1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23
24 /*
25 * Cursor allocation zone.
26 */
27 kmem_zone_t *xfs_btree_cur_zone;
28
29 /*
30 * Btree magic numbers.
31 */
32 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
33 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
34 XFS_FIBT_MAGIC, 0 },
35 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
36 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
37 XFS_REFC_CRC_MAGIC }
38 };
39
40 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)41 xfs_btree_magic(
42 int crc,
43 xfs_btnum_t btnum)
44 {
45 uint32_t magic = xfs_magics[crc][btnum];
46
47 /* Ensure we asked for crc for crc-only magics. */
48 ASSERT(magic != 0);
49 return magic;
50 }
51
52 /*
53 * Check a long btree block header. Return the address of the failing check,
54 * or NULL if everything is ok.
55 */
56 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)57 __xfs_btree_check_lblock(
58 struct xfs_btree_cur *cur,
59 struct xfs_btree_block *block,
60 int level,
61 struct xfs_buf *bp)
62 {
63 struct xfs_mount *mp = cur->bc_mp;
64 xfs_btnum_t btnum = cur->bc_btnum;
65 int crc = xfs_sb_version_hascrc(&mp->m_sb);
66
67 if (crc) {
68 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
69 return __this_address;
70 if (block->bb_u.l.bb_blkno !=
71 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
72 return __this_address;
73 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
74 return __this_address;
75 }
76
77 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
78 return __this_address;
79 if (be16_to_cpu(block->bb_level) != level)
80 return __this_address;
81 if (be16_to_cpu(block->bb_numrecs) >
82 cur->bc_ops->get_maxrecs(cur, level))
83 return __this_address;
84 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
85 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
86 level + 1))
87 return __this_address;
88 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
89 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
90 level + 1))
91 return __this_address;
92
93 return NULL;
94 }
95
96 /* Check a long btree block header. */
97 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)98 xfs_btree_check_lblock(
99 struct xfs_btree_cur *cur,
100 struct xfs_btree_block *block,
101 int level,
102 struct xfs_buf *bp)
103 {
104 struct xfs_mount *mp = cur->bc_mp;
105 xfs_failaddr_t fa;
106
107 fa = __xfs_btree_check_lblock(cur, block, level, bp);
108 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
109 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
110 if (bp)
111 trace_xfs_btree_corrupt(bp, _RET_IP_);
112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116 }
117
118 /*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128 {
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158 }
159
160 /* Check a short btree block header. */
161 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)162 xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167 {
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
173 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
177 return -EFSCORRUPTED;
178 }
179 return 0;
180 }
181
182 /*
183 * Debug routine: check that block header is ok.
184 */
185 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)186 xfs_btree_check_block(
187 struct xfs_btree_cur *cur, /* btree cursor */
188 struct xfs_btree_block *block, /* generic btree block pointer */
189 int level, /* level of the btree block */
190 struct xfs_buf *bp) /* buffer containing block, if any */
191 {
192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 return xfs_btree_check_lblock(cur, block, level, bp);
194 else
195 return xfs_btree_check_sblock(cur, block, level, bp);
196 }
197
198 /* Check that this long pointer is valid and points within the fs. */
199 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)200 xfs_btree_check_lptr(
201 struct xfs_btree_cur *cur,
202 xfs_fsblock_t fsbno,
203 int level)
204 {
205 if (level <= 0)
206 return false;
207 return xfs_verify_fsbno(cur->bc_mp, fsbno);
208 }
209
210 /* Check that this short pointer is valid and points within the AG. */
211 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)212 xfs_btree_check_sptr(
213 struct xfs_btree_cur *cur,
214 xfs_agblock_t agbno,
215 int level)
216 {
217 if (level <= 0)
218 return false;
219 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
220 }
221
222 /*
223 * Check that a given (indexed) btree pointer at a certain level of a
224 * btree is valid and doesn't point past where it should.
225 */
226 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int index,int level)227 xfs_btree_check_ptr(
228 struct xfs_btree_cur *cur,
229 union xfs_btree_ptr *ptr,
230 int index,
231 int level)
232 {
233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 level))
236 return 0;
237 xfs_err(cur->bc_mp,
238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 cur->bc_private.b.ip->i_ino,
240 cur->bc_private.b.whichfork, cur->bc_btnum,
241 level, index);
242 } else {
243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 level))
245 return 0;
246 xfs_err(cur->bc_mp,
247 "AG %u: Corrupt btree %d pointer at level %d index %d.",
248 cur->bc_private.a.agno, cur->bc_btnum,
249 level, index);
250 }
251
252 return -EFSCORRUPTED;
253 }
254
255 #ifdef DEBUG
256 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
257 #else
258 # define xfs_btree_debug_check_ptr(...) (0)
259 #endif
260
261 /*
262 * Calculate CRC on the whole btree block and stuff it into the
263 * long-form btree header.
264 *
265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266 * it into the buffer so recovery knows what the last modification was that made
267 * it to disk.
268 */
269 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)270 xfs_btree_lblock_calc_crc(
271 struct xfs_buf *bp)
272 {
273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
274 struct xfs_buf_log_item *bip = bp->b_log_item;
275
276 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
277 return;
278 if (bip)
279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281 }
282
283 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)284 xfs_btree_lblock_verify_crc(
285 struct xfs_buf *bp)
286 {
287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
288 struct xfs_mount *mp = bp->b_mount;
289
290 if (xfs_sb_version_hascrc(&mp->m_sb)) {
291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 return false;
293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 }
295
296 return true;
297 }
298
299 /*
300 * Calculate CRC on the whole btree block and stuff it into the
301 * short-form btree header.
302 *
303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304 * it into the buffer so recovery knows what the last modification was that made
305 * it to disk.
306 */
307 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)308 xfs_btree_sblock_calc_crc(
309 struct xfs_buf *bp)
310 {
311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
312 struct xfs_buf_log_item *bip = bp->b_log_item;
313
314 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
315 return;
316 if (bip)
317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319 }
320
321 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)322 xfs_btree_sblock_verify_crc(
323 struct xfs_buf *bp)
324 {
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_mount *mp = bp->b_mount;
327
328 if (xfs_sb_version_hascrc(&mp->m_sb)) {
329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 return false;
331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 }
333
334 return true;
335 }
336
337 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)338 xfs_btree_free_block(
339 struct xfs_btree_cur *cur,
340 struct xfs_buf *bp)
341 {
342 int error;
343
344 error = cur->bc_ops->free_block(cur, bp);
345 if (!error) {
346 xfs_trans_binval(cur->bc_tp, bp);
347 XFS_BTREE_STATS_INC(cur, free);
348 }
349 return error;
350 }
351
352 /*
353 * Delete the btree cursor.
354 */
355 void
xfs_btree_del_cursor(xfs_btree_cur_t * cur,int error)356 xfs_btree_del_cursor(
357 xfs_btree_cur_t *cur, /* btree cursor */
358 int error) /* del because of error */
359 {
360 int i; /* btree level */
361
362 /*
363 * Clear the buffer pointers, and release the buffers.
364 * If we're doing this in the face of an error, we
365 * need to make sure to inspect all of the entries
366 * in the bc_bufs array for buffers to be unlocked.
367 * This is because some of the btree code works from
368 * level n down to 0, and if we get an error along
369 * the way we won't have initialized all the entries
370 * down to 0.
371 */
372 for (i = 0; i < cur->bc_nlevels; i++) {
373 if (cur->bc_bufs[i])
374 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
375 else if (!error)
376 break;
377 }
378 /*
379 * Can't free a bmap cursor without having dealt with the
380 * allocated indirect blocks' accounting.
381 */
382 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
383 cur->bc_private.b.allocated == 0);
384 /*
385 * Free the cursor.
386 */
387 kmem_zone_free(xfs_btree_cur_zone, cur);
388 }
389
390 /*
391 * Duplicate the btree cursor.
392 * Allocate a new one, copy the record, re-get the buffers.
393 */
394 int /* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)395 xfs_btree_dup_cursor(
396 xfs_btree_cur_t *cur, /* input cursor */
397 xfs_btree_cur_t **ncur) /* output cursor */
398 {
399 xfs_buf_t *bp; /* btree block's buffer pointer */
400 int error; /* error return value */
401 int i; /* level number of btree block */
402 xfs_mount_t *mp; /* mount structure for filesystem */
403 xfs_btree_cur_t *new; /* new cursor value */
404 xfs_trans_t *tp; /* transaction pointer, can be NULL */
405
406 tp = cur->bc_tp;
407 mp = cur->bc_mp;
408
409 /*
410 * Allocate a new cursor like the old one.
411 */
412 new = cur->bc_ops->dup_cursor(cur);
413
414 /*
415 * Copy the record currently in the cursor.
416 */
417 new->bc_rec = cur->bc_rec;
418
419 /*
420 * For each level current, re-get the buffer and copy the ptr value.
421 */
422 for (i = 0; i < new->bc_nlevels; i++) {
423 new->bc_ptrs[i] = cur->bc_ptrs[i];
424 new->bc_ra[i] = cur->bc_ra[i];
425 bp = cur->bc_bufs[i];
426 if (bp) {
427 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
428 XFS_BUF_ADDR(bp), mp->m_bsize,
429 0, &bp,
430 cur->bc_ops->buf_ops);
431 if (error) {
432 xfs_btree_del_cursor(new, error);
433 *ncur = NULL;
434 return error;
435 }
436 }
437 new->bc_bufs[i] = bp;
438 }
439 *ncur = new;
440 return 0;
441 }
442
443 /*
444 * XFS btree block layout and addressing:
445 *
446 * There are two types of blocks in the btree: leaf and non-leaf blocks.
447 *
448 * The leaf record start with a header then followed by records containing
449 * the values. A non-leaf block also starts with the same header, and
450 * then first contains lookup keys followed by an equal number of pointers
451 * to the btree blocks at the previous level.
452 *
453 * +--------+-------+-------+-------+-------+-------+-------+
454 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
455 * +--------+-------+-------+-------+-------+-------+-------+
456 *
457 * +--------+-------+-------+-------+-------+-------+-------+
458 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
459 * +--------+-------+-------+-------+-------+-------+-------+
460 *
461 * The header is called struct xfs_btree_block for reasons better left unknown
462 * and comes in different versions for short (32bit) and long (64bit) block
463 * pointers. The record and key structures are defined by the btree instances
464 * and opaque to the btree core. The block pointers are simple disk endian
465 * integers, available in a short (32bit) and long (64bit) variant.
466 *
467 * The helpers below calculate the offset of a given record, key or pointer
468 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
469 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
470 * inside the btree block is done using indices starting at one, not zero!
471 *
472 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
473 * overlapping intervals. In such a tree, records are still sorted lowest to
474 * highest and indexed by the smallest key value that refers to the record.
475 * However, nodes are different: each pointer has two associated keys -- one
476 * indexing the lowest key available in the block(s) below (the same behavior
477 * as the key in a regular btree) and another indexing the highest key
478 * available in the block(s) below. Because records are /not/ sorted by the
479 * highest key, all leaf block updates require us to compute the highest key
480 * that matches any record in the leaf and to recursively update the high keys
481 * in the nodes going further up in the tree, if necessary. Nodes look like
482 * this:
483 *
484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
486 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
487 *
488 * To perform an interval query on an overlapped tree, perform the usual
489 * depth-first search and use the low and high keys to decide if we can skip
490 * that particular node. If a leaf node is reached, return the records that
491 * intersect the interval. Note that an interval query may return numerous
492 * entries. For a non-overlapped tree, simply search for the record associated
493 * with the lowest key and iterate forward until a non-matching record is
494 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
495 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
496 * more detail.
497 *
498 * Why do we care about overlapping intervals? Let's say you have a bunch of
499 * reverse mapping records on a reflink filesystem:
500 *
501 * 1: +- file A startblock B offset C length D -----------+
502 * 2: +- file E startblock F offset G length H --------------+
503 * 3: +- file I startblock F offset J length K --+
504 * 4: +- file L... --+
505 *
506 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
507 * we'd simply increment the length of record 1. But how do we find the record
508 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
509 * record 3 because the keys are ordered first by startblock. An interval
510 * query would return records 1 and 2 because they both overlap (B+D-1), and
511 * from that we can pick out record 1 as the appropriate left neighbor.
512 *
513 * In the non-overlapped case you can do a LE lookup and decrement the cursor
514 * because a record's interval must end before the next record.
515 */
516
517 /*
518 * Return size of the btree block header for this btree instance.
519 */
xfs_btree_block_len(struct xfs_btree_cur * cur)520 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
521 {
522 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
523 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
524 return XFS_BTREE_LBLOCK_CRC_LEN;
525 return XFS_BTREE_LBLOCK_LEN;
526 }
527 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
528 return XFS_BTREE_SBLOCK_CRC_LEN;
529 return XFS_BTREE_SBLOCK_LEN;
530 }
531
532 /*
533 * Return size of btree block pointers for this btree instance.
534 */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)535 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
536 {
537 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
538 sizeof(__be64) : sizeof(__be32);
539 }
540
541 /*
542 * Calculate offset of the n-th record in a btree block.
543 */
544 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)545 xfs_btree_rec_offset(
546 struct xfs_btree_cur *cur,
547 int n)
548 {
549 return xfs_btree_block_len(cur) +
550 (n - 1) * cur->bc_ops->rec_len;
551 }
552
553 /*
554 * Calculate offset of the n-th key in a btree block.
555 */
556 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)557 xfs_btree_key_offset(
558 struct xfs_btree_cur *cur,
559 int n)
560 {
561 return xfs_btree_block_len(cur) +
562 (n - 1) * cur->bc_ops->key_len;
563 }
564
565 /*
566 * Calculate offset of the n-th high key in a btree block.
567 */
568 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)569 xfs_btree_high_key_offset(
570 struct xfs_btree_cur *cur,
571 int n)
572 {
573 return xfs_btree_block_len(cur) +
574 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
575 }
576
577 /*
578 * Calculate offset of the n-th block pointer in a btree block.
579 */
580 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)581 xfs_btree_ptr_offset(
582 struct xfs_btree_cur *cur,
583 int n,
584 int level)
585 {
586 return xfs_btree_block_len(cur) +
587 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
588 (n - 1) * xfs_btree_ptr_len(cur);
589 }
590
591 /*
592 * Return a pointer to the n-th record in the btree block.
593 */
594 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)595 xfs_btree_rec_addr(
596 struct xfs_btree_cur *cur,
597 int n,
598 struct xfs_btree_block *block)
599 {
600 return (union xfs_btree_rec *)
601 ((char *)block + xfs_btree_rec_offset(cur, n));
602 }
603
604 /*
605 * Return a pointer to the n-th key in the btree block.
606 */
607 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)608 xfs_btree_key_addr(
609 struct xfs_btree_cur *cur,
610 int n,
611 struct xfs_btree_block *block)
612 {
613 return (union xfs_btree_key *)
614 ((char *)block + xfs_btree_key_offset(cur, n));
615 }
616
617 /*
618 * Return a pointer to the n-th high key in the btree block.
619 */
620 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)621 xfs_btree_high_key_addr(
622 struct xfs_btree_cur *cur,
623 int n,
624 struct xfs_btree_block *block)
625 {
626 return (union xfs_btree_key *)
627 ((char *)block + xfs_btree_high_key_offset(cur, n));
628 }
629
630 /*
631 * Return a pointer to the n-th block pointer in the btree block.
632 */
633 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)634 xfs_btree_ptr_addr(
635 struct xfs_btree_cur *cur,
636 int n,
637 struct xfs_btree_block *block)
638 {
639 int level = xfs_btree_get_level(block);
640
641 ASSERT(block->bb_level != 0);
642
643 return (union xfs_btree_ptr *)
644 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
645 }
646
647 /*
648 * Get the root block which is stored in the inode.
649 *
650 * For now this btree implementation assumes the btree root is always
651 * stored in the if_broot field of an inode fork.
652 */
653 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)654 xfs_btree_get_iroot(
655 struct xfs_btree_cur *cur)
656 {
657 struct xfs_ifork *ifp;
658
659 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
660 return (struct xfs_btree_block *)ifp->if_broot;
661 }
662
663 /*
664 * Retrieve the block pointer from the cursor at the given level.
665 * This may be an inode btree root or from a buffer.
666 */
667 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)668 xfs_btree_get_block(
669 struct xfs_btree_cur *cur, /* btree cursor */
670 int level, /* level in btree */
671 struct xfs_buf **bpp) /* buffer containing the block */
672 {
673 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
674 (level == cur->bc_nlevels - 1)) {
675 *bpp = NULL;
676 return xfs_btree_get_iroot(cur);
677 }
678
679 *bpp = cur->bc_bufs[level];
680 return XFS_BUF_TO_BLOCK(*bpp);
681 }
682
683 /*
684 * Get a buffer for the block, return it with no data read.
685 * Long-form addressing.
686 */
687 xfs_buf_t * /* buffer for fsbno */
xfs_btree_get_bufl(xfs_mount_t * mp,xfs_trans_t * tp,xfs_fsblock_t fsbno)688 xfs_btree_get_bufl(
689 xfs_mount_t *mp, /* file system mount point */
690 xfs_trans_t *tp, /* transaction pointer */
691 xfs_fsblock_t fsbno) /* file system block number */
692 {
693 xfs_daddr_t d; /* real disk block address */
694
695 ASSERT(fsbno != NULLFSBLOCK);
696 d = XFS_FSB_TO_DADDR(mp, fsbno);
697 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
698 }
699
700 /*
701 * Get a buffer for the block, return it with no data read.
702 * Short-form addressing.
703 */
704 xfs_buf_t * /* buffer for agno/agbno */
xfs_btree_get_bufs(xfs_mount_t * mp,xfs_trans_t * tp,xfs_agnumber_t agno,xfs_agblock_t agbno)705 xfs_btree_get_bufs(
706 xfs_mount_t *mp, /* file system mount point */
707 xfs_trans_t *tp, /* transaction pointer */
708 xfs_agnumber_t agno, /* allocation group number */
709 xfs_agblock_t agbno) /* allocation group block number */
710 {
711 xfs_daddr_t d; /* real disk block address */
712
713 ASSERT(agno != NULLAGNUMBER);
714 ASSERT(agbno != NULLAGBLOCK);
715 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
716 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
717 }
718
719 /*
720 * Check for the cursor referring to the last block at the given level.
721 */
722 int /* 1=is last block, 0=not last block */
xfs_btree_islastblock(xfs_btree_cur_t * cur,int level)723 xfs_btree_islastblock(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to check */
726 {
727 struct xfs_btree_block *block; /* generic btree block pointer */
728 xfs_buf_t *bp; /* buffer containing block */
729
730 block = xfs_btree_get_block(cur, level, &bp);
731 xfs_btree_check_block(cur, block, level, bp);
732 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
733 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
734 else
735 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
736 }
737
738 /*
739 * Change the cursor to point to the first record at the given level.
740 * Other levels are unaffected.
741 */
742 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)743 xfs_btree_firstrec(
744 xfs_btree_cur_t *cur, /* btree cursor */
745 int level) /* level to change */
746 {
747 struct xfs_btree_block *block; /* generic btree block pointer */
748 xfs_buf_t *bp; /* buffer containing block */
749
750 /*
751 * Get the block pointer for this level.
752 */
753 block = xfs_btree_get_block(cur, level, &bp);
754 if (xfs_btree_check_block(cur, block, level, bp))
755 return 0;
756 /*
757 * It's empty, there is no such record.
758 */
759 if (!block->bb_numrecs)
760 return 0;
761 /*
762 * Set the ptr value to 1, that's the first record/key.
763 */
764 cur->bc_ptrs[level] = 1;
765 return 1;
766 }
767
768 /*
769 * Change the cursor to point to the last record in the current block
770 * at the given level. Other levels are unaffected.
771 */
772 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)773 xfs_btree_lastrec(
774 xfs_btree_cur_t *cur, /* btree cursor */
775 int level) /* level to change */
776 {
777 struct xfs_btree_block *block; /* generic btree block pointer */
778 xfs_buf_t *bp; /* buffer containing block */
779
780 /*
781 * Get the block pointer for this level.
782 */
783 block = xfs_btree_get_block(cur, level, &bp);
784 if (xfs_btree_check_block(cur, block, level, bp))
785 return 0;
786 /*
787 * It's empty, there is no such record.
788 */
789 if (!block->bb_numrecs)
790 return 0;
791 /*
792 * Set the ptr value to numrecs, that's the last record/key.
793 */
794 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
795 return 1;
796 }
797
798 /*
799 * Compute first and last byte offsets for the fields given.
800 * Interprets the offsets table, which contains struct field offsets.
801 */
802 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)803 xfs_btree_offsets(
804 int64_t fields, /* bitmask of fields */
805 const short *offsets, /* table of field offsets */
806 int nbits, /* number of bits to inspect */
807 int *first, /* output: first byte offset */
808 int *last) /* output: last byte offset */
809 {
810 int i; /* current bit number */
811 int64_t imask; /* mask for current bit number */
812
813 ASSERT(fields != 0);
814 /*
815 * Find the lowest bit, so the first byte offset.
816 */
817 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
818 if (imask & fields) {
819 *first = offsets[i];
820 break;
821 }
822 }
823 /*
824 * Find the highest bit, so the last byte offset.
825 */
826 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
827 if (imask & fields) {
828 *last = offsets[i + 1] - 1;
829 break;
830 }
831 }
832 }
833
834 /*
835 * Get a buffer for the block, return it read in.
836 * Long-form addressing.
837 */
838 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)839 xfs_btree_read_bufl(
840 struct xfs_mount *mp, /* file system mount point */
841 struct xfs_trans *tp, /* transaction pointer */
842 xfs_fsblock_t fsbno, /* file system block number */
843 struct xfs_buf **bpp, /* buffer for fsbno */
844 int refval, /* ref count value for buffer */
845 const struct xfs_buf_ops *ops)
846 {
847 struct xfs_buf *bp; /* return value */
848 xfs_daddr_t d; /* real disk block address */
849 int error;
850
851 if (!xfs_verify_fsbno(mp, fsbno))
852 return -EFSCORRUPTED;
853 d = XFS_FSB_TO_DADDR(mp, fsbno);
854 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
855 mp->m_bsize, 0, &bp, ops);
856 if (error)
857 return error;
858 if (bp)
859 xfs_buf_set_ref(bp, refval);
860 *bpp = bp;
861 return 0;
862 }
863
864 /*
865 * Read-ahead the block, don't wait for it, don't return a buffer.
866 * Long-form addressing.
867 */
868 /* ARGSUSED */
869 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)870 xfs_btree_reada_bufl(
871 struct xfs_mount *mp, /* file system mount point */
872 xfs_fsblock_t fsbno, /* file system block number */
873 xfs_extlen_t count, /* count of filesystem blocks */
874 const struct xfs_buf_ops *ops)
875 {
876 xfs_daddr_t d;
877
878 ASSERT(fsbno != NULLFSBLOCK);
879 d = XFS_FSB_TO_DADDR(mp, fsbno);
880 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
881 }
882
883 /*
884 * Read-ahead the block, don't wait for it, don't return a buffer.
885 * Short-form addressing.
886 */
887 /* ARGSUSED */
888 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)889 xfs_btree_reada_bufs(
890 struct xfs_mount *mp, /* file system mount point */
891 xfs_agnumber_t agno, /* allocation group number */
892 xfs_agblock_t agbno, /* allocation group block number */
893 xfs_extlen_t count, /* count of filesystem blocks */
894 const struct xfs_buf_ops *ops)
895 {
896 xfs_daddr_t d;
897
898 ASSERT(agno != NULLAGNUMBER);
899 ASSERT(agbno != NULLAGBLOCK);
900 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
901 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
902 }
903
904 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)905 xfs_btree_readahead_lblock(
906 struct xfs_btree_cur *cur,
907 int lr,
908 struct xfs_btree_block *block)
909 {
910 int rval = 0;
911 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
912 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
913
914 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
915 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
916 cur->bc_ops->buf_ops);
917 rval++;
918 }
919
920 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
921 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
922 cur->bc_ops->buf_ops);
923 rval++;
924 }
925
926 return rval;
927 }
928
929 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)930 xfs_btree_readahead_sblock(
931 struct xfs_btree_cur *cur,
932 int lr,
933 struct xfs_btree_block *block)
934 {
935 int rval = 0;
936 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
937 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
938
939
940 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
941 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
942 left, 1, cur->bc_ops->buf_ops);
943 rval++;
944 }
945
946 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
947 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
948 right, 1, cur->bc_ops->buf_ops);
949 rval++;
950 }
951
952 return rval;
953 }
954
955 /*
956 * Read-ahead btree blocks, at the given level.
957 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
958 */
959 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)960 xfs_btree_readahead(
961 struct xfs_btree_cur *cur, /* btree cursor */
962 int lev, /* level in btree */
963 int lr) /* left/right bits */
964 {
965 struct xfs_btree_block *block;
966
967 /*
968 * No readahead needed if we are at the root level and the
969 * btree root is stored in the inode.
970 */
971 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
972 (lev == cur->bc_nlevels - 1))
973 return 0;
974
975 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
976 return 0;
977
978 cur->bc_ra[lev] |= lr;
979 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
980
981 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
982 return xfs_btree_readahead_lblock(cur, lr, block);
983 return xfs_btree_readahead_sblock(cur, lr, block);
984 }
985
986 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)987 xfs_btree_ptr_to_daddr(
988 struct xfs_btree_cur *cur,
989 union xfs_btree_ptr *ptr,
990 xfs_daddr_t *daddr)
991 {
992 xfs_fsblock_t fsbno;
993 xfs_agblock_t agbno;
994 int error;
995
996 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
997 if (error)
998 return error;
999
1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 fsbno = be64_to_cpu(ptr->l);
1002 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1003 } else {
1004 agbno = be32_to_cpu(ptr->s);
1005 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1006 agbno);
1007 }
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * Readahead @count btree blocks at the given @ptr location.
1014 *
1015 * We don't need to care about long or short form btrees here as we have a
1016 * method of converting the ptr directly to a daddr available to us.
1017 */
1018 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1019 xfs_btree_readahead_ptr(
1020 struct xfs_btree_cur *cur,
1021 union xfs_btree_ptr *ptr,
1022 xfs_extlen_t count)
1023 {
1024 xfs_daddr_t daddr;
1025
1026 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1027 return;
1028 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1029 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1030 }
1031
1032 /*
1033 * Set the buffer for level "lev" in the cursor to bp, releasing
1034 * any previous buffer.
1035 */
1036 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,xfs_buf_t * bp)1037 xfs_btree_setbuf(
1038 xfs_btree_cur_t *cur, /* btree cursor */
1039 int lev, /* level in btree */
1040 xfs_buf_t *bp) /* new buffer to set */
1041 {
1042 struct xfs_btree_block *b; /* btree block */
1043
1044 if (cur->bc_bufs[lev])
1045 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1046 cur->bc_bufs[lev] = bp;
1047 cur->bc_ra[lev] = 0;
1048
1049 b = XFS_BUF_TO_BLOCK(bp);
1050 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1052 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1053 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1054 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1055 } else {
1056 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1057 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1058 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1059 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1060 }
1061 }
1062
1063 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1064 xfs_btree_ptr_is_null(
1065 struct xfs_btree_cur *cur,
1066 union xfs_btree_ptr *ptr)
1067 {
1068 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1069 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1070 else
1071 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1072 }
1073
1074 STATIC void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1075 xfs_btree_set_ptr_null(
1076 struct xfs_btree_cur *cur,
1077 union xfs_btree_ptr *ptr)
1078 {
1079 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1080 ptr->l = cpu_to_be64(NULLFSBLOCK);
1081 else
1082 ptr->s = cpu_to_be32(NULLAGBLOCK);
1083 }
1084
1085 /*
1086 * Get/set/init sibling pointers
1087 */
1088 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1089 xfs_btree_get_sibling(
1090 struct xfs_btree_cur *cur,
1091 struct xfs_btree_block *block,
1092 union xfs_btree_ptr *ptr,
1093 int lr)
1094 {
1095 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1096
1097 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1098 if (lr == XFS_BB_RIGHTSIB)
1099 ptr->l = block->bb_u.l.bb_rightsib;
1100 else
1101 ptr->l = block->bb_u.l.bb_leftsib;
1102 } else {
1103 if (lr == XFS_BB_RIGHTSIB)
1104 ptr->s = block->bb_u.s.bb_rightsib;
1105 else
1106 ptr->s = block->bb_u.s.bb_leftsib;
1107 }
1108 }
1109
1110 STATIC void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1111 xfs_btree_set_sibling(
1112 struct xfs_btree_cur *cur,
1113 struct xfs_btree_block *block,
1114 union xfs_btree_ptr *ptr,
1115 int lr)
1116 {
1117 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1118
1119 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1120 if (lr == XFS_BB_RIGHTSIB)
1121 block->bb_u.l.bb_rightsib = ptr->l;
1122 else
1123 block->bb_u.l.bb_leftsib = ptr->l;
1124 } else {
1125 if (lr == XFS_BB_RIGHTSIB)
1126 block->bb_u.s.bb_rightsib = ptr->s;
1127 else
1128 block->bb_u.s.bb_leftsib = ptr->s;
1129 }
1130 }
1131
1132 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1133 xfs_btree_init_block_int(
1134 struct xfs_mount *mp,
1135 struct xfs_btree_block *buf,
1136 xfs_daddr_t blkno,
1137 xfs_btnum_t btnum,
1138 __u16 level,
1139 __u16 numrecs,
1140 __u64 owner,
1141 unsigned int flags)
1142 {
1143 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1144 __u32 magic = xfs_btree_magic(crc, btnum);
1145
1146 buf->bb_magic = cpu_to_be32(magic);
1147 buf->bb_level = cpu_to_be16(level);
1148 buf->bb_numrecs = cpu_to_be16(numrecs);
1149
1150 if (flags & XFS_BTREE_LONG_PTRS) {
1151 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1152 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1153 if (crc) {
1154 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1155 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1156 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1157 buf->bb_u.l.bb_pad = 0;
1158 buf->bb_u.l.bb_lsn = 0;
1159 }
1160 } else {
1161 /* owner is a 32 bit value on short blocks */
1162 __u32 __owner = (__u32)owner;
1163
1164 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1165 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1166 if (crc) {
1167 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1168 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1169 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1170 buf->bb_u.s.bb_lsn = 0;
1171 }
1172 }
1173 }
1174
1175 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1176 xfs_btree_init_block(
1177 struct xfs_mount *mp,
1178 struct xfs_buf *bp,
1179 xfs_btnum_t btnum,
1180 __u16 level,
1181 __u16 numrecs,
1182 __u64 owner)
1183 {
1184 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1185 btnum, level, numrecs, owner, 0);
1186 }
1187
1188 STATIC void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1189 xfs_btree_init_block_cur(
1190 struct xfs_btree_cur *cur,
1191 struct xfs_buf *bp,
1192 int level,
1193 int numrecs)
1194 {
1195 __u64 owner;
1196
1197 /*
1198 * we can pull the owner from the cursor right now as the different
1199 * owners align directly with the pointer size of the btree. This may
1200 * change in future, but is safe for current users of the generic btree
1201 * code.
1202 */
1203 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1204 owner = cur->bc_private.b.ip->i_ino;
1205 else
1206 owner = cur->bc_private.a.agno;
1207
1208 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1209 cur->bc_btnum, level, numrecs,
1210 owner, cur->bc_flags);
1211 }
1212
1213 /*
1214 * Return true if ptr is the last record in the btree and
1215 * we need to track updates to this record. The decision
1216 * will be further refined in the update_lastrec method.
1217 */
1218 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1219 xfs_btree_is_lastrec(
1220 struct xfs_btree_cur *cur,
1221 struct xfs_btree_block *block,
1222 int level)
1223 {
1224 union xfs_btree_ptr ptr;
1225
1226 if (level > 0)
1227 return 0;
1228 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1229 return 0;
1230
1231 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1232 if (!xfs_btree_ptr_is_null(cur, &ptr))
1233 return 0;
1234 return 1;
1235 }
1236
1237 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1238 xfs_btree_buf_to_ptr(
1239 struct xfs_btree_cur *cur,
1240 struct xfs_buf *bp,
1241 union xfs_btree_ptr *ptr)
1242 {
1243 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1244 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1245 XFS_BUF_ADDR(bp)));
1246 else {
1247 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1248 XFS_BUF_ADDR(bp)));
1249 }
1250 }
1251
1252 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1253 xfs_btree_set_refs(
1254 struct xfs_btree_cur *cur,
1255 struct xfs_buf *bp)
1256 {
1257 switch (cur->bc_btnum) {
1258 case XFS_BTNUM_BNO:
1259 case XFS_BTNUM_CNT:
1260 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1261 break;
1262 case XFS_BTNUM_INO:
1263 case XFS_BTNUM_FINO:
1264 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1265 break;
1266 case XFS_BTNUM_BMAP:
1267 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1268 break;
1269 case XFS_BTNUM_RMAP:
1270 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1271 break;
1272 case XFS_BTNUM_REFC:
1273 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1274 break;
1275 default:
1276 ASSERT(0);
1277 }
1278 }
1279
1280 STATIC int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1281 xfs_btree_get_buf_block(
1282 struct xfs_btree_cur *cur,
1283 union xfs_btree_ptr *ptr,
1284 struct xfs_btree_block **block,
1285 struct xfs_buf **bpp)
1286 {
1287 struct xfs_mount *mp = cur->bc_mp;
1288 xfs_daddr_t d;
1289 int error;
1290
1291 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1292 if (error)
1293 return error;
1294 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1295 mp->m_bsize, 0);
1296
1297 if (!*bpp)
1298 return -ENOMEM;
1299
1300 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1301 *block = XFS_BUF_TO_BLOCK(*bpp);
1302 return 0;
1303 }
1304
1305 /*
1306 * Read in the buffer at the given ptr and return the buffer and
1307 * the block pointer within the buffer.
1308 */
1309 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1310 xfs_btree_read_buf_block(
1311 struct xfs_btree_cur *cur,
1312 union xfs_btree_ptr *ptr,
1313 int flags,
1314 struct xfs_btree_block **block,
1315 struct xfs_buf **bpp)
1316 {
1317 struct xfs_mount *mp = cur->bc_mp;
1318 xfs_daddr_t d;
1319 int error;
1320
1321 /* need to sort out how callers deal with failures first */
1322 ASSERT(!(flags & XBF_TRYLOCK));
1323
1324 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1325 if (error)
1326 return error;
1327 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1328 mp->m_bsize, flags, bpp,
1329 cur->bc_ops->buf_ops);
1330 if (error)
1331 return error;
1332
1333 xfs_btree_set_refs(cur, *bpp);
1334 *block = XFS_BUF_TO_BLOCK(*bpp);
1335 return 0;
1336 }
1337
1338 /*
1339 * Copy keys from one btree block to another.
1340 */
1341 STATIC void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,union xfs_btree_key * src_key,int numkeys)1342 xfs_btree_copy_keys(
1343 struct xfs_btree_cur *cur,
1344 union xfs_btree_key *dst_key,
1345 union xfs_btree_key *src_key,
1346 int numkeys)
1347 {
1348 ASSERT(numkeys >= 0);
1349 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1350 }
1351
1352 /*
1353 * Copy records from one btree block to another.
1354 */
1355 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1356 xfs_btree_copy_recs(
1357 struct xfs_btree_cur *cur,
1358 union xfs_btree_rec *dst_rec,
1359 union xfs_btree_rec *src_rec,
1360 int numrecs)
1361 {
1362 ASSERT(numrecs >= 0);
1363 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1364 }
1365
1366 /*
1367 * Copy block pointers from one btree block to another.
1368 */
1369 STATIC void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,union xfs_btree_ptr * src_ptr,int numptrs)1370 xfs_btree_copy_ptrs(
1371 struct xfs_btree_cur *cur,
1372 union xfs_btree_ptr *dst_ptr,
1373 union xfs_btree_ptr *src_ptr,
1374 int numptrs)
1375 {
1376 ASSERT(numptrs >= 0);
1377 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1378 }
1379
1380 /*
1381 * Shift keys one index left/right inside a single btree block.
1382 */
1383 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1384 xfs_btree_shift_keys(
1385 struct xfs_btree_cur *cur,
1386 union xfs_btree_key *key,
1387 int dir,
1388 int numkeys)
1389 {
1390 char *dst_key;
1391
1392 ASSERT(numkeys >= 0);
1393 ASSERT(dir == 1 || dir == -1);
1394
1395 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1396 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1397 }
1398
1399 /*
1400 * Shift records one index left/right inside a single btree block.
1401 */
1402 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1403 xfs_btree_shift_recs(
1404 struct xfs_btree_cur *cur,
1405 union xfs_btree_rec *rec,
1406 int dir,
1407 int numrecs)
1408 {
1409 char *dst_rec;
1410
1411 ASSERT(numrecs >= 0);
1412 ASSERT(dir == 1 || dir == -1);
1413
1414 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1415 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1416 }
1417
1418 /*
1419 * Shift block pointers one index left/right inside a single btree block.
1420 */
1421 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1422 xfs_btree_shift_ptrs(
1423 struct xfs_btree_cur *cur,
1424 union xfs_btree_ptr *ptr,
1425 int dir,
1426 int numptrs)
1427 {
1428 char *dst_ptr;
1429
1430 ASSERT(numptrs >= 0);
1431 ASSERT(dir == 1 || dir == -1);
1432
1433 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1434 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1435 }
1436
1437 /*
1438 * Log key values from the btree block.
1439 */
1440 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1441 xfs_btree_log_keys(
1442 struct xfs_btree_cur *cur,
1443 struct xfs_buf *bp,
1444 int first,
1445 int last)
1446 {
1447
1448 if (bp) {
1449 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1450 xfs_trans_log_buf(cur->bc_tp, bp,
1451 xfs_btree_key_offset(cur, first),
1452 xfs_btree_key_offset(cur, last + 1) - 1);
1453 } else {
1454 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1455 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1456 }
1457 }
1458
1459 /*
1460 * Log record values from the btree block.
1461 */
1462 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1463 xfs_btree_log_recs(
1464 struct xfs_btree_cur *cur,
1465 struct xfs_buf *bp,
1466 int first,
1467 int last)
1468 {
1469
1470 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1471 xfs_trans_log_buf(cur->bc_tp, bp,
1472 xfs_btree_rec_offset(cur, first),
1473 xfs_btree_rec_offset(cur, last + 1) - 1);
1474
1475 }
1476
1477 /*
1478 * Log block pointer fields from a btree block (nonleaf).
1479 */
1480 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1481 xfs_btree_log_ptrs(
1482 struct xfs_btree_cur *cur, /* btree cursor */
1483 struct xfs_buf *bp, /* buffer containing btree block */
1484 int first, /* index of first pointer to log */
1485 int last) /* index of last pointer to log */
1486 {
1487
1488 if (bp) {
1489 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1490 int level = xfs_btree_get_level(block);
1491
1492 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1493 xfs_trans_log_buf(cur->bc_tp, bp,
1494 xfs_btree_ptr_offset(cur, first, level),
1495 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1496 } else {
1497 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1498 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1499 }
1500
1501 }
1502
1503 /*
1504 * Log fields from a btree block header.
1505 */
1506 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1507 xfs_btree_log_block(
1508 struct xfs_btree_cur *cur, /* btree cursor */
1509 struct xfs_buf *bp, /* buffer containing btree block */
1510 int fields) /* mask of fields: XFS_BB_... */
1511 {
1512 int first; /* first byte offset logged */
1513 int last; /* last byte offset logged */
1514 static const short soffsets[] = { /* table of offsets (short) */
1515 offsetof(struct xfs_btree_block, bb_magic),
1516 offsetof(struct xfs_btree_block, bb_level),
1517 offsetof(struct xfs_btree_block, bb_numrecs),
1518 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1519 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1520 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1521 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1522 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1523 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1524 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1525 XFS_BTREE_SBLOCK_CRC_LEN
1526 };
1527 static const short loffsets[] = { /* table of offsets (long) */
1528 offsetof(struct xfs_btree_block, bb_magic),
1529 offsetof(struct xfs_btree_block, bb_level),
1530 offsetof(struct xfs_btree_block, bb_numrecs),
1531 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1532 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1533 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1534 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1535 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1536 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1537 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1538 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1539 XFS_BTREE_LBLOCK_CRC_LEN
1540 };
1541
1542 if (bp) {
1543 int nbits;
1544
1545 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1546 /*
1547 * We don't log the CRC when updating a btree
1548 * block but instead recreate it during log
1549 * recovery. As the log buffers have checksums
1550 * of their own this is safe and avoids logging a crc
1551 * update in a lot of places.
1552 */
1553 if (fields == XFS_BB_ALL_BITS)
1554 fields = XFS_BB_ALL_BITS_CRC;
1555 nbits = XFS_BB_NUM_BITS_CRC;
1556 } else {
1557 nbits = XFS_BB_NUM_BITS;
1558 }
1559 xfs_btree_offsets(fields,
1560 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1561 loffsets : soffsets,
1562 nbits, &first, &last);
1563 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1565 } else {
1566 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1567 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1568 }
1569 }
1570
1571 /*
1572 * Increment cursor by one record at the level.
1573 * For nonzero levels the leaf-ward information is untouched.
1574 */
1575 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1576 xfs_btree_increment(
1577 struct xfs_btree_cur *cur,
1578 int level,
1579 int *stat) /* success/failure */
1580 {
1581 struct xfs_btree_block *block;
1582 union xfs_btree_ptr ptr;
1583 struct xfs_buf *bp;
1584 int error; /* error return value */
1585 int lev;
1586
1587 ASSERT(level < cur->bc_nlevels);
1588
1589 /* Read-ahead to the right at this level. */
1590 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1591
1592 /* Get a pointer to the btree block. */
1593 block = xfs_btree_get_block(cur, level, &bp);
1594
1595 #ifdef DEBUG
1596 error = xfs_btree_check_block(cur, block, level, bp);
1597 if (error)
1598 goto error0;
1599 #endif
1600
1601 /* We're done if we remain in the block after the increment. */
1602 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1603 goto out1;
1604
1605 /* Fail if we just went off the right edge of the tree. */
1606 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1607 if (xfs_btree_ptr_is_null(cur, &ptr))
1608 goto out0;
1609
1610 XFS_BTREE_STATS_INC(cur, increment);
1611
1612 /*
1613 * March up the tree incrementing pointers.
1614 * Stop when we don't go off the right edge of a block.
1615 */
1616 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1617 block = xfs_btree_get_block(cur, lev, &bp);
1618
1619 #ifdef DEBUG
1620 error = xfs_btree_check_block(cur, block, lev, bp);
1621 if (error)
1622 goto error0;
1623 #endif
1624
1625 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1626 break;
1627
1628 /* Read-ahead the right block for the next loop. */
1629 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1630 }
1631
1632 /*
1633 * If we went off the root then we are either seriously
1634 * confused or have the tree root in an inode.
1635 */
1636 if (lev == cur->bc_nlevels) {
1637 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1638 goto out0;
1639 ASSERT(0);
1640 error = -EFSCORRUPTED;
1641 goto error0;
1642 }
1643 ASSERT(lev < cur->bc_nlevels);
1644
1645 /*
1646 * Now walk back down the tree, fixing up the cursor's buffer
1647 * pointers and key numbers.
1648 */
1649 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1650 union xfs_btree_ptr *ptrp;
1651
1652 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1653 --lev;
1654 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1655 if (error)
1656 goto error0;
1657
1658 xfs_btree_setbuf(cur, lev, bp);
1659 cur->bc_ptrs[lev] = 1;
1660 }
1661 out1:
1662 *stat = 1;
1663 return 0;
1664
1665 out0:
1666 *stat = 0;
1667 return 0;
1668
1669 error0:
1670 return error;
1671 }
1672
1673 /*
1674 * Decrement cursor by one record at the level.
1675 * For nonzero levels the leaf-ward information is untouched.
1676 */
1677 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1678 xfs_btree_decrement(
1679 struct xfs_btree_cur *cur,
1680 int level,
1681 int *stat) /* success/failure */
1682 {
1683 struct xfs_btree_block *block;
1684 xfs_buf_t *bp;
1685 int error; /* error return value */
1686 int lev;
1687 union xfs_btree_ptr ptr;
1688
1689 ASSERT(level < cur->bc_nlevels);
1690
1691 /* Read-ahead to the left at this level. */
1692 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1693
1694 /* We're done if we remain in the block after the decrement. */
1695 if (--cur->bc_ptrs[level] > 0)
1696 goto out1;
1697
1698 /* Get a pointer to the btree block. */
1699 block = xfs_btree_get_block(cur, level, &bp);
1700
1701 #ifdef DEBUG
1702 error = xfs_btree_check_block(cur, block, level, bp);
1703 if (error)
1704 goto error0;
1705 #endif
1706
1707 /* Fail if we just went off the left edge of the tree. */
1708 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1709 if (xfs_btree_ptr_is_null(cur, &ptr))
1710 goto out0;
1711
1712 XFS_BTREE_STATS_INC(cur, decrement);
1713
1714 /*
1715 * March up the tree decrementing pointers.
1716 * Stop when we don't go off the left edge of a block.
1717 */
1718 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1719 if (--cur->bc_ptrs[lev] > 0)
1720 break;
1721 /* Read-ahead the left block for the next loop. */
1722 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1723 }
1724
1725 /*
1726 * If we went off the root then we are seriously confused.
1727 * or the root of the tree is in an inode.
1728 */
1729 if (lev == cur->bc_nlevels) {
1730 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1731 goto out0;
1732 ASSERT(0);
1733 error = -EFSCORRUPTED;
1734 goto error0;
1735 }
1736 ASSERT(lev < cur->bc_nlevels);
1737
1738 /*
1739 * Now walk back down the tree, fixing up the cursor's buffer
1740 * pointers and key numbers.
1741 */
1742 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1743 union xfs_btree_ptr *ptrp;
1744
1745 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1746 --lev;
1747 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1748 if (error)
1749 goto error0;
1750 xfs_btree_setbuf(cur, lev, bp);
1751 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1752 }
1753 out1:
1754 *stat = 1;
1755 return 0;
1756
1757 out0:
1758 *stat = 0;
1759 return 0;
1760
1761 error0:
1762 return error;
1763 }
1764
1765 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1766 xfs_btree_lookup_get_block(
1767 struct xfs_btree_cur *cur, /* btree cursor */
1768 int level, /* level in the btree */
1769 union xfs_btree_ptr *pp, /* ptr to btree block */
1770 struct xfs_btree_block **blkp) /* return btree block */
1771 {
1772 struct xfs_buf *bp; /* buffer pointer for btree block */
1773 xfs_daddr_t daddr;
1774 int error = 0;
1775
1776 /* special case the root block if in an inode */
1777 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1778 (level == cur->bc_nlevels - 1)) {
1779 *blkp = xfs_btree_get_iroot(cur);
1780 return 0;
1781 }
1782
1783 /*
1784 * If the old buffer at this level for the disk address we are
1785 * looking for re-use it.
1786 *
1787 * Otherwise throw it away and get a new one.
1788 */
1789 bp = cur->bc_bufs[level];
1790 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1791 if (error)
1792 return error;
1793 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1794 *blkp = XFS_BUF_TO_BLOCK(bp);
1795 return 0;
1796 }
1797
1798 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1799 if (error)
1800 return error;
1801
1802 /* Check the inode owner since the verifiers don't. */
1803 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1804 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1805 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1806 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1807 cur->bc_private.b.ip->i_ino)
1808 goto out_bad;
1809
1810 /* Did we get the level we were looking for? */
1811 if (be16_to_cpu((*blkp)->bb_level) != level)
1812 goto out_bad;
1813
1814 /* Check that internal nodes have at least one record. */
1815 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1816 goto out_bad;
1817
1818 xfs_btree_setbuf(cur, level, bp);
1819 return 0;
1820
1821 out_bad:
1822 *blkp = NULL;
1823 xfs_trans_brelse(cur->bc_tp, bp);
1824 return -EFSCORRUPTED;
1825 }
1826
1827 /*
1828 * Get current search key. For level 0 we don't actually have a key
1829 * structure so we make one up from the record. For all other levels
1830 * we just return the right key.
1831 */
1832 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1833 xfs_lookup_get_search_key(
1834 struct xfs_btree_cur *cur,
1835 int level,
1836 int keyno,
1837 struct xfs_btree_block *block,
1838 union xfs_btree_key *kp)
1839 {
1840 if (level == 0) {
1841 cur->bc_ops->init_key_from_rec(kp,
1842 xfs_btree_rec_addr(cur, keyno, block));
1843 return kp;
1844 }
1845
1846 return xfs_btree_key_addr(cur, keyno, block);
1847 }
1848
1849 /*
1850 * Lookup the record. The cursor is made to point to it, based on dir.
1851 * stat is set to 0 if can't find any such record, 1 for success.
1852 */
1853 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1854 xfs_btree_lookup(
1855 struct xfs_btree_cur *cur, /* btree cursor */
1856 xfs_lookup_t dir, /* <=, ==, or >= */
1857 int *stat) /* success/failure */
1858 {
1859 struct xfs_btree_block *block; /* current btree block */
1860 int64_t diff; /* difference for the current key */
1861 int error; /* error return value */
1862 int keyno; /* current key number */
1863 int level; /* level in the btree */
1864 union xfs_btree_ptr *pp; /* ptr to btree block */
1865 union xfs_btree_ptr ptr; /* ptr to btree block */
1866
1867 XFS_BTREE_STATS_INC(cur, lookup);
1868
1869 /* No such thing as a zero-level tree. */
1870 if (cur->bc_nlevels == 0)
1871 return -EFSCORRUPTED;
1872
1873 block = NULL;
1874 keyno = 0;
1875
1876 /* initialise start pointer from cursor */
1877 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1878 pp = &ptr;
1879
1880 /*
1881 * Iterate over each level in the btree, starting at the root.
1882 * For each level above the leaves, find the key we need, based
1883 * on the lookup record, then follow the corresponding block
1884 * pointer down to the next level.
1885 */
1886 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1887 /* Get the block we need to do the lookup on. */
1888 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1889 if (error)
1890 goto error0;
1891
1892 if (diff == 0) {
1893 /*
1894 * If we already had a key match at a higher level, we
1895 * know we need to use the first entry in this block.
1896 */
1897 keyno = 1;
1898 } else {
1899 /* Otherwise search this block. Do a binary search. */
1900
1901 int high; /* high entry number */
1902 int low; /* low entry number */
1903
1904 /* Set low and high entry numbers, 1-based. */
1905 low = 1;
1906 high = xfs_btree_get_numrecs(block);
1907 if (!high) {
1908 /* Block is empty, must be an empty leaf. */
1909 if (level != 0 || cur->bc_nlevels != 1) {
1910 XFS_CORRUPTION_ERROR(__func__,
1911 XFS_ERRLEVEL_LOW,
1912 cur->bc_mp, block,
1913 sizeof(*block));
1914 return -EFSCORRUPTED;
1915 }
1916
1917 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1918 *stat = 0;
1919 return 0;
1920 }
1921
1922 /* Binary search the block. */
1923 while (low <= high) {
1924 union xfs_btree_key key;
1925 union xfs_btree_key *kp;
1926
1927 XFS_BTREE_STATS_INC(cur, compare);
1928
1929 /* keyno is average of low and high. */
1930 keyno = (low + high) >> 1;
1931
1932 /* Get current search key */
1933 kp = xfs_lookup_get_search_key(cur, level,
1934 keyno, block, &key);
1935
1936 /*
1937 * Compute difference to get next direction:
1938 * - less than, move right
1939 * - greater than, move left
1940 * - equal, we're done
1941 */
1942 diff = cur->bc_ops->key_diff(cur, kp);
1943 if (diff < 0)
1944 low = keyno + 1;
1945 else if (diff > 0)
1946 high = keyno - 1;
1947 else
1948 break;
1949 }
1950 }
1951
1952 /*
1953 * If there are more levels, set up for the next level
1954 * by getting the block number and filling in the cursor.
1955 */
1956 if (level > 0) {
1957 /*
1958 * If we moved left, need the previous key number,
1959 * unless there isn't one.
1960 */
1961 if (diff > 0 && --keyno < 1)
1962 keyno = 1;
1963 pp = xfs_btree_ptr_addr(cur, keyno, block);
1964
1965 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1966 if (error)
1967 goto error0;
1968
1969 cur->bc_ptrs[level] = keyno;
1970 }
1971 }
1972
1973 /* Done with the search. See if we need to adjust the results. */
1974 if (dir != XFS_LOOKUP_LE && diff < 0) {
1975 keyno++;
1976 /*
1977 * If ge search and we went off the end of the block, but it's
1978 * not the last block, we're in the wrong block.
1979 */
1980 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1981 if (dir == XFS_LOOKUP_GE &&
1982 keyno > xfs_btree_get_numrecs(block) &&
1983 !xfs_btree_ptr_is_null(cur, &ptr)) {
1984 int i;
1985
1986 cur->bc_ptrs[0] = keyno;
1987 error = xfs_btree_increment(cur, 0, &i);
1988 if (error)
1989 goto error0;
1990 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1991 *stat = 1;
1992 return 0;
1993 }
1994 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1995 keyno--;
1996 cur->bc_ptrs[0] = keyno;
1997
1998 /* Return if we succeeded or not. */
1999 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2000 *stat = 0;
2001 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2002 *stat = 1;
2003 else
2004 *stat = 0;
2005 return 0;
2006
2007 error0:
2008 return error;
2009 }
2010
2011 /* Find the high key storage area from a regular key. */
2012 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2013 xfs_btree_high_key_from_key(
2014 struct xfs_btree_cur *cur,
2015 union xfs_btree_key *key)
2016 {
2017 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2018 return (union xfs_btree_key *)((char *)key +
2019 (cur->bc_ops->key_len / 2));
2020 }
2021
2022 /* Determine the low (and high if overlapped) keys of a leaf block */
2023 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2024 xfs_btree_get_leaf_keys(
2025 struct xfs_btree_cur *cur,
2026 struct xfs_btree_block *block,
2027 union xfs_btree_key *key)
2028 {
2029 union xfs_btree_key max_hkey;
2030 union xfs_btree_key hkey;
2031 union xfs_btree_rec *rec;
2032 union xfs_btree_key *high;
2033 int n;
2034
2035 rec = xfs_btree_rec_addr(cur, 1, block);
2036 cur->bc_ops->init_key_from_rec(key, rec);
2037
2038 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2039
2040 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2041 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2042 rec = xfs_btree_rec_addr(cur, n, block);
2043 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2044 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2045 > 0)
2046 max_hkey = hkey;
2047 }
2048
2049 high = xfs_btree_high_key_from_key(cur, key);
2050 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2051 }
2052 }
2053
2054 /* Determine the low (and high if overlapped) keys of a node block */
2055 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2056 xfs_btree_get_node_keys(
2057 struct xfs_btree_cur *cur,
2058 struct xfs_btree_block *block,
2059 union xfs_btree_key *key)
2060 {
2061 union xfs_btree_key *hkey;
2062 union xfs_btree_key *max_hkey;
2063 union xfs_btree_key *high;
2064 int n;
2065
2066 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2067 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2068 cur->bc_ops->key_len / 2);
2069
2070 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2071 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2072 hkey = xfs_btree_high_key_addr(cur, n, block);
2073 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2074 max_hkey = hkey;
2075 }
2076
2077 high = xfs_btree_high_key_from_key(cur, key);
2078 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2079 } else {
2080 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2081 cur->bc_ops->key_len);
2082 }
2083 }
2084
2085 /* Derive the keys for any btree block. */
2086 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2087 xfs_btree_get_keys(
2088 struct xfs_btree_cur *cur,
2089 struct xfs_btree_block *block,
2090 union xfs_btree_key *key)
2091 {
2092 if (be16_to_cpu(block->bb_level) == 0)
2093 xfs_btree_get_leaf_keys(cur, block, key);
2094 else
2095 xfs_btree_get_node_keys(cur, block, key);
2096 }
2097
2098 /*
2099 * Decide if we need to update the parent keys of a btree block. For
2100 * a standard btree this is only necessary if we're updating the first
2101 * record/key. For an overlapping btree, we must always update the
2102 * keys because the highest key can be in any of the records or keys
2103 * in the block.
2104 */
2105 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2106 xfs_btree_needs_key_update(
2107 struct xfs_btree_cur *cur,
2108 int ptr)
2109 {
2110 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2111 }
2112
2113 /*
2114 * Update the low and high parent keys of the given level, progressing
2115 * towards the root. If force_all is false, stop if the keys for a given
2116 * level do not need updating.
2117 */
2118 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2119 __xfs_btree_updkeys(
2120 struct xfs_btree_cur *cur,
2121 int level,
2122 struct xfs_btree_block *block,
2123 struct xfs_buf *bp0,
2124 bool force_all)
2125 {
2126 union xfs_btree_key key; /* keys from current level */
2127 union xfs_btree_key *lkey; /* keys from the next level up */
2128 union xfs_btree_key *hkey;
2129 union xfs_btree_key *nlkey; /* keys from the next level up */
2130 union xfs_btree_key *nhkey;
2131 struct xfs_buf *bp;
2132 int ptr;
2133
2134 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2135
2136 /* Exit if there aren't any parent levels to update. */
2137 if (level + 1 >= cur->bc_nlevels)
2138 return 0;
2139
2140 trace_xfs_btree_updkeys(cur, level, bp0);
2141
2142 lkey = &key;
2143 hkey = xfs_btree_high_key_from_key(cur, lkey);
2144 xfs_btree_get_keys(cur, block, lkey);
2145 for (level++; level < cur->bc_nlevels; level++) {
2146 #ifdef DEBUG
2147 int error;
2148 #endif
2149 block = xfs_btree_get_block(cur, level, &bp);
2150 trace_xfs_btree_updkeys(cur, level, bp);
2151 #ifdef DEBUG
2152 error = xfs_btree_check_block(cur, block, level, bp);
2153 if (error)
2154 return error;
2155 #endif
2156 ptr = cur->bc_ptrs[level];
2157 nlkey = xfs_btree_key_addr(cur, ptr, block);
2158 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2159 if (!force_all &&
2160 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2161 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2162 break;
2163 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2164 xfs_btree_log_keys(cur, bp, ptr, ptr);
2165 if (level + 1 >= cur->bc_nlevels)
2166 break;
2167 xfs_btree_get_node_keys(cur, block, lkey);
2168 }
2169
2170 return 0;
2171 }
2172
2173 /* Update all the keys from some level in cursor back to the root. */
2174 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2175 xfs_btree_updkeys_force(
2176 struct xfs_btree_cur *cur,
2177 int level)
2178 {
2179 struct xfs_buf *bp;
2180 struct xfs_btree_block *block;
2181
2182 block = xfs_btree_get_block(cur, level, &bp);
2183 return __xfs_btree_updkeys(cur, level, block, bp, true);
2184 }
2185
2186 /*
2187 * Update the parent keys of the given level, progressing towards the root.
2188 */
2189 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2190 xfs_btree_update_keys(
2191 struct xfs_btree_cur *cur,
2192 int level)
2193 {
2194 struct xfs_btree_block *block;
2195 struct xfs_buf *bp;
2196 union xfs_btree_key *kp;
2197 union xfs_btree_key key;
2198 int ptr;
2199
2200 ASSERT(level >= 0);
2201
2202 block = xfs_btree_get_block(cur, level, &bp);
2203 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2204 return __xfs_btree_updkeys(cur, level, block, bp, false);
2205
2206 /*
2207 * Go up the tree from this level toward the root.
2208 * At each level, update the key value to the value input.
2209 * Stop when we reach a level where the cursor isn't pointing
2210 * at the first entry in the block.
2211 */
2212 xfs_btree_get_keys(cur, block, &key);
2213 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2214 #ifdef DEBUG
2215 int error;
2216 #endif
2217 block = xfs_btree_get_block(cur, level, &bp);
2218 #ifdef DEBUG
2219 error = xfs_btree_check_block(cur, block, level, bp);
2220 if (error)
2221 return error;
2222 #endif
2223 ptr = cur->bc_ptrs[level];
2224 kp = xfs_btree_key_addr(cur, ptr, block);
2225 xfs_btree_copy_keys(cur, kp, &key, 1);
2226 xfs_btree_log_keys(cur, bp, ptr, ptr);
2227 }
2228
2229 return 0;
2230 }
2231
2232 /*
2233 * Update the record referred to by cur to the value in the
2234 * given record. This either works (return 0) or gets an
2235 * EFSCORRUPTED error.
2236 */
2237 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2238 xfs_btree_update(
2239 struct xfs_btree_cur *cur,
2240 union xfs_btree_rec *rec)
2241 {
2242 struct xfs_btree_block *block;
2243 struct xfs_buf *bp;
2244 int error;
2245 int ptr;
2246 union xfs_btree_rec *rp;
2247
2248 /* Pick up the current block. */
2249 block = xfs_btree_get_block(cur, 0, &bp);
2250
2251 #ifdef DEBUG
2252 error = xfs_btree_check_block(cur, block, 0, bp);
2253 if (error)
2254 goto error0;
2255 #endif
2256 /* Get the address of the rec to be updated. */
2257 ptr = cur->bc_ptrs[0];
2258 rp = xfs_btree_rec_addr(cur, ptr, block);
2259
2260 /* Fill in the new contents and log them. */
2261 xfs_btree_copy_recs(cur, rp, rec, 1);
2262 xfs_btree_log_recs(cur, bp, ptr, ptr);
2263
2264 /*
2265 * If we are tracking the last record in the tree and
2266 * we are at the far right edge of the tree, update it.
2267 */
2268 if (xfs_btree_is_lastrec(cur, block, 0)) {
2269 cur->bc_ops->update_lastrec(cur, block, rec,
2270 ptr, LASTREC_UPDATE);
2271 }
2272
2273 /* Pass new key value up to our parent. */
2274 if (xfs_btree_needs_key_update(cur, ptr)) {
2275 error = xfs_btree_update_keys(cur, 0);
2276 if (error)
2277 goto error0;
2278 }
2279
2280 return 0;
2281
2282 error0:
2283 return error;
2284 }
2285
2286 /*
2287 * Move 1 record left from cur/level if possible.
2288 * Update cur to reflect the new path.
2289 */
2290 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2291 xfs_btree_lshift(
2292 struct xfs_btree_cur *cur,
2293 int level,
2294 int *stat) /* success/failure */
2295 {
2296 struct xfs_buf *lbp; /* left buffer pointer */
2297 struct xfs_btree_block *left; /* left btree block */
2298 int lrecs; /* left record count */
2299 struct xfs_buf *rbp; /* right buffer pointer */
2300 struct xfs_btree_block *right; /* right btree block */
2301 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2302 int rrecs; /* right record count */
2303 union xfs_btree_ptr lptr; /* left btree pointer */
2304 union xfs_btree_key *rkp = NULL; /* right btree key */
2305 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2306 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2307 int error; /* error return value */
2308 int i;
2309
2310 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2311 level == cur->bc_nlevels - 1)
2312 goto out0;
2313
2314 /* Set up variables for this block as "right". */
2315 right = xfs_btree_get_block(cur, level, &rbp);
2316
2317 #ifdef DEBUG
2318 error = xfs_btree_check_block(cur, right, level, rbp);
2319 if (error)
2320 goto error0;
2321 #endif
2322
2323 /* If we've got no left sibling then we can't shift an entry left. */
2324 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2325 if (xfs_btree_ptr_is_null(cur, &lptr))
2326 goto out0;
2327
2328 /*
2329 * If the cursor entry is the one that would be moved, don't
2330 * do it... it's too complicated.
2331 */
2332 if (cur->bc_ptrs[level] <= 1)
2333 goto out0;
2334
2335 /* Set up the left neighbor as "left". */
2336 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2337 if (error)
2338 goto error0;
2339
2340 /* If it's full, it can't take another entry. */
2341 lrecs = xfs_btree_get_numrecs(left);
2342 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2343 goto out0;
2344
2345 rrecs = xfs_btree_get_numrecs(right);
2346
2347 /*
2348 * We add one entry to the left side and remove one for the right side.
2349 * Account for it here, the changes will be updated on disk and logged
2350 * later.
2351 */
2352 lrecs++;
2353 rrecs--;
2354
2355 XFS_BTREE_STATS_INC(cur, lshift);
2356 XFS_BTREE_STATS_ADD(cur, moves, 1);
2357
2358 /*
2359 * If non-leaf, copy a key and a ptr to the left block.
2360 * Log the changes to the left block.
2361 */
2362 if (level > 0) {
2363 /* It's a non-leaf. Move keys and pointers. */
2364 union xfs_btree_key *lkp; /* left btree key */
2365 union xfs_btree_ptr *lpp; /* left address pointer */
2366
2367 lkp = xfs_btree_key_addr(cur, lrecs, left);
2368 rkp = xfs_btree_key_addr(cur, 1, right);
2369
2370 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2371 rpp = xfs_btree_ptr_addr(cur, 1, right);
2372
2373 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2374 if (error)
2375 goto error0;
2376
2377 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2378 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2379
2380 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2381 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2382
2383 ASSERT(cur->bc_ops->keys_inorder(cur,
2384 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2385 } else {
2386 /* It's a leaf. Move records. */
2387 union xfs_btree_rec *lrp; /* left record pointer */
2388
2389 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2390 rrp = xfs_btree_rec_addr(cur, 1, right);
2391
2392 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2393 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2394
2395 ASSERT(cur->bc_ops->recs_inorder(cur,
2396 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2397 }
2398
2399 xfs_btree_set_numrecs(left, lrecs);
2400 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2401
2402 xfs_btree_set_numrecs(right, rrecs);
2403 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2404
2405 /*
2406 * Slide the contents of right down one entry.
2407 */
2408 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2409 if (level > 0) {
2410 /* It's a nonleaf. operate on keys and ptrs */
2411 int i; /* loop index */
2412
2413 for (i = 0; i < rrecs; i++) {
2414 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2415 if (error)
2416 goto error0;
2417 }
2418
2419 xfs_btree_shift_keys(cur,
2420 xfs_btree_key_addr(cur, 2, right),
2421 -1, rrecs);
2422 xfs_btree_shift_ptrs(cur,
2423 xfs_btree_ptr_addr(cur, 2, right),
2424 -1, rrecs);
2425
2426 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2427 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2428 } else {
2429 /* It's a leaf. operate on records */
2430 xfs_btree_shift_recs(cur,
2431 xfs_btree_rec_addr(cur, 2, right),
2432 -1, rrecs);
2433 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2434 }
2435
2436 /*
2437 * Using a temporary cursor, update the parent key values of the
2438 * block on the left.
2439 */
2440 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2441 error = xfs_btree_dup_cursor(cur, &tcur);
2442 if (error)
2443 goto error0;
2444 i = xfs_btree_firstrec(tcur, level);
2445 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2446
2447 error = xfs_btree_decrement(tcur, level, &i);
2448 if (error)
2449 goto error1;
2450
2451 /* Update the parent high keys of the left block, if needed. */
2452 error = xfs_btree_update_keys(tcur, level);
2453 if (error)
2454 goto error1;
2455
2456 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2457 }
2458
2459 /* Update the parent keys of the right block. */
2460 error = xfs_btree_update_keys(cur, level);
2461 if (error)
2462 goto error0;
2463
2464 /* Slide the cursor value left one. */
2465 cur->bc_ptrs[level]--;
2466
2467 *stat = 1;
2468 return 0;
2469
2470 out0:
2471 *stat = 0;
2472 return 0;
2473
2474 error0:
2475 return error;
2476
2477 error1:
2478 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2479 return error;
2480 }
2481
2482 /*
2483 * Move 1 record right from cur/level if possible.
2484 * Update cur to reflect the new path.
2485 */
2486 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2487 xfs_btree_rshift(
2488 struct xfs_btree_cur *cur,
2489 int level,
2490 int *stat) /* success/failure */
2491 {
2492 struct xfs_buf *lbp; /* left buffer pointer */
2493 struct xfs_btree_block *left; /* left btree block */
2494 struct xfs_buf *rbp; /* right buffer pointer */
2495 struct xfs_btree_block *right; /* right btree block */
2496 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2497 union xfs_btree_ptr rptr; /* right block pointer */
2498 union xfs_btree_key *rkp; /* right btree key */
2499 int rrecs; /* right record count */
2500 int lrecs; /* left record count */
2501 int error; /* error return value */
2502 int i; /* loop counter */
2503
2504 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2505 (level == cur->bc_nlevels - 1))
2506 goto out0;
2507
2508 /* Set up variables for this block as "left". */
2509 left = xfs_btree_get_block(cur, level, &lbp);
2510
2511 #ifdef DEBUG
2512 error = xfs_btree_check_block(cur, left, level, lbp);
2513 if (error)
2514 goto error0;
2515 #endif
2516
2517 /* If we've got no right sibling then we can't shift an entry right. */
2518 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2519 if (xfs_btree_ptr_is_null(cur, &rptr))
2520 goto out0;
2521
2522 /*
2523 * If the cursor entry is the one that would be moved, don't
2524 * do it... it's too complicated.
2525 */
2526 lrecs = xfs_btree_get_numrecs(left);
2527 if (cur->bc_ptrs[level] >= lrecs)
2528 goto out0;
2529
2530 /* Set up the right neighbor as "right". */
2531 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2532 if (error)
2533 goto error0;
2534
2535 /* If it's full, it can't take another entry. */
2536 rrecs = xfs_btree_get_numrecs(right);
2537 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2538 goto out0;
2539
2540 XFS_BTREE_STATS_INC(cur, rshift);
2541 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2542
2543 /*
2544 * Make a hole at the start of the right neighbor block, then
2545 * copy the last left block entry to the hole.
2546 */
2547 if (level > 0) {
2548 /* It's a nonleaf. make a hole in the keys and ptrs */
2549 union xfs_btree_key *lkp;
2550 union xfs_btree_ptr *lpp;
2551 union xfs_btree_ptr *rpp;
2552
2553 lkp = xfs_btree_key_addr(cur, lrecs, left);
2554 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2555 rkp = xfs_btree_key_addr(cur, 1, right);
2556 rpp = xfs_btree_ptr_addr(cur, 1, right);
2557
2558 for (i = rrecs - 1; i >= 0; i--) {
2559 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2560 if (error)
2561 goto error0;
2562 }
2563
2564 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2565 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2566
2567 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2568 if (error)
2569 goto error0;
2570
2571 /* Now put the new data in, and log it. */
2572 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2573 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2574
2575 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2576 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2577
2578 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2579 xfs_btree_key_addr(cur, 2, right)));
2580 } else {
2581 /* It's a leaf. make a hole in the records */
2582 union xfs_btree_rec *lrp;
2583 union xfs_btree_rec *rrp;
2584
2585 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2586 rrp = xfs_btree_rec_addr(cur, 1, right);
2587
2588 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2589
2590 /* Now put the new data in, and log it. */
2591 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2592 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2593 }
2594
2595 /*
2596 * Decrement and log left's numrecs, bump and log right's numrecs.
2597 */
2598 xfs_btree_set_numrecs(left, --lrecs);
2599 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2600
2601 xfs_btree_set_numrecs(right, ++rrecs);
2602 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2603
2604 /*
2605 * Using a temporary cursor, update the parent key values of the
2606 * block on the right.
2607 */
2608 error = xfs_btree_dup_cursor(cur, &tcur);
2609 if (error)
2610 goto error0;
2611 i = xfs_btree_lastrec(tcur, level);
2612 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2613
2614 error = xfs_btree_increment(tcur, level, &i);
2615 if (error)
2616 goto error1;
2617
2618 /* Update the parent high keys of the left block, if needed. */
2619 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2620 error = xfs_btree_update_keys(cur, level);
2621 if (error)
2622 goto error1;
2623 }
2624
2625 /* Update the parent keys of the right block. */
2626 error = xfs_btree_update_keys(tcur, level);
2627 if (error)
2628 goto error1;
2629
2630 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2631
2632 *stat = 1;
2633 return 0;
2634
2635 out0:
2636 *stat = 0;
2637 return 0;
2638
2639 error0:
2640 return error;
2641
2642 error1:
2643 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2644 return error;
2645 }
2646
2647 /*
2648 * Split cur/level block in half.
2649 * Return new block number and the key to its first
2650 * record (to be inserted into parent).
2651 */
2652 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2653 __xfs_btree_split(
2654 struct xfs_btree_cur *cur,
2655 int level,
2656 union xfs_btree_ptr *ptrp,
2657 union xfs_btree_key *key,
2658 struct xfs_btree_cur **curp,
2659 int *stat) /* success/failure */
2660 {
2661 union xfs_btree_ptr lptr; /* left sibling block ptr */
2662 struct xfs_buf *lbp; /* left buffer pointer */
2663 struct xfs_btree_block *left; /* left btree block */
2664 union xfs_btree_ptr rptr; /* right sibling block ptr */
2665 struct xfs_buf *rbp; /* right buffer pointer */
2666 struct xfs_btree_block *right; /* right btree block */
2667 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2668 struct xfs_buf *rrbp; /* right-right buffer pointer */
2669 struct xfs_btree_block *rrblock; /* right-right btree block */
2670 int lrecs;
2671 int rrecs;
2672 int src_index;
2673 int error; /* error return value */
2674 int i;
2675
2676 XFS_BTREE_STATS_INC(cur, split);
2677
2678 /* Set up left block (current one). */
2679 left = xfs_btree_get_block(cur, level, &lbp);
2680
2681 #ifdef DEBUG
2682 error = xfs_btree_check_block(cur, left, level, lbp);
2683 if (error)
2684 goto error0;
2685 #endif
2686
2687 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2688
2689 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2690 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2691 if (error)
2692 goto error0;
2693 if (*stat == 0)
2694 goto out0;
2695 XFS_BTREE_STATS_INC(cur, alloc);
2696
2697 /* Set up the new block as "right". */
2698 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2699 if (error)
2700 goto error0;
2701
2702 /* Fill in the btree header for the new right block. */
2703 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2704
2705 /*
2706 * Split the entries between the old and the new block evenly.
2707 * Make sure that if there's an odd number of entries now, that
2708 * each new block will have the same number of entries.
2709 */
2710 lrecs = xfs_btree_get_numrecs(left);
2711 rrecs = lrecs / 2;
2712 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2713 rrecs++;
2714 src_index = (lrecs - rrecs + 1);
2715
2716 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2717
2718 /* Adjust numrecs for the later get_*_keys() calls. */
2719 lrecs -= rrecs;
2720 xfs_btree_set_numrecs(left, lrecs);
2721 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2722
2723 /*
2724 * Copy btree block entries from the left block over to the
2725 * new block, the right. Update the right block and log the
2726 * changes.
2727 */
2728 if (level > 0) {
2729 /* It's a non-leaf. Move keys and pointers. */
2730 union xfs_btree_key *lkp; /* left btree key */
2731 union xfs_btree_ptr *lpp; /* left address pointer */
2732 union xfs_btree_key *rkp; /* right btree key */
2733 union xfs_btree_ptr *rpp; /* right address pointer */
2734
2735 lkp = xfs_btree_key_addr(cur, src_index, left);
2736 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2737 rkp = xfs_btree_key_addr(cur, 1, right);
2738 rpp = xfs_btree_ptr_addr(cur, 1, right);
2739
2740 for (i = src_index; i < rrecs; i++) {
2741 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2742 if (error)
2743 goto error0;
2744 }
2745
2746 /* Copy the keys & pointers to the new block. */
2747 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2748 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2749
2750 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2751 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2752
2753 /* Stash the keys of the new block for later insertion. */
2754 xfs_btree_get_node_keys(cur, right, key);
2755 } else {
2756 /* It's a leaf. Move records. */
2757 union xfs_btree_rec *lrp; /* left record pointer */
2758 union xfs_btree_rec *rrp; /* right record pointer */
2759
2760 lrp = xfs_btree_rec_addr(cur, src_index, left);
2761 rrp = xfs_btree_rec_addr(cur, 1, right);
2762
2763 /* Copy records to the new block. */
2764 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2765 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2766
2767 /* Stash the keys of the new block for later insertion. */
2768 xfs_btree_get_leaf_keys(cur, right, key);
2769 }
2770
2771 /*
2772 * Find the left block number by looking in the buffer.
2773 * Adjust sibling pointers.
2774 */
2775 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2776 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2777 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2778 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2779
2780 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2781 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2782
2783 /*
2784 * If there's a block to the new block's right, make that block
2785 * point back to right instead of to left.
2786 */
2787 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2788 error = xfs_btree_read_buf_block(cur, &rrptr,
2789 0, &rrblock, &rrbp);
2790 if (error)
2791 goto error0;
2792 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2793 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2794 }
2795
2796 /* Update the parent high keys of the left block, if needed. */
2797 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2798 error = xfs_btree_update_keys(cur, level);
2799 if (error)
2800 goto error0;
2801 }
2802
2803 /*
2804 * If the cursor is really in the right block, move it there.
2805 * If it's just pointing past the last entry in left, then we'll
2806 * insert there, so don't change anything in that case.
2807 */
2808 if (cur->bc_ptrs[level] > lrecs + 1) {
2809 xfs_btree_setbuf(cur, level, rbp);
2810 cur->bc_ptrs[level] -= lrecs;
2811 }
2812 /*
2813 * If there are more levels, we'll need another cursor which refers
2814 * the right block, no matter where this cursor was.
2815 */
2816 if (level + 1 < cur->bc_nlevels) {
2817 error = xfs_btree_dup_cursor(cur, curp);
2818 if (error)
2819 goto error0;
2820 (*curp)->bc_ptrs[level + 1]++;
2821 }
2822 *ptrp = rptr;
2823 *stat = 1;
2824 return 0;
2825 out0:
2826 *stat = 0;
2827 return 0;
2828
2829 error0:
2830 return error;
2831 }
2832
2833 struct xfs_btree_split_args {
2834 struct xfs_btree_cur *cur;
2835 int level;
2836 union xfs_btree_ptr *ptrp;
2837 union xfs_btree_key *key;
2838 struct xfs_btree_cur **curp;
2839 int *stat; /* success/failure */
2840 int result;
2841 bool kswapd; /* allocation in kswapd context */
2842 struct completion *done;
2843 struct work_struct work;
2844 };
2845
2846 /*
2847 * Stack switching interfaces for allocation
2848 */
2849 static void
xfs_btree_split_worker(struct work_struct * work)2850 xfs_btree_split_worker(
2851 struct work_struct *work)
2852 {
2853 struct xfs_btree_split_args *args = container_of(work,
2854 struct xfs_btree_split_args, work);
2855 unsigned long pflags;
2856 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2857
2858 /*
2859 * we are in a transaction context here, but may also be doing work
2860 * in kswapd context, and hence we may need to inherit that state
2861 * temporarily to ensure that we don't block waiting for memory reclaim
2862 * in any way.
2863 */
2864 if (args->kswapd)
2865 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2866
2867 current_set_flags_nested(&pflags, new_pflags);
2868
2869 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2870 args->key, args->curp, args->stat);
2871 complete(args->done);
2872
2873 current_restore_flags_nested(&pflags, new_pflags);
2874 }
2875
2876 /*
2877 * BMBT split requests often come in with little stack to work on. Push
2878 * them off to a worker thread so there is lots of stack to use. For the other
2879 * btree types, just call directly to avoid the context switch overhead here.
2880 */
2881 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2882 xfs_btree_split(
2883 struct xfs_btree_cur *cur,
2884 int level,
2885 union xfs_btree_ptr *ptrp,
2886 union xfs_btree_key *key,
2887 struct xfs_btree_cur **curp,
2888 int *stat) /* success/failure */
2889 {
2890 struct xfs_btree_split_args args;
2891 DECLARE_COMPLETION_ONSTACK(done);
2892
2893 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2894 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2895
2896 args.cur = cur;
2897 args.level = level;
2898 args.ptrp = ptrp;
2899 args.key = key;
2900 args.curp = curp;
2901 args.stat = stat;
2902 args.done = &done;
2903 args.kswapd = current_is_kswapd();
2904 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2905 queue_work(xfs_alloc_wq, &args.work);
2906 wait_for_completion(&done);
2907 destroy_work_on_stack(&args.work);
2908 return args.result;
2909 }
2910
2911
2912 /*
2913 * Copy the old inode root contents into a real block and make the
2914 * broot point to it.
2915 */
2916 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2917 xfs_btree_new_iroot(
2918 struct xfs_btree_cur *cur, /* btree cursor */
2919 int *logflags, /* logging flags for inode */
2920 int *stat) /* return status - 0 fail */
2921 {
2922 struct xfs_buf *cbp; /* buffer for cblock */
2923 struct xfs_btree_block *block; /* btree block */
2924 struct xfs_btree_block *cblock; /* child btree block */
2925 union xfs_btree_key *ckp; /* child key pointer */
2926 union xfs_btree_ptr *cpp; /* child ptr pointer */
2927 union xfs_btree_key *kp; /* pointer to btree key */
2928 union xfs_btree_ptr *pp; /* pointer to block addr */
2929 union xfs_btree_ptr nptr; /* new block addr */
2930 int level; /* btree level */
2931 int error; /* error return code */
2932 int i; /* loop counter */
2933
2934 XFS_BTREE_STATS_INC(cur, newroot);
2935
2936 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2937
2938 level = cur->bc_nlevels - 1;
2939
2940 block = xfs_btree_get_iroot(cur);
2941 pp = xfs_btree_ptr_addr(cur, 1, block);
2942
2943 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2944 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2945 if (error)
2946 goto error0;
2947 if (*stat == 0)
2948 return 0;
2949
2950 XFS_BTREE_STATS_INC(cur, alloc);
2951
2952 /* Copy the root into a real block. */
2953 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2954 if (error)
2955 goto error0;
2956
2957 /*
2958 * we can't just memcpy() the root in for CRC enabled btree blocks.
2959 * In that case have to also ensure the blkno remains correct
2960 */
2961 memcpy(cblock, block, xfs_btree_block_len(cur));
2962 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2963 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2964 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2965 else
2966 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2967 }
2968
2969 be16_add_cpu(&block->bb_level, 1);
2970 xfs_btree_set_numrecs(block, 1);
2971 cur->bc_nlevels++;
2972 cur->bc_ptrs[level + 1] = 1;
2973
2974 kp = xfs_btree_key_addr(cur, 1, block);
2975 ckp = xfs_btree_key_addr(cur, 1, cblock);
2976 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2977
2978 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2979 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2980 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2981 if (error)
2982 goto error0;
2983 }
2984
2985 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2986
2987 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2988 if (error)
2989 goto error0;
2990
2991 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2992
2993 xfs_iroot_realloc(cur->bc_private.b.ip,
2994 1 - xfs_btree_get_numrecs(cblock),
2995 cur->bc_private.b.whichfork);
2996
2997 xfs_btree_setbuf(cur, level, cbp);
2998
2999 /*
3000 * Do all this logging at the end so that
3001 * the root is at the right level.
3002 */
3003 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3004 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3005 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3006
3007 *logflags |=
3008 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3009 *stat = 1;
3010 return 0;
3011 error0:
3012 return error;
3013 }
3014
3015 /*
3016 * Allocate a new root block, fill it in.
3017 */
3018 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3019 xfs_btree_new_root(
3020 struct xfs_btree_cur *cur, /* btree cursor */
3021 int *stat) /* success/failure */
3022 {
3023 struct xfs_btree_block *block; /* one half of the old root block */
3024 struct xfs_buf *bp; /* buffer containing block */
3025 int error; /* error return value */
3026 struct xfs_buf *lbp; /* left buffer pointer */
3027 struct xfs_btree_block *left; /* left btree block */
3028 struct xfs_buf *nbp; /* new (root) buffer */
3029 struct xfs_btree_block *new; /* new (root) btree block */
3030 int nptr; /* new value for key index, 1 or 2 */
3031 struct xfs_buf *rbp; /* right buffer pointer */
3032 struct xfs_btree_block *right; /* right btree block */
3033 union xfs_btree_ptr rptr;
3034 union xfs_btree_ptr lptr;
3035
3036 XFS_BTREE_STATS_INC(cur, newroot);
3037
3038 /* initialise our start point from the cursor */
3039 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3040
3041 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3042 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3043 if (error)
3044 goto error0;
3045 if (*stat == 0)
3046 goto out0;
3047 XFS_BTREE_STATS_INC(cur, alloc);
3048
3049 /* Set up the new block. */
3050 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3051 if (error)
3052 goto error0;
3053
3054 /* Set the root in the holding structure increasing the level by 1. */
3055 cur->bc_ops->set_root(cur, &lptr, 1);
3056
3057 /*
3058 * At the previous root level there are now two blocks: the old root,
3059 * and the new block generated when it was split. We don't know which
3060 * one the cursor is pointing at, so we set up variables "left" and
3061 * "right" for each case.
3062 */
3063 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3064
3065 #ifdef DEBUG
3066 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3067 if (error)
3068 goto error0;
3069 #endif
3070
3071 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3072 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3073 /* Our block is left, pick up the right block. */
3074 lbp = bp;
3075 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3076 left = block;
3077 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3078 if (error)
3079 goto error0;
3080 bp = rbp;
3081 nptr = 1;
3082 } else {
3083 /* Our block is right, pick up the left block. */
3084 rbp = bp;
3085 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3086 right = block;
3087 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3088 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3089 if (error)
3090 goto error0;
3091 bp = lbp;
3092 nptr = 2;
3093 }
3094
3095 /* Fill in the new block's btree header and log it. */
3096 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3097 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3098 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3099 !xfs_btree_ptr_is_null(cur, &rptr));
3100
3101 /* Fill in the key data in the new root. */
3102 if (xfs_btree_get_level(left) > 0) {
3103 /*
3104 * Get the keys for the left block's keys and put them directly
3105 * in the parent block. Do the same for the right block.
3106 */
3107 xfs_btree_get_node_keys(cur, left,
3108 xfs_btree_key_addr(cur, 1, new));
3109 xfs_btree_get_node_keys(cur, right,
3110 xfs_btree_key_addr(cur, 2, new));
3111 } else {
3112 /*
3113 * Get the keys for the left block's records and put them
3114 * directly in the parent block. Do the same for the right
3115 * block.
3116 */
3117 xfs_btree_get_leaf_keys(cur, left,
3118 xfs_btree_key_addr(cur, 1, new));
3119 xfs_btree_get_leaf_keys(cur, right,
3120 xfs_btree_key_addr(cur, 2, new));
3121 }
3122 xfs_btree_log_keys(cur, nbp, 1, 2);
3123
3124 /* Fill in the pointer data in the new root. */
3125 xfs_btree_copy_ptrs(cur,
3126 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3127 xfs_btree_copy_ptrs(cur,
3128 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3129 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3130
3131 /* Fix up the cursor. */
3132 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3133 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3134 cur->bc_nlevels++;
3135 *stat = 1;
3136 return 0;
3137 error0:
3138 return error;
3139 out0:
3140 *stat = 0;
3141 return 0;
3142 }
3143
3144 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3145 xfs_btree_make_block_unfull(
3146 struct xfs_btree_cur *cur, /* btree cursor */
3147 int level, /* btree level */
3148 int numrecs,/* # of recs in block */
3149 int *oindex,/* old tree index */
3150 int *index, /* new tree index */
3151 union xfs_btree_ptr *nptr, /* new btree ptr */
3152 struct xfs_btree_cur **ncur, /* new btree cursor */
3153 union xfs_btree_key *key, /* key of new block */
3154 int *stat)
3155 {
3156 int error = 0;
3157
3158 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3159 level == cur->bc_nlevels - 1) {
3160 struct xfs_inode *ip = cur->bc_private.b.ip;
3161
3162 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3163 /* A root block that can be made bigger. */
3164 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3165 *stat = 1;
3166 } else {
3167 /* A root block that needs replacing */
3168 int logflags = 0;
3169
3170 error = xfs_btree_new_iroot(cur, &logflags, stat);
3171 if (error || *stat == 0)
3172 return error;
3173
3174 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3175 }
3176
3177 return 0;
3178 }
3179
3180 /* First, try shifting an entry to the right neighbor. */
3181 error = xfs_btree_rshift(cur, level, stat);
3182 if (error || *stat)
3183 return error;
3184
3185 /* Next, try shifting an entry to the left neighbor. */
3186 error = xfs_btree_lshift(cur, level, stat);
3187 if (error)
3188 return error;
3189
3190 if (*stat) {
3191 *oindex = *index = cur->bc_ptrs[level];
3192 return 0;
3193 }
3194
3195 /*
3196 * Next, try splitting the current block in half.
3197 *
3198 * If this works we have to re-set our variables because we
3199 * could be in a different block now.
3200 */
3201 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3202 if (error || *stat == 0)
3203 return error;
3204
3205
3206 *index = cur->bc_ptrs[level];
3207 return 0;
3208 }
3209
3210 /*
3211 * Insert one record/level. Return information to the caller
3212 * allowing the next level up to proceed if necessary.
3213 */
3214 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3215 xfs_btree_insrec(
3216 struct xfs_btree_cur *cur, /* btree cursor */
3217 int level, /* level to insert record at */
3218 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3219 union xfs_btree_rec *rec, /* record to insert */
3220 union xfs_btree_key *key, /* i/o: block key for ptrp */
3221 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3222 int *stat) /* success/failure */
3223 {
3224 struct xfs_btree_block *block; /* btree block */
3225 struct xfs_buf *bp; /* buffer for block */
3226 union xfs_btree_ptr nptr; /* new block ptr */
3227 struct xfs_btree_cur *ncur; /* new btree cursor */
3228 union xfs_btree_key nkey; /* new block key */
3229 union xfs_btree_key *lkey;
3230 int optr; /* old key/record index */
3231 int ptr; /* key/record index */
3232 int numrecs;/* number of records */
3233 int error; /* error return value */
3234 int i;
3235 xfs_daddr_t old_bn;
3236
3237 ncur = NULL;
3238 lkey = &nkey;
3239
3240 /*
3241 * If we have an external root pointer, and we've made it to the
3242 * root level, allocate a new root block and we're done.
3243 */
3244 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 (level >= cur->bc_nlevels)) {
3246 error = xfs_btree_new_root(cur, stat);
3247 xfs_btree_set_ptr_null(cur, ptrp);
3248
3249 return error;
3250 }
3251
3252 /* If we're off the left edge, return failure. */
3253 ptr = cur->bc_ptrs[level];
3254 if (ptr == 0) {
3255 *stat = 0;
3256 return 0;
3257 }
3258
3259 optr = ptr;
3260
3261 XFS_BTREE_STATS_INC(cur, insrec);
3262
3263 /* Get pointers to the btree buffer and block. */
3264 block = xfs_btree_get_block(cur, level, &bp);
3265 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266 numrecs = xfs_btree_get_numrecs(block);
3267
3268 #ifdef DEBUG
3269 error = xfs_btree_check_block(cur, block, level, bp);
3270 if (error)
3271 goto error0;
3272
3273 /* Check that the new entry is being inserted in the right place. */
3274 if (ptr <= numrecs) {
3275 if (level == 0) {
3276 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277 xfs_btree_rec_addr(cur, ptr, block)));
3278 } else {
3279 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280 xfs_btree_key_addr(cur, ptr, block)));
3281 }
3282 }
3283 #endif
3284
3285 /*
3286 * If the block is full, we can't insert the new entry until we
3287 * make the block un-full.
3288 */
3289 xfs_btree_set_ptr_null(cur, &nptr);
3290 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292 &optr, &ptr, &nptr, &ncur, lkey, stat);
3293 if (error || *stat == 0)
3294 goto error0;
3295 }
3296
3297 /*
3298 * The current block may have changed if the block was
3299 * previously full and we have just made space in it.
3300 */
3301 block = xfs_btree_get_block(cur, level, &bp);
3302 numrecs = xfs_btree_get_numrecs(block);
3303
3304 #ifdef DEBUG
3305 error = xfs_btree_check_block(cur, block, level, bp);
3306 if (error)
3307 return error;
3308 #endif
3309
3310 /*
3311 * At this point we know there's room for our new entry in the block
3312 * we're pointing at.
3313 */
3314 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315
3316 if (level > 0) {
3317 /* It's a nonleaf. make a hole in the keys and ptrs */
3318 union xfs_btree_key *kp;
3319 union xfs_btree_ptr *pp;
3320
3321 kp = xfs_btree_key_addr(cur, ptr, block);
3322 pp = xfs_btree_ptr_addr(cur, ptr, block);
3323
3324 for (i = numrecs - ptr; i >= 0; i--) {
3325 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3326 if (error)
3327 return error;
3328 }
3329
3330 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3331 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3332
3333 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3334 if (error)
3335 goto error0;
3336
3337 /* Now put the new data in, bump numrecs and log it. */
3338 xfs_btree_copy_keys(cur, kp, key, 1);
3339 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3340 numrecs++;
3341 xfs_btree_set_numrecs(block, numrecs);
3342 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3343 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3344 #ifdef DEBUG
3345 if (ptr < numrecs) {
3346 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3347 xfs_btree_key_addr(cur, ptr + 1, block)));
3348 }
3349 #endif
3350 } else {
3351 /* It's a leaf. make a hole in the records */
3352 union xfs_btree_rec *rp;
3353
3354 rp = xfs_btree_rec_addr(cur, ptr, block);
3355
3356 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3357
3358 /* Now put the new data in, bump numrecs and log it. */
3359 xfs_btree_copy_recs(cur, rp, rec, 1);
3360 xfs_btree_set_numrecs(block, ++numrecs);
3361 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3362 #ifdef DEBUG
3363 if (ptr < numrecs) {
3364 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3365 xfs_btree_rec_addr(cur, ptr + 1, block)));
3366 }
3367 #endif
3368 }
3369
3370 /* Log the new number of records in the btree header. */
3371 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3372
3373 /*
3374 * If we just inserted into a new tree block, we have to
3375 * recalculate nkey here because nkey is out of date.
3376 *
3377 * Otherwise we're just updating an existing block (having shoved
3378 * some records into the new tree block), so use the regular key
3379 * update mechanism.
3380 */
3381 if (bp && bp->b_bn != old_bn) {
3382 xfs_btree_get_keys(cur, block, lkey);
3383 } else if (xfs_btree_needs_key_update(cur, optr)) {
3384 error = xfs_btree_update_keys(cur, level);
3385 if (error)
3386 goto error0;
3387 }
3388
3389 /*
3390 * If we are tracking the last record in the tree and
3391 * we are at the far right edge of the tree, update it.
3392 */
3393 if (xfs_btree_is_lastrec(cur, block, level)) {
3394 cur->bc_ops->update_lastrec(cur, block, rec,
3395 ptr, LASTREC_INSREC);
3396 }
3397
3398 /*
3399 * Return the new block number, if any.
3400 * If there is one, give back a record value and a cursor too.
3401 */
3402 *ptrp = nptr;
3403 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3404 xfs_btree_copy_keys(cur, key, lkey, 1);
3405 *curp = ncur;
3406 }
3407
3408 *stat = 1;
3409 return 0;
3410
3411 error0:
3412 return error;
3413 }
3414
3415 /*
3416 * Insert the record at the point referenced by cur.
3417 *
3418 * A multi-level split of the tree on insert will invalidate the original
3419 * cursor. All callers of this function should assume that the cursor is
3420 * no longer valid and revalidate it.
3421 */
3422 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3423 xfs_btree_insert(
3424 struct xfs_btree_cur *cur,
3425 int *stat)
3426 {
3427 int error; /* error return value */
3428 int i; /* result value, 0 for failure */
3429 int level; /* current level number in btree */
3430 union xfs_btree_ptr nptr; /* new block number (split result) */
3431 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3432 struct xfs_btree_cur *pcur; /* previous level's cursor */
3433 union xfs_btree_key bkey; /* key of block to insert */
3434 union xfs_btree_key *key;
3435 union xfs_btree_rec rec; /* record to insert */
3436
3437 level = 0;
3438 ncur = NULL;
3439 pcur = cur;
3440 key = &bkey;
3441
3442 xfs_btree_set_ptr_null(cur, &nptr);
3443
3444 /* Make a key out of the record data to be inserted, and save it. */
3445 cur->bc_ops->init_rec_from_cur(cur, &rec);
3446 cur->bc_ops->init_key_from_rec(key, &rec);
3447
3448 /*
3449 * Loop going up the tree, starting at the leaf level.
3450 * Stop when we don't get a split block, that must mean that
3451 * the insert is finished with this level.
3452 */
3453 do {
3454 /*
3455 * Insert nrec/nptr into this level of the tree.
3456 * Note if we fail, nptr will be null.
3457 */
3458 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3459 &ncur, &i);
3460 if (error) {
3461 if (pcur != cur)
3462 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3463 goto error0;
3464 }
3465
3466 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3467 level++;
3468
3469 /*
3470 * See if the cursor we just used is trash.
3471 * Can't trash the caller's cursor, but otherwise we should
3472 * if ncur is a new cursor or we're about to be done.
3473 */
3474 if (pcur != cur &&
3475 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3476 /* Save the state from the cursor before we trash it */
3477 if (cur->bc_ops->update_cursor)
3478 cur->bc_ops->update_cursor(pcur, cur);
3479 cur->bc_nlevels = pcur->bc_nlevels;
3480 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3481 }
3482 /* If we got a new cursor, switch to it. */
3483 if (ncur) {
3484 pcur = ncur;
3485 ncur = NULL;
3486 }
3487 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3488
3489 *stat = i;
3490 return 0;
3491 error0:
3492 return error;
3493 }
3494
3495 /*
3496 * Try to merge a non-leaf block back into the inode root.
3497 *
3498 * Note: the killroot names comes from the fact that we're effectively
3499 * killing the old root block. But because we can't just delete the
3500 * inode we have to copy the single block it was pointing to into the
3501 * inode.
3502 */
3503 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3504 xfs_btree_kill_iroot(
3505 struct xfs_btree_cur *cur)
3506 {
3507 int whichfork = cur->bc_private.b.whichfork;
3508 struct xfs_inode *ip = cur->bc_private.b.ip;
3509 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3510 struct xfs_btree_block *block;
3511 struct xfs_btree_block *cblock;
3512 union xfs_btree_key *kp;
3513 union xfs_btree_key *ckp;
3514 union xfs_btree_ptr *pp;
3515 union xfs_btree_ptr *cpp;
3516 struct xfs_buf *cbp;
3517 int level;
3518 int index;
3519 int numrecs;
3520 int error;
3521 #ifdef DEBUG
3522 union xfs_btree_ptr ptr;
3523 #endif
3524 int i;
3525
3526 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3527 ASSERT(cur->bc_nlevels > 1);
3528
3529 /*
3530 * Don't deal with the root block needs to be a leaf case.
3531 * We're just going to turn the thing back into extents anyway.
3532 */
3533 level = cur->bc_nlevels - 1;
3534 if (level == 1)
3535 goto out0;
3536
3537 /*
3538 * Give up if the root has multiple children.
3539 */
3540 block = xfs_btree_get_iroot(cur);
3541 if (xfs_btree_get_numrecs(block) != 1)
3542 goto out0;
3543
3544 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3545 numrecs = xfs_btree_get_numrecs(cblock);
3546
3547 /*
3548 * Only do this if the next level will fit.
3549 * Then the data must be copied up to the inode,
3550 * instead of freeing the root you free the next level.
3551 */
3552 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3553 goto out0;
3554
3555 XFS_BTREE_STATS_INC(cur, killroot);
3556
3557 #ifdef DEBUG
3558 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3559 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3560 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3561 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3562 #endif
3563
3564 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3565 if (index) {
3566 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3567 cur->bc_private.b.whichfork);
3568 block = ifp->if_broot;
3569 }
3570
3571 be16_add_cpu(&block->bb_numrecs, index);
3572 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3573
3574 kp = xfs_btree_key_addr(cur, 1, block);
3575 ckp = xfs_btree_key_addr(cur, 1, cblock);
3576 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3577
3578 pp = xfs_btree_ptr_addr(cur, 1, block);
3579 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3580
3581 for (i = 0; i < numrecs; i++) {
3582 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3583 if (error)
3584 return error;
3585 }
3586
3587 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3588
3589 error = xfs_btree_free_block(cur, cbp);
3590 if (error)
3591 return error;
3592
3593 cur->bc_bufs[level - 1] = NULL;
3594 be16_add_cpu(&block->bb_level, -1);
3595 xfs_trans_log_inode(cur->bc_tp, ip,
3596 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3597 cur->bc_nlevels--;
3598 out0:
3599 return 0;
3600 }
3601
3602 /*
3603 * Kill the current root node, and replace it with it's only child node.
3604 */
3605 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3606 xfs_btree_kill_root(
3607 struct xfs_btree_cur *cur,
3608 struct xfs_buf *bp,
3609 int level,
3610 union xfs_btree_ptr *newroot)
3611 {
3612 int error;
3613
3614 XFS_BTREE_STATS_INC(cur, killroot);
3615
3616 /*
3617 * Update the root pointer, decreasing the level by 1 and then
3618 * free the old root.
3619 */
3620 cur->bc_ops->set_root(cur, newroot, -1);
3621
3622 error = xfs_btree_free_block(cur, bp);
3623 if (error)
3624 return error;
3625
3626 cur->bc_bufs[level] = NULL;
3627 cur->bc_ra[level] = 0;
3628 cur->bc_nlevels--;
3629
3630 return 0;
3631 }
3632
3633 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3634 xfs_btree_dec_cursor(
3635 struct xfs_btree_cur *cur,
3636 int level,
3637 int *stat)
3638 {
3639 int error;
3640 int i;
3641
3642 if (level > 0) {
3643 error = xfs_btree_decrement(cur, level, &i);
3644 if (error)
3645 return error;
3646 }
3647
3648 *stat = 1;
3649 return 0;
3650 }
3651
3652 /*
3653 * Single level of the btree record deletion routine.
3654 * Delete record pointed to by cur/level.
3655 * Remove the record from its block then rebalance the tree.
3656 * Return 0 for error, 1 for done, 2 to go on to the next level.
3657 */
3658 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3659 xfs_btree_delrec(
3660 struct xfs_btree_cur *cur, /* btree cursor */
3661 int level, /* level removing record from */
3662 int *stat) /* fail/done/go-on */
3663 {
3664 struct xfs_btree_block *block; /* btree block */
3665 union xfs_btree_ptr cptr; /* current block ptr */
3666 struct xfs_buf *bp; /* buffer for block */
3667 int error; /* error return value */
3668 int i; /* loop counter */
3669 union xfs_btree_ptr lptr; /* left sibling block ptr */
3670 struct xfs_buf *lbp; /* left buffer pointer */
3671 struct xfs_btree_block *left; /* left btree block */
3672 int lrecs = 0; /* left record count */
3673 int ptr; /* key/record index */
3674 union xfs_btree_ptr rptr; /* right sibling block ptr */
3675 struct xfs_buf *rbp; /* right buffer pointer */
3676 struct xfs_btree_block *right; /* right btree block */
3677 struct xfs_btree_block *rrblock; /* right-right btree block */
3678 struct xfs_buf *rrbp; /* right-right buffer pointer */
3679 int rrecs = 0; /* right record count */
3680 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3681 int numrecs; /* temporary numrec count */
3682
3683 tcur = NULL;
3684
3685 /* Get the index of the entry being deleted, check for nothing there. */
3686 ptr = cur->bc_ptrs[level];
3687 if (ptr == 0) {
3688 *stat = 0;
3689 return 0;
3690 }
3691
3692 /* Get the buffer & block containing the record or key/ptr. */
3693 block = xfs_btree_get_block(cur, level, &bp);
3694 numrecs = xfs_btree_get_numrecs(block);
3695
3696 #ifdef DEBUG
3697 error = xfs_btree_check_block(cur, block, level, bp);
3698 if (error)
3699 goto error0;
3700 #endif
3701
3702 /* Fail if we're off the end of the block. */
3703 if (ptr > numrecs) {
3704 *stat = 0;
3705 return 0;
3706 }
3707
3708 XFS_BTREE_STATS_INC(cur, delrec);
3709 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3710
3711 /* Excise the entries being deleted. */
3712 if (level > 0) {
3713 /* It's a nonleaf. operate on keys and ptrs */
3714 union xfs_btree_key *lkp;
3715 union xfs_btree_ptr *lpp;
3716
3717 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3718 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3719
3720 for (i = 0; i < numrecs - ptr; i++) {
3721 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3722 if (error)
3723 goto error0;
3724 }
3725
3726 if (ptr < numrecs) {
3727 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3728 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3729 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3730 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3731 }
3732 } else {
3733 /* It's a leaf. operate on records */
3734 if (ptr < numrecs) {
3735 xfs_btree_shift_recs(cur,
3736 xfs_btree_rec_addr(cur, ptr + 1, block),
3737 -1, numrecs - ptr);
3738 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3739 }
3740 }
3741
3742 /*
3743 * Decrement and log the number of entries in the block.
3744 */
3745 xfs_btree_set_numrecs(block, --numrecs);
3746 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3747
3748 /*
3749 * If we are tracking the last record in the tree and
3750 * we are at the far right edge of the tree, update it.
3751 */
3752 if (xfs_btree_is_lastrec(cur, block, level)) {
3753 cur->bc_ops->update_lastrec(cur, block, NULL,
3754 ptr, LASTREC_DELREC);
3755 }
3756
3757 /*
3758 * We're at the root level. First, shrink the root block in-memory.
3759 * Try to get rid of the next level down. If we can't then there's
3760 * nothing left to do.
3761 */
3762 if (level == cur->bc_nlevels - 1) {
3763 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3764 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3765 cur->bc_private.b.whichfork);
3766
3767 error = xfs_btree_kill_iroot(cur);
3768 if (error)
3769 goto error0;
3770
3771 error = xfs_btree_dec_cursor(cur, level, stat);
3772 if (error)
3773 goto error0;
3774 *stat = 1;
3775 return 0;
3776 }
3777
3778 /*
3779 * If this is the root level, and there's only one entry left,
3780 * and it's NOT the leaf level, then we can get rid of this
3781 * level.
3782 */
3783 if (numrecs == 1 && level > 0) {
3784 union xfs_btree_ptr *pp;
3785 /*
3786 * pp is still set to the first pointer in the block.
3787 * Make it the new root of the btree.
3788 */
3789 pp = xfs_btree_ptr_addr(cur, 1, block);
3790 error = xfs_btree_kill_root(cur, bp, level, pp);
3791 if (error)
3792 goto error0;
3793 } else if (level > 0) {
3794 error = xfs_btree_dec_cursor(cur, level, stat);
3795 if (error)
3796 goto error0;
3797 }
3798 *stat = 1;
3799 return 0;
3800 }
3801
3802 /*
3803 * If we deleted the leftmost entry in the block, update the
3804 * key values above us in the tree.
3805 */
3806 if (xfs_btree_needs_key_update(cur, ptr)) {
3807 error = xfs_btree_update_keys(cur, level);
3808 if (error)
3809 goto error0;
3810 }
3811
3812 /*
3813 * If the number of records remaining in the block is at least
3814 * the minimum, we're done.
3815 */
3816 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3817 error = xfs_btree_dec_cursor(cur, level, stat);
3818 if (error)
3819 goto error0;
3820 return 0;
3821 }
3822
3823 /*
3824 * Otherwise, we have to move some records around to keep the
3825 * tree balanced. Look at the left and right sibling blocks to
3826 * see if we can re-balance by moving only one record.
3827 */
3828 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3829 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3830
3831 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3832 /*
3833 * One child of root, need to get a chance to copy its contents
3834 * into the root and delete it. Can't go up to next level,
3835 * there's nothing to delete there.
3836 */
3837 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3838 xfs_btree_ptr_is_null(cur, &lptr) &&
3839 level == cur->bc_nlevels - 2) {
3840 error = xfs_btree_kill_iroot(cur);
3841 if (!error)
3842 error = xfs_btree_dec_cursor(cur, level, stat);
3843 if (error)
3844 goto error0;
3845 return 0;
3846 }
3847 }
3848
3849 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3850 !xfs_btree_ptr_is_null(cur, &lptr));
3851
3852 /*
3853 * Duplicate the cursor so our btree manipulations here won't
3854 * disrupt the next level up.
3855 */
3856 error = xfs_btree_dup_cursor(cur, &tcur);
3857 if (error)
3858 goto error0;
3859
3860 /*
3861 * If there's a right sibling, see if it's ok to shift an entry
3862 * out of it.
3863 */
3864 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3865 /*
3866 * Move the temp cursor to the last entry in the next block.
3867 * Actually any entry but the first would suffice.
3868 */
3869 i = xfs_btree_lastrec(tcur, level);
3870 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3871
3872 error = xfs_btree_increment(tcur, level, &i);
3873 if (error)
3874 goto error0;
3875 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3876
3877 i = xfs_btree_lastrec(tcur, level);
3878 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3879
3880 /* Grab a pointer to the block. */
3881 right = xfs_btree_get_block(tcur, level, &rbp);
3882 #ifdef DEBUG
3883 error = xfs_btree_check_block(tcur, right, level, rbp);
3884 if (error)
3885 goto error0;
3886 #endif
3887 /* Grab the current block number, for future use. */
3888 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3889
3890 /*
3891 * If right block is full enough so that removing one entry
3892 * won't make it too empty, and left-shifting an entry out
3893 * of right to us works, we're done.
3894 */
3895 if (xfs_btree_get_numrecs(right) - 1 >=
3896 cur->bc_ops->get_minrecs(tcur, level)) {
3897 error = xfs_btree_lshift(tcur, level, &i);
3898 if (error)
3899 goto error0;
3900 if (i) {
3901 ASSERT(xfs_btree_get_numrecs(block) >=
3902 cur->bc_ops->get_minrecs(tcur, level));
3903
3904 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3905 tcur = NULL;
3906
3907 error = xfs_btree_dec_cursor(cur, level, stat);
3908 if (error)
3909 goto error0;
3910 return 0;
3911 }
3912 }
3913
3914 /*
3915 * Otherwise, grab the number of records in right for
3916 * future reference, and fix up the temp cursor to point
3917 * to our block again (last record).
3918 */
3919 rrecs = xfs_btree_get_numrecs(right);
3920 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3921 i = xfs_btree_firstrec(tcur, level);
3922 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3923
3924 error = xfs_btree_decrement(tcur, level, &i);
3925 if (error)
3926 goto error0;
3927 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3928 }
3929 }
3930
3931 /*
3932 * If there's a left sibling, see if it's ok to shift an entry
3933 * out of it.
3934 */
3935 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3936 /*
3937 * Move the temp cursor to the first entry in the
3938 * previous block.
3939 */
3940 i = xfs_btree_firstrec(tcur, level);
3941 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3942
3943 error = xfs_btree_decrement(tcur, level, &i);
3944 if (error)
3945 goto error0;
3946 i = xfs_btree_firstrec(tcur, level);
3947 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948
3949 /* Grab a pointer to the block. */
3950 left = xfs_btree_get_block(tcur, level, &lbp);
3951 #ifdef DEBUG
3952 error = xfs_btree_check_block(cur, left, level, lbp);
3953 if (error)
3954 goto error0;
3955 #endif
3956 /* Grab the current block number, for future use. */
3957 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3958
3959 /*
3960 * If left block is full enough so that removing one entry
3961 * won't make it too empty, and right-shifting an entry out
3962 * of left to us works, we're done.
3963 */
3964 if (xfs_btree_get_numrecs(left) - 1 >=
3965 cur->bc_ops->get_minrecs(tcur, level)) {
3966 error = xfs_btree_rshift(tcur, level, &i);
3967 if (error)
3968 goto error0;
3969 if (i) {
3970 ASSERT(xfs_btree_get_numrecs(block) >=
3971 cur->bc_ops->get_minrecs(tcur, level));
3972 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3973 tcur = NULL;
3974 if (level == 0)
3975 cur->bc_ptrs[0]++;
3976
3977 *stat = 1;
3978 return 0;
3979 }
3980 }
3981
3982 /*
3983 * Otherwise, grab the number of records in right for
3984 * future reference.
3985 */
3986 lrecs = xfs_btree_get_numrecs(left);
3987 }
3988
3989 /* Delete the temp cursor, we're done with it. */
3990 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3991 tcur = NULL;
3992
3993 /* If here, we need to do a join to keep the tree balanced. */
3994 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3995
3996 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3997 lrecs + xfs_btree_get_numrecs(block) <=
3998 cur->bc_ops->get_maxrecs(cur, level)) {
3999 /*
4000 * Set "right" to be the starting block,
4001 * "left" to be the left neighbor.
4002 */
4003 rptr = cptr;
4004 right = block;
4005 rbp = bp;
4006 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4007 if (error)
4008 goto error0;
4009
4010 /*
4011 * If that won't work, see if we can join with the right neighbor block.
4012 */
4013 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4014 rrecs + xfs_btree_get_numrecs(block) <=
4015 cur->bc_ops->get_maxrecs(cur, level)) {
4016 /*
4017 * Set "left" to be the starting block,
4018 * "right" to be the right neighbor.
4019 */
4020 lptr = cptr;
4021 left = block;
4022 lbp = bp;
4023 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4024 if (error)
4025 goto error0;
4026
4027 /*
4028 * Otherwise, we can't fix the imbalance.
4029 * Just return. This is probably a logic error, but it's not fatal.
4030 */
4031 } else {
4032 error = xfs_btree_dec_cursor(cur, level, stat);
4033 if (error)
4034 goto error0;
4035 return 0;
4036 }
4037
4038 rrecs = xfs_btree_get_numrecs(right);
4039 lrecs = xfs_btree_get_numrecs(left);
4040
4041 /*
4042 * We're now going to join "left" and "right" by moving all the stuff
4043 * in "right" to "left" and deleting "right".
4044 */
4045 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4046 if (level > 0) {
4047 /* It's a non-leaf. Move keys and pointers. */
4048 union xfs_btree_key *lkp; /* left btree key */
4049 union xfs_btree_ptr *lpp; /* left address pointer */
4050 union xfs_btree_key *rkp; /* right btree key */
4051 union xfs_btree_ptr *rpp; /* right address pointer */
4052
4053 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4054 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4055 rkp = xfs_btree_key_addr(cur, 1, right);
4056 rpp = xfs_btree_ptr_addr(cur, 1, right);
4057
4058 for (i = 1; i < rrecs; i++) {
4059 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4060 if (error)
4061 goto error0;
4062 }
4063
4064 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4065 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4066
4067 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4068 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4069 } else {
4070 /* It's a leaf. Move records. */
4071 union xfs_btree_rec *lrp; /* left record pointer */
4072 union xfs_btree_rec *rrp; /* right record pointer */
4073
4074 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4075 rrp = xfs_btree_rec_addr(cur, 1, right);
4076
4077 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4078 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4079 }
4080
4081 XFS_BTREE_STATS_INC(cur, join);
4082
4083 /*
4084 * Fix up the number of records and right block pointer in the
4085 * surviving block, and log it.
4086 */
4087 xfs_btree_set_numrecs(left, lrecs + rrecs);
4088 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4089 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4090 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4091
4092 /* If there is a right sibling, point it to the remaining block. */
4093 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4094 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4095 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4096 if (error)
4097 goto error0;
4098 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4099 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4100 }
4101
4102 /* Free the deleted block. */
4103 error = xfs_btree_free_block(cur, rbp);
4104 if (error)
4105 goto error0;
4106
4107 /*
4108 * If we joined with the left neighbor, set the buffer in the
4109 * cursor to the left block, and fix up the index.
4110 */
4111 if (bp != lbp) {
4112 cur->bc_bufs[level] = lbp;
4113 cur->bc_ptrs[level] += lrecs;
4114 cur->bc_ra[level] = 0;
4115 }
4116 /*
4117 * If we joined with the right neighbor and there's a level above
4118 * us, increment the cursor at that level.
4119 */
4120 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4121 (level + 1 < cur->bc_nlevels)) {
4122 error = xfs_btree_increment(cur, level + 1, &i);
4123 if (error)
4124 goto error0;
4125 }
4126
4127 /*
4128 * Readjust the ptr at this level if it's not a leaf, since it's
4129 * still pointing at the deletion point, which makes the cursor
4130 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4131 * We can't use decrement because it would change the next level up.
4132 */
4133 if (level > 0)
4134 cur->bc_ptrs[level]--;
4135
4136 /*
4137 * We combined blocks, so we have to update the parent keys if the
4138 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4139 * points to the old block so that the caller knows which record to
4140 * delete. Therefore, the caller must be savvy enough to call updkeys
4141 * for us if we return stat == 2. The other exit points from this
4142 * function don't require deletions further up the tree, so they can
4143 * call updkeys directly.
4144 */
4145
4146 /* Return value means the next level up has something to do. */
4147 *stat = 2;
4148 return 0;
4149
4150 error0:
4151 if (tcur)
4152 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4153 return error;
4154 }
4155
4156 /*
4157 * Delete the record pointed to by cur.
4158 * The cursor refers to the place where the record was (could be inserted)
4159 * when the operation returns.
4160 */
4161 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4162 xfs_btree_delete(
4163 struct xfs_btree_cur *cur,
4164 int *stat) /* success/failure */
4165 {
4166 int error; /* error return value */
4167 int level;
4168 int i;
4169 bool joined = false;
4170
4171 /*
4172 * Go up the tree, starting at leaf level.
4173 *
4174 * If 2 is returned then a join was done; go to the next level.
4175 * Otherwise we are done.
4176 */
4177 for (level = 0, i = 2; i == 2; level++) {
4178 error = xfs_btree_delrec(cur, level, &i);
4179 if (error)
4180 goto error0;
4181 if (i == 2)
4182 joined = true;
4183 }
4184
4185 /*
4186 * If we combined blocks as part of deleting the record, delrec won't
4187 * have updated the parent high keys so we have to do that here.
4188 */
4189 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4190 error = xfs_btree_updkeys_force(cur, 0);
4191 if (error)
4192 goto error0;
4193 }
4194
4195 if (i == 0) {
4196 for (level = 1; level < cur->bc_nlevels; level++) {
4197 if (cur->bc_ptrs[level] == 0) {
4198 error = xfs_btree_decrement(cur, level, &i);
4199 if (error)
4200 goto error0;
4201 break;
4202 }
4203 }
4204 }
4205
4206 *stat = i;
4207 return 0;
4208 error0:
4209 return error;
4210 }
4211
4212 /*
4213 * Get the data from the pointed-to record.
4214 */
4215 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4216 xfs_btree_get_rec(
4217 struct xfs_btree_cur *cur, /* btree cursor */
4218 union xfs_btree_rec **recp, /* output: btree record */
4219 int *stat) /* output: success/failure */
4220 {
4221 struct xfs_btree_block *block; /* btree block */
4222 struct xfs_buf *bp; /* buffer pointer */
4223 int ptr; /* record number */
4224 #ifdef DEBUG
4225 int error; /* error return value */
4226 #endif
4227
4228 ptr = cur->bc_ptrs[0];
4229 block = xfs_btree_get_block(cur, 0, &bp);
4230
4231 #ifdef DEBUG
4232 error = xfs_btree_check_block(cur, block, 0, bp);
4233 if (error)
4234 return error;
4235 #endif
4236
4237 /*
4238 * Off the right end or left end, return failure.
4239 */
4240 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4241 *stat = 0;
4242 return 0;
4243 }
4244
4245 /*
4246 * Point to the record and extract its data.
4247 */
4248 *recp = xfs_btree_rec_addr(cur, ptr, block);
4249 *stat = 1;
4250 return 0;
4251 }
4252
4253 /* Visit a block in a btree. */
4254 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4255 xfs_btree_visit_block(
4256 struct xfs_btree_cur *cur,
4257 int level,
4258 xfs_btree_visit_blocks_fn fn,
4259 void *data)
4260 {
4261 struct xfs_btree_block *block;
4262 struct xfs_buf *bp;
4263 union xfs_btree_ptr rptr;
4264 int error;
4265
4266 /* do right sibling readahead */
4267 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4268 block = xfs_btree_get_block(cur, level, &bp);
4269
4270 /* process the block */
4271 error = fn(cur, level, data);
4272 if (error)
4273 return error;
4274
4275 /* now read rh sibling block for next iteration */
4276 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4277 if (xfs_btree_ptr_is_null(cur, &rptr))
4278 return -ENOENT;
4279
4280 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4281 }
4282
4283
4284 /* Visit every block in a btree. */
4285 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,void * data)4286 xfs_btree_visit_blocks(
4287 struct xfs_btree_cur *cur,
4288 xfs_btree_visit_blocks_fn fn,
4289 void *data)
4290 {
4291 union xfs_btree_ptr lptr;
4292 int level;
4293 struct xfs_btree_block *block = NULL;
4294 int error = 0;
4295
4296 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4297
4298 /* for each level */
4299 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4300 /* grab the left hand block */
4301 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4302 if (error)
4303 return error;
4304
4305 /* readahead the left most block for the next level down */
4306 if (level > 0) {
4307 union xfs_btree_ptr *ptr;
4308
4309 ptr = xfs_btree_ptr_addr(cur, 1, block);
4310 xfs_btree_readahead_ptr(cur, ptr, 1);
4311
4312 /* save for the next iteration of the loop */
4313 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4314 }
4315
4316 /* for each buffer in the level */
4317 do {
4318 error = xfs_btree_visit_block(cur, level, fn, data);
4319 } while (!error);
4320
4321 if (error != -ENOENT)
4322 return error;
4323 }
4324
4325 return 0;
4326 }
4327
4328 /*
4329 * Change the owner of a btree.
4330 *
4331 * The mechanism we use here is ordered buffer logging. Because we don't know
4332 * how many buffers were are going to need to modify, we don't really want to
4333 * have to make transaction reservations for the worst case of every buffer in a
4334 * full size btree as that may be more space that we can fit in the log....
4335 *
4336 * We do the btree walk in the most optimal manner possible - we have sibling
4337 * pointers so we can just walk all the blocks on each level from left to right
4338 * in a single pass, and then move to the next level and do the same. We can
4339 * also do readahead on the sibling pointers to get IO moving more quickly,
4340 * though for slow disks this is unlikely to make much difference to performance
4341 * as the amount of CPU work we have to do before moving to the next block is
4342 * relatively small.
4343 *
4344 * For each btree block that we load, modify the owner appropriately, set the
4345 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4346 * we mark the region we change dirty so that if the buffer is relogged in
4347 * a subsequent transaction the changes we make here as an ordered buffer are
4348 * correctly relogged in that transaction. If we are in recovery context, then
4349 * just queue the modified buffer as delayed write buffer so the transaction
4350 * recovery completion writes the changes to disk.
4351 */
4352 struct xfs_btree_block_change_owner_info {
4353 uint64_t new_owner;
4354 struct list_head *buffer_list;
4355 };
4356
4357 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4358 xfs_btree_block_change_owner(
4359 struct xfs_btree_cur *cur,
4360 int level,
4361 void *data)
4362 {
4363 struct xfs_btree_block_change_owner_info *bbcoi = data;
4364 struct xfs_btree_block *block;
4365 struct xfs_buf *bp;
4366
4367 /* modify the owner */
4368 block = xfs_btree_get_block(cur, level, &bp);
4369 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4370 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4371 return 0;
4372 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4373 } else {
4374 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4375 return 0;
4376 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4377 }
4378
4379 /*
4380 * If the block is a root block hosted in an inode, we might not have a
4381 * buffer pointer here and we shouldn't attempt to log the change as the
4382 * information is already held in the inode and discarded when the root
4383 * block is formatted into the on-disk inode fork. We still change it,
4384 * though, so everything is consistent in memory.
4385 */
4386 if (!bp) {
4387 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4388 ASSERT(level == cur->bc_nlevels - 1);
4389 return 0;
4390 }
4391
4392 if (cur->bc_tp) {
4393 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4394 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4395 return -EAGAIN;
4396 }
4397 } else {
4398 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4399 }
4400
4401 return 0;
4402 }
4403
4404 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4405 xfs_btree_change_owner(
4406 struct xfs_btree_cur *cur,
4407 uint64_t new_owner,
4408 struct list_head *buffer_list)
4409 {
4410 struct xfs_btree_block_change_owner_info bbcoi;
4411
4412 bbcoi.new_owner = new_owner;
4413 bbcoi.buffer_list = buffer_list;
4414
4415 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4416 &bbcoi);
4417 }
4418
4419 /* Verify the v5 fields of a long-format btree block. */
4420 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4421 xfs_btree_lblock_v5hdr_verify(
4422 struct xfs_buf *bp,
4423 uint64_t owner)
4424 {
4425 struct xfs_mount *mp = bp->b_mount;
4426 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4427
4428 if (!xfs_sb_version_hascrc(&mp->m_sb))
4429 return __this_address;
4430 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4431 return __this_address;
4432 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4433 return __this_address;
4434 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4435 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4436 return __this_address;
4437 return NULL;
4438 }
4439
4440 /* Verify a long-format btree block. */
4441 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4442 xfs_btree_lblock_verify(
4443 struct xfs_buf *bp,
4444 unsigned int max_recs)
4445 {
4446 struct xfs_mount *mp = bp->b_mount;
4447 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4448
4449 /* numrecs verification */
4450 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4451 return __this_address;
4452
4453 /* sibling pointer verification */
4454 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4455 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4456 return __this_address;
4457 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4458 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4459 return __this_address;
4460
4461 return NULL;
4462 }
4463
4464 /**
4465 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4466 * btree block
4467 *
4468 * @bp: buffer containing the btree block
4469 */
4470 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4471 xfs_btree_sblock_v5hdr_verify(
4472 struct xfs_buf *bp)
4473 {
4474 struct xfs_mount *mp = bp->b_mount;
4475 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4476 struct xfs_perag *pag = bp->b_pag;
4477
4478 if (!xfs_sb_version_hascrc(&mp->m_sb))
4479 return __this_address;
4480 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4481 return __this_address;
4482 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4483 return __this_address;
4484 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4485 return __this_address;
4486 return NULL;
4487 }
4488
4489 /**
4490 * xfs_btree_sblock_verify() -- verify a short-format btree block
4491 *
4492 * @bp: buffer containing the btree block
4493 * @max_recs: maximum records allowed in this btree node
4494 */
4495 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4496 xfs_btree_sblock_verify(
4497 struct xfs_buf *bp,
4498 unsigned int max_recs)
4499 {
4500 struct xfs_mount *mp = bp->b_mount;
4501 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4502 xfs_agblock_t agno;
4503
4504 /* numrecs verification */
4505 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4506 return __this_address;
4507
4508 /* sibling pointer verification */
4509 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4510 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4511 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4512 return __this_address;
4513 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4514 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4515 return __this_address;
4516
4517 return NULL;
4518 }
4519
4520 /*
4521 * Calculate the number of btree levels needed to store a given number of
4522 * records in a short-format btree.
4523 */
4524 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4525 xfs_btree_compute_maxlevels(
4526 uint *limits,
4527 unsigned long len)
4528 {
4529 uint level;
4530 unsigned long maxblocks;
4531
4532 maxblocks = (len + limits[0] - 1) / limits[0];
4533 for (level = 1; maxblocks > 1; level++)
4534 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4535 return level;
4536 }
4537
4538 /*
4539 * Query a regular btree for all records overlapping a given interval.
4540 * Start with a LE lookup of the key of low_rec and return all records
4541 * until we find a record with a key greater than the key of high_rec.
4542 */
4543 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4544 xfs_btree_simple_query_range(
4545 struct xfs_btree_cur *cur,
4546 union xfs_btree_key *low_key,
4547 union xfs_btree_key *high_key,
4548 xfs_btree_query_range_fn fn,
4549 void *priv)
4550 {
4551 union xfs_btree_rec *recp;
4552 union xfs_btree_key rec_key;
4553 int64_t diff;
4554 int stat;
4555 bool firstrec = true;
4556 int error;
4557
4558 ASSERT(cur->bc_ops->init_high_key_from_rec);
4559 ASSERT(cur->bc_ops->diff_two_keys);
4560
4561 /*
4562 * Find the leftmost record. The btree cursor must be set
4563 * to the low record used to generate low_key.
4564 */
4565 stat = 0;
4566 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4567 if (error)
4568 goto out;
4569
4570 /* Nothing? See if there's anything to the right. */
4571 if (!stat) {
4572 error = xfs_btree_increment(cur, 0, &stat);
4573 if (error)
4574 goto out;
4575 }
4576
4577 while (stat) {
4578 /* Find the record. */
4579 error = xfs_btree_get_rec(cur, &recp, &stat);
4580 if (error || !stat)
4581 break;
4582
4583 /* Skip if high_key(rec) < low_key. */
4584 if (firstrec) {
4585 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4586 firstrec = false;
4587 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4588 &rec_key);
4589 if (diff > 0)
4590 goto advloop;
4591 }
4592
4593 /* Stop if high_key < low_key(rec). */
4594 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4595 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4596 if (diff > 0)
4597 break;
4598
4599 /* Callback */
4600 error = fn(cur, recp, priv);
4601 if (error)
4602 break;
4603
4604 advloop:
4605 /* Move on to the next record. */
4606 error = xfs_btree_increment(cur, 0, &stat);
4607 if (error)
4608 break;
4609 }
4610
4611 out:
4612 return error;
4613 }
4614
4615 /*
4616 * Query an overlapped interval btree for all records overlapping a given
4617 * interval. This function roughly follows the algorithm given in
4618 * "Interval Trees" of _Introduction to Algorithms_, which is section
4619 * 14.3 in the 2nd and 3rd editions.
4620 *
4621 * First, generate keys for the low and high records passed in.
4622 *
4623 * For any leaf node, generate the high and low keys for the record.
4624 * If the record keys overlap with the query low/high keys, pass the
4625 * record to the function iterator.
4626 *
4627 * For any internal node, compare the low and high keys of each
4628 * pointer against the query low/high keys. If there's an overlap,
4629 * follow the pointer.
4630 *
4631 * As an optimization, we stop scanning a block when we find a low key
4632 * that is greater than the query's high key.
4633 */
4634 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4635 xfs_btree_overlapped_query_range(
4636 struct xfs_btree_cur *cur,
4637 union xfs_btree_key *low_key,
4638 union xfs_btree_key *high_key,
4639 xfs_btree_query_range_fn fn,
4640 void *priv)
4641 {
4642 union xfs_btree_ptr ptr;
4643 union xfs_btree_ptr *pp;
4644 union xfs_btree_key rec_key;
4645 union xfs_btree_key rec_hkey;
4646 union xfs_btree_key *lkp;
4647 union xfs_btree_key *hkp;
4648 union xfs_btree_rec *recp;
4649 struct xfs_btree_block *block;
4650 int64_t ldiff;
4651 int64_t hdiff;
4652 int level;
4653 struct xfs_buf *bp;
4654 int i;
4655 int error;
4656
4657 /* Load the root of the btree. */
4658 level = cur->bc_nlevels - 1;
4659 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4660 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4661 if (error)
4662 return error;
4663 xfs_btree_get_block(cur, level, &bp);
4664 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4665 #ifdef DEBUG
4666 error = xfs_btree_check_block(cur, block, level, bp);
4667 if (error)
4668 goto out;
4669 #endif
4670 cur->bc_ptrs[level] = 1;
4671
4672 while (level < cur->bc_nlevels) {
4673 block = xfs_btree_get_block(cur, level, &bp);
4674
4675 /* End of node, pop back towards the root. */
4676 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4677 pop_up:
4678 if (level < cur->bc_nlevels - 1)
4679 cur->bc_ptrs[level + 1]++;
4680 level++;
4681 continue;
4682 }
4683
4684 if (level == 0) {
4685 /* Handle a leaf node. */
4686 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4687
4688 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4689 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4690 low_key);
4691
4692 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4693 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4694 &rec_key);
4695
4696 /*
4697 * If (record's high key >= query's low key) and
4698 * (query's high key >= record's low key), then
4699 * this record overlaps the query range; callback.
4700 */
4701 if (ldiff >= 0 && hdiff >= 0) {
4702 error = fn(cur, recp, priv);
4703 if (error)
4704 break;
4705 } else if (hdiff < 0) {
4706 /* Record is larger than high key; pop. */
4707 goto pop_up;
4708 }
4709 cur->bc_ptrs[level]++;
4710 continue;
4711 }
4712
4713 /* Handle an internal node. */
4714 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4715 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4716 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4717
4718 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4719 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4720
4721 /*
4722 * If (pointer's high key >= query's low key) and
4723 * (query's high key >= pointer's low key), then
4724 * this record overlaps the query range; follow pointer.
4725 */
4726 if (ldiff >= 0 && hdiff >= 0) {
4727 level--;
4728 error = xfs_btree_lookup_get_block(cur, level, pp,
4729 &block);
4730 if (error)
4731 goto out;
4732 xfs_btree_get_block(cur, level, &bp);
4733 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4734 #ifdef DEBUG
4735 error = xfs_btree_check_block(cur, block, level, bp);
4736 if (error)
4737 goto out;
4738 #endif
4739 cur->bc_ptrs[level] = 1;
4740 continue;
4741 } else if (hdiff < 0) {
4742 /* The low key is larger than the upper range; pop. */
4743 goto pop_up;
4744 }
4745 cur->bc_ptrs[level]++;
4746 }
4747
4748 out:
4749 /*
4750 * If we don't end this function with the cursor pointing at a record
4751 * block, a subsequent non-error cursor deletion will not release
4752 * node-level buffers, causing a buffer leak. This is quite possible
4753 * with a zero-results range query, so release the buffers if we
4754 * failed to return any results.
4755 */
4756 if (cur->bc_bufs[0] == NULL) {
4757 for (i = 0; i < cur->bc_nlevels; i++) {
4758 if (cur->bc_bufs[i]) {
4759 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4760 cur->bc_bufs[i] = NULL;
4761 cur->bc_ptrs[i] = 0;
4762 cur->bc_ra[i] = 0;
4763 }
4764 }
4765 }
4766
4767 return error;
4768 }
4769
4770 /*
4771 * Query a btree for all records overlapping a given interval of keys. The
4772 * supplied function will be called with each record found; return one of the
4773 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4774 * code. This function returns -ECANCELED, zero, or a negative error code.
4775 */
4776 int
xfs_btree_query_range(struct xfs_btree_cur * cur,union xfs_btree_irec * low_rec,union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4777 xfs_btree_query_range(
4778 struct xfs_btree_cur *cur,
4779 union xfs_btree_irec *low_rec,
4780 union xfs_btree_irec *high_rec,
4781 xfs_btree_query_range_fn fn,
4782 void *priv)
4783 {
4784 union xfs_btree_rec rec;
4785 union xfs_btree_key low_key;
4786 union xfs_btree_key high_key;
4787
4788 /* Find the keys of both ends of the interval. */
4789 cur->bc_rec = *high_rec;
4790 cur->bc_ops->init_rec_from_cur(cur, &rec);
4791 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4792
4793 cur->bc_rec = *low_rec;
4794 cur->bc_ops->init_rec_from_cur(cur, &rec);
4795 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4796
4797 /* Enforce low key < high key. */
4798 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4799 return -EINVAL;
4800
4801 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4802 return xfs_btree_simple_query_range(cur, &low_key,
4803 &high_key, fn, priv);
4804 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4805 fn, priv);
4806 }
4807
4808 /* Query a btree for all records. */
4809 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4810 xfs_btree_query_all(
4811 struct xfs_btree_cur *cur,
4812 xfs_btree_query_range_fn fn,
4813 void *priv)
4814 {
4815 union xfs_btree_key low_key;
4816 union xfs_btree_key high_key;
4817
4818 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4819 memset(&low_key, 0, sizeof(low_key));
4820 memset(&high_key, 0xFF, sizeof(high_key));
4821
4822 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4823 }
4824
4825 /*
4826 * Calculate the number of blocks needed to store a given number of records
4827 * in a short-format (per-AG metadata) btree.
4828 */
4829 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4830 xfs_btree_calc_size(
4831 uint *limits,
4832 unsigned long long len)
4833 {
4834 int level;
4835 int maxrecs;
4836 unsigned long long rval;
4837
4838 maxrecs = limits[0];
4839 for (level = 0, rval = 0; len > 1; level++) {
4840 len += maxrecs - 1;
4841 do_div(len, maxrecs);
4842 maxrecs = limits[1];
4843 rval += len;
4844 }
4845 return rval;
4846 }
4847
4848 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4849 xfs_btree_count_blocks_helper(
4850 struct xfs_btree_cur *cur,
4851 int level,
4852 void *data)
4853 {
4854 xfs_extlen_t *blocks = data;
4855 (*blocks)++;
4856
4857 return 0;
4858 }
4859
4860 /* Count the blocks in a btree and return the result in *blocks. */
4861 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4862 xfs_btree_count_blocks(
4863 struct xfs_btree_cur *cur,
4864 xfs_extlen_t *blocks)
4865 {
4866 *blocks = 0;
4867 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4868 blocks);
4869 }
4870
4871 /* Compare two btree pointers. */
4872 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4873 xfs_btree_diff_two_ptrs(
4874 struct xfs_btree_cur *cur,
4875 const union xfs_btree_ptr *a,
4876 const union xfs_btree_ptr *b)
4877 {
4878 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4879 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4880 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4881 }
4882
4883 /* If there's an extent, we're done. */
4884 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,void * priv)4885 xfs_btree_has_record_helper(
4886 struct xfs_btree_cur *cur,
4887 union xfs_btree_rec *rec,
4888 void *priv)
4889 {
4890 return -ECANCELED;
4891 }
4892
4893 /* Is there a record covering a given range of keys? */
4894 int
xfs_btree_has_record(struct xfs_btree_cur * cur,union xfs_btree_irec * low,union xfs_btree_irec * high,bool * exists)4895 xfs_btree_has_record(
4896 struct xfs_btree_cur *cur,
4897 union xfs_btree_irec *low,
4898 union xfs_btree_irec *high,
4899 bool *exists)
4900 {
4901 int error;
4902
4903 error = xfs_btree_query_range(cur, low, high,
4904 &xfs_btree_has_record_helper, NULL);
4905 if (error == -ECANCELED) {
4906 *exists = true;
4907 return 0;
4908 }
4909 *exists = false;
4910 return error;
4911 }
4912
4913 /* Are there more records in this btree? */
4914 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)4915 xfs_btree_has_more_records(
4916 struct xfs_btree_cur *cur)
4917 {
4918 struct xfs_btree_block *block;
4919 struct xfs_buf *bp;
4920
4921 block = xfs_btree_get_block(cur, 0, &bp);
4922
4923 /* There are still records in this block. */
4924 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4925 return true;
4926
4927 /* There are more record blocks. */
4928 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4929 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4930 else
4931 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4932 }
4933