			buf->bb_u.l.bb_lsn = 0;
1159 		}
1160 	} else {
1161 		/* owner is a 32 bit value on short blocks */
1162 		__u32 __owner = (__u32)owner;
1163 
1164 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1165 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1166 		if (crc) {
1167 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1168 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1169 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1170 			buf->bb_u.s.bb_lsn = 0;
1171 		}
1172 	}
1173 }
1174 
1175 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1176 xfs_btree_init_block(
1177 	struct xfs_mount *mp,
1178 	struct xfs_buf	*bp,
1179 	xfs_btnum_t	btnum,
1180 	__u16		level,
1181 	__u16		numrecs,
1182 	__u64		owner)
1183 {
1184 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1185 				 btnum, level, numrecs, owner, 0);
1186 }
1187 
1188 STATIC void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1189 xfs_btree_init_block_cur(
1190 	struct xfs_btree_cur	*cur,
1191 	struct xfs_buf		*bp,
1192 	int			level,
1193 	int			numrecs)
1194 {
1195 	__u64			owner;
1196 
1197 	/*
1198 	 * we can pull the owner from the cursor right now as the different
1199 	 * owners align directly with the pointer size of the btree. This may
1200 	 * change in future, but is safe for current users of the generic btree
1201 	 * code.
1202 	 */
1203 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1204 		owner = cur->bc_private.b.ip->i_ino;
1205 	else
1206 		owner = cur->bc_private.a.agno;
1207 
1208 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1209 				 cur->bc_btnum, level, numrecs,
1210 				 owner, cur->bc_flags);
1211 }
1212 
1213 /*
1214  * Return true if ptr is the last record in the btree and
1215  * we need to track updates to this record.  The decision
1216  * will be further refined in the update_lastrec method.
1217  */
1218 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1219 xfs_btree_is_lastrec(
1220 	struct xfs_btree_cur	*cur,
1221 	struct xfs_btree_block	*block,
1222 	int			level)
1223 {
1224 	union xfs_btree_ptr	ptr;
1225 
1226 	if (level > 0)
1227 		return 0;
1228 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1229 		return 0;
1230 
1231 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1232 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1233 		return 0;
1234 	return 1;
1235 }
1236 
1237 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1238 xfs_btree_buf_to_ptr(
1239 	struct xfs_btree_cur	*cur,
1240 	struct xfs_buf		*bp,
1241 	union xfs_btree_ptr	*ptr)
1242 {
1243 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1244 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1245 					XFS_BUF_ADDR(bp)));
1246 	else {
1247 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1248 					XFS_BUF_ADDR(bp)));
1249 	}
1250 }
1251 
1252 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1253 xfs_btree_set_refs(
1254 	struct xfs_btree_cur	*cur,
1255 	struct xfs_buf		*bp)
1256 {
1257 	switch (cur->bc_btnum) {
1258 	case XFS_BTNUM_BNO:
1259 	case XFS_BTNUM_CNT:
1260 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1261 		break;
1262 	case XFS_BTNUM_INO:
1263 	case XFS_BTNUM_FINO:
1264 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1265 		break;
1266 	case XFS_BTNUM_BMAP:
1267 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1268 		break;
1269 	case XFS_BTNUM_RMAP:
1270 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1271 		break;
1272 	case XFS_BTNUM_REFC:
1273 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1274 		break;
1275 	default:
1276 		ASSERT(0);
1277 	}
1278 }
1279 
1280 STATIC int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1281 xfs_btree_get_buf_block(
1282 	struct xfs_btree_cur	*cur,
1283 	union xfs_btree_ptr	*ptr,
1284 	struct xfs_btree_block	**block,
1285 	struct xfs_buf		**bpp)
1286 {
1287 	struct xfs_mount	*mp = cur->bc_mp;
1288 	xfs_daddr_t		d;
1289 	int			error;
1290 
1291 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1292 	if (error)
1293 		return error;
1294 	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1295 				 mp->m_bsize, 0);
1296 
1297 	if (!*bpp)
1298 		return -ENOMEM;
1299 
1300 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1301 	*block = XFS_BUF_TO_BLOCK(*bpp);
1302 	return 0;
1303 }
1304 
1305 /*
1306  * Read in the buffer at the given ptr and return the buffer and
1307  * the block pointer within the buffer.
1308  */
1309 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1310 xfs_btree_read_buf_block(
1311 	struct xfs_btree_cur	*cur,
1312 	union xfs_btree_ptr	*ptr,
1313 	int			flags,
1314 	struct xfs_btree_block	**block,
1315 	struct xfs_buf		**bpp)
1316 {
1317 	struct xfs_mount	*mp = cur->bc_mp;
1318 	xfs_daddr_t		d;
1319 	int			error;
1320 
1321 	/* need to sort out how callers deal with failures first */
1322 	ASSERT(!(flags & XBF_TRYLOCK));
1323 
1324 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1325 	if (error)
1326 		return error;
1327 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1328 				   mp->m_bsize, flags, bpp,
1329 				   cur->bc_ops->buf_ops);
1330 	if (error)
1331 		return error;
1332 
1333 	xfs_btree_set_refs(cur, *bpp);
1334 	*block = XFS_BUF_TO_BLOCK(*bpp);
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Copy keys from one btree block to another.
1340  */
1341 STATIC void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,union xfs_btree_key * src_key,int numkeys)1342 xfs_btree_copy_keys(
1343 	struct xfs_btree_cur	*cur,
1344 	union xfs_btree_key	*dst_key,
1345 	union xfs_btree_key	*src_key,
1346 	int			numkeys)
1347 {
1348 	ASSERT(numkeys >= 0);
1349 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1350 }
1351 
1352 /*
1353  * Copy records from one btree block to another.
1354  */
1355 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1356 xfs_btree_copy_recs(
1357 	struct xfs_btree_cur	*cur,
1358 	union xfs_btree_rec	*dst_rec,
1359 	union xfs_btree_rec	*src_rec,
1360 	int			numrecs)
1361 {
1362 	ASSERT(numrecs >= 0);
1363 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1364 }
1365 
1366 /*
1367  * Copy block pointers from one btree block to another.
1368  */
1369 STATIC void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,union xfs_btree_ptr * src_ptr,int numptrs)1370 xfs_btree_copy_ptrs(
1371 	struct xfs_btree_cur	*cur,
1372 	union xfs_btree_ptr	*dst_ptr,
1373 	union xfs_btree_ptr	*src_ptr,
1374 	int			numptrs)
1375 {
1376 	ASSERT(numptrs >= 0);
1377 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1378 }
1379 
1380 /*
1381  * Shift keys one index left/right inside a single btree block.
1382  */
1383 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1384 xfs_btree_shift_keys(
1385 	struct xfs_btree_cur	*cur,
1386 	union xfs_btree_key	*key,
1387 	int			dir,
1388 	int			numkeys)
1389 {
1390 	char			*dst_key;
1391 
1392 	ASSERT(numkeys >= 0);
1393 	ASSERT(dir == 1 || dir == -1);
1394 
1395 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1396 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1397 }
1398 
1399 /*
1400  * Shift records one index left/right inside a single btree block.
1401  */
1402 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1403 xfs_btree_shift_recs(
1404 	struct xfs_btree_cur	*cur,
1405 	union xfs_btree_rec	*rec,
1406 	int			dir,
1407 	int			numrecs)
1408 {
1409 	char			*dst_rec;
1410 
1411 	ASSERT(numrecs >= 0);
1412 	ASSERT(dir == 1 || dir == -1);
1413 
1414 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1415 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1416 }
1417 
1418 /*
1419  * Shift block pointers one index left/right inside a single btree block.
1420  */
1421 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1422 xfs_btree_shift_ptrs(
1423 	struct xfs_btree_cur	*cur,
1424 	union xfs_btree_ptr	*ptr,
1425 	int			dir,
1426 	int			numptrs)
1427 {
1428 	char			*dst_ptr;
1429 
1430 	ASSERT(numptrs >= 0);
1431 	ASSERT(dir == 1 || dir == -1);
1432 
1433 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1434 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1435 }
1436 
1437 /*
1438  * Log key values from the btree block.
1439  */
1440 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1441 xfs_btree_log_keys(
1442 	struct xfs_btree_cur	*cur,
1443 	struct xfs_buf		*bp,
1444 	int			first,
1445 	int			last)
1446 {
1447 
1448 	if (bp) {
1449 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1450 		xfs_trans_log_buf(cur->bc_tp, bp,
1451 				  xfs_btree_key_offset(cur, first),
1452 				  xfs_btree_key_offset(cur, last + 1) - 1);
1453 	} else {
1454 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1455 				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1456 	}
1457 }
1458 
1459 /*
1460  * Log record values from the btree block.
1461  */
1462 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1463 xfs_btree_log_recs(
1464 	struct xfs_btree_cur	*cur,
1465 	struct xfs_buf		*bp,
1466 	int			first,
1467 	int			last)
1468 {
1469 
1470 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1471 	xfs_trans_log_buf(cur->bc_tp, bp,
1472 			  xfs_btree_rec_offset(cur, first),
1473 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1474 
1475 }
1476 
1477 /*
1478  * Log block pointer fields from a btree block (nonleaf).
1479  */
1480 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1481 xfs_btree_log_ptrs(
1482 	struct xfs_btree_cur	*cur,	/* btree cursor */
1483 	struct xfs_buf		*bp,	/* buffer containing btree block */
1484 	int			first,	/* index of first pointer to log */
1485 	int			last)	/* index of last pointer to log */
1486 {
1487 
1488 	if (bp) {
1489 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1490 		int			level = xfs_btree_get_level(block);
1491 
1492 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1493 		xfs_trans_log_buf(cur->bc_tp, bp,
1494 				xfs_btree_ptr_offset(cur, first, level),
1495 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1496 	} else {
1497 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1498 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1499 	}
1500 
1501 }
1502 
1503 /*
1504  * Log fields from a btree block header.
1505  */
1506 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1507 xfs_btree_log_block(
1508 	struct xfs_btree_cur	*cur,	/* btree cursor */
1509 	struct xfs_buf		*bp,	/* buffer containing btree block */
1510 	int			fields)	/* mask of fields: XFS_BB_... */
1511 {
1512 	int			first;	/* first byte offset logged */
1513 	int			last;	/* last byte offset logged */
1514 	static const short	soffsets[] = {	/* table of offsets (short) */
1515 		offsetof(struct xfs_btree_block, bb_magic),
1516 		offsetof(struct xfs_btree_block, bb_level),
1517 		offsetof(struct xfs_btree_block, bb_numrecs),
1518 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1519 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1520 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1521 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1522 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1523 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1524 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1525 		XFS_BTREE_SBLOCK_CRC_LEN
1526 	};
1527 	static const short	loffsets[] = {	/* table of offsets (long) */
1528 		offsetof(struct xfs_btree_block, bb_magic),
1529 		offsetof(struct xfs_btree_block, bb_level),
1530 		offsetof(struct xfs_btree_block, bb_numrecs),
1531 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1532 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1533 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1534 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1535 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1536 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1537 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1538 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1539 		XFS_BTREE_LBLOCK_CRC_LEN
1540 	};
1541 
1542 	if (bp) {
1543 		int nbits;
1544 
1545 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1546 			/*
1547 			 * We don't log the CRC when updating a btree
1548 			 * block but instead recreate it during log
1549 			 * recovery.  As the log buffers have checksums
1550 			 * of their own this is safe and avoids logging a crc
1551 			 * update in a lot of places.
1552 			 */
1553 			if (fields == XFS_BB_ALL_BITS)
1554 				fields = XFS_BB_ALL_BITS_CRC;
1555 			nbits = XFS_BB_NUM_BITS_CRC;
1556 		} else {
1557 			nbits = XFS_BB_NUM_BITS;
1558 		}
1559 		xfs_btree_offsets(fields,
1560 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1561 					loffsets : soffsets,
1562 				  nbits, &first, &last);
1563 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1565 	} else {
1566 		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1567 			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1568 	}
1569 }
1570 
1571 /*
1572  * Increment cursor by one record at the level.
1573  * For nonzero levels the leaf-ward information is untouched.
1574  */
1575 int						/* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1576 xfs_btree_increment(
1577 	struct xfs_btree_cur	*cur,
1578 	int			level,
1579 	int			*stat)		/* success/failure */
1580 {
1581 	struct xfs_btree_block	*block;
1582 	union xfs_btree_ptr	ptr;
1583 	struct xfs_buf		*bp;
1584 	int			error;		/* error return value */
1585 	int			lev;
1586 
1587 	ASSERT(level < cur->bc_nlevels);
1588 
1589 	/* Read-ahead to the right at this level. */
1590 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1591 
1592 	/* Get a pointer to the btree block. */
1593 	block = xfs_btree_get_block(cur, level, &bp);
1594 
1595 #ifdef DEBUG
1596 	error = xfs_btree_check_block(cur, block, level, bp);
1597 	if (error)
1598 		goto error0;
1599 #endif
1600 
1601 	/* We're done if we remain in the block after the increment. */
1602 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1603 		goto out1;
1604 
1605 	/* Fail if we just went off the right edge of the tree. */
1606 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1607 	if (xfs_btree_ptr_is_null(cur, &ptr))
1608 		goto out0;
1609 
1610 	XFS_BTREE_STATS_INC(cur, increment);
1611 
1612 	/*
1613 	 * March up the tree incrementing pointers.
1614 	 * Stop when we don't go off the right edge of a block.
1615 	 */
1616 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1617 		block = xfs_btree_get_block(cur, lev, &bp);
1618 
1619 #ifdef DEBUG
1620 		error = xfs_btree_check_block(cur, block, lev, bp);
1621 		if (error)
1622 			goto error0;
1623 #endif
1624 
1625 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1626 			break;
1627 
1628 		/* Read-ahead the right block for the next loop. */
1629 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1630 	}
1631 
1632 	/*
1633 	 * If we went off the root then we are either seriously
1634 	 * confused or have the tree root in an inode.
1635 	 */
1636 	if (lev == cur->bc_nlevels) {
1637 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1638 			goto out0;
1639 		ASSERT(0);
1640 		error = -EFSCORRUPTED;
1641 		goto error0;
1642 	}
1643 	ASSERT(lev < cur->bc_nlevels);
1644 
1645 	/*
1646 	 * Now walk back down the tree, fixing up the cursor's buffer
1647 	 * pointers and key numbers.
1648 	 */
1649 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1650 		union xfs_btree_ptr	*ptrp;
1651 
1652 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1653 		--lev;
1654 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1655 		if (error)
1656 			goto error0;
1657 
1658 		xfs_btree_setbuf(cur, lev, bp);
1659 		cur->bc_ptrs[lev] = 1;
1660 	}
1661 out1:
1662 	*stat = 1;
1663 	return 0;
1664 
1665 out0:
1666 	*stat = 0;
1667 	return 0;
1668 
1669 error0:
1670 	return error;
1671 }
1672 
1673 /*
1674  * Decrement cursor by one record at the level.
1675  * For nonzero levels the leaf-ward information is untouched.
1676  */
1677 int						/* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1678 xfs_btree_decrement(
1679 	struct xfs_btree_cur	*cur,
1680 	int			level,
1681 	int			*stat)		/* success/failure */
1682 {
1683 	struct xfs_btree_block	*block;
1684 	xfs_buf_t		*bp;
1685 	int			error;		/* error return value */
1686 	int			lev;
1687 	union xfs_btree_ptr	ptr;
1688 
1689 	ASSERT(level < cur->bc_nlevels);
1690 
1691 	/* Read-ahead to the left at this level. */
1692 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1693 
1694 	/* We're done if we remain in the block after the decrement. */
1695 	if (--cur->bc_ptrs[level] > 0)
1696 		goto out1;
1697 
1698 	/* Get a pointer to the btree block. */
1699 	block = xfs_btree_get_block(cur, level, &bp);
1700 
1701 #ifdef DEBUG
1702 	error = xfs_btree_check_block(cur, block, level, bp);
1703 	if (error)
1704 		goto error0;
1705 #endif
1706 
1707 	/* Fail if we just went off the left edge of the tree. */
1708 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1709 	if (xfs_btree_ptr_is_null(cur, &ptr))
1710 		goto out0;
1711 
1712 	XFS_BTREE_STATS_INC(cur, decrement);
1713 
1714 	/*
1715 	 * March up the tree decrementing pointers.
1716 	 * Stop when we don't go off the left edge of a block.
1717 	 */
1718 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1719 		if (--cur->bc_ptrs[lev] > 0)
1720 			break;
1721 		/* Read-ahead the left block for the next loop. */
1722 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1723 	}
1724 
1725 	/*
1726 	 * If we went off the root then we are seriously confused.
1727 	 * or the root of the tree is in an inode.
1728 	 */
1729 	if (lev == cur->bc_nlevels) {
1730 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1731 			goto out0;
1732 		ASSERT(0);
1733 		error = -EFSCORRUPTED;
1734 		goto error0;
1735 	}
1736 	ASSERT(lev < cur->bc_nlevels);
1737 
1738 	/*
1739 	 * Now walk back down the tree, fixing up the cursor's buffer
1740 	 * pointers and key numbers.
1741 	 */
1742 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1743 		union xfs_btree_ptr	*ptrp;
1744 
1745 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1746 		--lev;
1747 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1748 		if (error)
1749 			goto error0;
1750 		xfs_btree_setbuf(cur, lev, bp);
1751 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1752 	}
1753 out1:
1754 	*stat = 1;
1755 	return 0;
1756 
1757 out0:
1758 	*stat = 0;
1759 	return 0;
1760 
1761 error0:
1762 	return error;
1763 }
1764 
1765 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1766 xfs_btree_lookup_get_block(
1767 	struct xfs_btree_cur	*cur,	/* btree cursor */
1768 	int			level,	/* level in the btree */
1769 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1770 	struct xfs_btree_block	**blkp) /* return btree block */
1771 {
1772 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1773 	xfs_daddr_t		daddr;
1774 	int			error = 0;
1775 
1776 	/* special case the root block if in an inode */
1777 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1778 	    (level == cur->bc_nlevels - 1)) {
1779 		*blkp = xfs_btree_get_iroot(cur);
1780 		return 0;
1781 	}
1782 
1783 	/*
1784 	 * If the old buffer at this level for the disk address we are
1785 	 * looking for re-use it.
1786 	 *
1787 	 * Otherwise throw it away and get a new one.
1788 	 */
1789 	bp = cur->bc_bufs[level];
1790 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1791 	if (error)
1792 		return error;
1793 	if (bp && XFS_BUF_ADDR(bp) == daddr) {
1794 		*blkp = XFS_BUF_TO_BLOCK(bp);
1795 		return 0;
1796 	}
1797 
1798 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1799 	if (error)
1800 		return error;
1801 
1802 	/* Check the inode owner since the verifiers don't. */
1803 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1804 	    !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1805 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1806 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1807 			cur->bc_private.b.ip->i_ino)
1808 		goto out_bad;
1809 
1810 	/* Did we get the level we were looking for? */
1811 	if (be16_to_cpu((*blkp)->bb_level) != level)
1812 		goto out_bad;
1813 
1814 	/* Check that internal nodes have at least one record. */
1815 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1816 		goto out_bad;
1817 
1818 	xfs_btree_setbuf(cur, level, bp);
1819 	return 0;
1820 
1821 out_bad:
1822 	*blkp = NULL;
1823 	xfs_trans_brelse(cur->bc_tp, bp);
1824 	return -EFSCORRUPTED;
1825 }
1826 
1827 /*
1828  * Get current search key.  For level 0 we don't actually have a key
1829  * structure so we make one up from the record.  For all other levels
1830  * we just return the right key.
1831  */
1832 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1833 xfs_lookup_get_search_key(
1834 	struct xfs_btree_cur	*cur,
1835 	int			level,
1836 	int			keyno,
1837 	struct xfs_btree_block	*block,
1838 	union xfs_btree_key	*kp)
1839 {
1840 	if (level == 0) {
1841 		cur->bc_ops->init_key_from_rec(kp,
1842 				xfs_btree_rec_addr(cur, keyno, block));
1843 		return kp;
1844 	}
1845 
1846 	return xfs_btree_key_addr(cur, keyno, block);
1847 }
1848 
1849 /*
1850  * Lookup the record.  The cursor is made to point to it, based on dir.
1851  * stat is set to 0 if can't find any such record, 1 for success.
1852  */
1853 int					/* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1854 xfs_btree_lookup(
1855 	struct xfs_btree_cur	*cur,	/* btree cursor */
1856 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1857 	int			*stat)	/* success/failure */
1858 {
1859 	struct xfs_btree_block	*block;	/* current btree block */
1860 	int64_t			diff;	/* difference for the current key */
1861 	int			error;	/* error return value */
1862 	int			keyno;	/* current key number */
1863 	int			level;	/* level in the btree */
1864 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1865 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1866 
1867 	XFS_BTREE_STATS_INC(cur, lookup);
1868 
1869 	/* No such thing as a zero-level tree. */
1870 	if (cur->bc_nlevels == 0)
1871 		return -EFSCORRUPTED;
1872 
1873 	block = NULL;
1874 	keyno = 0;
1875 
1876 	/* initialise start pointer from cursor */
1877 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1878 	pp = &ptr;
1879 
1880 	/*
1881 	 * Iterate over each level in the btree, starting at the root.
1882 	 * For each level above the leaves, find the key we need, based
1883 	 * on the lookup record, then follow the corresponding block
1884 	 * pointer down to the next level.
1885 	 */
1886 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1887 		/* Get the block we need to do the lookup on. */
1888 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1889 		if (error)
1890 			goto error0;
1891 
1892 		if (diff == 0) {
1893 			/*
1894 			 * If we already had a key match at a higher level, we
1895 			 * know we need to use the first entry in this block.
1896 			 */
1897 			keyno = 1;
1898 		} else {
1899 			/* Otherwise search this block. Do a binary search. */
1900 
1901 			int	high;	/* high entry number */
1902 			int	low;	/* low entry number */
1903 
1904 			/* Set low and high entry numbers, 1-based. */
1905 			low = 1;
1906 			high = xfs_btree_get_numrecs(block);
1907 			if (!high) {
1908 				/* Block is empty, must be an empty leaf. */
1909 				if (level != 0 || cur->bc_nlevels != 1) {
1910 					XFS_CORRUPTION_ERROR(__func__,
1911 							XFS_ERRLEVEL_LOW,
1912 							cur->bc_mp, block,
1913 							sizeof(*block));
1914 					return -EFSCORRUPTED;
1915 				}
1916 
1917 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1918 				*stat = 0;
1919 				return 0;
1920 			}
1921 
1922 			/* Binary search the block. */
1923 			while (low <= high) {
1924 				union xfs_btree_key	key;
1925 				union xfs_btree_key	*kp;
1926 
1927 				XFS_BTREE_STATS_INC(cur, compare);
1928 
1929 				/* keyno is average of low and high. */
1930 				keyno = (low + high) >> 1;
1931 
1932 				/* Get current search key */
1933 				kp = xfs_lookup_get_search_key(cur, level,
1934 						keyno, block, &key);
1935 
1936 				/*
1937 				 * Compute difference to get next direction:
1938 				 *  - less than, move right
1939 				 *  - greater than, move left
1940 				 *  - equal, we're done
1941 				 */
1942 				diff = cur->bc_ops->key_diff(cur, kp);
1943 				if (diff < 0)
1944 					low = keyno + 1;
1945 				else if (diff > 0)
1946 					high = keyno - 1;
1947 				else
1948 					break;
1949 			}
1950 		}
1951 
1952 		/*
1953 		 * If there are more levels, set up for the next level
1954 		 * by getting the block number and filling in the cursor.
1955 		 */
1956 		if (level > 0) {
1957 			/*
1958 			 * If we moved left, need the previous key number,
1959 			 * unless there isn't one.
1960 			 */
1961 			if (diff > 0 && --keyno < 1)
1962 				keyno = 1;
1963 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1964 
1965 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1966 			if (error)
1967 				goto error0;
1968 
1969 			cur->bc_ptrs[level] = keyno;
1970 		}
1971 	}
1972 
1973 	/* Done with the search. See if we need to adjust the results. */
1974 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1975 		keyno++;
1976 		/*
1977 		 * If ge search and we went off the end of the block, but it's
1978 		 * not the last block, we're in the wrong block.
1979 		 */
1980 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1981 		if (dir == XFS_LOOKUP_GE &&
1982 		    keyno > xfs_btree_get_numrecs(block) &&
1983 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1984 			int	i;
1985 
1986 			cur->bc_ptrs[0] = keyno;
1987 			error = xfs_btree_increment(cur, 0, &i);
1988 			if (error)
1989 				goto error0;
1990 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1991 			*stat = 1;
1992 			return 0;
1993 		}
1994 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1995 		keyno--;
1996 	cur->bc_ptrs[0] = keyno;
1997 
1998 	/* Return if we succeeded or not. */
1999 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2000 		*stat = 0;
2001 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2002 		*stat = 1;
2003 	else
2004 		*stat = 0;
2005 	return 0;
2006 
2007 error0:
2008 	return error;
2009 }
2010 
2011 /* Find the high key storage area from a regular key. */
2012 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2013 xfs_btree_high_key_from_key(
2014 	struct xfs_btree_cur	*cur,
2015 	union xfs_btree_key	*key)
2016 {
2017 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2018 	return (union xfs_btree_key *)((char *)key +
2019 			(cur->bc_ops->key_len / 2));
2020 }
2021 
2022 /* Determine the low (and high if overlapped) keys of a leaf block */
2023 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2024 xfs_btree_get_leaf_keys(
2025 	struct xfs_btree_cur	*cur,
2026 	struct xfs_btree_block	*block,
2027 	union xfs_btree_key	*key)
2028 {
2029 	union xfs_btree_key	max_hkey;
2030 	union xfs_btree_key	hkey;
2031 	union xfs_btree_rec	*rec;
2032 	union xfs_btree_key	*high;
2033 	int			n;
2034 
2035 	rec = xfs_btree_rec_addr(cur, 1, block);
2036 	cur->bc_ops->init_key_from_rec(key, rec);
2037 
2038 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2039 
2040 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2041 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2042 			rec = xfs_btree_rec_addr(cur, n, block);
2043 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2044 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2045 					> 0)
2046 				max_hkey = hkey;
2047 		}
2048 
2049 		high = xfs_btree_high_key_from_key(cur, key);
2050 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2051 	}
2052 }
2053 
2054 /* Determine the low (and high if overlapped) keys of a node block */
2055 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2056 xfs_btree_get_node_keys(
2057 	struct xfs_btree_cur	*cur,
2058 	struct xfs_btree_block	*block,
2059 	union xfs_btree_key	*key)
2060 {
2061 	union xfs_btree_key	*hkey;
2062 	union xfs_btree_key	*max_hkey;
2063 	union xfs_btree_key	*high;
2064 	int			n;
2065 
2066 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2067 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2068 				cur->bc_ops->key_len / 2);
2069 
2070 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2071 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2072 			hkey = xfs_btree_high_key_addr(cur, n, block);
2073 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2074 				max_hkey = hkey;
2075 		}
2076 
2077 		high = xfs_btree_high_key_from_key(cur, key);
2078 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2079 	} else {
2080 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2081 				cur->bc_ops->key_len);
2082 	}
2083 }
2084 
2085 /* Derive the keys for any btree block. */
2086 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2087 xfs_btree_get_keys(
2088 	struct xfs_btree_cur	*cur,
2089 	struct xfs_btree_block	*block,
2090 	union xfs_btree_key	*key)
2091 {
2092 	if (be16_to_cpu(block->bb_level) == 0)
2093 		xfs_btree_get_leaf_keys(cur, block, key);
2094 	else
2095 		xfs_btree_get_node_keys(cur, block, key);
2096 }
2097 
2098 /*
2099  * Decide if we need to update the parent keys of a btree block.  For
2100  * a standard btree this is only necessary if we're updating the first
2101  * record/key.  For an overlapping btree, we must always update the
2102  * keys because the highest key can be in any of the records or keys
2103  * in the block.
2104  */
2105 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2106 xfs_btree_needs_key_update(
2107 	struct xfs_btree_cur	*cur,
2108 	int			ptr)
2109 {
2110 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2111 }
2112 
2113 /*
2114  * Update the low and high parent keys of the given level, progressing
2115  * towards the root.  If force_all is false, stop if the keys for a given
2116  * level do not need updating.
2117  */
2118 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2119 __xfs_btree_updkeys(
2120 	struct xfs_btree_cur	*cur,
2121 	int			level,
2122 	struct xfs_btree_block	*block,
2123 	struct xfs_buf		*bp0,
2124 	bool			force_all)
2125 {
2126 	union xfs_btree_key	key;	/* keys from current level */
2127 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2128 	union xfs_btree_key	*hkey;
2129 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2130 	union xfs_btree_key	*nhkey;
2131 	struct xfs_buf		*bp;
2132 	int			ptr;
2133 
2134 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2135 
2136 	/* Exit if there aren't any parent levels to update. */
2137 	if (level + 1 >= cur->bc_nlevels)
2138 		return 0;
2139 
2140 	trace_xfs_btree_updkeys(cur, level, bp0);
2141 
2142 	lkey = &key;
2143 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2144 	xfs_btree_get_keys(cur, block, lkey);
2145 	for (level++; level < cur->bc_nlevels; level++) {
2146 #ifdef DEBUG
2147 		int		error;
2148 #endif
2149 		block = xfs_btree_get_block(cur, level, &bp);
2150 		trace_xfs_btree_updkeys(cur, level, bp);
2151 #ifdef DEBUG
2152 		error = xfs_btree_check_block(cur, block, level, bp);
2153 		if (error)
2154 			return error;
2155 #endif
2156 		ptr = cur->bc_ptrs[level];
2157 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2158 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2159 		if (!force_all &&
2160 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2161 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2162 			break;
2163 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2164 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2165 		if (level + 1 >= cur->bc_nlevels)
2166 			break;
2167 		xfs_btree_get_node_keys(cur, block, lkey);
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 /* Update all the keys from some level in cursor back to the root. */
2174 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2175 xfs_btree_updkeys_force(
2176 	struct xfs_btree_cur	*cur,
2177 	int			level)
2178 {
2179 	struct xfs_buf		*bp;
2180 	struct xfs_btree_block	*block;
2181 
2182 	block = xfs_btree_get_block(cur, level, &bp);
2183 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2184 }
2185 
2186 /*
2187  * Update the parent keys of the given level, progressing towards the root.
2188  */
2189 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2190 xfs_btree_update_keys(
2191 	struct xfs_btree_cur	*cur,
2192 	int			level)
2193 {
2194 	struct xfs_btree_block	*block;
2195 	struct xfs_buf		*bp;
2196 	union xfs_btree_key	*kp;
2197 	union xfs_btree_key	key;
2198 	int			ptr;
2199 
2200 	ASSERT(level >= 0);
2201 
2202 	block = xfs_btree_get_block(cur, level, &bp);
2203 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2204 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2205 
2206 	/*
2207 	 * Go up the tree from this level toward the root.
2208 	 * At each level, update the key value to the value input.
2209 	 * Stop when we reach a level where the cursor isn't pointing
2210 	 * at the first entry in the block.
2211 	 */
2212 	xfs_btree_get_keys(cur, block, &key);
2213 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2214 #ifdef DEBUG
2215 		int		error;
2216 #endif
2217 		block = xfs_btree_get_block(cur, level, &bp);
2218 #ifdef DEBUG
2219 		error = xfs_btree_check_block(cur, block, level, bp);
2220 		if (error)
2221 			return error;
2222 #endif
2223 		ptr = cur->bc_ptrs[level];
2224 		kp = xfs_btree_key_addr(cur, ptr, block);
2225 		xfs_btree_copy_keys(cur, kp, &key, 1);
2226 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 /*
2233  * Update the record referred to by cur to the value in the
2234  * given record. This either works (return 0) or gets an
2235  * EFSCORRUPTED error.
2236  */
2237 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2238 xfs_btree_update(
2239 	struct xfs_btree_cur	*cur,
2240 	union xfs_btree_rec	*rec)
2241 {
2242 	struct xfs_btree_block	*block;
2243 	struct xfs_buf		*bp;
2244 	int			error;
2245 	int			ptr;
2246 	union xfs_btree_rec	*rp;
2247 
2248 	/* Pick up the current block. */
2249 	block = xfs_btree_get_block(cur, 0, &bp);
2250 
2251 #ifdef DEBUG
2252 	error = xfs_btree_check_block(cur, block, 0, bp);
2253 	if (error)
2254 		goto error0;
2255 #endif
2256 	/* Get the address of the rec to be updated. */
2257 	ptr = cur->bc_ptrs[0];
2258 	rp = xfs_btree_rec_addr(cur, ptr, block);
2259 
2260 	/* Fill in the new contents and log them. */
2261 	xfs_btree_copy_recs(cur, rp, rec, 1);
2262 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2263 
2264 	/*
2265 	 * If we are tracking the last record in the tree and
2266 	 * we are at the far right edge of the tree, update it.
2267 	 */
2268 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2269 		cur->bc_ops->update_lastrec(cur, block, rec,
2270 					    ptr, LASTREC_UPDATE);
2271 	}
2272 
2273 	/* Pass new key value up to our parent. */
2274 	if (xfs_btree_needs_key_update(cur, ptr)) {
2275 		error = xfs_btree_update_keys(cur, 0);
2276 		if (error)
2277 			goto error0;
2278 	}
2279 
2280 	return 0;
2281 
2282 error0:
2283 	return error;
2284 }
2285 
2286 /*
2287  * Move 1 record left from cur/level if possible.
2288  * Update cur to reflect the new path.
2289  */
2290 STATIC int					/* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2291 xfs_btree_lshift(
2292 	struct xfs_btree_cur	*cur,
2293 	int			level,
2294 	int			*stat)		/* success/failure */
2295 {
2296 	struct xfs_buf		*lbp;		/* left buffer pointer */
2297 	struct xfs_btree_block	*left;		/* left btree block */
2298 	int			lrecs;		/* left record count */
2299 	struct xfs_buf		*rbp;		/* right buffer pointer */
2300 	struct xfs_btree_block	*right;		/* right btree block */
2301 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2302 	int			rrecs;		/* right record count */
2303 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2304 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2305 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2306 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2307 	int			error;		/* error return value */
2308 	int			i;
2309 
2310 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2311 	    level == cur->bc_nlevels - 1)
2312 		goto out0;
2313 
2314 	/* Set up variables for this block as "right". */
2315 	right = xfs_btree_get_block(cur, level, &rbp);
2316 
2317 #ifdef DEBUG
2318 	error = xfs_btree_check_block(cur, right, level, rbp);
2319 	if (error)
2320 		goto error0;
2321 #endif
2322 
2323 	/* If we've got no left sibling then we can't shift an entry left. */
2324 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2325 	if (xfs_btree_ptr_is_null(cur, &lptr))
2326 		goto out0;
2327 
2328 	/*
2329 	 * If the cursor entry is the one that would be moved, don't
2330 	 * do it... it's too complicated.
2331 	 */
2332 	if (cur->bc_ptrs[level] <= 1)
2333 		goto out0;
2334 
2335 	/* Set up the left neighbor as "left". */
2336 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2337 	if (error)
2338 		goto error0;
2339 
2340 	/* If it's full, it can't take another entry. */
2341 	lrecs = xfs_btree_get_numrecs(left);
2342 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2343 		goto out0;
2344 
2345 	rrecs = xfs_btree_get_numrecs(right);
2346 
2347 	/*
2348 	 * We add one entry to the left side and remove one for the right side.
2349 	 * Account for it here, the changes will be updated on disk and logged
2350 	 * later.
2351 	 */
2352 	lrecs++;
2353 	rrecs--;
2354 
2355 	XFS_BTREE_STATS_INC(cur, lshift);
2356 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2357 
2358 	/*
2359 	 * If non-leaf, copy a key and a ptr to the left block.
2360 	 * Log the changes to the left block.
2361 	 */
2362 	if (level > 0) {
2363 		/* It's a non-leaf.  Move keys and pointers. */
2364 		union xfs_btree_key	*lkp;	/* left btree key */
2365 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2366 
2367 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2368 		rkp = xfs_btree_key_addr(cur, 1, right);
2369 
2370 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2371 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2372 
2373 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2374 		if (error)
2375 			goto error0;
2376 
2377 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2378 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2379 
2380 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2381 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2382 
2383 		ASSERT(cur->bc_ops->keys_inorder(cur,
2384 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2385 	} else {
2386 		/* It's a leaf.  Move records.  */
2387 		union xfs_btree_rec	*lrp;	/* left record pointer */
2388 
2389 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2390 		rrp = xfs_btree_rec_addr(cur, 1, right);
2391 
2392 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2393 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2394 
2395 		ASSERT(cur->bc_ops->recs_inorder(cur,
2396 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2397 	}
2398 
2399 	xfs_btree_set_numrecs(left, lrecs);
2400 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2401 
2402 	xfs_btree_set_numrecs(right, rrecs);
2403 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2404 
2405 	/*
2406 	 * Slide the contents of right down one entry.
2407 	 */
2408 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2409 	if (level > 0) {
2410 		/* It's a nonleaf. operate on keys and ptrs */
2411 		int			i;		/* loop index */
2412 
2413 		for (i = 0; i < rrecs; i++) {
2414 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2415 			if (error)
2416 				goto error0;
2417 		}
2418 
2419 		xfs_btree_shift_keys(cur,
2420 				xfs_btree_key_addr(cur, 2, right),
2421 				-1, rrecs);
2422 		xfs_btree_shift_ptrs(cur,
2423 				xfs_btree_ptr_addr(cur, 2, right),
2424 				-1, rrecs);
2425 
2426 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2427 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2428 	} else {
2429 		/* It's a leaf. operate on records */
2430 		xfs_btree_shift_recs(cur,
2431 			xfs_btree_rec_addr(cur, 2, right),
2432 			-1, rrecs);
2433 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2434 	}
2435 
2436 	/*
2437 	 * Using a temporary cursor, update the parent key values of the
2438 	 * block on the left.
2439 	 */
2440 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2441 		error = xfs_btree_dup_cursor(cur, &tcur);
2442 		if (error)
2443 			goto error0;
2444 		i = xfs_btree_firstrec(tcur, level);
2445 		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2446 
2447 		error = xfs_btree_decrement(tcur, level, &i);
2448 		if (error)
2449 			goto error1;
2450 
2451 		/* Update the parent high keys of the left block, if needed. */
2452 		error = xfs_btree_update_keys(tcur, level);
2453 		if (error)
2454 			goto error1;
2455 
2456 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2457 	}
2458 
2459 	/* Update the parent keys of the right block. */
2460 	error = xfs_btree_update_keys(cur, level);
2461 	if (error)
2462 		goto error0;
2463 
2464 	/* Slide the cursor value left one. */
2465 	cur->bc_ptrs[level]--;
2466 
2467 	*stat = 1;
2468 	return 0;
2469 
2470 out0:
2471 	*stat = 0;
2472 	return 0;
2473 
2474 error0:
2475 	return error;
2476 
2477 error1:
2478 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2479 	return error;
2480 }
2481 
2482 /*
2483  * Move 1 record right from cur/level if possible.
2484  * Update cur to reflect the new path.
2485  */
2486 STATIC int					/* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2487 xfs_btree_rshift(
2488 	struct xfs_btree_cur	*cur,
2489 	int			level,
2490 	int			*stat)		/* success/failure */
2491 {
2492 	struct xfs_buf		*lbp;		/* left buffer pointer */
2493 	struct xfs_btree_block	*left;		/* left btree block */
2494 	struct xfs_buf		*rbp;		/* right buffer pointer */
2495 	struct xfs_btree_block	*right;		/* right btree block */
2496 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2497 	union xfs_btree_ptr	rptr;		/* right block pointer */
2498 	union xfs_btree_key	*rkp;		/* right btree key */
2499 	int			rrecs;		/* right record count */
2500 	int			lrecs;		/* left record count */
2501 	int			error;		/* error return value */
2502 	int			i;		/* loop counter */
2503 
2504 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2505 	    (level == cur->bc_nlevels - 1))
2506 		goto out0;
2507 
2508 	/* Set up variables for this block as "left". */
2509 	left = xfs_btree_get_block(cur, level, &lbp);
2510 
2511 #ifdef DEBUG
2512 	error = xfs_btree_check_block(cur, left, level, lbp);
2513 	if (error)
2514 		goto error0;
2515 #endif
2516 
2517 	/* If we've got no right sibling then we can't shift an entry right. */
2518 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2519 	if (xfs_btree_ptr_is_null(cur, &rptr))
2520 		goto out0;
2521 
2522 	/*
2523 	 * If the cursor entry is the one that would be moved, don't
2524 	 * do it... it's too complicated.
2525 	 */
2526 	lrecs = xfs_btree_get_numrecs(left);
2527 	if (cur->bc_ptrs[level] >= lrecs)
2528 		goto out0;
2529 
2530 	/* Set up the right neighbor as "right". */
2531 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2532 	if (error)
2533 		goto error0;
2534 
2535 	/* If it's full, it can't take another entry. */
2536 	rrecs = xfs_btree_get_numrecs(right);
2537 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2538 		goto out0;
2539 
2540 	XFS_BTREE_STATS_INC(cur, rshift);
2541 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2542 
2543 	/*
2544 	 * Make a hole at the start of the right neighbor block, then
2545 	 * copy the last left block entry to the hole.
2546 	 */
2547 	if (level > 0) {
2548 		/* It's a nonleaf. make a hole in the keys and ptrs */
2549 		union xfs_btree_key	*lkp;
2550 		union xfs_btree_ptr	*lpp;
2551 		union xfs_btree_ptr	*rpp;
2552 
2553 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2554 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2555 		rkp = xfs_btree_key_addr(cur, 1, right);
2556 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2557 
2558 		for (i = rrecs - 1; i >= 0; i--) {
2559 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2560 			if (error)
2561 				goto error0;
2562 		}
2563 
2564 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2565 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2566 
2567 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2568 		if (error)
2569 			goto error0;
2570 
2571 		/* Now put the new data in, and log it. */
2572 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2573 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2574 
2575 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2576 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2577 
2578 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2579 			xfs_btree_key_addr(cur, 2, right)));
2580 	} else {
2581 		/* It's a leaf. make a hole in the records */
2582 		union xfs_btree_rec	*lrp;
2583 		union xfs_btree_rec	*rrp;
2584 
2585 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2586 		rrp = xfs_btree_rec_addr(cur, 1, right);
2587 
2588 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2589 
2590 		/* Now put the new data in, and log it. */
2591 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2592 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2593 	}
2594 
2595 	/*
2596 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2597 	 */
2598 	xfs_btree_set_numrecs(left, --lrecs);
2599 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2600 
2601 	xfs_btree_set_numrecs(right, ++rrecs);
2602 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2603 
2604 	/*
2605 	 * Using a temporary cursor, update the parent key values of the
2606 	 * block on the right.
2607 	 */
2608 	error = xfs_btree_dup_cursor(cur, &tcur);
2609 	if (error)
2610 		goto error0;
2611 	i = xfs_btree_lastrec(tcur, level);
2612 	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2613 
2614 	error = xfs_btree_increment(tcur, level, &i);
2615 	if (error)
2616 		goto error1;
2617 
2618 	/* Update the parent high keys of the left block, if needed. */
2619 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2620 		error = xfs_btree_update_keys(cur, level);
2621 		if (error)
2622 			goto error1;
2623 	}
2624 
2625 	/* Update the parent keys of the right block. */
2626 	error = xfs_btree_update_keys(tcur, level);
2627 	if (error)
2628 		goto error1;
2629 
2630 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2631 
2632 	*stat = 1;
2633 	return 0;
2634 
2635 out0:
2636 	*stat = 0;
2637 	return 0;
2638 
2639 error0:
2640 	return error;
2641 
2642 error1:
2643 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2644 	return error;
2645 }
2646 
2647 /*
2648  * Split cur/level block in half.
2649  * Return new block number and the key to its first
2650  * record (to be inserted into parent).
2651  */
2652 STATIC int					/* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2653 __xfs_btree_split(
2654 	struct xfs_btree_cur	*cur,
2655 	int			level,
2656 	union xfs_btree_ptr	*ptrp,
2657 	union xfs_btree_key	*key,
2658 	struct xfs_btree_cur	**curp,
2659 	int			*stat)		/* success/failure */
2660 {
2661 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2662 	struct xfs_buf		*lbp;		/* left buffer pointer */
2663 	struct xfs_btree_block	*left;		/* left btree block */
2664 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2665 	struct xfs_buf		*rbp;		/* right buffer pointer */
2666 	struct xfs_btree_block	*right;		/* right btree block */
2667 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2668 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2669 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2670 	int			lrecs;
2671 	int			rrecs;
2672 	int			src_index;
2673 	int			error;		/* error return value */
2674 	int			i;
2675 
2676 	XFS_BTREE_STATS_INC(cur, split);
2677 
2678 	/* Set up left block (current one). */
2679 	left = xfs_btree_get_block(cur, level, &lbp);
2680 
2681 #ifdef DEBUG
2682 	error = xfs_btree_check_block(cur, left, level, lbp);
2683 	if (error)
2684 		goto error0;
2685 #endif
2686 
2687 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2688 
2689 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2690 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2691 	if (error)
2692 		goto error0;
2693 	if (*stat == 0)
2694 		goto out0;
2695 	XFS_BTREE_STATS_INC(cur, alloc);
2696 
2697 	/* Set up the new block as "right". */
2698 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2699 	if (error)
2700 		goto error0;
2701 
2702 	/* Fill in the btree header for the new right block. */
2703 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2704 
2705 	/*
2706 	 * Split the entries between the old and the new block evenly.
2707 	 * Make sure that if there's an odd number of entries now, that
2708 	 * each new block will have the same number of entries.
2709 	 */
2710 	lrecs = xfs_btree_get_numrecs(left);
2711 	rrecs = lrecs / 2;
2712 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2713 		rrecs++;
2714 	src_index = (lrecs - rrecs + 1);
2715 
2716 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2717 
2718 	/* Adjust numrecs for the later get_*_keys() calls. */
2719 	lrecs -= rrecs;
2720 	xfs_btree_set_numrecs(left, lrecs);
2721 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2722 
2723 	/*
2724 	 * Copy btree block entries from the left block over to the
2725 	 * new block, the right. Update the right block and log the
2726 	 * changes.
2727 	 */
2728 	if (level > 0) {
2729 		/* It's a non-leaf.  Move keys and pointers. */
2730 		union xfs_btree_key	*lkp;	/* left btree key */
2731 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2732 		union xfs_btree_key	*rkp;	/* right btree key */
2733 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2734 
2735 		lkp = xfs_btree_key_addr(cur, src_index, left);
2736 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2737 		rkp = xfs_btree_key_addr(cur, 1, right);
2738 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2739 
2740 		for (i = src_index; i < rrecs; i++) {
2741 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2742 			if (error)
2743 				goto error0;
2744 		}
2745 
2746 		/* Copy the keys & pointers to the new block. */
2747 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2748 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2749 
2750 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2751 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2752 
2753 		/* Stash the keys of the new block for later insertion. */
2754 		xfs_btree_get_node_keys(cur, right, key);
2755 	} else {
2756 		/* It's a leaf.  Move records.  */
2757 		union xfs_btree_rec	*lrp;	/* left record pointer */
2758 		union xfs_btree_rec	*rrp;	/* right record pointer */
2759 
2760 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2761 		rrp = xfs_btree_rec_addr(cur, 1, right);
2762 
2763 		/* Copy records to the new block. */
2764 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2765 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2766 
2767 		/* Stash the keys of the new block for later insertion. */
2768 		xfs_btree_get_leaf_keys(cur, right, key);
2769 	}
2770 
2771 	/*
2772 	 * Find the left block number by looking in the buffer.
2773 	 * Adjust sibling pointers.
2774 	 */
2775 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2776 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2777 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2778 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2779 
2780 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2781 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2782 
2783 	/*
2784 	 * If there's a block to the new block's right, make that block
2785 	 * point back to right instead of to left.
2786 	 */
2787 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2788 		error = xfs_btree_read_buf_block(cur, &rrptr,
2789 							0, &rrblock, &rrbp);
2790 		if (error)
2791 			goto error0;
2792 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2793 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2794 	}
2795 
2796 	/* Update the parent high keys of the left block, if needed. */
2797 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2798 		error = xfs_btree_update_keys(cur, level);
2799 		if (error)
2800 			goto error0;
2801 	}
2802 
2803 	/*
2804 	 * If the cursor is really in the right block, move it there.
2805 	 * If it's just pointing past the last entry in left, then we'll
2806 	 * insert there, so don't change anything in that case.
2807 	 */
2808 	if (cur->bc_ptrs[level] > lrecs + 1) {
2809 		xfs_btree_setbuf(cur, level, rbp);
2810 		cur->bc_ptrs[level] -= lrecs;
2811 	}
2812 	/*
2813 	 * If there are more levels, we'll need another cursor which refers
2814 	 * the right block, no matter where this cursor was.
2815 	 */
2816 	if (level + 1 < cur->bc_nlevels) {
2817 		error = xfs_btree_dup_cursor(cur, curp);
2818 		if (error)
2819 			goto error0;
2820 		(*curp)->bc_ptrs[level + 1]++;
2821 	}
2822 	*ptrp = rptr;
2823 	*stat = 1;
2824 	return 0;
2825 out0:
2826 	*stat = 0;
2827 	return 0;
2828 
2829 error0:
2830 	return error;
2831 }
2832 
2833 struct xfs_btree_split_args {
2834 	struct xfs_btree_cur	*cur;
2835 	int			level;
2836 	union xfs_btree_ptr	*ptrp;
2837 	union xfs_btree_key	*key;
2838 	struct xfs_btree_cur	**curp;
2839 	int			*stat;		/* success/failure */
2840 	int			result;
2841 	bool			kswapd;	/* allocation in kswapd context */
2842 	struct completion	*done;
2843 	struct work_struct	work;
2844 };
2845 
2846 /*
2847  * Stack switching interfaces for allocation
2848  */
2849 static void
xfs_btree_split_worker(struct work_struct * work)2850 xfs_btree_split_worker(
2851 	struct work_struct	*work)
2852 {
2853 	struct xfs_btree_split_args	*args = container_of(work,
2854 						struct xfs_btree_split_args, work);
2855 	unsigned long		pflags;
2856 	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
2857 
2858 	/*
2859 	 * we are in a transaction context here, but may also be doing work
2860 	 * in kswapd context, and hence we may need to inherit that state
2861 	 * temporarily to ensure that we don't block waiting for memory reclaim
2862 	 * in any way.
2863 	 */
2864 	if (args->kswapd)
2865 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2866 
2867 	current_set_flags_nested(&pflags, new_pflags);
2868 
2869 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2870 					 args->key, args->curp, args->stat);
2871 	complete(args->done);
2872 
2873 	current_restore_flags_nested(&pflags, new_pflags);
2874 }
2875 
2876 /*
2877  * BMBT split requests often come in with little stack to work on. Push
2878  * them off to a worker thread so there is lots of stack to use. For the other
2879  * btree types, just call directly to avoid the context switch overhead here.
2880  */
2881 STATIC int					/* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2882 xfs_btree_split(
2883 	struct xfs_btree_cur	*cur,
2884 	int			level,
2885 	union xfs_btree_ptr	*ptrp,
2886 	union xfs_btree_key	*key,
2887 	struct xfs_btree_cur	**curp,
2888 	int			*stat)		/* success/failure */
2889 {
2890 	struct xfs_btree_split_args	args;
2891 	DECLARE_COMPLETION_ONSTACK(done);
2892 
2893 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2894 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2895 
2896 	args.cur = cur;
2897 	args.level = level;
2898 	args.ptrp = ptrp;
2899 	args.key = key;
2900 	args.curp = curp;
2901 	args.stat = stat;
2902 	args.done = &done;
2903 	args.kswapd = current_is_kswapd();
2904 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2905 	queue_work(xfs_alloc_wq, &args.work);
2906 	wait_for_completion(&done);
2907 	destroy_work_on_stack(&args.work);
2908 	return args.result;
2909 }
2910 
2911 
2912 /*
2913  * Copy the old inode root contents into a real block and make the
2914  * broot point to it.
2915  */
2916 int						/* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2917 xfs_btree_new_iroot(
2918 	struct xfs_btree_cur	*cur,		/* btree cursor */
2919 	int			*logflags,	/* logging flags for inode */
2920 	int			*stat)		/* return status - 0 fail */
2921 {
2922 	struct xfs_buf		*cbp;		/* buffer for cblock */
2923 	struct xfs_btree_block	*block;		/* btree block */
2924 	struct xfs_btree_block	*cblock;	/* child btree block */
2925 	union xfs_btree_key	*ckp;		/* child key pointer */
2926 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2927 	union xfs_btree_key	*kp;		/* pointer to btree key */
2928 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2929 	union xfs_btree_ptr	nptr;		/* new block addr */
2930 	int			level;		/* btree level */
2931 	int			error;		/* error return code */
2932 	int			i;		/* loop counter */
2933 
2934 	XFS_BTREE_STATS_INC(cur, newroot);
2935 
2936 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2937 
2938 	level = cur->bc_nlevels - 1;
2939 
2940 	block = xfs_btree_get_iroot(cur);
2941 	pp = xfs_btree_ptr_addr(cur, 1, block);
2942 
2943 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2944 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2945 	if (error)
2946 		goto error0;
2947 	if (*stat == 0)
2948 		return 0;
2949 
2950 	XFS_BTREE_STATS_INC(cur, alloc);
2951 
2952 	/* Copy the root into a real block. */
2953 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2954 	if (error)
2955 		goto error0;
2956 
2957 	/*
2958 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2959 	 * In that case have to also ensure the blkno remains correct
2960 	 */
2961 	memcpy(cblock, block, xfs_btree_block_len(cur));
2962 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2963 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2964 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2965 		else
2966 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2967 	}
2968 
2969 	be16_add_cpu(&block->bb_level, 1);
2970 	xfs_btree_set_numrecs(block, 1);
2971 	cur->bc_nlevels++;
2972 	cur->bc_ptrs[level + 1] = 1;
2973 
2974 	kp = xfs_btree_key_addr(cur, 1, block);
2975 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2976 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2977 
2978 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2979 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2980 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2981 		if (error)
2982 			goto error0;
2983 	}
2984 
2985 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2986 
2987 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2988 	if (error)
2989 		goto error0;
2990 
2991 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2992 
2993 	xfs_iroot_realloc(cur->bc_private.b.ip,
2994 			  1 - xfs_btree_get_numrecs(cblock),
2995 			  cur->bc_private.b.whichfork);
2996 
2997 	xfs_btree_setbuf(cur, level, cbp);
2998 
2999 	/*
3000 	 * Do all this logging at the end so that
3001 	 * the root is at the right level.
3002 	 */
3003 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3004 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3005 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3006 
3007 	*logflags |=
3008 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3009 	*stat = 1;
3010 	return 0;
3011 error0:
3012 	return error;
3013 }
3014 
3015 /*
3016  * Allocate a new root block, fill it in.
3017  */
3018 STATIC int				/* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3019 xfs_btree_new_root(
3020 	struct xfs_btree_cur	*cur,	/* btree cursor */
3021 	int			*stat)	/* success/failure */
3022 {
3023 	struct xfs_btree_block	*block;	/* one half of the old root block */
3024 	struct xfs_buf		*bp;	/* buffer containing block */
3025 	int			error;	/* error return value */
3026 	struct xfs_buf		*lbp;	/* left buffer pointer */
3027 	struct xfs_btree_block	*left;	/* left btree block */
3028 	struct xfs_buf		*nbp;	/* new (root) buffer */
3029 	struct xfs_btree_block	*new;	/* new (root) btree block */
3030 	int			nptr;	/* new value for key index, 1 or 2 */
3031 	struct xfs_buf		*rbp;	/* right buffer pointer */
3032 	struct xfs_btree_block	*right;	/* right btree block */
3033 	union xfs_btree_ptr	rptr;
3034 	union xfs_btree_ptr	lptr;
3035 
3036 	XFS_BTREE_STATS_INC(cur, newroot);
3037 
3038 	/* initialise our start point from the cursor */
3039 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3040 
3041 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3042 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3043 	if (error)
3044 		goto error0;
3045 	if (*stat == 0)
3046 		goto out0;
3047 	XFS_BTREE_STATS_INC(cur, alloc);
3048 
3049 	/* Set up the new block. */
3050 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3051 	if (error)
3052 		goto error0;
3053 
3054 	/* Set the root in the holding structure  increasing the level by 1. */
3055 	cur->bc_ops->set_root(cur, &lptr, 1);
3056 
3057 	/*
3058 	 * At the previous root level there are now two blocks: the old root,
3059 	 * and the new block generated when it was split.  We don't know which
3060 	 * one the cursor is pointing at, so we set up variables "left" and
3061 	 * "right" for each case.
3062 	 */
3063 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3064 
3065 #ifdef DEBUG
3066 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3067 	if (error)
3068 		goto error0;
3069 #endif
3070 
3071 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3072 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3073 		/* Our block is left, pick up the right block. */
3074 		lbp = bp;
3075 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3076 		left = block;
3077 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3078 		if (error)
3079 			goto error0;
3080 		bp = rbp;
3081 		nptr = 1;
3082 	} else {
3083 		/* Our block is right, pick up the left block. */
3084 		rbp = bp;
3085 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3086 		right = block;
3087 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3088 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3089 		if (error)
3090 			goto error0;
3091 		bp = lbp;
3092 		nptr = 2;
3093 	}
3094 
3095 	/* Fill in the new block's btree header and log it. */
3096 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3097 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3098 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3099 			!xfs_btree_ptr_is_null(cur, &rptr));
3100 
3101 	/* Fill in the key data in the new root. */
3102 	if (xfs_btree_get_level(left) > 0) {
3103 		/*
3104 		 * Get the keys for the left block's keys and put them directly
3105 		 * in the parent block.  Do the same for the right block.
3106 		 */
3107 		xfs_btree_get_node_keys(cur, left,
3108 				xfs_btree_key_addr(cur, 1, new));
3109 		xfs_btree_get_node_keys(cur, right,
3110 				xfs_btree_key_addr(cur, 2, new));
3111 	} else {
3112 		/*
3113 		 * Get the keys for the left block's records and put them
3114 		 * directly in the parent block.  Do the same for the right
3115 		 * block.
3116 		 */
3117 		xfs_btree_get_leaf_keys(cur, left,
3118 			xfs_btree_key_addr(cur, 1, new));
3119 		xfs_btree_get_leaf_keys(cur, right,
3120 			xfs_btree_key_addr(cur, 2, new));
3121 	}
3122 	xfs_btree_log_keys(cur, nbp, 1, 2);
3123 
3124 	/* Fill in the pointer data in the new root. */
3125 	xfs_btree_copy_ptrs(cur,
3126 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3127 	xfs_btree_copy_ptrs(cur,
3128 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3129 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3130 
3131 	/* Fix up the cursor. */
3132 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3133 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3134 	cur->bc_nlevels++;
3135 	*stat = 1;
3136 	return 0;
3137 error0:
3138 	return error;
3139 out0:
3140 	*stat = 0;
3141 	return 0;
3142 }
3143 
3144 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3145 xfs_btree_make_block_unfull(
3146 	struct xfs_btree_cur	*cur,	/* btree cursor */
3147 	int			level,	/* btree level */
3148 	int			numrecs,/* # of recs in block */
3149 	int			*oindex,/* old tree index */
3150 	int			*index,	/* new tree index */
3151 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3152 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3153 	union xfs_btree_key	*key,	/* key of new block */
3154 	int			*stat)
3155 {
3156 	int			error = 0;
3157 
3158 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3159 	    level == cur->bc_nlevels - 1) {
3160 		struct xfs_inode *ip = cur->bc_private.b.ip;
3161 
3162 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3163 			/* A root block that can be made bigger. */
3164 			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3165 			*stat = 1;
3166 		} else {
3167 			/* A root block that needs replacing */
3168 			int	logflags = 0;
3169 
3170 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3171 			if (error || *stat == 0)
3172 				return error;
3173 
3174 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3175 		}
3176 
3177 		return 0;
3178 	}
3179 
3180 	/* First, try shifting an entry to the right neighbor. */
3181 	error = xfs_btree_rshift(cur, level, stat);
3182 	if (error || *stat)
3183 		return error;
3184 
3185 	/* Next, try shifting an entry to the left neighbor. */
3186 	error = xfs_btree_lshift(cur, level, stat);
3187 	if (error)
3188 		return error;
3189 
3190 	if (*stat) {
3191 		*oindex = *index = cur->bc_ptrs[level];
3192 		return 0;
3193 	}
3194 
3195 	/*
3196 	 * Next, try splitting the current block in half.
3197 	 *
3198 	 * If this works we have to re-set our variables because we
3199 	 * could be in a different block now.
3200 	 */
3201 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3202 	if (error || *stat == 0)
3203 		return error;
3204 
3205 
3206 	*index = cur->bc_ptrs[level];
3207 	return 0;
3208 }
3209 
3210 /*
3211  * Insert one record/level.  Return information to the caller
3212  * allowing the next level up to proceed if necessary.
3213  */
3214 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3215 xfs_btree_insrec(
3216 	struct xfs_btree_cur	*cur,	/* btree cursor */
3217 	int			level,	/* level to insert record at */
3218 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3219 	union xfs_btree_rec	*rec,	/* record to insert */
3220 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3221 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3222 	int			*stat)	/* success/failure */
3223 {
3224 	struct xfs_btree_block	*block;	/* btree block */
3225 	struct xfs_buf		*bp;	/* buffer for block */
3226 	union xfs_btree_ptr	nptr;	/* new block ptr */
3227 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3228 	union xfs_btree_key	nkey;	/* new block key */
3229 	union xfs_btree_key	*lkey;
3230 	int			optr;	/* old key/record index */
3231 	int			ptr;	/* key/record index */
3232 	int			numrecs;/* number of records */
3233 	int			error;	/* error return value */
3234 	int			i;
3235 	xfs_daddr_t		old_bn;
3236 
3237 	ncur = NULL;
3238 	lkey = &nkey;
3239 
3240 	/*
3241 	 * If we have an external root pointer, and we've made it to the
3242 	 * root level, allocate a new root block and we're done.
3243 	 */
3244 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 	    (level >= cur->bc_nlevels)) {
3246 		error = xfs_btree_new_root(cur, stat);
3247 		xfs_btree_set_ptr_null(cur, ptrp);
3248 
3249 		return error;
3250 	}
3251 
3252 	/* If we're off the left edge, return failure. */
3253 	ptr = cur->bc_ptrs[level];
3254 	if (ptr == 0) {
3255 		*stat = 0;
3256 		return 0;
3257 	}
3258 
3259 	optr = ptr;
3260 
3261 	XFS_BTREE_STATS_INC(cur, insrec);
3262 
3263 	/* Get pointers to the btree buffer and block. */
3264 	block = xfs_btree_get_block(cur, level, &bp);
3265 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266 	numrecs = xfs_btree_get_numrecs(block);
3267 
3268 #ifdef DEBUG
3269 	error = xfs_btree_check_block(cur, block, level, bp);
3270 	if (error)
3271 		goto error0;
3272 
3273 	/* Check that the new entry is being inserted in the right place. */
3274 	if (ptr <= numrecs) {
3275 		if (level == 0) {
3276 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277 				xfs_btree_rec_addr(cur, ptr, block)));
3278 		} else {
3279 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280 				xfs_btree_key_addr(cur, ptr, block)));
3281 		}
3282 	}
3283 #endif
3284 
3285 	/*
3286 	 * If the block is full, we can't insert the new entry until we
3287 	 * make the block un-full.
3288 	 */
3289 	xfs_btree_set_ptr_null(cur, &nptr);
3290 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3293 		if (error || *stat == 0)
3294 			goto error0;
3295 	}
3296 
3297 	/*
3298 	 * The current block may have changed if the block was
3299 	 * previously full and we have just made space in it.
3300 	 */
3301 	block = xfs_btree_get_block(cur, level, &bp);
3302 	numrecs = xfs_btree_get_numrecs(block);
3303 
3304 #ifdef DEBUG
3305 	error = xfs_btree_check_block(cur, block, level, bp);
3306 	if (error)
3307 		return error;
3308 #endif
3309 
3310 	/*
3311 	 * At this point we know there's room for our new entry in the block
3312 	 * we're pointing at.
3313 	 */
3314 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315 
3316 	if (level > 0) {
3317 		/* It's a nonleaf. make a hole in the keys and ptrs */
3318 		union xfs_btree_key	*kp;
3319 		union xfs_btree_ptr	*pp;
3320 
3321 		kp = xfs_btree_key_addr(cur, ptr, block);
3322 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3323 
3324 		for (i = numrecs - ptr; i >= 0; i--) {
3325 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3326 			if (error)
3327 				return error;
3328 		}
3329 
3330 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3331 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3332 
3333 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3334 		if (error)
3335 			goto error0;
3336 
3337 		/* Now put the new data in, bump numrecs and log it. */
3338 		xfs_btree_copy_keys(cur, kp, key, 1);
3339 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3340 		numrecs++;
3341 		xfs_btree_set_numrecs(block, numrecs);
3342 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3343 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3344 #ifdef DEBUG
3345 		if (ptr < numrecs) {
3346 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3347 				xfs_btree_key_addr(cur, ptr + 1, block)));
3348 		}
3349 #endif
3350 	} else {
3351 		/* It's a leaf. make a hole in the records */
3352 		union xfs_btree_rec             *rp;
3353 
3354 		rp = xfs_btree_rec_addr(cur, ptr, block);
3355 
3356 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3357 
3358 		/* Now put the new data in, bump numrecs and log it. */
3359 		xfs_btree_copy_recs(cur, rp, rec, 1);
3360 		xfs_btree_set_numrecs(block, ++numrecs);
3361 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3362 #ifdef DEBUG
3363 		if (ptr < numrecs) {
3364 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3365 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3366 		}
3367 #endif
3368 	}
3369 
3370 	/* Log the new number of records in the btree header. */
3371 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3372 
3373 	/*
3374 	 * If we just inserted into a new tree block, we have to
3375 	 * recalculate nkey here because nkey is out of date.
3376 	 *
3377 	 * Otherwise we're just updating an existing block (having shoved
3378 	 * some records into the new tree block), so use the regular key
3379 	 * update mechanism.
3380 	 */
3381 	if (bp && bp->b_bn != old_bn) {
3382 		xfs_btree_get_keys(cur, block, lkey);
3383 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3384 		error = xfs_btree_update_keys(cur, level);
3385 		if (error)
3386 			goto error0;
3387 	}
3388 
3389 	/*
3390 	 * If we are tracking the last record in the tree and
3391 	 * we are at the far right edge of the tree, update it.
3392 	 */
3393 	if (xfs_btree_is_lastrec(cur, block, level)) {
3394 		cur->bc_ops->update_lastrec(cur, block, rec,
3395 					    ptr, LASTREC_INSREC);
3396 	}
3397 
3398 	/*
3399 	 * Return the new block number, if any.
3400 	 * If there is one, give back a record value and a cursor too.
3401 	 */
3402 	*ptrp = nptr;
3403 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3404 		xfs_btree_copy_keys(cur, key, lkey, 1);
3405 		*curp = ncur;
3406 	}
3407 
3408 	*stat = 1;
3409 	return 0;
3410 
3411 error0:
3412 	return error;
3413 }
3414 
3415 /*
3416  * Insert the record at the point referenced by cur.
3417  *
3418  * A multi-level split of the tree on insert will invalidate the original
3419  * cursor.  All callers of this function should assume that the cursor is
3420  * no longer valid and revalidate it.
3421  */
3422 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3423 xfs_btree_insert(
3424 	struct xfs_btree_cur	*cur,
3425 	int			*stat)
3426 {
3427 	int			error;	/* error return value */
3428 	int			i;	/* result value, 0 for failure */
3429 	int			level;	/* current level number in btree */
3430 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3431 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3432 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3433 	union xfs_btree_key	bkey;	/* key of block to insert */
3434 	union xfs_btree_key	*key;
3435 	union xfs_btree_rec	rec;	/* record to insert */
3436 
3437 	level = 0;
3438 	ncur = NULL;
3439 	pcur = cur;
3440 	key = &bkey;
3441 
3442 	xfs_btree_set_ptr_null(cur, &nptr);
3443 
3444 	/* Make a key out of the record data to be inserted, and save it. */
3445 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3446 	cur->bc_ops->init_key_from_rec(key, &rec);
3447 
3448 	/*
3449 	 * Loop going up the tree, starting at the leaf level.
3450 	 * Stop when we don't get a split block, that must mean that
3451 	 * the insert is finished with this level.
3452 	 */
3453 	do {
3454 		/*
3455 		 * Insert nrec/nptr into this level of the tree.
3456 		 * Note if we fail, nptr will be null.
3457 		 */
3458 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3459 				&ncur, &i);
3460 		if (error) {
3461 			if (pcur != cur)
3462 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3463 			goto error0;
3464 		}
3465 
3466 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3467 		level++;
3468 
3469 		/*
3470 		 * See if the cursor we just used is trash.
3471 		 * Can't trash the caller's cursor, but otherwise we should
3472 		 * if ncur is a new cursor or we're about to be done.
3473 		 */
3474 		if (pcur != cur &&
3475 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3476 			/* Save the state from the cursor before we trash it */
3477 			if (cur->bc_ops->update_cursor)
3478 				cur->bc_ops->update_cursor(pcur, cur);
3479 			cur->bc_nlevels = pcur->bc_nlevels;
3480 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3481 		}
3482 		/* If we got a new cursor, switch to it. */
3483 		if (ncur) {
3484 			pcur = ncur;
3485 			ncur = NULL;
3486 		}
3487 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3488 
3489 	*stat = i;
3490 	return 0;
3491 error0:
3492 	return error;
3493 }
3494 
3495 /*
3496  * Try to merge a non-leaf block back into the inode root.
3497  *
3498  * Note: the killroot names comes from the fact that we're effectively
3499  * killing the old root block.  But because we can't just delete the
3500  * inode we have to copy the single block it was pointing to into the
3501  * inode.
3502  */
3503 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3504 xfs_btree_kill_iroot(
3505 	struct xfs_btree_cur	*cur)
3506 {
3507 	int			whichfork = cur->bc_private.b.whichfork;
3508 	struct xfs_inode	*ip = cur->bc_private.b.ip;
3509 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3510 	struct xfs_btree_block	*block;
3511 	struct xfs_btree_block	*cblock;
3512 	union xfs_btree_key	*kp;
3513 	union xfs_btree_key	*ckp;
3514 	union xfs_btree_ptr	*pp;
3515 	union xfs_btree_ptr	*cpp;
3516 	struct xfs_buf		*cbp;
3517 	int			level;
3518 	int			index;
3519 	int			numrecs;
3520 	int			error;
3521 #ifdef DEBUG
3522 	union xfs_btree_ptr	ptr;
3523 #endif
3524 	int			i;
3525 
3526 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3527 	ASSERT(cur->bc_nlevels > 1);
3528 
3529 	/*
3530 	 * Don't deal with the root block needs to be a leaf case.
3531 	 * We're just going to turn the thing back into extents anyway.
3532 	 */
3533 	level = cur->bc_nlevels - 1;
3534 	if (level == 1)
3535 		goto out0;
3536 
3537 	/*
3538 	 * Give up if the root has multiple children.
3539 	 */
3540 	block = xfs_btree_get_iroot(cur);
3541 	if (xfs_btree_get_numrecs(block) != 1)
3542 		goto out0;
3543 
3544 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3545 	numrecs = xfs_btree_get_numrecs(cblock);
3546 
3547 	/*
3548 	 * Only do this if the next level will fit.
3549 	 * Then the data must be copied up to the inode,
3550 	 * instead of freeing the root you free the next level.
3551 	 */
3552 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3553 		goto out0;
3554 
3555 	XFS_BTREE_STATS_INC(cur, killroot);
3556 
3557 #ifdef DEBUG
3558 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3559 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3560 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3561 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3562 #endif
3563 
3564 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3565 	if (index) {
3566 		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3567 				  cur->bc_private.b.whichfork);
3568 		block = ifp->if_broot;
3569 	}
3570 
3571 	be16_add_cpu(&block->bb_numrecs, index);
3572 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3573 
3574 	kp = xfs_btree_key_addr(cur, 1, block);
3575 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3576 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3577 
3578 	pp = xfs_btree_ptr_addr(cur, 1, block);
3579 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3580 
3581 	for (i = 0; i < numrecs; i++) {
3582 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3583 		if (error)
3584 			return error;
3585 	}
3586 
3587 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3588 
3589 	error = xfs_btree_free_block(cur, cbp);
3590 	if (error)
3591 		return error;
3592 
3593 	cur->bc_bufs[level - 1] = NULL;
3594 	be16_add_cpu(&block->bb_level, -1);
3595 	xfs_trans_log_inode(cur->bc_tp, ip,
3596 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3597 	cur->bc_nlevels--;
3598 out0:
3599 	return 0;
3600 }
3601 
3602 /*
3603  * Kill the current root node, and replace it with it's only child node.
3604  */
3605 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3606 xfs_btree_kill_root(
3607 	struct xfs_btree_cur	*cur,
3608 	struct xfs_buf		*bp,
3609 	int			level,
3610 	union xfs_btree_ptr	*newroot)
3611 {
3612 	int			error;
3613 
3614 	XFS_BTREE_STATS_INC(cur, killroot);
3615 
3616 	/*
3617 	 * Update the root pointer, decreasing the level by 1 and then
3618 	 * free the old root.
3619 	 */
3620 	cur->bc_ops->set_root(cur, newroot, -1);
3621 
3622 	error = xfs_btree_free_block(cur, bp);
3623 	if (error)
3624 		return error;
3625 
3626 	cur->bc_bufs[level] = NULL;
3627 	cur->bc_ra[level] = 0;
3628 	cur->bc_nlevels--;
3629 
3630 	return 0;
3631 }
3632 
3633 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3634 xfs_btree_dec_cursor(
3635 	struct xfs_btree_cur	*cur,
3636 	int			level,
3637 	int			*stat)
3638 {
3639 	int			error;
3640 	int			i;
3641 
3642 	if (level > 0) {
3643 		error = xfs_btree_decrement(cur, level, &i);
3644 		if (error)
3645 			return error;
3646 	}
3647 
3648 	*stat = 1;
3649 	return 0;
3650 }
3651 
3652 /*
3653  * Single level of the btree record deletion routine.
3654  * Delete record pointed to by cur/level.
3655  * Remove the record from its block then rebalance the tree.
3656  * Return 0 for error, 1 for done, 2 to go on to the next level.
3657  */
3658 STATIC int					/* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3659 xfs_btree_delrec(
3660 	struct xfs_btree_cur	*cur,		/* btree cursor */
3661 	int			level,		/* level removing record from */
3662 	int			*stat)		/* fail/done/go-on */
3663 {
3664 	struct xfs_btree_block	*block;		/* btree block */
3665 	union xfs_btree_ptr	cptr;		/* current block ptr */
3666 	struct xfs_buf		*bp;		/* buffer for block */
3667 	int			error;		/* error return value */
3668 	int			i;		/* loop counter */
3669 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3670 	struct xfs_buf		*lbp;		/* left buffer pointer */
3671 	struct xfs_btree_block	*left;		/* left btree block */
3672 	int			lrecs = 0;	/* left record count */
3673 	int			ptr;		/* key/record index */
3674 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3675 	struct xfs_buf		*rbp;		/* right buffer pointer */
3676 	struct xfs_btree_block	*right;		/* right btree block */
3677 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3678 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3679 	int			rrecs = 0;	/* right record count */
3680 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3681 	int			numrecs;	/* temporary numrec count */
3682 
3683 	tcur = NULL;
3684 
3685 	/* Get the index of the entry being deleted, check for nothing there. */
3686 	ptr = cur->bc_ptrs[level];
3687 	if (ptr == 0) {
3688 		*stat = 0;
3689 		return 0;
3690 	}
3691 
3692 	/* Get the buffer & block containing the record or key/ptr. */
3693 	block = xfs_btree_get_block(cur, level, &bp);
3694 	numrecs = xfs_btree_get_numrecs(block);
3695 
3696 #ifdef DEBUG
3697 	error = xfs_btree_check_block(cur, block, level, bp);
3698 	if (error)
3699 		goto error0;
3700 #endif
3701 
3702 	/* Fail if we're off the end of the block. */
3703 	if (ptr > numrecs) {
3704 		*stat = 0;
3705 		return 0;
3706 	}
3707 
3708 	XFS_BTREE_STATS_INC(cur, delrec);
3709 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3710 
3711 	/* Excise the entries being deleted. */
3712 	if (level > 0) {
3713 		/* It's a nonleaf. operate on keys and ptrs */
3714 		union xfs_btree_key	*lkp;
3715 		union xfs_btree_ptr	*lpp;
3716 
3717 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3718 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3719 
3720 		for (i = 0; i < numrecs - ptr; i++) {
3721 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3722 			if (error)
3723 				goto error0;
3724 		}
3725 
3726 		if (ptr < numrecs) {
3727 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3728 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3729 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3730 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3731 		}
3732 	} else {
3733 		/* It's a leaf. operate on records */
3734 		if (ptr < numrecs) {
3735 			xfs_btree_shift_recs(cur,
3736 				xfs_btree_rec_addr(cur, ptr + 1, block),
3737 				-1, numrecs - ptr);
3738 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3739 		}
3740 	}
3741 
3742 	/*
3743 	 * Decrement and log the number of entries in the block.
3744 	 */
3745 	xfs_btree_set_numrecs(block, --numrecs);
3746 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3747 
3748 	/*
3749 	 * If we are tracking the last record in the tree and
3750 	 * we are at the far right edge of the tree, update it.
3751 	 */
3752 	if (xfs_btree_is_lastrec(cur, block, level)) {
3753 		cur->bc_ops->update_lastrec(cur, block, NULL,
3754 					    ptr, LASTREC_DELREC);
3755 	}
3756 
3757 	/*
3758 	 * We're at the root level.  First, shrink the root block in-memory.
3759 	 * Try to get rid of the next level down.  If we can't then there's
3760 	 * nothing left to do.
3761 	 */
3762 	if (level == cur->bc_nlevels - 1) {
3763 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3764 			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3765 					  cur->bc_private.b.whichfork);
3766 
3767 			error = xfs_btree_kill_iroot(cur);
3768 			if (error)
3769 				goto error0;
3770 
3771 			error = xfs_btree_dec_cursor(cur, level, stat);
3772 			if (error)
3773 				goto error0;
3774 			*stat = 1;
3775 			return 0;
3776 		}
3777 
3778 		/*
3779 		 * If this is the root level, and there's only one entry left,
3780 		 * and it's NOT the leaf level, then we can get rid of this
3781 		 * level.
3782 		 */
3783 		if (numrecs == 1 && level > 0) {
3784 			union xfs_btree_ptr	*pp;
3785 			/*
3786 			 * pp is still set to the first pointer in the block.
3787 			 * Make it the new root of the btree.
3788 			 */
3789 			pp = xfs_btree_ptr_addr(cur, 1, block);
3790 			error = xfs_btree_kill_root(cur, bp, level, pp);
3791 			if (error)
3792 				goto error0;
3793 		} else if (level > 0) {
3794 			error = xfs_btree_dec_cursor(cur, level, stat);
3795 			if (error)
3796 				goto error0;
3797 		}
3798 		*stat = 1;
3799 		return 0;
3800 	}
3801 
3802 	/*
3803 	 * If we deleted the leftmost entry in the block, update the
3804 	 * key values above us in the tree.
3805 	 */
3806 	if (xfs_btree_needs_key_update(cur, ptr)) {
3807 		error = xfs_btree_update_keys(cur, level);
3808 		if (error)
3809 			goto error0;
3810 	}
3811 
3812 	/*
3813 	 * If the number of records remaining in the block is at least
3814 	 * the minimum, we're done.
3815 	 */
3816 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3817 		error = xfs_btree_dec_cursor(cur, level, stat);
3818 		if (error)
3819 			goto error0;
3820 		return 0;
3821 	}
3822 
3823 	/*
3824 	 * Otherwise, we have to move some records around to keep the
3825 	 * tree balanced.  Look at the left and right sibling blocks to
3826 	 * see if we can re-balance by moving only one record.
3827 	 */
3828 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3829 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3830 
3831 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3832 		/*
3833 		 * One child of root, need to get a chance to copy its contents
3834 		 * into the root and delete it. Can't go up to next level,
3835 		 * there's nothing to delete there.
3836 		 */
3837 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3838 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3839 		    level == cur->bc_nlevels - 2) {
3840 			error = xfs_btree_kill_iroot(cur);
3841 			if (!error)
3842 				error = xfs_btree_dec_cursor(cur, level, stat);
3843 			if (error)
3844 				goto error0;
3845 			return 0;
3846 		}
3847 	}
3848 
3849 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3850 	       !xfs_btree_ptr_is_null(cur, &lptr));
3851 
3852 	/*
3853 	 * Duplicate the cursor so our btree manipulations here won't
3854 	 * disrupt the next level up.
3855 	 */
3856 	error = xfs_btree_dup_cursor(cur, &tcur);
3857 	if (error)
3858 		goto error0;
3859 
3860 	/*
3861 	 * If there's a right sibling, see if it's ok to shift an entry
3862 	 * out of it.
3863 	 */
3864 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3865 		/*
3866 		 * Move the temp cursor to the last entry in the next block.
3867 		 * Actually any entry but the first would suffice.
3868 		 */
3869 		i = xfs_btree_lastrec(tcur, level);
3870 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3871 
3872 		error = xfs_btree_increment(tcur, level, &i);
3873 		if (error)
3874 			goto error0;
3875 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3876 
3877 		i = xfs_btree_lastrec(tcur, level);
3878 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3879 
3880 		/* Grab a pointer to the block. */
3881 		right = xfs_btree_get_block(tcur, level, &rbp);
3882 #ifdef DEBUG
3883 		error = xfs_btree_check_block(tcur, right, level, rbp);
3884 		if (error)
3885 			goto error0;
3886 #endif
3887 		/* Grab the current block number, for future use. */
3888 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3889 
3890 		/*
3891 		 * If right block is full enough so that removing one entry
3892 		 * won't make it too empty, and left-shifting an entry out
3893 		 * of right to us works, we're done.
3894 		 */
3895 		if (xfs_btree_get_numrecs(right) - 1 >=
3896 		    cur->bc_ops->get_minrecs(tcur, level)) {
3897 			error = xfs_btree_lshift(tcur, level, &i);
3898 			if (error)
3899 				goto error0;
3900 			if (i) {
3901 				ASSERT(xfs_btree_get_numrecs(block) >=
3902 				       cur->bc_ops->get_minrecs(tcur, level));
3903 
3904 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3905 				tcur = NULL;
3906 
3907 				error = xfs_btree_dec_cursor(cur, level, stat);
3908 				if (error)
3909 					goto error0;
3910 				return 0;
3911 			}
3912 		}
3913 
3914 		/*
3915 		 * Otherwise, grab the number of records in right for
3916 		 * future reference, and fix up the temp cursor to point
3917 		 * to our block again (last record).
3918 		 */
3919 		rrecs = xfs_btree_get_numrecs(right);
3920 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3921 			i = xfs_btree_firstrec(tcur, level);
3922 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3923 
3924 			error = xfs_btree_decrement(tcur, level, &i);
3925 			if (error)
3926 				goto error0;
3927 			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3928 		}
3929 	}
3930 
3931 	/*
3932 	 * If there's a left sibling, see if it's ok to shift an entry
3933 	 * out of it.
3934 	 */
3935 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3936 		/*
3937 		 * Move the temp cursor to the first entry in the
3938 		 * previous block.
3939 		 */
3940 		i = xfs_btree_firstrec(tcur, level);
3941 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3942 
3943 		error = xfs_btree_decrement(tcur, level, &i);
3944 		if (error)
3945 			goto error0;
3946 		i = xfs_btree_firstrec(tcur, level);
3947 		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948 
3949 		/* Grab a pointer to the block. */
3950 		left = xfs_btree_get_block(tcur, level, &lbp);
3951 #ifdef DEBUG
3952 		error = xfs_btree_check_block(cur, left, level, lbp);
3953 		if (error)
3954 			goto error0;
3955 #endif
3956 		/* Grab the current block number, for future use. */
3957 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3958 
3959 		/*
3960 		 * If left block is full enough so that removing one entry
3961 		 * won't make it too empty, and right-shifting an entry out
3962 		 * of left to us works, we're done.
3963 		 */
3964 		if (xfs_btree_get_numrecs(left) - 1 >=
3965 		    cur->bc_ops->get_minrecs(tcur, level)) {
3966 			error = xfs_btree_rshift(tcur, level, &i);
3967 			if (error)
3968 				goto error0;
3969 			if (i) {
3970 				ASSERT(xfs_btree_get_numrecs(block) >=
3971 				       cur->bc_ops->get_minrecs(tcur, level));
3972 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3973 				tcur = NULL;
3974 				if (level == 0)
3975 					cur->bc_ptrs[0]++;
3976 
3977 				*stat = 1;
3978 				return 0;
3979 			}
3980 		}
3981 
3982 		/*
3983 		 * Otherwise, grab the number of records in right for
3984 		 * future reference.
3985 		 */
3986 		lrecs = xfs_btree_get_numrecs(left);
3987 	}
3988 
3989 	/* Delete the temp cursor, we're done with it. */
3990 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3991 	tcur = NULL;
3992 
3993 	/* If here, we need to do a join to keep the tree balanced. */
3994 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3995 
3996 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3997 	    lrecs + xfs_btree_get_numrecs(block) <=
3998 			cur->bc_ops->get_maxrecs(cur, level)) {
3999 		/*
4000 		 * Set "right" to be the starting block,
4001 		 * "left" to be the left neighbor.
4002 		 */
4003 		rptr = cptr;
4004 		right = block;
4005 		rbp = bp;
4006 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4007 		if (error)
4008 			goto error0;
4009 
4010 	/*
4011 	 * If that won't work, see if we can join with the right neighbor block.
4012 	 */
4013 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4014 		   rrecs + xfs_btree_get_numrecs(block) <=
4015 			cur->bc_ops->get_maxrecs(cur, level)) {
4016 		/*
4017 		 * Set "left" to be the starting block,
4018 		 * "right" to be the right neighbor.
4019 		 */
4020 		lptr = cptr;
4021 		left = block;
4022 		lbp = bp;
4023 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4024 		if (error)
4025 			goto error0;
4026 
4027 	/*
4028 	 * Otherwise, we can't fix the imbalance.
4029 	 * Just return.  This is probably a logic error, but it's not fatal.
4030 	 */
4031 	} else {
4032 		error = xfs_btree_dec_cursor(cur, level, stat);
4033 		if (error)
4034 			goto error0;
4035 		return 0;
4036 	}
4037 
4038 	rrecs = xfs_btree_get_numrecs(right);
4039 	lrecs = xfs_btree_get_numrecs(left);
4040 
4041 	/*
4042 	 * We're now going to join "left" and "right" by moving all the stuff
4043 	 * in "right" to "left" and deleting "right".
4044 	 */
4045 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4046 	if (level > 0) {
4047 		/* It's a non-leaf.  Move keys and pointers. */
4048 		union xfs_btree_key	*lkp;	/* left btree key */
4049 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4050 		union xfs_btree_key	*rkp;	/* right btree key */
4051 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4052 
4053 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4054 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4055 		rkp = xfs_btree_key_addr(cur, 1, right);
4056 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4057 
4058 		for (i = 1; i < rrecs; i++) {
4059 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4060 			if (error)
4061 				goto error0;
4062 		}
4063 
4064 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4065 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4066 
4067 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4068 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4069 	} else {
4070 		/* It's a leaf.  Move records.  */
4071 		union xfs_btree_rec	*lrp;	/* left record pointer */
4072 		union xfs_btree_rec	*rrp;	/* right record pointer */
4073 
4074 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4075 		rrp = xfs_btree_rec_addr(cur, 1, right);
4076 
4077 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4078 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4079 	}
4080 
4081 	XFS_BTREE_STATS_INC(cur, join);
4082 
4083 	/*
4084 	 * Fix up the number of records and right block pointer in the
4085 	 * surviving block, and log it.
4086 	 */
4087 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4088 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4089 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4090 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4091 
4092 	/* If there is a right sibling, point it to the remaining block. */
4093 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4094 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4095 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4096 		if (error)
4097 			goto error0;
4098 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4099 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4100 	}
4101 
4102 	/* Free the deleted block. */
4103 	error = xfs_btree_free_block(cur, rbp);
4104 	if (error)
4105 		goto error0;
4106 
4107 	/*
4108 	 * If we joined with the left neighbor, set the buffer in the
4109 	 * cursor to the left block, and fix up the index.
4110 	 */
4111 	if (bp != lbp) {
4112 		cur->bc_bufs[level] = lbp;
4113 		cur->bc_ptrs[level] += lrecs;
4114 		cur->bc_ra[level] = 0;
4115 	}
4116 	/*
4117 	 * If we joined with the right neighbor and there's a level above
4118 	 * us, increment the cursor at that level.
4119 	 */
4120 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4121 		   (level + 1 < cur->bc_nlevels)) {
4122 		error = xfs_btree_increment(cur, level + 1, &i);
4123 		if (error)
4124 			goto error0;
4125 	}
4126 
4127 	/*
4128 	 * Readjust the ptr at this level if it's not a leaf, since it's
4129 	 * still pointing at the deletion point, which makes the cursor
4130 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4131 	 * We can't use decrement because it would change the next level up.
4132 	 */
4133 	if (level > 0)
4134 		cur->bc_ptrs[level]--;
4135 
4136 	/*
4137 	 * We combined blocks, so we have to update the parent keys if the
4138 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4139 	 * points to the old block so that the caller knows which record to
4140 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4141 	 * for us if we return stat == 2.  The other exit points from this
4142 	 * function don't require deletions further up the tree, so they can
4143 	 * call updkeys directly.
4144 	 */
4145 
4146 	/* Return value means the next level up has something to do. */
4147 	*stat = 2;
4148 	return 0;
4149 
4150 error0:
4151 	if (tcur)
4152 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4153 	return error;
4154 }
4155 
4156 /*
4157  * Delete the record pointed to by cur.
4158  * The cursor refers to the place where the record was (could be inserted)
4159  * when the operation returns.
4160  */
4161 int					/* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4162 xfs_btree_delete(
4163 	struct xfs_btree_cur	*cur,
4164 	int			*stat)	/* success/failure */
4165 {
4166 	int			error;	/* error return value */
4167 	int			level;
4168 	int			i;
4169 	bool			joined = false;
4170 
4171 	/*
4172 	 * Go up the tree, starting at leaf level.
4173 	 *
4174 	 * If 2 is returned then a join was done; go to the next level.
4175 	 * Otherwise we are done.
4176 	 */
4177 	for (level = 0, i = 2; i == 2; level++) {
4178 		error = xfs_btree_delrec(cur, level, &i);
4179 		if (error)
4180 			goto error0;
4181 		if (i == 2)
4182 			joined = true;
4183 	}
4184 
4185 	/*
4186 	 * If we combined blocks as part of deleting the record, delrec won't
4187 	 * have updated the parent high keys so we have to do that here.
4188 	 */
4189 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4190 		error = xfs_btree_updkeys_force(cur, 0);
4191 		if (error)
4192 			goto error0;
4193 	}
4194 
4195 	if (i == 0) {
4196 		for (level = 1; level < cur->bc_nlevels; level++) {
4197 			if (cur->bc_ptrs[level] == 0) {
4198 				error = xfs_btree_decrement(cur, level, &i);
4199 				if (error)
4200 					goto error0;
4201 				break;
4202 			}
4203 		}
4204 	}
4205 
4206 	*stat = i;
4207 	return 0;
4208 error0:
4209 	return error;
4210 }
4211 
4212 /*
4213  * Get the data from the pointed-to record.
4214  */
4215 int					/* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4216 xfs_btree_get_rec(
4217 	struct xfs_btree_cur	*cur,	/* btree cursor */
4218 	union xfs_btree_rec	**recp,	/* output: btree record */
4219 	int			*stat)	/* output: success/failure */
4220 {
4221 	struct xfs_btree_block	*block;	/* btree block */
4222 	struct xfs_buf		*bp;	/* buffer pointer */
4223 	int			ptr;	/* record number */
4224 #ifdef DEBUG
4225 	int			error;	/* error return value */
4226 #endif
4227 
4228 	ptr = cur->bc_ptrs[0];
4229 	block = xfs_btree_get_block(cur, 0, &bp);
4230 
4231 #ifdef DEBUG
4232 	error = xfs_btree_check_block(cur, block, 0, bp);
4233 	if (error)
4234 		return error;
4235 #endif
4236 
4237 	/*
4238 	 * Off the right end or left end, return failure.
4239 	 */
4240 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4241 		*stat = 0;
4242 		return 0;
4243 	}
4244 
4245 	/*
4246 	 * Point to the record and extract its data.
4247 	 */
4248 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4249 	*stat = 1;
4250 	return 0;
4251 }
4252 
4253 /* Visit a block in a btree. */
4254 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4255 xfs_btree_visit_block(
4256 	struct xfs_btree_cur		*cur,
4257 	int				level,
4258 	xfs_btree_visit_blocks_fn	fn,
4259 	void				*data)
4260 {
4261 	struct xfs_btree_block		*block;
4262 	struct xfs_buf			*bp;
4263 	union xfs_btree_ptr		rptr;
4264 	int				error;
4265 
4266 	/* do right sibling readahead */
4267 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4268 	block = xfs_btree_get_block(cur, level, &bp);
4269 
4270 	/* process the block */
4271 	error = fn(cur, level, data);
4272 	if (error)
4273 		return error;
4274 
4275 	/* now read rh sibling block for next iteration */
4276 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4277 	if (xfs_btree_ptr_is_null(cur, &rptr))
4278 		return -ENOENT;
4279 
4280 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4281 }
4282 
4283 
4284 /* Visit every block in a btree. */
4285 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,void * data)4286 xfs_btree_visit_blocks(
4287 	struct xfs_btree_cur		*cur,
4288 	xfs_btree_visit_blocks_fn	fn,
4289 	void				*data)
4290 {
4291 	union xfs_btree_ptr		lptr;
4292 	int				level;
4293 	struct xfs_btree_block		*block = NULL;
4294 	int				error = 0;
4295 
4296 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4297 
4298 	/* for each level */
4299 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4300 		/* grab the left hand block */
4301 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4302 		if (error)
4303 			return error;
4304 
4305 		/* readahead the left most block for the next level down */
4306 		if (level > 0) {
4307 			union xfs_btree_ptr     *ptr;
4308 
4309 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4310 			xfs_btree_readahead_ptr(cur, ptr, 1);
4311 
4312 			/* save for the next iteration of the loop */
4313 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4314 		}
4315 
4316 		/* for each buffer in the level */
4317 		do {
4318 			error = xfs_btree_visit_block(cur, level, fn, data);
4319 		} while (!error);
4320 
4321 		if (error != -ENOENT)
4322 			return error;
4323 	}
4324 
4325 	return 0;
4326 }
4327 
4328 /*
4329  * Change the owner of a btree.
4330  *
4331  * The mechanism we use here is ordered buffer logging. Because we don't know
4332  * how many buffers were are going to need to modify, we don't really want to
4333  * have to make transaction reservations for the worst case of every buffer in a
4334  * full size btree as that may be more space that we can fit in the log....
4335  *
4336  * We do the btree walk in the most optimal manner possible - we have sibling
4337  * pointers so we can just walk all the blocks on each level from left to right
4338  * in a single pass, and then move to the next level and do the same. We can
4339  * also do readahead on the sibling pointers to get IO moving more quickly,
4340  * though for slow disks this is unlikely to make much difference to performance
4341  * as the amount of CPU work we have to do before moving to the next block is
4342  * relatively small.
4343  *
4344  * For each btree block that we load, modify the owner appropriately, set the
4345  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4346  * we mark the region we change dirty so that if the buffer is relogged in
4347  * a subsequent transaction the changes we make here as an ordered buffer are
4348  * correctly relogged in that transaction.  If we are in recovery context, then
4349  * just queue the modified buffer as delayed write buffer so the transaction
4350  * recovery completion writes the changes to disk.
4351  */
4352 struct xfs_btree_block_change_owner_info {
4353 	uint64_t		new_owner;
4354 	struct list_head	*buffer_list;
4355 };
4356 
4357 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4358 xfs_btree_block_change_owner(
4359 	struct xfs_btree_cur	*cur,
4360 	int			level,
4361 	void			*data)
4362 {
4363 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4364 	struct xfs_btree_block	*block;
4365 	struct xfs_buf		*bp;
4366 
4367 	/* modify the owner */
4368 	block = xfs_btree_get_block(cur, level, &bp);
4369 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4370 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4371 			return 0;
4372 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4373 	} else {
4374 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4375 			return 0;
4376 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4377 	}
4378 
4379 	/*
4380 	 * If the block is a root block hosted in an inode, we might not have a
4381 	 * buffer pointer here and we shouldn't attempt to log the change as the
4382 	 * information is already held in the inode and discarded when the root
4383 	 * block is formatted into the on-disk inode fork. We still change it,
4384 	 * though, so everything is consistent in memory.
4385 	 */
4386 	if (!bp) {
4387 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4388 		ASSERT(level == cur->bc_nlevels - 1);
4389 		return 0;
4390 	}
4391 
4392 	if (cur->bc_tp) {
4393 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4394 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4395 			return -EAGAIN;
4396 		}
4397 	} else {
4398 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4399 	}
4400 
4401 	return 0;
4402 }
4403 
4404 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4405 xfs_btree_change_owner(
4406 	struct xfs_btree_cur	*cur,
4407 	uint64_t		new_owner,
4408 	struct list_head	*buffer_list)
4409 {
4410 	struct xfs_btree_block_change_owner_info	bbcoi;
4411 
4412 	bbcoi.new_owner = new_owner;
4413 	bbcoi.buffer_list = buffer_list;
4414 
4415 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4416 			&bbcoi);
4417 }
4418 
4419 /* Verify the v5 fields of a long-format btree block. */
4420 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4421 xfs_btree_lblock_v5hdr_verify(
4422 	struct xfs_buf		*bp,
4423 	uint64_t		owner)
4424 {
4425 	struct xfs_mount	*mp = bp->b_mount;
4426 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4427 
4428 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4429 		return __this_address;
4430 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4431 		return __this_address;
4432 	if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4433 		return __this_address;
4434 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4435 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4436 		return __this_address;
4437 	return NULL;
4438 }
4439 
4440 /* Verify a long-format btree block. */
4441 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4442 xfs_btree_lblock_verify(
4443 	struct xfs_buf		*bp,
4444 	unsigned int		max_recs)
4445 {
4446 	struct xfs_mount	*mp = bp->b_mount;
4447 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4448 
4449 	/* numrecs verification */
4450 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4451 		return __this_address;
4452 
4453 	/* sibling pointer verification */
4454 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4455 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4456 		return __this_address;
4457 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4458 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4459 		return __this_address;
4460 
4461 	return NULL;
4462 }
4463 
4464 /**
4465  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4466  *				      btree block
4467  *
4468  * @bp: buffer containing the btree block
4469  */
4470 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4471 xfs_btree_sblock_v5hdr_verify(
4472 	struct xfs_buf		*bp)
4473 {
4474 	struct xfs_mount	*mp = bp->b_mount;
4475 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4476 	struct xfs_perag	*pag = bp->b_pag;
4477 
4478 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4479 		return __this_address;
4480 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4481 		return __this_address;
4482 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4483 		return __this_address;
4484 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4485 		return __this_address;
4486 	return NULL;
4487 }
4488 
4489 /**
4490  * xfs_btree_sblock_verify() -- verify a short-format btree block
4491  *
4492  * @bp: buffer containing the btree block
4493  * @max_recs: maximum records allowed in this btree node
4494  */
4495 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4496 xfs_btree_sblock_verify(
4497 	struct xfs_buf		*bp,
4498 	unsigned int		max_recs)
4499 {
4500 	struct xfs_mount	*mp = bp->b_mount;
4501 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4502 	xfs_agblock_t		agno;
4503 
4504 	/* numrecs verification */
4505 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4506 		return __this_address;
4507 
4508 	/* sibling pointer verification */
4509 	agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4510 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4511 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4512 		return __this_address;
4513 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4514 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4515 		return __this_address;
4516 
4517 	return NULL;
4518 }
4519 
4520 /*
4521  * Calculate the number of btree levels needed to store a given number of
4522  * records in a short-format btree.
4523  */
4524 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4525 xfs_btree_compute_maxlevels(
4526 	uint			*limits,
4527 	unsigned long		len)
4528 {
4529 	uint			level;
4530 	unsigned long		maxblocks;
4531 
4532 	maxblocks = (len + limits[0] - 1) / limits[0];
4533 	for (level = 1; maxblocks > 1; level++)
4534 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4535 	return level;
4536 }
4537 
4538 /*
4539  * Query a regular btree for all records overlapping a given interval.
4540  * Start with a LE lookup of the key of low_rec and return all records
4541  * until we find a record with a key greater than the key of high_rec.
4542  */
4543 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4544 xfs_btree_simple_query_range(
4545 	struct xfs_btree_cur		*cur,
4546 	union xfs_btree_key		*low_key,
4547 	union xfs_btree_key		*high_key,
4548 	xfs_btree_query_range_fn	fn,
4549 	void				*priv)
4550 {
4551 	union xfs_btree_rec		*recp;
4552 	union xfs_btree_key		rec_key;
4553 	int64_t				diff;
4554 	int				stat;
4555 	bool				firstrec = true;
4556 	int				error;
4557 
4558 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4559 	ASSERT(cur->bc_ops->diff_two_keys);
4560 
4561 	/*
4562 	 * Find the leftmost record.  The btree cursor must be set
4563 	 * to the low record used to generate low_key.
4564 	 */
4565 	stat = 0;
4566 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4567 	if (error)
4568 		goto out;
4569 
4570 	/* Nothing?  See if there's anything to the right. */
4571 	if (!stat) {
4572 		error = xfs_btree_increment(cur, 0, &stat);
4573 		if (error)
4574 			goto out;
4575 	}
4576 
4577 	while (stat) {
4578 		/* Find the record. */
4579 		error = xfs_btree_get_rec(cur, &recp, &stat);
4580 		if (error || !stat)
4581 			break;
4582 
4583 		/* Skip if high_key(rec) < low_key. */
4584 		if (firstrec) {
4585 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4586 			firstrec = false;
4587 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4588 					&rec_key);
4589 			if (diff > 0)
4590 				goto advloop;
4591 		}
4592 
4593 		/* Stop if high_key < low_key(rec). */
4594 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4595 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4596 		if (diff > 0)
4597 			break;
4598 
4599 		/* Callback */
4600 		error = fn(cur, recp, priv);
4601 		if (error)
4602 			break;
4603 
4604 advloop:
4605 		/* Move on to the next record. */
4606 		error = xfs_btree_increment(cur, 0, &stat);
4607 		if (error)
4608 			break;
4609 	}
4610 
4611 out:
4612 	return error;
4613 }
4614 
4615 /*
4616  * Query an overlapped interval btree for all records overlapping a given
4617  * interval.  This function roughly follows the algorithm given in
4618  * "Interval Trees" of _Introduction to Algorithms_, which is section
4619  * 14.3 in the 2nd and 3rd editions.
4620  *
4621  * First, generate keys for the low and high records passed in.
4622  *
4623  * For any leaf node, generate the high and low keys for the record.
4624  * If the record keys overlap with the query low/high keys, pass the
4625  * record to the function iterator.
4626  *
4627  * For any internal node, compare the low and high keys of each
4628  * pointer against the query low/high keys.  If there's an overlap,
4629  * follow the pointer.
4630  *
4631  * As an optimization, we stop scanning a block when we find a low key
4632  * that is greater than the query's high key.
4633  */
4634 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4635 xfs_btree_overlapped_query_range(
4636 	struct xfs_btree_cur		*cur,
4637 	union xfs_btree_key		*low_key,
4638 	union xfs_btree_key		*high_key,
4639 	xfs_btree_query_range_fn	fn,
4640 	void				*priv)
4641 {
4642 	union xfs_btree_ptr		ptr;
4643 	union xfs_btree_ptr		*pp;
4644 	union xfs_btree_key		rec_key;
4645 	union xfs_btree_key		rec_hkey;
4646 	union xfs_btree_key		*lkp;
4647 	union xfs_btree_key		*hkp;
4648 	union xfs_btree_rec		*recp;
4649 	struct xfs_btree_block		*block;
4650 	int64_t				ldiff;
4651 	int64_t				hdiff;
4652 	int				level;
4653 	struct xfs_buf			*bp;
4654 	int				i;
4655 	int				error;
4656 
4657 	/* Load the root of the btree. */
4658 	level = cur->bc_nlevels - 1;
4659 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4660 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4661 	if (error)
4662 		return error;
4663 	xfs_btree_get_block(cur, level, &bp);
4664 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4665 #ifdef DEBUG
4666 	error = xfs_btree_check_block(cur, block, level, bp);
4667 	if (error)
4668 		goto out;
4669 #endif
4670 	cur->bc_ptrs[level] = 1;
4671 
4672 	while (level < cur->bc_nlevels) {
4673 		block = xfs_btree_get_block(cur, level, &bp);
4674 
4675 		/* End of node, pop back towards the root. */
4676 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4677 pop_up:
4678 			if (level < cur->bc_nlevels - 1)
4679 				cur->bc_ptrs[level + 1]++;
4680 			level++;
4681 			continue;
4682 		}
4683 
4684 		if (level == 0) {
4685 			/* Handle a leaf node. */
4686 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4687 
4688 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4689 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4690 					low_key);
4691 
4692 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4693 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4694 					&rec_key);
4695 
4696 			/*
4697 			 * If (record's high key >= query's low key) and
4698 			 *    (query's high key >= record's low key), then
4699 			 * this record overlaps the query range; callback.
4700 			 */
4701 			if (ldiff >= 0 && hdiff >= 0) {
4702 				error = fn(cur, recp, priv);
4703 				if (error)
4704 					break;
4705 			} else if (hdiff < 0) {
4706 				/* Record is larger than high key; pop. */
4707 				goto pop_up;
4708 			}
4709 			cur->bc_ptrs[level]++;
4710 			continue;
4711 		}
4712 
4713 		/* Handle an internal node. */
4714 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4715 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4716 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4717 
4718 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4719 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4720 
4721 		/*
4722 		 * If (pointer's high key >= query's low key) and
4723 		 *    (query's high key >= pointer's low key), then
4724 		 * this record overlaps the query range; follow pointer.
4725 		 */
4726 		if (ldiff >= 0 && hdiff >= 0) {
4727 			level--;
4728 			error = xfs_btree_lookup_get_block(cur, level, pp,
4729 					&block);
4730 			if (error)
4731 				goto out;
4732 			xfs_btree_get_block(cur, level, &bp);
4733 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4734 #ifdef DEBUG
4735 			error = xfs_btree_check_block(cur, block, level, bp);
4736 			if (error)
4737 				goto out;
4738 #endif
4739 			cur->bc_ptrs[level] = 1;
4740 			continue;
4741 		} else if (hdiff < 0) {
4742 			/* The low key is larger than the upper range; pop. */
4743 			goto pop_up;
4744 		}
4745 		cur->bc_ptrs[level]++;
4746 	}
4747 
4748 out:
4749 	/*
4750 	 * If we don't end this function with the cursor pointing at a record
4751 	 * block, a subsequent non-error cursor deletion will not release
4752 	 * node-level buffers, causing a buffer leak.  This is quite possible
4753 	 * with a zero-results range query, so release the buffers if we
4754 	 * failed to return any results.
4755 	 */
4756 	if (cur->bc_bufs[0] == NULL) {
4757 		for (i = 0; i < cur->bc_nlevels; i++) {
4758 			if (cur->bc_bufs[i]) {
4759 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4760 				cur->bc_bufs[i] = NULL;
4761 				cur->bc_ptrs[i] = 0;
4762 				cur->bc_ra[i] = 0;
4763 			}
4764 		}
4765 	}
4766 
4767 	return error;
4768 }
4769 
4770 /*
4771  * Query a btree for all records overlapping a given interval of keys.  The
4772  * supplied function will be called with each record found; return one of the
4773  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4774  * code.  This function returns -ECANCELED, zero, or a negative error code.
4775  */
4776 int
xfs_btree_query_range(struct xfs_btree_cur * cur,union xfs_btree_irec * low_rec,union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4777 xfs_btree_query_range(
4778 	struct xfs_btree_cur		*cur,
4779 	union xfs_btree_irec		*low_rec,
4780 	union xfs_btree_irec		*high_rec,
4781 	xfs_btree_query_range_fn	fn,
4782 	void				*priv)
4783 {
4784 	union xfs_btree_rec		rec;
4785 	union xfs_btree_key		low_key;
4786 	union xfs_btree_key		high_key;
4787 
4788 	/* Find the keys of both ends of the interval. */
4789 	cur->bc_rec = *high_rec;
4790 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4791 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4792 
4793 	cur->bc_rec = *low_rec;
4794 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4795 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4796 
4797 	/* Enforce low key < high key. */
4798 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4799 		return -EINVAL;
4800 
4801 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4802 		return xfs_btree_simple_query_range(cur, &low_key,
4803 				&high_key, fn, priv);
4804 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4805 			fn, priv);
4806 }
4807 
4808 /* Query a btree for all records. */
4809 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4810 xfs_btree_query_all(
4811 	struct xfs_btree_cur		*cur,
4812 	xfs_btree_query_range_fn	fn,
4813 	void				*priv)
4814 {
4815 	union xfs_btree_key		low_key;
4816 	union xfs_btree_key		high_key;
4817 
4818 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4819 	memset(&low_key, 0, sizeof(low_key));
4820 	memset(&high_key, 0xFF, sizeof(high_key));
4821 
4822 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4823 }
4824 
4825 /*
4826  * Calculate the number of blocks needed to store a given number of records
4827  * in a short-format (per-AG metadata) btree.
4828  */
4829 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4830 xfs_btree_calc_size(
4831 	uint			*limits,
4832 	unsigned long long	len)
4833 {
4834 	int			level;
4835 	int			maxrecs;
4836 	unsigned long long	rval;
4837 
4838 	maxrecs = limits[0];
4839 	for (level = 0, rval = 0; len > 1; level++) {
4840 		len += maxrecs - 1;
4841 		do_div(len, maxrecs);
4842 		maxrecs = limits[1];
4843 		rval += len;
4844 	}
4845 	return rval;
4846 }
4847 
4848 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4849 xfs_btree_count_blocks_helper(
4850 	struct xfs_btree_cur	*cur,
4851 	int			level,
4852 	void			*data)
4853 {
4854 	xfs_extlen_t		*blocks = data;
4855 	(*blocks)++;
4856 
4857 	return 0;
4858 }
4859 
4860 /* Count the blocks in a btree and return the result in *blocks. */
4861 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4862 xfs_btree_count_blocks(
4863 	struct xfs_btree_cur	*cur,
4864 	xfs_extlen_t		*blocks)
4865 {
4866 	*blocks = 0;
4867 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4868 			blocks);
4869 }
4870 
4871 /* Compare two btree pointers. */
4872 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4873 xfs_btree_diff_two_ptrs(
4874 	struct xfs_btree_cur		*cur,
4875 	const union xfs_btree_ptr	*a,
4876 	const union xfs_btree_ptr	*b)
4877 {
4878 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4879 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4880 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4881 }
4882 
4883 /* If there's an extent, we're done. */
4884 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,void * priv)4885 xfs_btree_has_record_helper(
4886 	struct xfs_btree_cur		*cur,
4887 	union xfs_btree_rec		*rec,
4888 	void				*priv)
4889 {
4890 	return -ECANCELED;
4891 }
4892 
4893 /* Is there a record covering a given range of keys? */
4894 int
xfs_btree_has_record(struct xfs_btree_cur * cur,union xfs_btree_irec * low,union xfs_btree_irec * high,bool * exists)4895 xfs_btree_has_record(
4896 	struct xfs_btree_cur	*cur,
4897 	union xfs_btree_irec	*low,
4898 	union xfs_btree_irec	*high,
4899 	bool			*exists)
4900 {
4901 	int			error;
4902 
4903 	error = xfs_btree_query_range(cur, low, high,
4904 			&xfs_btree_has_record_helper, NULL);
4905 	if (error == -ECANCELED) {
4906 		*exists = true;
4907 		return 0;
4908 	}
4909 	*exists = false;
4910 	return error;
4911 }
4912 
4913 /* Are there more records in this btree? */
4914 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)4915 xfs_btree_has_more_records(
4916 	struct xfs_btree_cur	*cur)
4917 {
4918 	struct xfs_btree_block	*block;
4919 	struct xfs_buf		*bp;
4920 
4921 	block = xfs_btree_get_block(cur, 0, &bp);
4922 
4923 	/* There are still records in this block. */
4924 	if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4925 		return true;
4926 
4927 	/* There are more record blocks. */
4928 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4929 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4930 	else
4931 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4932 }
4933