1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29
30 struct kmem_cache *xfs_extfree_item_cache;
31
32 struct workqueue_struct *xfs_alloc_wq;
33
34 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35
36 #define XFSA_FIXUP_BNO_OK 1
37 #define XFSA_FIXUP_CNT_OK 2
38
39 /*
40 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
41 * the beginning of the block for a proper header with the location information
42 * and CRC.
43 */
44 unsigned int
xfs_agfl_size(struct xfs_mount * mp)45 xfs_agfl_size(
46 struct xfs_mount *mp)
47 {
48 unsigned int size = mp->m_sb.sb_sectsize;
49
50 if (xfs_has_crc(mp))
51 size -= sizeof(struct xfs_agfl);
52
53 return size / sizeof(xfs_agblock_t);
54 }
55
56 unsigned int
xfs_refc_block(struct xfs_mount * mp)57 xfs_refc_block(
58 struct xfs_mount *mp)
59 {
60 if (xfs_has_rmapbt(mp))
61 return XFS_RMAP_BLOCK(mp) + 1;
62 if (xfs_has_finobt(mp))
63 return XFS_FIBT_BLOCK(mp) + 1;
64 return XFS_IBT_BLOCK(mp) + 1;
65 }
66
67 xfs_extlen_t
xfs_prealloc_blocks(struct xfs_mount * mp)68 xfs_prealloc_blocks(
69 struct xfs_mount *mp)
70 {
71 if (xfs_has_reflink(mp))
72 return xfs_refc_block(mp) + 1;
73 if (xfs_has_rmapbt(mp))
74 return XFS_RMAP_BLOCK(mp) + 1;
75 if (xfs_has_finobt(mp))
76 return XFS_FIBT_BLOCK(mp) + 1;
77 return XFS_IBT_BLOCK(mp) + 1;
78 }
79
80 /*
81 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
82 * guarantee that we can refill the AGFL prior to allocating space in a nearly
83 * full AG. Although the space described by the free space btrees, the
84 * blocks used by the freesp btrees themselves, and the blocks owned by the
85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86 * free space in the AG drop so low that the free space btrees cannot refill an
87 * empty AGFL up to the minimum level. Rather than grind through empty AGs
88 * until the fs goes down, we subtract this many AG blocks from the incore
89 * fdblocks to ensure user allocation does not overcommit the space the
90 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
91 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
92 */
93 #define XFS_ALLOCBT_AGFL_RESERVE 4
94
95 /*
96 * Compute the number of blocks that we set aside to guarantee the ability to
97 * refill the AGFL and handle a full bmap btree split.
98 *
99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100 * AGF buffer (PV 947395), we place constraints on the relationship among
101 * actual allocations for data blocks, freelist blocks, and potential file data
102 * bmap btree blocks. However, these restrictions may result in no actual space
103 * allocated for a delayed extent, for example, a data block in a certain AG is
104 * allocated but there is no additional block for the additional bmap btree
105 * block due to a split of the bmap btree of the file. The result of this may
106 * lead to an infinite loop when the file gets flushed to disk and all delayed
107 * extents need to be actually allocated. To get around this, we explicitly set
108 * aside a few blocks which will not be reserved in delayed allocation.
109 *
110 * For each AG, we need to reserve enough blocks to replenish a totally empty
111 * AGFL and 4 more to handle a potential split of the file's bmap btree.
112 */
113 unsigned int
xfs_alloc_set_aside(struct xfs_mount * mp)114 xfs_alloc_set_aside(
115 struct xfs_mount *mp)
116 {
117 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
118 }
119
120 /*
121 * When deciding how much space to allocate out of an AG, we limit the
122 * allocation maximum size to the size the AG. However, we cannot use all the
123 * blocks in the AG - some are permanently used by metadata. These
124 * blocks are generally:
125 * - the AG superblock, AGF, AGI and AGFL
126 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
127 * the AGI free inode and rmap btree root blocks.
128 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
129 * - the rmapbt root block
130 *
131 * The AG headers are sector sized, so the amount of space they take up is
132 * dependent on filesystem geometry. The others are all single blocks.
133 */
134 unsigned int
xfs_alloc_ag_max_usable(struct xfs_mount * mp)135 xfs_alloc_ag_max_usable(
136 struct xfs_mount *mp)
137 {
138 unsigned int blocks;
139
140 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
141 blocks += XFS_ALLOCBT_AGFL_RESERVE;
142 blocks += 3; /* AGF, AGI btree root blocks */
143 if (xfs_has_finobt(mp))
144 blocks++; /* finobt root block */
145 if (xfs_has_rmapbt(mp))
146 blocks++; /* rmap root block */
147 if (xfs_has_reflink(mp))
148 blocks++; /* refcount root block */
149
150 return mp->m_sb.sb_agblocks - blocks;
151 }
152
153 /*
154 * Lookup the record equal to [bno, len] in the btree given by cur.
155 */
156 STATIC int /* error */
xfs_alloc_lookup_eq(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)157 xfs_alloc_lookup_eq(
158 struct xfs_btree_cur *cur, /* btree cursor */
159 xfs_agblock_t bno, /* starting block of extent */
160 xfs_extlen_t len, /* length of extent */
161 int *stat) /* success/failure */
162 {
163 int error;
164
165 cur->bc_rec.a.ar_startblock = bno;
166 cur->bc_rec.a.ar_blockcount = len;
167 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
168 cur->bc_ag.abt.active = (*stat == 1);
169 return error;
170 }
171
172 /*
173 * Lookup the first record greater than or equal to [bno, len]
174 * in the btree given by cur.
175 */
176 int /* error */
xfs_alloc_lookup_ge(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)177 xfs_alloc_lookup_ge(
178 struct xfs_btree_cur *cur, /* btree cursor */
179 xfs_agblock_t bno, /* starting block of extent */
180 xfs_extlen_t len, /* length of extent */
181 int *stat) /* success/failure */
182 {
183 int error;
184
185 cur->bc_rec.a.ar_startblock = bno;
186 cur->bc_rec.a.ar_blockcount = len;
187 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
188 cur->bc_ag.abt.active = (*stat == 1);
189 return error;
190 }
191
192 /*
193 * Lookup the first record less than or equal to [bno, len]
194 * in the btree given by cur.
195 */
196 int /* error */
xfs_alloc_lookup_le(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)197 xfs_alloc_lookup_le(
198 struct xfs_btree_cur *cur, /* btree cursor */
199 xfs_agblock_t bno, /* starting block of extent */
200 xfs_extlen_t len, /* length of extent */
201 int *stat) /* success/failure */
202 {
203 int error;
204 cur->bc_rec.a.ar_startblock = bno;
205 cur->bc_rec.a.ar_blockcount = len;
206 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
207 cur->bc_ag.abt.active = (*stat == 1);
208 return error;
209 }
210
211 static inline bool
xfs_alloc_cur_active(struct xfs_btree_cur * cur)212 xfs_alloc_cur_active(
213 struct xfs_btree_cur *cur)
214 {
215 return cur && cur->bc_ag.abt.active;
216 }
217
218 /*
219 * Update the record referred to by cur to the value given
220 * by [bno, len].
221 * This either works (return 0) or gets an EFSCORRUPTED error.
222 */
223 STATIC int /* error */
xfs_alloc_update(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len)224 xfs_alloc_update(
225 struct xfs_btree_cur *cur, /* btree cursor */
226 xfs_agblock_t bno, /* starting block of extent */
227 xfs_extlen_t len) /* length of extent */
228 {
229 union xfs_btree_rec rec;
230
231 rec.alloc.ar_startblock = cpu_to_be32(bno);
232 rec.alloc.ar_blockcount = cpu_to_be32(len);
233 return xfs_btree_update(cur, &rec);
234 }
235
236 /* Convert the ondisk btree record to its incore representation. */
237 void
xfs_alloc_btrec_to_irec(const union xfs_btree_rec * rec,struct xfs_alloc_rec_incore * irec)238 xfs_alloc_btrec_to_irec(
239 const union xfs_btree_rec *rec,
240 struct xfs_alloc_rec_incore *irec)
241 {
242 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
243 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
244 }
245
246 /* Simple checks for free space records. */
247 xfs_failaddr_t
xfs_alloc_check_irec(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * irec)248 xfs_alloc_check_irec(
249 struct xfs_btree_cur *cur,
250 const struct xfs_alloc_rec_incore *irec)
251 {
252 struct xfs_perag *pag = cur->bc_ag.pag;
253
254 if (irec->ar_blockcount == 0)
255 return __this_address;
256
257 /* check for valid extent range, including overflow */
258 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
259 return __this_address;
260
261 return NULL;
262 }
263
264 static inline int
xfs_alloc_complain_bad_rec(struct xfs_btree_cur * cur,xfs_failaddr_t fa,const struct xfs_alloc_rec_incore * irec)265 xfs_alloc_complain_bad_rec(
266 struct xfs_btree_cur *cur,
267 xfs_failaddr_t fa,
268 const struct xfs_alloc_rec_incore *irec)
269 {
270 struct xfs_mount *mp = cur->bc_mp;
271
272 xfs_warn(mp,
273 "%s Freespace BTree record corruption in AG %d detected at %pS!",
274 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
275 cur->bc_ag.pag->pag_agno, fa);
276 xfs_warn(mp,
277 "start block 0x%x block count 0x%x", irec->ar_startblock,
278 irec->ar_blockcount);
279 return -EFSCORRUPTED;
280 }
281
282 /*
283 * Get the data from the pointed-to record.
284 */
285 int /* error */
xfs_alloc_get_rec(struct xfs_btree_cur * cur,xfs_agblock_t * bno,xfs_extlen_t * len,int * stat)286 xfs_alloc_get_rec(
287 struct xfs_btree_cur *cur, /* btree cursor */
288 xfs_agblock_t *bno, /* output: starting block of extent */
289 xfs_extlen_t *len, /* output: length of extent */
290 int *stat) /* output: success/failure */
291 {
292 struct xfs_alloc_rec_incore irec;
293 union xfs_btree_rec *rec;
294 xfs_failaddr_t fa;
295 int error;
296
297 error = xfs_btree_get_rec(cur, &rec, stat);
298 if (error || !(*stat))
299 return error;
300
301 xfs_alloc_btrec_to_irec(rec, &irec);
302 fa = xfs_alloc_check_irec(cur, &irec);
303 if (fa)
304 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
305
306 *bno = irec.ar_startblock;
307 *len = irec.ar_blockcount;
308 return 0;
309 }
310
311 /*
312 * Compute aligned version of the found extent.
313 * Takes alignment and min length into account.
314 */
315 STATIC bool
xfs_alloc_compute_aligned(xfs_alloc_arg_t * args,xfs_agblock_t foundbno,xfs_extlen_t foundlen,xfs_agblock_t * resbno,xfs_extlen_t * reslen,unsigned * busy_gen)316 xfs_alloc_compute_aligned(
317 xfs_alloc_arg_t *args, /* allocation argument structure */
318 xfs_agblock_t foundbno, /* starting block in found extent */
319 xfs_extlen_t foundlen, /* length in found extent */
320 xfs_agblock_t *resbno, /* result block number */
321 xfs_extlen_t *reslen, /* result length */
322 unsigned *busy_gen)
323 {
324 xfs_agblock_t bno = foundbno;
325 xfs_extlen_t len = foundlen;
326 xfs_extlen_t diff;
327 bool busy;
328
329 /* Trim busy sections out of found extent */
330 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
331
332 /*
333 * If we have a largish extent that happens to start before min_agbno,
334 * see if we can shift it into range...
335 */
336 if (bno < args->min_agbno && bno + len > args->min_agbno) {
337 diff = args->min_agbno - bno;
338 if (len > diff) {
339 bno += diff;
340 len -= diff;
341 }
342 }
343
344 if (args->alignment > 1 && len >= args->minlen) {
345 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
346
347 diff = aligned_bno - bno;
348
349 *resbno = aligned_bno;
350 *reslen = diff >= len ? 0 : len - diff;
351 } else {
352 *resbno = bno;
353 *reslen = len;
354 }
355
356 return busy;
357 }
358
359 /*
360 * Compute best start block and diff for "near" allocations.
361 * freelen >= wantlen already checked by caller.
362 */
363 STATIC xfs_extlen_t /* difference value (absolute) */
xfs_alloc_compute_diff(xfs_agblock_t wantbno,xfs_extlen_t wantlen,xfs_extlen_t alignment,int datatype,xfs_agblock_t freebno,xfs_extlen_t freelen,xfs_agblock_t * newbnop)364 xfs_alloc_compute_diff(
365 xfs_agblock_t wantbno, /* target starting block */
366 xfs_extlen_t wantlen, /* target length */
367 xfs_extlen_t alignment, /* target alignment */
368 int datatype, /* are we allocating data? */
369 xfs_agblock_t freebno, /* freespace's starting block */
370 xfs_extlen_t freelen, /* freespace's length */
371 xfs_agblock_t *newbnop) /* result: best start block from free */
372 {
373 xfs_agblock_t freeend; /* end of freespace extent */
374 xfs_agblock_t newbno1; /* return block number */
375 xfs_agblock_t newbno2; /* other new block number */
376 xfs_extlen_t newlen1=0; /* length with newbno1 */
377 xfs_extlen_t newlen2=0; /* length with newbno2 */
378 xfs_agblock_t wantend; /* end of target extent */
379 bool userdata = datatype & XFS_ALLOC_USERDATA;
380
381 ASSERT(freelen >= wantlen);
382 freeend = freebno + freelen;
383 wantend = wantbno + wantlen;
384 /*
385 * We want to allocate from the start of a free extent if it is past
386 * the desired block or if we are allocating user data and the free
387 * extent is before desired block. The second case is there to allow
388 * for contiguous allocation from the remaining free space if the file
389 * grows in the short term.
390 */
391 if (freebno >= wantbno || (userdata && freeend < wantend)) {
392 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
393 newbno1 = NULLAGBLOCK;
394 } else if (freeend >= wantend && alignment > 1) {
395 newbno1 = roundup(wantbno, alignment);
396 newbno2 = newbno1 - alignment;
397 if (newbno1 >= freeend)
398 newbno1 = NULLAGBLOCK;
399 else
400 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
401 if (newbno2 < freebno)
402 newbno2 = NULLAGBLOCK;
403 else
404 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
405 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
406 if (newlen1 < newlen2 ||
407 (newlen1 == newlen2 &&
408 XFS_ABSDIFF(newbno1, wantbno) >
409 XFS_ABSDIFF(newbno2, wantbno)))
410 newbno1 = newbno2;
411 } else if (newbno2 != NULLAGBLOCK)
412 newbno1 = newbno2;
413 } else if (freeend >= wantend) {
414 newbno1 = wantbno;
415 } else if (alignment > 1) {
416 newbno1 = roundup(freeend - wantlen, alignment);
417 if (newbno1 > freeend - wantlen &&
418 newbno1 - alignment >= freebno)
419 newbno1 -= alignment;
420 else if (newbno1 >= freeend)
421 newbno1 = NULLAGBLOCK;
422 } else
423 newbno1 = freeend - wantlen;
424 *newbnop = newbno1;
425 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
426 }
427
428 /*
429 * Fix up the length, based on mod and prod.
430 * len should be k * prod + mod for some k.
431 * If len is too small it is returned unchanged.
432 * If len hits maxlen it is left alone.
433 */
434 STATIC void
xfs_alloc_fix_len(xfs_alloc_arg_t * args)435 xfs_alloc_fix_len(
436 xfs_alloc_arg_t *args) /* allocation argument structure */
437 {
438 xfs_extlen_t k;
439 xfs_extlen_t rlen;
440
441 ASSERT(args->mod < args->prod);
442 rlen = args->len;
443 ASSERT(rlen >= args->minlen);
444 ASSERT(rlen <= args->maxlen);
445 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
446 (args->mod == 0 && rlen < args->prod))
447 return;
448 k = rlen % args->prod;
449 if (k == args->mod)
450 return;
451 if (k > args->mod)
452 rlen = rlen - (k - args->mod);
453 else
454 rlen = rlen - args->prod + (args->mod - k);
455 /* casts to (int) catch length underflows */
456 if ((int)rlen < (int)args->minlen)
457 return;
458 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
459 ASSERT(rlen % args->prod == args->mod);
460 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
461 rlen + args->minleft);
462 args->len = rlen;
463 }
464
465 /*
466 * Update the two btrees, logically removing from freespace the extent
467 * starting at rbno, rlen blocks. The extent is contained within the
468 * actual (current) free extent fbno for flen blocks.
469 * Flags are passed in indicating whether the cursors are set to the
470 * relevant records.
471 */
472 STATIC int /* error code */
xfs_alloc_fixup_trees(struct xfs_btree_cur * cnt_cur,struct xfs_btree_cur * bno_cur,xfs_agblock_t fbno,xfs_extlen_t flen,xfs_agblock_t rbno,xfs_extlen_t rlen,int flags)473 xfs_alloc_fixup_trees(
474 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
475 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
476 xfs_agblock_t fbno, /* starting block of free extent */
477 xfs_extlen_t flen, /* length of free extent */
478 xfs_agblock_t rbno, /* starting block of returned extent */
479 xfs_extlen_t rlen, /* length of returned extent */
480 int flags) /* flags, XFSA_FIXUP_... */
481 {
482 int error; /* error code */
483 int i; /* operation results */
484 xfs_agblock_t nfbno1; /* first new free startblock */
485 xfs_agblock_t nfbno2; /* second new free startblock */
486 xfs_extlen_t nflen1=0; /* first new free length */
487 xfs_extlen_t nflen2=0; /* second new free length */
488 struct xfs_mount *mp;
489
490 mp = cnt_cur->bc_mp;
491
492 /*
493 * Look up the record in the by-size tree if necessary.
494 */
495 if (flags & XFSA_FIXUP_CNT_OK) {
496 #ifdef DEBUG
497 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
498 return error;
499 if (XFS_IS_CORRUPT(mp,
500 i != 1 ||
501 nfbno1 != fbno ||
502 nflen1 != flen))
503 return -EFSCORRUPTED;
504 #endif
505 } else {
506 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
507 return error;
508 if (XFS_IS_CORRUPT(mp, i != 1))
509 return -EFSCORRUPTED;
510 }
511 /*
512 * Look up the record in the by-block tree if necessary.
513 */
514 if (flags & XFSA_FIXUP_BNO_OK) {
515 #ifdef DEBUG
516 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
517 return error;
518 if (XFS_IS_CORRUPT(mp,
519 i != 1 ||
520 nfbno1 != fbno ||
521 nflen1 != flen))
522 return -EFSCORRUPTED;
523 #endif
524 } else {
525 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
526 return error;
527 if (XFS_IS_CORRUPT(mp, i != 1))
528 return -EFSCORRUPTED;
529 }
530
531 #ifdef DEBUG
532 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
533 struct xfs_btree_block *bnoblock;
534 struct xfs_btree_block *cntblock;
535
536 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
537 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
538
539 if (XFS_IS_CORRUPT(mp,
540 bnoblock->bb_numrecs !=
541 cntblock->bb_numrecs))
542 return -EFSCORRUPTED;
543 }
544 #endif
545
546 /*
547 * Deal with all four cases: the allocated record is contained
548 * within the freespace record, so we can have new freespace
549 * at either (or both) end, or no freespace remaining.
550 */
551 if (rbno == fbno && rlen == flen)
552 nfbno1 = nfbno2 = NULLAGBLOCK;
553 else if (rbno == fbno) {
554 nfbno1 = rbno + rlen;
555 nflen1 = flen - rlen;
556 nfbno2 = NULLAGBLOCK;
557 } else if (rbno + rlen == fbno + flen) {
558 nfbno1 = fbno;
559 nflen1 = flen - rlen;
560 nfbno2 = NULLAGBLOCK;
561 } else {
562 nfbno1 = fbno;
563 nflen1 = rbno - fbno;
564 nfbno2 = rbno + rlen;
565 nflen2 = (fbno + flen) - nfbno2;
566 }
567 /*
568 * Delete the entry from the by-size btree.
569 */
570 if ((error = xfs_btree_delete(cnt_cur, &i)))
571 return error;
572 if (XFS_IS_CORRUPT(mp, i != 1))
573 return -EFSCORRUPTED;
574 /*
575 * Add new by-size btree entry(s).
576 */
577 if (nfbno1 != NULLAGBLOCK) {
578 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
579 return error;
580 if (XFS_IS_CORRUPT(mp, i != 0))
581 return -EFSCORRUPTED;
582 if ((error = xfs_btree_insert(cnt_cur, &i)))
583 return error;
584 if (XFS_IS_CORRUPT(mp, i != 1))
585 return -EFSCORRUPTED;
586 }
587 if (nfbno2 != NULLAGBLOCK) {
588 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
589 return error;
590 if (XFS_IS_CORRUPT(mp, i != 0))
591 return -EFSCORRUPTED;
592 if ((error = xfs_btree_insert(cnt_cur, &i)))
593 return error;
594 if (XFS_IS_CORRUPT(mp, i != 1))
595 return -EFSCORRUPTED;
596 }
597 /*
598 * Fix up the by-block btree entry(s).
599 */
600 if (nfbno1 == NULLAGBLOCK) {
601 /*
602 * No remaining freespace, just delete the by-block tree entry.
603 */
604 if ((error = xfs_btree_delete(bno_cur, &i)))
605 return error;
606 if (XFS_IS_CORRUPT(mp, i != 1))
607 return -EFSCORRUPTED;
608 } else {
609 /*
610 * Update the by-block entry to start later|be shorter.
611 */
612 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
613 return error;
614 }
615 if (nfbno2 != NULLAGBLOCK) {
616 /*
617 * 2 resulting free entries, need to add one.
618 */
619 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
620 return error;
621 if (XFS_IS_CORRUPT(mp, i != 0))
622 return -EFSCORRUPTED;
623 if ((error = xfs_btree_insert(bno_cur, &i)))
624 return error;
625 if (XFS_IS_CORRUPT(mp, i != 1))
626 return -EFSCORRUPTED;
627 }
628 return 0;
629 }
630
631 /*
632 * We do not verify the AGFL contents against AGF-based index counters here,
633 * even though we may have access to the perag that contains shadow copies. We
634 * don't know if the AGF based counters have been checked, and if they have they
635 * still may be inconsistent because they haven't yet been reset on the first
636 * allocation after the AGF has been read in.
637 *
638 * This means we can only check that all agfl entries contain valid or null
639 * values because we can't reliably determine the active range to exclude
640 * NULLAGBNO as a valid value.
641 *
642 * However, we can't even do that for v4 format filesystems because there are
643 * old versions of mkfs out there that does not initialise the AGFL to known,
644 * verifiable values. HEnce we can't tell the difference between a AGFL block
645 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
646 *
647 * As a result, we can only fully validate AGFL block numbers when we pull them
648 * from the freelist in xfs_alloc_get_freelist().
649 */
650 static xfs_failaddr_t
xfs_agfl_verify(struct xfs_buf * bp)651 xfs_agfl_verify(
652 struct xfs_buf *bp)
653 {
654 struct xfs_mount *mp = bp->b_mount;
655 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
656 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
657 int i;
658
659 if (!xfs_has_crc(mp))
660 return NULL;
661
662 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
663 return __this_address;
664 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
665 return __this_address;
666 /*
667 * during growfs operations, the perag is not fully initialised,
668 * so we can't use it for any useful checking. growfs ensures we can't
669 * use it by using uncached buffers that don't have the perag attached
670 * so we can detect and avoid this problem.
671 */
672 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
673 return __this_address;
674
675 for (i = 0; i < xfs_agfl_size(mp); i++) {
676 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
677 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
678 return __this_address;
679 }
680
681 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
682 return __this_address;
683 return NULL;
684 }
685
686 static void
xfs_agfl_read_verify(struct xfs_buf * bp)687 xfs_agfl_read_verify(
688 struct xfs_buf *bp)
689 {
690 struct xfs_mount *mp = bp->b_mount;
691 xfs_failaddr_t fa;
692
693 /*
694 * There is no verification of non-crc AGFLs because mkfs does not
695 * initialise the AGFL to zero or NULL. Hence the only valid part of the
696 * AGFL is what the AGF says is active. We can't get to the AGF, so we
697 * can't verify just those entries are valid.
698 */
699 if (!xfs_has_crc(mp))
700 return;
701
702 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
703 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
704 else {
705 fa = xfs_agfl_verify(bp);
706 if (fa)
707 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
708 }
709 }
710
711 static void
xfs_agfl_write_verify(struct xfs_buf * bp)712 xfs_agfl_write_verify(
713 struct xfs_buf *bp)
714 {
715 struct xfs_mount *mp = bp->b_mount;
716 struct xfs_buf_log_item *bip = bp->b_log_item;
717 xfs_failaddr_t fa;
718
719 /* no verification of non-crc AGFLs */
720 if (!xfs_has_crc(mp))
721 return;
722
723 fa = xfs_agfl_verify(bp);
724 if (fa) {
725 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
726 return;
727 }
728
729 if (bip)
730 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
731
732 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
733 }
734
735 const struct xfs_buf_ops xfs_agfl_buf_ops = {
736 .name = "xfs_agfl",
737 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
738 .verify_read = xfs_agfl_read_verify,
739 .verify_write = xfs_agfl_write_verify,
740 .verify_struct = xfs_agfl_verify,
741 };
742
743 /*
744 * Read in the allocation group free block array.
745 */
746 int
xfs_alloc_read_agfl(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf ** bpp)747 xfs_alloc_read_agfl(
748 struct xfs_perag *pag,
749 struct xfs_trans *tp,
750 struct xfs_buf **bpp)
751 {
752 struct xfs_mount *mp = pag->pag_mount;
753 struct xfs_buf *bp;
754 int error;
755
756 error = xfs_trans_read_buf(
757 mp, tp, mp->m_ddev_targp,
758 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
759 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
760 if (error)
761 return error;
762 xfs_buf_set_ref(bp, XFS_AGFL_REF);
763 *bpp = bp;
764 return 0;
765 }
766
767 STATIC int
xfs_alloc_update_counters(struct xfs_trans * tp,struct xfs_buf * agbp,long len)768 xfs_alloc_update_counters(
769 struct xfs_trans *tp,
770 struct xfs_buf *agbp,
771 long len)
772 {
773 struct xfs_agf *agf = agbp->b_addr;
774
775 agbp->b_pag->pagf_freeblks += len;
776 be32_add_cpu(&agf->agf_freeblks, len);
777
778 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
779 be32_to_cpu(agf->agf_length))) {
780 xfs_buf_mark_corrupt(agbp);
781 return -EFSCORRUPTED;
782 }
783
784 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
785 return 0;
786 }
787
788 /*
789 * Block allocation algorithm and data structures.
790 */
791 struct xfs_alloc_cur {
792 struct xfs_btree_cur *cnt; /* btree cursors */
793 struct xfs_btree_cur *bnolt;
794 struct xfs_btree_cur *bnogt;
795 xfs_extlen_t cur_len;/* current search length */
796 xfs_agblock_t rec_bno;/* extent startblock */
797 xfs_extlen_t rec_len;/* extent length */
798 xfs_agblock_t bno; /* alloc bno */
799 xfs_extlen_t len; /* alloc len */
800 xfs_extlen_t diff; /* diff from search bno */
801 unsigned int busy_gen;/* busy state */
802 bool busy;
803 };
804
805 /*
806 * Set up cursors, etc. in the extent allocation cursor. This function can be
807 * called multiple times to reset an initialized structure without having to
808 * reallocate cursors.
809 */
810 static int
xfs_alloc_cur_setup(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)811 xfs_alloc_cur_setup(
812 struct xfs_alloc_arg *args,
813 struct xfs_alloc_cur *acur)
814 {
815 int error;
816 int i;
817
818 acur->cur_len = args->maxlen;
819 acur->rec_bno = 0;
820 acur->rec_len = 0;
821 acur->bno = 0;
822 acur->len = 0;
823 acur->diff = -1;
824 acur->busy = false;
825 acur->busy_gen = 0;
826
827 /*
828 * Perform an initial cntbt lookup to check for availability of maxlen
829 * extents. If this fails, we'll return -ENOSPC to signal the caller to
830 * attempt a small allocation.
831 */
832 if (!acur->cnt)
833 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
834 args->agbp, args->pag, XFS_BTNUM_CNT);
835 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
836 if (error)
837 return error;
838
839 /*
840 * Allocate the bnobt left and right search cursors.
841 */
842 if (!acur->bnolt)
843 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
844 args->agbp, args->pag, XFS_BTNUM_BNO);
845 if (!acur->bnogt)
846 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
847 args->agbp, args->pag, XFS_BTNUM_BNO);
848 return i == 1 ? 0 : -ENOSPC;
849 }
850
851 static void
xfs_alloc_cur_close(struct xfs_alloc_cur * acur,bool error)852 xfs_alloc_cur_close(
853 struct xfs_alloc_cur *acur,
854 bool error)
855 {
856 int cur_error = XFS_BTREE_NOERROR;
857
858 if (error)
859 cur_error = XFS_BTREE_ERROR;
860
861 if (acur->cnt)
862 xfs_btree_del_cursor(acur->cnt, cur_error);
863 if (acur->bnolt)
864 xfs_btree_del_cursor(acur->bnolt, cur_error);
865 if (acur->bnogt)
866 xfs_btree_del_cursor(acur->bnogt, cur_error);
867 acur->cnt = acur->bnolt = acur->bnogt = NULL;
868 }
869
870 /*
871 * Check an extent for allocation and track the best available candidate in the
872 * allocation structure. The cursor is deactivated if it has entered an out of
873 * range state based on allocation arguments. Optionally return the extent
874 * extent geometry and allocation status if requested by the caller.
875 */
876 static int
xfs_alloc_cur_check(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,int * new)877 xfs_alloc_cur_check(
878 struct xfs_alloc_arg *args,
879 struct xfs_alloc_cur *acur,
880 struct xfs_btree_cur *cur,
881 int *new)
882 {
883 int error, i;
884 xfs_agblock_t bno, bnoa, bnew;
885 xfs_extlen_t len, lena, diff = -1;
886 bool busy;
887 unsigned busy_gen = 0;
888 bool deactivate = false;
889 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
890
891 *new = 0;
892
893 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
894 if (error)
895 return error;
896 if (XFS_IS_CORRUPT(args->mp, i != 1))
897 return -EFSCORRUPTED;
898
899 /*
900 * Check minlen and deactivate a cntbt cursor if out of acceptable size
901 * range (i.e., walking backwards looking for a minlen extent).
902 */
903 if (len < args->minlen) {
904 deactivate = !isbnobt;
905 goto out;
906 }
907
908 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
909 &busy_gen);
910 acur->busy |= busy;
911 if (busy)
912 acur->busy_gen = busy_gen;
913 /* deactivate a bnobt cursor outside of locality range */
914 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
915 deactivate = isbnobt;
916 goto out;
917 }
918 if (lena < args->minlen)
919 goto out;
920
921 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
922 xfs_alloc_fix_len(args);
923 ASSERT(args->len >= args->minlen);
924 if (args->len < acur->len)
925 goto out;
926
927 /*
928 * We have an aligned record that satisfies minlen and beats or matches
929 * the candidate extent size. Compare locality for near allocation mode.
930 */
931 diff = xfs_alloc_compute_diff(args->agbno, args->len,
932 args->alignment, args->datatype,
933 bnoa, lena, &bnew);
934 if (bnew == NULLAGBLOCK)
935 goto out;
936
937 /*
938 * Deactivate a bnobt cursor with worse locality than the current best.
939 */
940 if (diff > acur->diff) {
941 deactivate = isbnobt;
942 goto out;
943 }
944
945 ASSERT(args->len > acur->len ||
946 (args->len == acur->len && diff <= acur->diff));
947 acur->rec_bno = bno;
948 acur->rec_len = len;
949 acur->bno = bnew;
950 acur->len = args->len;
951 acur->diff = diff;
952 *new = 1;
953
954 /*
955 * We're done if we found a perfect allocation. This only deactivates
956 * the current cursor, but this is just an optimization to terminate a
957 * cntbt search that otherwise runs to the edge of the tree.
958 */
959 if (acur->diff == 0 && acur->len == args->maxlen)
960 deactivate = true;
961 out:
962 if (deactivate)
963 cur->bc_ag.abt.active = false;
964 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
965 *new);
966 return 0;
967 }
968
969 /*
970 * Complete an allocation of a candidate extent. Remove the extent from both
971 * trees and update the args structure.
972 */
973 STATIC int
xfs_alloc_cur_finish(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)974 xfs_alloc_cur_finish(
975 struct xfs_alloc_arg *args,
976 struct xfs_alloc_cur *acur)
977 {
978 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
979 int error;
980
981 ASSERT(acur->cnt && acur->bnolt);
982 ASSERT(acur->bno >= acur->rec_bno);
983 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
984 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
985
986 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
987 acur->rec_len, acur->bno, acur->len, 0);
988 if (error)
989 return error;
990
991 args->agbno = acur->bno;
992 args->len = acur->len;
993 args->wasfromfl = 0;
994
995 trace_xfs_alloc_cur(args);
996 return 0;
997 }
998
999 /*
1000 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1001 * bno optimized lookup to search for extents with ideal size and locality.
1002 */
1003 STATIC int
xfs_alloc_cntbt_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)1004 xfs_alloc_cntbt_iter(
1005 struct xfs_alloc_arg *args,
1006 struct xfs_alloc_cur *acur)
1007 {
1008 struct xfs_btree_cur *cur = acur->cnt;
1009 xfs_agblock_t bno;
1010 xfs_extlen_t len, cur_len;
1011 int error;
1012 int i;
1013
1014 if (!xfs_alloc_cur_active(cur))
1015 return 0;
1016
1017 /* locality optimized lookup */
1018 cur_len = acur->cur_len;
1019 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1020 if (error)
1021 return error;
1022 if (i == 0)
1023 return 0;
1024 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1025 if (error)
1026 return error;
1027
1028 /* check the current record and update search length from it */
1029 error = xfs_alloc_cur_check(args, acur, cur, &i);
1030 if (error)
1031 return error;
1032 ASSERT(len >= acur->cur_len);
1033 acur->cur_len = len;
1034
1035 /*
1036 * We looked up the first record >= [agbno, len] above. The agbno is a
1037 * secondary key and so the current record may lie just before or after
1038 * agbno. If it is past agbno, check the previous record too so long as
1039 * the length matches as it may be closer. Don't check a smaller record
1040 * because that could deactivate our cursor.
1041 */
1042 if (bno > args->agbno) {
1043 error = xfs_btree_decrement(cur, 0, &i);
1044 if (!error && i) {
1045 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1046 if (!error && i && len == acur->cur_len)
1047 error = xfs_alloc_cur_check(args, acur, cur,
1048 &i);
1049 }
1050 if (error)
1051 return error;
1052 }
1053
1054 /*
1055 * Increment the search key until we find at least one allocation
1056 * candidate or if the extent we found was larger. Otherwise, double the
1057 * search key to optimize the search. Efficiency is more important here
1058 * than absolute best locality.
1059 */
1060 cur_len <<= 1;
1061 if (!acur->len || acur->cur_len >= cur_len)
1062 acur->cur_len++;
1063 else
1064 acur->cur_len = cur_len;
1065
1066 return error;
1067 }
1068
1069 /*
1070 * Deal with the case where only small freespaces remain. Either return the
1071 * contents of the last freespace record, or allocate space from the freelist if
1072 * there is nothing in the tree.
1073 */
1074 STATIC int /* error */
xfs_alloc_ag_vextent_small(struct xfs_alloc_arg * args,struct xfs_btree_cur * ccur,xfs_agblock_t * fbnop,xfs_extlen_t * flenp,int * stat)1075 xfs_alloc_ag_vextent_small(
1076 struct xfs_alloc_arg *args, /* allocation argument structure */
1077 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1078 xfs_agblock_t *fbnop, /* result block number */
1079 xfs_extlen_t *flenp, /* result length */
1080 int *stat) /* status: 0-freelist, 1-normal/none */
1081 {
1082 struct xfs_agf *agf = args->agbp->b_addr;
1083 int error = 0;
1084 xfs_agblock_t fbno = NULLAGBLOCK;
1085 xfs_extlen_t flen = 0;
1086 int i = 0;
1087
1088 /*
1089 * If a cntbt cursor is provided, try to allocate the largest record in
1090 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1091 * allocation. Make sure to respect minleft even when pulling from the
1092 * freelist.
1093 */
1094 if (ccur)
1095 error = xfs_btree_decrement(ccur, 0, &i);
1096 if (error)
1097 goto error;
1098 if (i) {
1099 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1100 if (error)
1101 goto error;
1102 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1103 error = -EFSCORRUPTED;
1104 goto error;
1105 }
1106 goto out;
1107 }
1108
1109 if (args->minlen != 1 || args->alignment != 1 ||
1110 args->resv == XFS_AG_RESV_AGFL ||
1111 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1112 goto out;
1113
1114 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1115 &fbno, 0);
1116 if (error)
1117 goto error;
1118 if (fbno == NULLAGBLOCK)
1119 goto out;
1120
1121 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1122 (args->datatype & XFS_ALLOC_NOBUSY));
1123
1124 if (args->datatype & XFS_ALLOC_USERDATA) {
1125 struct xfs_buf *bp;
1126
1127 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1128 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1129 args->mp->m_bsize, 0, &bp);
1130 if (error)
1131 goto error;
1132 xfs_trans_binval(args->tp, bp);
1133 }
1134 *fbnop = args->agbno = fbno;
1135 *flenp = args->len = 1;
1136 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1137 error = -EFSCORRUPTED;
1138 goto error;
1139 }
1140 args->wasfromfl = 1;
1141 trace_xfs_alloc_small_freelist(args);
1142
1143 /*
1144 * If we're feeding an AGFL block to something that doesn't live in the
1145 * free space, we need to clear out the OWN_AG rmap.
1146 */
1147 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1148 &XFS_RMAP_OINFO_AG);
1149 if (error)
1150 goto error;
1151
1152 *stat = 0;
1153 return 0;
1154
1155 out:
1156 /*
1157 * Can't do the allocation, give up.
1158 */
1159 if (flen < args->minlen) {
1160 args->agbno = NULLAGBLOCK;
1161 trace_xfs_alloc_small_notenough(args);
1162 flen = 0;
1163 }
1164 *fbnop = fbno;
1165 *flenp = flen;
1166 *stat = 1;
1167 trace_xfs_alloc_small_done(args);
1168 return 0;
1169
1170 error:
1171 trace_xfs_alloc_small_error(args);
1172 return error;
1173 }
1174
1175 /*
1176 * Allocate a variable extent at exactly agno/bno.
1177 * Extent's length (returned in *len) will be between minlen and maxlen,
1178 * and of the form k * prod + mod unless there's nothing that large.
1179 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1180 */
1181 STATIC int /* error */
xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t * args)1182 xfs_alloc_ag_vextent_exact(
1183 xfs_alloc_arg_t *args) /* allocation argument structure */
1184 {
1185 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1186 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1187 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1188 int error;
1189 xfs_agblock_t fbno; /* start block of found extent */
1190 xfs_extlen_t flen; /* length of found extent */
1191 xfs_agblock_t tbno; /* start block of busy extent */
1192 xfs_extlen_t tlen; /* length of busy extent */
1193 xfs_agblock_t tend; /* end block of busy extent */
1194 int i; /* success/failure of operation */
1195 unsigned busy_gen;
1196
1197 ASSERT(args->alignment == 1);
1198
1199 /*
1200 * Allocate/initialize a cursor for the by-number freespace btree.
1201 */
1202 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1203 args->pag, XFS_BTNUM_BNO);
1204
1205 /*
1206 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1207 * Look for the closest free block <= bno, it must contain bno
1208 * if any free block does.
1209 */
1210 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1211 if (error)
1212 goto error0;
1213 if (!i)
1214 goto not_found;
1215
1216 /*
1217 * Grab the freespace record.
1218 */
1219 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1220 if (error)
1221 goto error0;
1222 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1223 error = -EFSCORRUPTED;
1224 goto error0;
1225 }
1226 ASSERT(fbno <= args->agbno);
1227
1228 /*
1229 * Check for overlapping busy extents.
1230 */
1231 tbno = fbno;
1232 tlen = flen;
1233 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1234
1235 /*
1236 * Give up if the start of the extent is busy, or the freespace isn't
1237 * long enough for the minimum request.
1238 */
1239 if (tbno > args->agbno)
1240 goto not_found;
1241 if (tlen < args->minlen)
1242 goto not_found;
1243 tend = tbno + tlen;
1244 if (tend < args->agbno + args->minlen)
1245 goto not_found;
1246
1247 /*
1248 * End of extent will be smaller of the freespace end and the
1249 * maximal requested end.
1250 *
1251 * Fix the length according to mod and prod if given.
1252 */
1253 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1254 - args->agbno;
1255 xfs_alloc_fix_len(args);
1256 ASSERT(args->agbno + args->len <= tend);
1257
1258 /*
1259 * We are allocating agbno for args->len
1260 * Allocate/initialize a cursor for the by-size btree.
1261 */
1262 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1263 args->pag, XFS_BTNUM_CNT);
1264 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1265 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1266 args->len, XFSA_FIXUP_BNO_OK);
1267 if (error) {
1268 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1269 goto error0;
1270 }
1271
1272 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1273 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1274
1275 args->wasfromfl = 0;
1276 trace_xfs_alloc_exact_done(args);
1277 return 0;
1278
1279 not_found:
1280 /* Didn't find it, return null. */
1281 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1282 args->agbno = NULLAGBLOCK;
1283 trace_xfs_alloc_exact_notfound(args);
1284 return 0;
1285
1286 error0:
1287 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1288 trace_xfs_alloc_exact_error(args);
1289 return error;
1290 }
1291
1292 /*
1293 * Search a given number of btree records in a given direction. Check each
1294 * record against the good extent we've already found.
1295 */
1296 STATIC int
xfs_alloc_walk_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,bool increment,bool find_one,int count,int * stat)1297 xfs_alloc_walk_iter(
1298 struct xfs_alloc_arg *args,
1299 struct xfs_alloc_cur *acur,
1300 struct xfs_btree_cur *cur,
1301 bool increment,
1302 bool find_one, /* quit on first candidate */
1303 int count, /* rec count (-1 for infinite) */
1304 int *stat)
1305 {
1306 int error;
1307 int i;
1308
1309 *stat = 0;
1310
1311 /*
1312 * Search so long as the cursor is active or we find a better extent.
1313 * The cursor is deactivated if it extends beyond the range of the
1314 * current allocation candidate.
1315 */
1316 while (xfs_alloc_cur_active(cur) && count) {
1317 error = xfs_alloc_cur_check(args, acur, cur, &i);
1318 if (error)
1319 return error;
1320 if (i == 1) {
1321 *stat = 1;
1322 if (find_one)
1323 break;
1324 }
1325 if (!xfs_alloc_cur_active(cur))
1326 break;
1327
1328 if (increment)
1329 error = xfs_btree_increment(cur, 0, &i);
1330 else
1331 error = xfs_btree_decrement(cur, 0, &i);
1332 if (error)
1333 return error;
1334 if (i == 0)
1335 cur->bc_ag.abt.active = false;
1336
1337 if (count > 0)
1338 count--;
1339 }
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * Search the by-bno and by-size btrees in parallel in search of an extent with
1346 * ideal locality based on the NEAR mode ->agbno locality hint.
1347 */
1348 STATIC int
xfs_alloc_ag_vextent_locality(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,int * stat)1349 xfs_alloc_ag_vextent_locality(
1350 struct xfs_alloc_arg *args,
1351 struct xfs_alloc_cur *acur,
1352 int *stat)
1353 {
1354 struct xfs_btree_cur *fbcur = NULL;
1355 int error;
1356 int i;
1357 bool fbinc;
1358
1359 ASSERT(acur->len == 0);
1360
1361 *stat = 0;
1362
1363 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1364 if (error)
1365 return error;
1366 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1367 if (error)
1368 return error;
1369 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1370 if (error)
1371 return error;
1372
1373 /*
1374 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1375 * right and lookup the closest extent to the locality hint for each
1376 * extent size key in the cntbt. The entire search terminates
1377 * immediately on a bnobt hit because that means we've found best case
1378 * locality. Otherwise the search continues until the cntbt cursor runs
1379 * off the end of the tree. If no allocation candidate is found at this
1380 * point, give up on locality, walk backwards from the end of the cntbt
1381 * and take the first available extent.
1382 *
1383 * The parallel tree searches balance each other out to provide fairly
1384 * consistent performance for various situations. The bnobt search can
1385 * have pathological behavior in the worst case scenario of larger
1386 * allocation requests and fragmented free space. On the other hand, the
1387 * bnobt is able to satisfy most smaller allocation requests much more
1388 * quickly than the cntbt. The cntbt search can sift through fragmented
1389 * free space and sets of free extents for larger allocation requests
1390 * more quickly than the bnobt. Since the locality hint is just a hint
1391 * and we don't want to scan the entire bnobt for perfect locality, the
1392 * cntbt search essentially bounds the bnobt search such that we can
1393 * find good enough locality at reasonable performance in most cases.
1394 */
1395 while (xfs_alloc_cur_active(acur->bnolt) ||
1396 xfs_alloc_cur_active(acur->bnogt) ||
1397 xfs_alloc_cur_active(acur->cnt)) {
1398
1399 trace_xfs_alloc_cur_lookup(args);
1400
1401 /*
1402 * Search the bnobt left and right. In the case of a hit, finish
1403 * the search in the opposite direction and we're done.
1404 */
1405 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1406 true, 1, &i);
1407 if (error)
1408 return error;
1409 if (i == 1) {
1410 trace_xfs_alloc_cur_left(args);
1411 fbcur = acur->bnogt;
1412 fbinc = true;
1413 break;
1414 }
1415 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1416 1, &i);
1417 if (error)
1418 return error;
1419 if (i == 1) {
1420 trace_xfs_alloc_cur_right(args);
1421 fbcur = acur->bnolt;
1422 fbinc = false;
1423 break;
1424 }
1425
1426 /*
1427 * Check the extent with best locality based on the current
1428 * extent size search key and keep track of the best candidate.
1429 */
1430 error = xfs_alloc_cntbt_iter(args, acur);
1431 if (error)
1432 return error;
1433 if (!xfs_alloc_cur_active(acur->cnt)) {
1434 trace_xfs_alloc_cur_lookup_done(args);
1435 break;
1436 }
1437 }
1438
1439 /*
1440 * If we failed to find anything due to busy extents, return empty
1441 * handed so the caller can flush and retry. If no busy extents were
1442 * found, walk backwards from the end of the cntbt as a last resort.
1443 */
1444 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1445 error = xfs_btree_decrement(acur->cnt, 0, &i);
1446 if (error)
1447 return error;
1448 if (i) {
1449 acur->cnt->bc_ag.abt.active = true;
1450 fbcur = acur->cnt;
1451 fbinc = false;
1452 }
1453 }
1454
1455 /*
1456 * Search in the opposite direction for a better entry in the case of
1457 * a bnobt hit or walk backwards from the end of the cntbt.
1458 */
1459 if (fbcur) {
1460 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1461 &i);
1462 if (error)
1463 return error;
1464 }
1465
1466 if (acur->len)
1467 *stat = 1;
1468
1469 return 0;
1470 }
1471
1472 /* Check the last block of the cnt btree for allocations. */
1473 static int
xfs_alloc_ag_vextent_lastblock(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,xfs_agblock_t * bno,xfs_extlen_t * len,bool * allocated)1474 xfs_alloc_ag_vextent_lastblock(
1475 struct xfs_alloc_arg *args,
1476 struct xfs_alloc_cur *acur,
1477 xfs_agblock_t *bno,
1478 xfs_extlen_t *len,
1479 bool *allocated)
1480 {
1481 int error;
1482 int i;
1483
1484 #ifdef DEBUG
1485 /* Randomly don't execute the first algorithm. */
1486 if (get_random_u32_below(2))
1487 return 0;
1488 #endif
1489
1490 /*
1491 * Start from the entry that lookup found, sequence through all larger
1492 * free blocks. If we're actually pointing at a record smaller than
1493 * maxlen, go to the start of this block, and skip all those smaller
1494 * than minlen.
1495 */
1496 if (*len || args->alignment > 1) {
1497 acur->cnt->bc_levels[0].ptr = 1;
1498 do {
1499 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1500 if (error)
1501 return error;
1502 if (XFS_IS_CORRUPT(args->mp, i != 1))
1503 return -EFSCORRUPTED;
1504 if (*len >= args->minlen)
1505 break;
1506 error = xfs_btree_increment(acur->cnt, 0, &i);
1507 if (error)
1508 return error;
1509 } while (i);
1510 ASSERT(*len >= args->minlen);
1511 if (!i)
1512 return 0;
1513 }
1514
1515 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1516 if (error)
1517 return error;
1518
1519 /*
1520 * It didn't work. We COULD be in a case where there's a good record
1521 * somewhere, so try again.
1522 */
1523 if (acur->len == 0)
1524 return 0;
1525
1526 trace_xfs_alloc_near_first(args);
1527 *allocated = true;
1528 return 0;
1529 }
1530
1531 /*
1532 * Allocate a variable extent near bno in the allocation group agno.
1533 * Extent's length (returned in len) will be between minlen and maxlen,
1534 * and of the form k * prod + mod unless there's nothing that large.
1535 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1536 */
1537 STATIC int
xfs_alloc_ag_vextent_near(struct xfs_alloc_arg * args,uint32_t alloc_flags)1538 xfs_alloc_ag_vextent_near(
1539 struct xfs_alloc_arg *args,
1540 uint32_t alloc_flags)
1541 {
1542 struct xfs_alloc_cur acur = {};
1543 int error; /* error code */
1544 int i; /* result code, temporary */
1545 xfs_agblock_t bno;
1546 xfs_extlen_t len;
1547
1548 /* handle uninitialized agbno range so caller doesn't have to */
1549 if (!args->min_agbno && !args->max_agbno)
1550 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1551 ASSERT(args->min_agbno <= args->max_agbno);
1552
1553 /* clamp agbno to the range if it's outside */
1554 if (args->agbno < args->min_agbno)
1555 args->agbno = args->min_agbno;
1556 if (args->agbno > args->max_agbno)
1557 args->agbno = args->max_agbno;
1558
1559 /* Retry once quickly if we find busy extents before blocking. */
1560 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1561 restart:
1562 len = 0;
1563
1564 /*
1565 * Set up cursors and see if there are any free extents as big as
1566 * maxlen. If not, pick the last entry in the tree unless the tree is
1567 * empty.
1568 */
1569 error = xfs_alloc_cur_setup(args, &acur);
1570 if (error == -ENOSPC) {
1571 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1572 &len, &i);
1573 if (error)
1574 goto out;
1575 if (i == 0 || len == 0) {
1576 trace_xfs_alloc_near_noentry(args);
1577 goto out;
1578 }
1579 ASSERT(i == 1);
1580 } else if (error) {
1581 goto out;
1582 }
1583
1584 /*
1585 * First algorithm.
1586 * If the requested extent is large wrt the freespaces available
1587 * in this a.g., then the cursor will be pointing to a btree entry
1588 * near the right edge of the tree. If it's in the last btree leaf
1589 * block, then we just examine all the entries in that block
1590 * that are big enough, and pick the best one.
1591 */
1592 if (xfs_btree_islastblock(acur.cnt, 0)) {
1593 bool allocated = false;
1594
1595 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1596 &allocated);
1597 if (error)
1598 goto out;
1599 if (allocated)
1600 goto alloc_finish;
1601 }
1602
1603 /*
1604 * Second algorithm. Combined cntbt and bnobt search to find ideal
1605 * locality.
1606 */
1607 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1608 if (error)
1609 goto out;
1610
1611 /*
1612 * If we couldn't get anything, give up.
1613 */
1614 if (!acur.len) {
1615 if (acur.busy) {
1616 /*
1617 * Our only valid extents must have been busy. Flush and
1618 * retry the allocation again. If we get an -EAGAIN
1619 * error, we're being told that a deadlock was avoided
1620 * and the current transaction needs committing before
1621 * the allocation can be retried.
1622 */
1623 trace_xfs_alloc_near_busy(args);
1624 error = xfs_extent_busy_flush(args->tp, args->pag,
1625 acur.busy_gen, alloc_flags);
1626 if (error)
1627 goto out;
1628
1629 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1630 goto restart;
1631 }
1632 trace_xfs_alloc_size_neither(args);
1633 args->agbno = NULLAGBLOCK;
1634 goto out;
1635 }
1636
1637 alloc_finish:
1638 /* fix up btrees on a successful allocation */
1639 error = xfs_alloc_cur_finish(args, &acur);
1640
1641 out:
1642 xfs_alloc_cur_close(&acur, error);
1643 return error;
1644 }
1645
1646 /*
1647 * Allocate a variable extent anywhere in the allocation group agno.
1648 * Extent's length (returned in len) will be between minlen and maxlen,
1649 * and of the form k * prod + mod unless there's nothing that large.
1650 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1651 */
1652 static int
xfs_alloc_ag_vextent_size(struct xfs_alloc_arg * args,uint32_t alloc_flags)1653 xfs_alloc_ag_vextent_size(
1654 struct xfs_alloc_arg *args,
1655 uint32_t alloc_flags)
1656 {
1657 struct xfs_agf *agf = args->agbp->b_addr;
1658 struct xfs_btree_cur *bno_cur;
1659 struct xfs_btree_cur *cnt_cur;
1660 xfs_agblock_t fbno; /* start of found freespace */
1661 xfs_extlen_t flen; /* length of found freespace */
1662 xfs_agblock_t rbno; /* returned block number */
1663 xfs_extlen_t rlen; /* length of returned extent */
1664 bool busy;
1665 unsigned busy_gen;
1666 int error;
1667 int i;
1668
1669 /* Retry once quickly if we find busy extents before blocking. */
1670 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1671 restart:
1672 /*
1673 * Allocate and initialize a cursor for the by-size btree.
1674 */
1675 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1676 args->pag, XFS_BTNUM_CNT);
1677 bno_cur = NULL;
1678
1679 /*
1680 * Look for an entry >= maxlen+alignment-1 blocks.
1681 */
1682 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1683 args->maxlen + args->alignment - 1, &i)))
1684 goto error0;
1685
1686 /*
1687 * If none then we have to settle for a smaller extent. In the case that
1688 * there are no large extents, this will return the last entry in the
1689 * tree unless the tree is empty. In the case that there are only busy
1690 * large extents, this will return the largest small extent unless there
1691 * are no smaller extents available.
1692 */
1693 if (!i) {
1694 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1695 &fbno, &flen, &i);
1696 if (error)
1697 goto error0;
1698 if (i == 0 || flen == 0) {
1699 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1700 trace_xfs_alloc_size_noentry(args);
1701 return 0;
1702 }
1703 ASSERT(i == 1);
1704 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1705 &rlen, &busy_gen);
1706 } else {
1707 /*
1708 * Search for a non-busy extent that is large enough.
1709 */
1710 for (;;) {
1711 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1712 if (error)
1713 goto error0;
1714 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1715 error = -EFSCORRUPTED;
1716 goto error0;
1717 }
1718
1719 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1720 &rbno, &rlen, &busy_gen);
1721
1722 if (rlen >= args->maxlen)
1723 break;
1724
1725 error = xfs_btree_increment(cnt_cur, 0, &i);
1726 if (error)
1727 goto error0;
1728 if (i)
1729 continue;
1730
1731 /*
1732 * Our only valid extents must have been busy. Flush and
1733 * retry the allocation again. If we get an -EAGAIN
1734 * error, we're being told that a deadlock was avoided
1735 * and the current transaction needs committing before
1736 * the allocation can be retried.
1737 */
1738 trace_xfs_alloc_size_busy(args);
1739 error = xfs_extent_busy_flush(args->tp, args->pag,
1740 busy_gen, alloc_flags);
1741 if (error)
1742 goto error0;
1743
1744 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1745 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1746 goto restart;
1747 }
1748 }
1749
1750 /*
1751 * In the first case above, we got the last entry in the
1752 * by-size btree. Now we check to see if the space hits maxlen
1753 * once aligned; if not, we search left for something better.
1754 * This can't happen in the second case above.
1755 */
1756 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1757 if (XFS_IS_CORRUPT(args->mp,
1758 rlen != 0 &&
1759 (rlen > flen ||
1760 rbno + rlen > fbno + flen))) {
1761 error = -EFSCORRUPTED;
1762 goto error0;
1763 }
1764 if (rlen < args->maxlen) {
1765 xfs_agblock_t bestfbno;
1766 xfs_extlen_t bestflen;
1767 xfs_agblock_t bestrbno;
1768 xfs_extlen_t bestrlen;
1769
1770 bestrlen = rlen;
1771 bestrbno = rbno;
1772 bestflen = flen;
1773 bestfbno = fbno;
1774 for (;;) {
1775 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1776 goto error0;
1777 if (i == 0)
1778 break;
1779 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1780 &i)))
1781 goto error0;
1782 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1783 error = -EFSCORRUPTED;
1784 goto error0;
1785 }
1786 if (flen < bestrlen)
1787 break;
1788 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1789 &rbno, &rlen, &busy_gen);
1790 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1791 if (XFS_IS_CORRUPT(args->mp,
1792 rlen != 0 &&
1793 (rlen > flen ||
1794 rbno + rlen > fbno + flen))) {
1795 error = -EFSCORRUPTED;
1796 goto error0;
1797 }
1798 if (rlen > bestrlen) {
1799 bestrlen = rlen;
1800 bestrbno = rbno;
1801 bestflen = flen;
1802 bestfbno = fbno;
1803 if (rlen == args->maxlen)
1804 break;
1805 }
1806 }
1807 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1808 &i)))
1809 goto error0;
1810 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1811 error = -EFSCORRUPTED;
1812 goto error0;
1813 }
1814 rlen = bestrlen;
1815 rbno = bestrbno;
1816 flen = bestflen;
1817 fbno = bestfbno;
1818 }
1819 args->wasfromfl = 0;
1820 /*
1821 * Fix up the length.
1822 */
1823 args->len = rlen;
1824 if (rlen < args->minlen) {
1825 if (busy) {
1826 /*
1827 * Our only valid extents must have been busy. Flush and
1828 * retry the allocation again. If we get an -EAGAIN
1829 * error, we're being told that a deadlock was avoided
1830 * and the current transaction needs committing before
1831 * the allocation can be retried.
1832 */
1833 trace_xfs_alloc_size_busy(args);
1834 error = xfs_extent_busy_flush(args->tp, args->pag,
1835 busy_gen, alloc_flags);
1836 if (error)
1837 goto error0;
1838
1839 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1840 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1841 goto restart;
1842 }
1843 goto out_nominleft;
1844 }
1845 xfs_alloc_fix_len(args);
1846
1847 rlen = args->len;
1848 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1849 error = -EFSCORRUPTED;
1850 goto error0;
1851 }
1852 /*
1853 * Allocate and initialize a cursor for the by-block tree.
1854 */
1855 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1856 args->pag, XFS_BTNUM_BNO);
1857 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1858 rbno, rlen, XFSA_FIXUP_CNT_OK)))
1859 goto error0;
1860 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1861 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1862 cnt_cur = bno_cur = NULL;
1863 args->len = rlen;
1864 args->agbno = rbno;
1865 if (XFS_IS_CORRUPT(args->mp,
1866 args->agbno + args->len >
1867 be32_to_cpu(agf->agf_length))) {
1868 error = -EFSCORRUPTED;
1869 goto error0;
1870 }
1871 trace_xfs_alloc_size_done(args);
1872 return 0;
1873
1874 error0:
1875 trace_xfs_alloc_size_error(args);
1876 if (cnt_cur)
1877 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1878 if (bno_cur)
1879 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1880 return error;
1881
1882 out_nominleft:
1883 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1884 trace_xfs_alloc_size_nominleft(args);
1885 args->agbno = NULLAGBLOCK;
1886 return 0;
1887 }
1888
1889 /*
1890 * Free the extent starting at agno/bno for length.
1891 */
1892 STATIC int
xfs_free_ag_extent(struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno,xfs_agblock_t bno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type)1893 xfs_free_ag_extent(
1894 struct xfs_trans *tp,
1895 struct xfs_buf *agbp,
1896 xfs_agnumber_t agno,
1897 xfs_agblock_t bno,
1898 xfs_extlen_t len,
1899 const struct xfs_owner_info *oinfo,
1900 enum xfs_ag_resv_type type)
1901 {
1902 struct xfs_mount *mp;
1903 struct xfs_btree_cur *bno_cur;
1904 struct xfs_btree_cur *cnt_cur;
1905 xfs_agblock_t gtbno; /* start of right neighbor */
1906 xfs_extlen_t gtlen; /* length of right neighbor */
1907 xfs_agblock_t ltbno; /* start of left neighbor */
1908 xfs_extlen_t ltlen; /* length of left neighbor */
1909 xfs_agblock_t nbno; /* new starting block of freesp */
1910 xfs_extlen_t nlen; /* new length of freespace */
1911 int haveleft; /* have a left neighbor */
1912 int haveright; /* have a right neighbor */
1913 int i;
1914 int error;
1915 struct xfs_perag *pag = agbp->b_pag;
1916
1917 bno_cur = cnt_cur = NULL;
1918 mp = tp->t_mountp;
1919
1920 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1921 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1922 if (error)
1923 goto error0;
1924 }
1925
1926 /*
1927 * Allocate and initialize a cursor for the by-block btree.
1928 */
1929 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1930 /*
1931 * Look for a neighboring block on the left (lower block numbers)
1932 * that is contiguous with this space.
1933 */
1934 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1935 goto error0;
1936 if (haveleft) {
1937 /*
1938 * There is a block to our left.
1939 */
1940 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
1941 goto error0;
1942 if (XFS_IS_CORRUPT(mp, i != 1)) {
1943 error = -EFSCORRUPTED;
1944 goto error0;
1945 }
1946 /*
1947 * It's not contiguous, though.
1948 */
1949 if (ltbno + ltlen < bno)
1950 haveleft = 0;
1951 else {
1952 /*
1953 * If this failure happens the request to free this
1954 * space was invalid, it's (partly) already free.
1955 * Very bad.
1956 */
1957 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1958 error = -EFSCORRUPTED;
1959 goto error0;
1960 }
1961 }
1962 }
1963 /*
1964 * Look for a neighboring block on the right (higher block numbers)
1965 * that is contiguous with this space.
1966 */
1967 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1968 goto error0;
1969 if (haveright) {
1970 /*
1971 * There is a block to our right.
1972 */
1973 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
1974 goto error0;
1975 if (XFS_IS_CORRUPT(mp, i != 1)) {
1976 error = -EFSCORRUPTED;
1977 goto error0;
1978 }
1979 /*
1980 * It's not contiguous, though.
1981 */
1982 if (bno + len < gtbno)
1983 haveright = 0;
1984 else {
1985 /*
1986 * If this failure happens the request to free this
1987 * space was invalid, it's (partly) already free.
1988 * Very bad.
1989 */
1990 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1991 error = -EFSCORRUPTED;
1992 goto error0;
1993 }
1994 }
1995 }
1996 /*
1997 * Now allocate and initialize a cursor for the by-size tree.
1998 */
1999 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
2000 /*
2001 * Have both left and right contiguous neighbors.
2002 * Merge all three into a single free block.
2003 */
2004 if (haveleft && haveright) {
2005 /*
2006 * Delete the old by-size entry on the left.
2007 */
2008 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2009 goto error0;
2010 if (XFS_IS_CORRUPT(mp, i != 1)) {
2011 error = -EFSCORRUPTED;
2012 goto error0;
2013 }
2014 if ((error = xfs_btree_delete(cnt_cur, &i)))
2015 goto error0;
2016 if (XFS_IS_CORRUPT(mp, i != 1)) {
2017 error = -EFSCORRUPTED;
2018 goto error0;
2019 }
2020 /*
2021 * Delete the old by-size entry on the right.
2022 */
2023 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2024 goto error0;
2025 if (XFS_IS_CORRUPT(mp, i != 1)) {
2026 error = -EFSCORRUPTED;
2027 goto error0;
2028 }
2029 if ((error = xfs_btree_delete(cnt_cur, &i)))
2030 goto error0;
2031 if (XFS_IS_CORRUPT(mp, i != 1)) {
2032 error = -EFSCORRUPTED;
2033 goto error0;
2034 }
2035 /*
2036 * Delete the old by-block entry for the right block.
2037 */
2038 if ((error = xfs_btree_delete(bno_cur, &i)))
2039 goto error0;
2040 if (XFS_IS_CORRUPT(mp, i != 1)) {
2041 error = -EFSCORRUPTED;
2042 goto error0;
2043 }
2044 /*
2045 * Move the by-block cursor back to the left neighbor.
2046 */
2047 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2048 goto error0;
2049 if (XFS_IS_CORRUPT(mp, i != 1)) {
2050 error = -EFSCORRUPTED;
2051 goto error0;
2052 }
2053 #ifdef DEBUG
2054 /*
2055 * Check that this is the right record: delete didn't
2056 * mangle the cursor.
2057 */
2058 {
2059 xfs_agblock_t xxbno;
2060 xfs_extlen_t xxlen;
2061
2062 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2063 &i)))
2064 goto error0;
2065 if (XFS_IS_CORRUPT(mp,
2066 i != 1 ||
2067 xxbno != ltbno ||
2068 xxlen != ltlen)) {
2069 error = -EFSCORRUPTED;
2070 goto error0;
2071 }
2072 }
2073 #endif
2074 /*
2075 * Update remaining by-block entry to the new, joined block.
2076 */
2077 nbno = ltbno;
2078 nlen = len + ltlen + gtlen;
2079 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2080 goto error0;
2081 }
2082 /*
2083 * Have only a left contiguous neighbor.
2084 * Merge it together with the new freespace.
2085 */
2086 else if (haveleft) {
2087 /*
2088 * Delete the old by-size entry on the left.
2089 */
2090 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2091 goto error0;
2092 if (XFS_IS_CORRUPT(mp, i != 1)) {
2093 error = -EFSCORRUPTED;
2094 goto error0;
2095 }
2096 if ((error = xfs_btree_delete(cnt_cur, &i)))
2097 goto error0;
2098 if (XFS_IS_CORRUPT(mp, i != 1)) {
2099 error = -EFSCORRUPTED;
2100 goto error0;
2101 }
2102 /*
2103 * Back up the by-block cursor to the left neighbor, and
2104 * update its length.
2105 */
2106 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2107 goto error0;
2108 if (XFS_IS_CORRUPT(mp, i != 1)) {
2109 error = -EFSCORRUPTED;
2110 goto error0;
2111 }
2112 nbno = ltbno;
2113 nlen = len + ltlen;
2114 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2115 goto error0;
2116 }
2117 /*
2118 * Have only a right contiguous neighbor.
2119 * Merge it together with the new freespace.
2120 */
2121 else if (haveright) {
2122 /*
2123 * Delete the old by-size entry on the right.
2124 */
2125 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2126 goto error0;
2127 if (XFS_IS_CORRUPT(mp, i != 1)) {
2128 error = -EFSCORRUPTED;
2129 goto error0;
2130 }
2131 if ((error = xfs_btree_delete(cnt_cur, &i)))
2132 goto error0;
2133 if (XFS_IS_CORRUPT(mp, i != 1)) {
2134 error = -EFSCORRUPTED;
2135 goto error0;
2136 }
2137 /*
2138 * Update the starting block and length of the right
2139 * neighbor in the by-block tree.
2140 */
2141 nbno = bno;
2142 nlen = len + gtlen;
2143 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2144 goto error0;
2145 }
2146 /*
2147 * No contiguous neighbors.
2148 * Insert the new freespace into the by-block tree.
2149 */
2150 else {
2151 nbno = bno;
2152 nlen = len;
2153 if ((error = xfs_btree_insert(bno_cur, &i)))
2154 goto error0;
2155 if (XFS_IS_CORRUPT(mp, i != 1)) {
2156 error = -EFSCORRUPTED;
2157 goto error0;
2158 }
2159 }
2160 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2161 bno_cur = NULL;
2162 /*
2163 * In all cases we need to insert the new freespace in the by-size tree.
2164 */
2165 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2166 goto error0;
2167 if (XFS_IS_CORRUPT(mp, i != 0)) {
2168 error = -EFSCORRUPTED;
2169 goto error0;
2170 }
2171 if ((error = xfs_btree_insert(cnt_cur, &i)))
2172 goto error0;
2173 if (XFS_IS_CORRUPT(mp, i != 1)) {
2174 error = -EFSCORRUPTED;
2175 goto error0;
2176 }
2177 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2178 cnt_cur = NULL;
2179
2180 /*
2181 * Update the freespace totals in the ag and superblock.
2182 */
2183 error = xfs_alloc_update_counters(tp, agbp, len);
2184 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2185 if (error)
2186 goto error0;
2187
2188 XFS_STATS_INC(mp, xs_freex);
2189 XFS_STATS_ADD(mp, xs_freeb, len);
2190
2191 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2192
2193 return 0;
2194
2195 error0:
2196 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2197 if (bno_cur)
2198 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2199 if (cnt_cur)
2200 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2201 return error;
2202 }
2203
2204 /*
2205 * Visible (exported) allocation/free functions.
2206 * Some of these are used just by xfs_alloc_btree.c and this file.
2207 */
2208
2209 /*
2210 * Compute and fill in value of m_alloc_maxlevels.
2211 */
2212 void
xfs_alloc_compute_maxlevels(xfs_mount_t * mp)2213 xfs_alloc_compute_maxlevels(
2214 xfs_mount_t *mp) /* file system mount structure */
2215 {
2216 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2217 (mp->m_sb.sb_agblocks + 1) / 2);
2218 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2219 }
2220
2221 /*
2222 * Find the length of the longest extent in an AG. The 'need' parameter
2223 * specifies how much space we're going to need for the AGFL and the
2224 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2225 * other callers.
2226 */
2227 xfs_extlen_t
xfs_alloc_longest_free_extent(struct xfs_perag * pag,xfs_extlen_t need,xfs_extlen_t reserved)2228 xfs_alloc_longest_free_extent(
2229 struct xfs_perag *pag,
2230 xfs_extlen_t need,
2231 xfs_extlen_t reserved)
2232 {
2233 xfs_extlen_t delta = 0;
2234
2235 /*
2236 * If the AGFL needs a recharge, we'll have to subtract that from the
2237 * longest extent.
2238 */
2239 if (need > pag->pagf_flcount)
2240 delta = need - pag->pagf_flcount;
2241
2242 /*
2243 * If we cannot maintain others' reservations with space from the
2244 * not-longest freesp extents, we'll have to subtract /that/ from
2245 * the longest extent too.
2246 */
2247 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2248 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2249
2250 /*
2251 * If the longest extent is long enough to satisfy all the
2252 * reservations and AGFL rules in place, we can return this extent.
2253 */
2254 if (pag->pagf_longest > delta)
2255 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2256 pag->pagf_longest - delta);
2257
2258 /* Otherwise, let the caller try for 1 block if there's space. */
2259 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2260 }
2261
2262 /*
2263 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2264 * return the largest possible minimum length.
2265 */
2266 unsigned int
xfs_alloc_min_freelist(struct xfs_mount * mp,struct xfs_perag * pag)2267 xfs_alloc_min_freelist(
2268 struct xfs_mount *mp,
2269 struct xfs_perag *pag)
2270 {
2271 /* AG btrees have at least 1 level. */
2272 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2273 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
2274 unsigned int min_free;
2275
2276 ASSERT(mp->m_alloc_maxlevels > 0);
2277
2278 /* space needed by-bno freespace btree */
2279 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2280 mp->m_alloc_maxlevels);
2281 /* space needed by-size freespace btree */
2282 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2283 mp->m_alloc_maxlevels);
2284 /* space needed reverse mapping used space btree */
2285 if (xfs_has_rmapbt(mp))
2286 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2287 mp->m_rmap_maxlevels);
2288
2289 return min_free;
2290 }
2291
2292 /*
2293 * Check if the operation we are fixing up the freelist for should go ahead or
2294 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2295 * is dependent on whether the size and shape of free space available will
2296 * permit the requested allocation to take place.
2297 */
2298 static bool
xfs_alloc_space_available(struct xfs_alloc_arg * args,xfs_extlen_t min_free,int flags)2299 xfs_alloc_space_available(
2300 struct xfs_alloc_arg *args,
2301 xfs_extlen_t min_free,
2302 int flags)
2303 {
2304 struct xfs_perag *pag = args->pag;
2305 xfs_extlen_t alloc_len, longest;
2306 xfs_extlen_t reservation; /* blocks that are still reserved */
2307 int available;
2308 xfs_extlen_t agflcount;
2309
2310 if (flags & XFS_ALLOC_FLAG_FREEING)
2311 return true;
2312
2313 reservation = xfs_ag_resv_needed(pag, args->resv);
2314
2315 /* do we have enough contiguous free space for the allocation? */
2316 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2317 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2318 if (longest < alloc_len)
2319 return false;
2320
2321 /*
2322 * Do we have enough free space remaining for the allocation? Don't
2323 * account extra agfl blocks because we are about to defer free them,
2324 * making them unavailable until the current transaction commits.
2325 */
2326 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2327 available = (int)(pag->pagf_freeblks + agflcount -
2328 reservation - min_free - args->minleft);
2329 if (available < (int)max(args->total, alloc_len))
2330 return false;
2331
2332 /*
2333 * Clamp maxlen to the amount of free space available for the actual
2334 * extent allocation.
2335 */
2336 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2337 args->maxlen = available;
2338 ASSERT(args->maxlen > 0);
2339 ASSERT(args->maxlen >= args->minlen);
2340 }
2341
2342 return true;
2343 }
2344
2345 int
xfs_free_agfl_block(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,struct xfs_buf * agbp,struct xfs_owner_info * oinfo)2346 xfs_free_agfl_block(
2347 struct xfs_trans *tp,
2348 xfs_agnumber_t agno,
2349 xfs_agblock_t agbno,
2350 struct xfs_buf *agbp,
2351 struct xfs_owner_info *oinfo)
2352 {
2353 int error;
2354 struct xfs_buf *bp;
2355
2356 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2357 XFS_AG_RESV_AGFL);
2358 if (error)
2359 return error;
2360
2361 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2362 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2363 tp->t_mountp->m_bsize, 0, &bp);
2364 if (error)
2365 return error;
2366 xfs_trans_binval(tp, bp);
2367
2368 return 0;
2369 }
2370
2371 /*
2372 * Check the agfl fields of the agf for inconsistency or corruption.
2373 *
2374 * The original purpose was to detect an agfl header padding mismatch between
2375 * current and early v5 kernels. This problem manifests as a 1-slot size
2376 * difference between the on-disk flcount and the active [first, last] range of
2377 * a wrapped agfl.
2378 *
2379 * However, we need to use these same checks to catch agfl count corruptions
2380 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2381 * way, we need to reset the agfl and warn the user.
2382 *
2383 * Return true if a reset is required before the agfl can be used, false
2384 * otherwise.
2385 */
2386 static bool
xfs_agfl_needs_reset(struct xfs_mount * mp,struct xfs_agf * agf)2387 xfs_agfl_needs_reset(
2388 struct xfs_mount *mp,
2389 struct xfs_agf *agf)
2390 {
2391 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2392 uint32_t l = be32_to_cpu(agf->agf_fllast);
2393 uint32_t c = be32_to_cpu(agf->agf_flcount);
2394 int agfl_size = xfs_agfl_size(mp);
2395 int active;
2396
2397 /*
2398 * The agf read verifier catches severe corruption of these fields.
2399 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2400 * the verifier allows it.
2401 */
2402 if (f >= agfl_size || l >= agfl_size)
2403 return true;
2404 if (c > agfl_size)
2405 return true;
2406
2407 /*
2408 * Check consistency between the on-disk count and the active range. An
2409 * agfl padding mismatch manifests as an inconsistent flcount.
2410 */
2411 if (c && l >= f)
2412 active = l - f + 1;
2413 else if (c)
2414 active = agfl_size - f + l + 1;
2415 else
2416 active = 0;
2417
2418 return active != c;
2419 }
2420
2421 /*
2422 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2423 * agfl content cannot be trusted. Warn the user that a repair is required to
2424 * recover leaked blocks.
2425 *
2426 * The purpose of this mechanism is to handle filesystems affected by the agfl
2427 * header padding mismatch problem. A reset keeps the filesystem online with a
2428 * relatively minor free space accounting inconsistency rather than suffer the
2429 * inevitable crash from use of an invalid agfl block.
2430 */
2431 static void
xfs_agfl_reset(struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)2432 xfs_agfl_reset(
2433 struct xfs_trans *tp,
2434 struct xfs_buf *agbp,
2435 struct xfs_perag *pag)
2436 {
2437 struct xfs_mount *mp = tp->t_mountp;
2438 struct xfs_agf *agf = agbp->b_addr;
2439
2440 ASSERT(xfs_perag_agfl_needs_reset(pag));
2441 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2442
2443 xfs_warn(mp,
2444 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2445 "Please unmount and run xfs_repair.",
2446 pag->pag_agno, pag->pagf_flcount);
2447
2448 agf->agf_flfirst = 0;
2449 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2450 agf->agf_flcount = 0;
2451 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2452 XFS_AGF_FLCOUNT);
2453
2454 pag->pagf_flcount = 0;
2455 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2456 }
2457
2458 /*
2459 * Defer an AGFL block free. This is effectively equivalent to
2460 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2461 *
2462 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2463 * allocation operations in a transaction. AGFL frees are prone to this problem
2464 * because for one they are always freed one at a time. Further, an immediate
2465 * AGFL block free can cause a btree join and require another block free before
2466 * the real allocation can proceed. Deferring the free disconnects freeing up
2467 * the AGFL slot from freeing the block.
2468 */
2469 static int
xfs_defer_agfl_block(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,struct xfs_owner_info * oinfo)2470 xfs_defer_agfl_block(
2471 struct xfs_trans *tp,
2472 xfs_agnumber_t agno,
2473 xfs_agblock_t agbno,
2474 struct xfs_owner_info *oinfo)
2475 {
2476 struct xfs_mount *mp = tp->t_mountp;
2477 struct xfs_extent_free_item *xefi;
2478 xfs_fsblock_t fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2479
2480 ASSERT(xfs_extfree_item_cache != NULL);
2481 ASSERT(oinfo != NULL);
2482
2483 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2484 return -EFSCORRUPTED;
2485
2486 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2487 GFP_KERNEL | __GFP_NOFAIL);
2488 xefi->xefi_startblock = fsbno;
2489 xefi->xefi_blockcount = 1;
2490 xefi->xefi_owner = oinfo->oi_owner;
2491 xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2492
2493 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2494
2495 xfs_extent_free_get_group(mp, xefi);
2496 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &xefi->xefi_list);
2497 return 0;
2498 }
2499
2500 /*
2501 * Add the extent to the list of extents to be free at transaction end.
2502 * The list is maintained sorted (by block number).
2503 */
2504 int
__xfs_free_extent_later(struct xfs_trans * tp,xfs_fsblock_t bno,xfs_filblks_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,bool skip_discard)2505 __xfs_free_extent_later(
2506 struct xfs_trans *tp,
2507 xfs_fsblock_t bno,
2508 xfs_filblks_t len,
2509 const struct xfs_owner_info *oinfo,
2510 enum xfs_ag_resv_type type,
2511 bool skip_discard)
2512 {
2513 struct xfs_extent_free_item *xefi;
2514 struct xfs_mount *mp = tp->t_mountp;
2515 #ifdef DEBUG
2516 xfs_agnumber_t agno;
2517 xfs_agblock_t agbno;
2518
2519 ASSERT(bno != NULLFSBLOCK);
2520 ASSERT(len > 0);
2521 ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2522 ASSERT(!isnullstartblock(bno));
2523 agno = XFS_FSB_TO_AGNO(mp, bno);
2524 agbno = XFS_FSB_TO_AGBNO(mp, bno);
2525 ASSERT(agno < mp->m_sb.sb_agcount);
2526 ASSERT(agbno < mp->m_sb.sb_agblocks);
2527 ASSERT(len < mp->m_sb.sb_agblocks);
2528 ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2529 #endif
2530 ASSERT(xfs_extfree_item_cache != NULL);
2531 ASSERT(type != XFS_AG_RESV_AGFL);
2532
2533 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2534 return -EFSCORRUPTED;
2535
2536 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2537 GFP_KERNEL | __GFP_NOFAIL);
2538 xefi->xefi_startblock = bno;
2539 xefi->xefi_blockcount = (xfs_extlen_t)len;
2540 xefi->xefi_agresv = type;
2541 if (skip_discard)
2542 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2543 if (oinfo) {
2544 ASSERT(oinfo->oi_offset == 0);
2545
2546 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2547 xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2548 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2549 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2550 xefi->xefi_owner = oinfo->oi_owner;
2551 } else {
2552 xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2553 }
2554 trace_xfs_bmap_free_defer(mp,
2555 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2556 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2557
2558 xfs_extent_free_get_group(mp, xefi);
2559 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &xefi->xefi_list);
2560 return 0;
2561 }
2562
2563 #ifdef DEBUG
2564 /*
2565 * Check if an AGF has a free extent record whose length is equal to
2566 * args->minlen.
2567 */
2568 STATIC int
xfs_exact_minlen_extent_available(struct xfs_alloc_arg * args,struct xfs_buf * agbp,int * stat)2569 xfs_exact_minlen_extent_available(
2570 struct xfs_alloc_arg *args,
2571 struct xfs_buf *agbp,
2572 int *stat)
2573 {
2574 struct xfs_btree_cur *cnt_cur;
2575 xfs_agblock_t fbno;
2576 xfs_extlen_t flen;
2577 int error = 0;
2578
2579 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2580 args->pag, XFS_BTNUM_CNT);
2581 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2582 if (error)
2583 goto out;
2584
2585 if (*stat == 0) {
2586 error = -EFSCORRUPTED;
2587 goto out;
2588 }
2589
2590 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2591 if (error)
2592 goto out;
2593
2594 if (*stat == 1 && flen != args->minlen)
2595 *stat = 0;
2596
2597 out:
2598 xfs_btree_del_cursor(cnt_cur, error);
2599
2600 return error;
2601 }
2602 #endif
2603
2604 /*
2605 * Decide whether to use this allocation group for this allocation.
2606 * If so, fix up the btree freelist's size.
2607 */
2608 int /* error */
xfs_alloc_fix_freelist(struct xfs_alloc_arg * args,uint32_t alloc_flags)2609 xfs_alloc_fix_freelist(
2610 struct xfs_alloc_arg *args, /* allocation argument structure */
2611 uint32_t alloc_flags)
2612 {
2613 struct xfs_mount *mp = args->mp;
2614 struct xfs_perag *pag = args->pag;
2615 struct xfs_trans *tp = args->tp;
2616 struct xfs_buf *agbp = NULL;
2617 struct xfs_buf *agflbp = NULL;
2618 struct xfs_alloc_arg targs; /* local allocation arguments */
2619 xfs_agblock_t bno; /* freelist block */
2620 xfs_extlen_t need; /* total blocks needed in freelist */
2621 int error = 0;
2622
2623 /* deferred ops (AGFL block frees) require permanent transactions */
2624 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2625
2626 if (!xfs_perag_initialised_agf(pag)) {
2627 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2628 if (error) {
2629 /* Couldn't lock the AGF so skip this AG. */
2630 if (error == -EAGAIN)
2631 error = 0;
2632 goto out_no_agbp;
2633 }
2634 }
2635
2636 /*
2637 * If this is a metadata preferred pag and we are user data then try
2638 * somewhere else if we are not being asked to try harder at this
2639 * point
2640 */
2641 if (xfs_perag_prefers_metadata(pag) &&
2642 (args->datatype & XFS_ALLOC_USERDATA) &&
2643 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2644 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2645 goto out_agbp_relse;
2646 }
2647
2648 need = xfs_alloc_min_freelist(mp, pag);
2649 if (!xfs_alloc_space_available(args, need, alloc_flags |
2650 XFS_ALLOC_FLAG_CHECK))
2651 goto out_agbp_relse;
2652
2653 /*
2654 * Get the a.g. freespace buffer.
2655 * Can fail if we're not blocking on locks, and it's held.
2656 */
2657 if (!agbp) {
2658 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2659 if (error) {
2660 /* Couldn't lock the AGF so skip this AG. */
2661 if (error == -EAGAIN)
2662 error = 0;
2663 goto out_no_agbp;
2664 }
2665 }
2666
2667 /* reset a padding mismatched agfl before final free space check */
2668 if (xfs_perag_agfl_needs_reset(pag))
2669 xfs_agfl_reset(tp, agbp, pag);
2670
2671 /* If there isn't enough total space or single-extent, reject it. */
2672 need = xfs_alloc_min_freelist(mp, pag);
2673 if (!xfs_alloc_space_available(args, need, alloc_flags))
2674 goto out_agbp_relse;
2675
2676 #ifdef DEBUG
2677 if (args->alloc_minlen_only) {
2678 int stat;
2679
2680 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2681 if (error || !stat)
2682 goto out_agbp_relse;
2683 }
2684 #endif
2685 /*
2686 * Make the freelist shorter if it's too long.
2687 *
2688 * Note that from this point onwards, we will always release the agf and
2689 * agfl buffers on error. This handles the case where we error out and
2690 * the buffers are clean or may not have been joined to the transaction
2691 * and hence need to be released manually. If they have been joined to
2692 * the transaction, then xfs_trans_brelse() will handle them
2693 * appropriately based on the recursion count and dirty state of the
2694 * buffer.
2695 *
2696 * XXX (dgc): When we have lots of free space, does this buy us
2697 * anything other than extra overhead when we need to put more blocks
2698 * back on the free list? Maybe we should only do this when space is
2699 * getting low or the AGFL is more than half full?
2700 *
2701 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2702 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2703 * updating the rmapbt. Both flags are used in xfs_repair while we're
2704 * rebuilding the rmapbt, and neither are used by the kernel. They're
2705 * both required to ensure that rmaps are correctly recorded for the
2706 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2707 * repair/rmap.c in xfsprogs for details.
2708 */
2709 memset(&targs, 0, sizeof(targs));
2710 /* struct copy below */
2711 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2712 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2713 else
2714 targs.oinfo = XFS_RMAP_OINFO_AG;
2715 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2716 pag->pagf_flcount > need) {
2717 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2718 if (error)
2719 goto out_agbp_relse;
2720
2721 /* defer agfl frees */
2722 error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2723 if (error)
2724 goto out_agbp_relse;
2725 }
2726
2727 targs.tp = tp;
2728 targs.mp = mp;
2729 targs.agbp = agbp;
2730 targs.agno = args->agno;
2731 targs.alignment = targs.minlen = targs.prod = 1;
2732 targs.pag = pag;
2733 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2734 if (error)
2735 goto out_agbp_relse;
2736
2737 /* Make the freelist longer if it's too short. */
2738 while (pag->pagf_flcount < need) {
2739 targs.agbno = 0;
2740 targs.maxlen = need - pag->pagf_flcount;
2741 targs.resv = XFS_AG_RESV_AGFL;
2742
2743 /* Allocate as many blocks as possible at once. */
2744 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2745 if (error)
2746 goto out_agflbp_relse;
2747
2748 /*
2749 * Stop if we run out. Won't happen if callers are obeying
2750 * the restrictions correctly. Can happen for free calls
2751 * on a completely full ag.
2752 */
2753 if (targs.agbno == NULLAGBLOCK) {
2754 if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2755 break;
2756 goto out_agflbp_relse;
2757 }
2758
2759 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2760 error = xfs_rmap_alloc(tp, agbp, pag,
2761 targs.agbno, targs.len, &targs.oinfo);
2762 if (error)
2763 goto out_agflbp_relse;
2764 }
2765 error = xfs_alloc_update_counters(tp, agbp,
2766 -((long)(targs.len)));
2767 if (error)
2768 goto out_agflbp_relse;
2769
2770 /*
2771 * Put each allocated block on the list.
2772 */
2773 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2774 error = xfs_alloc_put_freelist(pag, tp, agbp,
2775 agflbp, bno, 0);
2776 if (error)
2777 goto out_agflbp_relse;
2778 }
2779 }
2780 xfs_trans_brelse(tp, agflbp);
2781 args->agbp = agbp;
2782 return 0;
2783
2784 out_agflbp_relse:
2785 xfs_trans_brelse(tp, agflbp);
2786 out_agbp_relse:
2787 if (agbp)
2788 xfs_trans_brelse(tp, agbp);
2789 out_no_agbp:
2790 args->agbp = NULL;
2791 return error;
2792 }
2793
2794 /*
2795 * Get a block from the freelist.
2796 * Returns with the buffer for the block gotten.
2797 */
2798 int
xfs_alloc_get_freelist(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agblock_t * bnop,int btreeblk)2799 xfs_alloc_get_freelist(
2800 struct xfs_perag *pag,
2801 struct xfs_trans *tp,
2802 struct xfs_buf *agbp,
2803 xfs_agblock_t *bnop,
2804 int btreeblk)
2805 {
2806 struct xfs_agf *agf = agbp->b_addr;
2807 struct xfs_buf *agflbp;
2808 xfs_agblock_t bno;
2809 __be32 *agfl_bno;
2810 int error;
2811 uint32_t logflags;
2812 struct xfs_mount *mp = tp->t_mountp;
2813
2814 /*
2815 * Freelist is empty, give up.
2816 */
2817 if (!agf->agf_flcount) {
2818 *bnop = NULLAGBLOCK;
2819 return 0;
2820 }
2821 /*
2822 * Read the array of free blocks.
2823 */
2824 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2825 if (error)
2826 return error;
2827
2828
2829 /*
2830 * Get the block number and update the data structures.
2831 */
2832 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2833 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2834 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
2835 return -EFSCORRUPTED;
2836
2837 be32_add_cpu(&agf->agf_flfirst, 1);
2838 xfs_trans_brelse(tp, agflbp);
2839 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2840 agf->agf_flfirst = 0;
2841
2842 ASSERT(!xfs_perag_agfl_needs_reset(pag));
2843 be32_add_cpu(&agf->agf_flcount, -1);
2844 pag->pagf_flcount--;
2845
2846 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2847 if (btreeblk) {
2848 be32_add_cpu(&agf->agf_btreeblks, 1);
2849 pag->pagf_btreeblks++;
2850 logflags |= XFS_AGF_BTREEBLKS;
2851 }
2852
2853 xfs_alloc_log_agf(tp, agbp, logflags);
2854 *bnop = bno;
2855
2856 return 0;
2857 }
2858
2859 /*
2860 * Log the given fields from the agf structure.
2861 */
2862 void
xfs_alloc_log_agf(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)2863 xfs_alloc_log_agf(
2864 struct xfs_trans *tp,
2865 struct xfs_buf *bp,
2866 uint32_t fields)
2867 {
2868 int first; /* first byte offset */
2869 int last; /* last byte offset */
2870 static const short offsets[] = {
2871 offsetof(xfs_agf_t, agf_magicnum),
2872 offsetof(xfs_agf_t, agf_versionnum),
2873 offsetof(xfs_agf_t, agf_seqno),
2874 offsetof(xfs_agf_t, agf_length),
2875 offsetof(xfs_agf_t, agf_roots[0]),
2876 offsetof(xfs_agf_t, agf_levels[0]),
2877 offsetof(xfs_agf_t, agf_flfirst),
2878 offsetof(xfs_agf_t, agf_fllast),
2879 offsetof(xfs_agf_t, agf_flcount),
2880 offsetof(xfs_agf_t, agf_freeblks),
2881 offsetof(xfs_agf_t, agf_longest),
2882 offsetof(xfs_agf_t, agf_btreeblks),
2883 offsetof(xfs_agf_t, agf_uuid),
2884 offsetof(xfs_agf_t, agf_rmap_blocks),
2885 offsetof(xfs_agf_t, agf_refcount_blocks),
2886 offsetof(xfs_agf_t, agf_refcount_root),
2887 offsetof(xfs_agf_t, agf_refcount_level),
2888 /* needed so that we don't log the whole rest of the structure: */
2889 offsetof(xfs_agf_t, agf_spare64),
2890 sizeof(xfs_agf_t)
2891 };
2892
2893 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2894
2895 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2896
2897 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2898 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2899 }
2900
2901 /*
2902 * Put the block on the freelist for the allocation group.
2903 */
2904 int
xfs_alloc_put_freelist(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_buf * agflbp,xfs_agblock_t bno,int btreeblk)2905 xfs_alloc_put_freelist(
2906 struct xfs_perag *pag,
2907 struct xfs_trans *tp,
2908 struct xfs_buf *agbp,
2909 struct xfs_buf *agflbp,
2910 xfs_agblock_t bno,
2911 int btreeblk)
2912 {
2913 struct xfs_mount *mp = tp->t_mountp;
2914 struct xfs_agf *agf = agbp->b_addr;
2915 __be32 *blockp;
2916 int error;
2917 uint32_t logflags;
2918 __be32 *agfl_bno;
2919 int startoff;
2920
2921 if (!agflbp) {
2922 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2923 if (error)
2924 return error;
2925 }
2926
2927 be32_add_cpu(&agf->agf_fllast, 1);
2928 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2929 agf->agf_fllast = 0;
2930
2931 ASSERT(!xfs_perag_agfl_needs_reset(pag));
2932 be32_add_cpu(&agf->agf_flcount, 1);
2933 pag->pagf_flcount++;
2934
2935 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2936 if (btreeblk) {
2937 be32_add_cpu(&agf->agf_btreeblks, -1);
2938 pag->pagf_btreeblks--;
2939 logflags |= XFS_AGF_BTREEBLKS;
2940 }
2941
2942 xfs_alloc_log_agf(tp, agbp, logflags);
2943
2944 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2945
2946 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2947 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2948 *blockp = cpu_to_be32(bno);
2949 startoff = (char *)blockp - (char *)agflbp->b_addr;
2950
2951 xfs_alloc_log_agf(tp, agbp, logflags);
2952
2953 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2954 xfs_trans_log_buf(tp, agflbp, startoff,
2955 startoff + sizeof(xfs_agblock_t) - 1);
2956 return 0;
2957 }
2958
2959 /*
2960 * Check that this AGF/AGI header's sequence number and length matches the AG
2961 * number and size in fsblocks.
2962 */
2963 xfs_failaddr_t
xfs_validate_ag_length(struct xfs_buf * bp,uint32_t seqno,uint32_t length)2964 xfs_validate_ag_length(
2965 struct xfs_buf *bp,
2966 uint32_t seqno,
2967 uint32_t length)
2968 {
2969 struct xfs_mount *mp = bp->b_mount;
2970 /*
2971 * During growfs operations, the perag is not fully initialised,
2972 * so we can't use it for any useful checking. growfs ensures we can't
2973 * use it by using uncached buffers that don't have the perag attached
2974 * so we can detect and avoid this problem.
2975 */
2976 if (bp->b_pag && seqno != bp->b_pag->pag_agno)
2977 return __this_address;
2978
2979 /*
2980 * Only the last AG in the filesystem is allowed to be shorter
2981 * than the AG size recorded in the superblock.
2982 */
2983 if (length != mp->m_sb.sb_agblocks) {
2984 /*
2985 * During growfs, the new last AG can get here before we
2986 * have updated the superblock. Give it a pass on the seqno
2987 * check.
2988 */
2989 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
2990 return __this_address;
2991 if (length < XFS_MIN_AG_BLOCKS)
2992 return __this_address;
2993 if (length > mp->m_sb.sb_agblocks)
2994 return __this_address;
2995 }
2996
2997 return NULL;
2998 }
2999
3000 /*
3001 * Verify the AGF is consistent.
3002 *
3003 * We do not verify the AGFL indexes in the AGF are fully consistent here
3004 * because of issues with variable on-disk structure sizes. Instead, we check
3005 * the agfl indexes for consistency when we initialise the perag from the AGF
3006 * information after a read completes.
3007 *
3008 * If the index is inconsistent, then we mark the perag as needing an AGFL
3009 * reset. The first AGFL update performed then resets the AGFL indexes and
3010 * refills the AGFL with known good free blocks, allowing the filesystem to
3011 * continue operating normally at the cost of a few leaked free space blocks.
3012 */
3013 static xfs_failaddr_t
xfs_agf_verify(struct xfs_buf * bp)3014 xfs_agf_verify(
3015 struct xfs_buf *bp)
3016 {
3017 struct xfs_mount *mp = bp->b_mount;
3018 struct xfs_agf *agf = bp->b_addr;
3019 xfs_failaddr_t fa;
3020 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno);
3021 uint32_t agf_length = be32_to_cpu(agf->agf_length);
3022
3023 if (xfs_has_crc(mp)) {
3024 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3025 return __this_address;
3026 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3027 return __this_address;
3028 }
3029
3030 if (!xfs_verify_magic(bp, agf->agf_magicnum))
3031 return __this_address;
3032
3033 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3034 return __this_address;
3035
3036 /*
3037 * Both agf_seqno and agf_length need to validated before anything else
3038 * block number related in the AGF or AGFL can be checked.
3039 */
3040 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3041 if (fa)
3042 return fa;
3043
3044 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3045 return __this_address;
3046 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3047 return __this_address;
3048 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3049 return __this_address;
3050
3051 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3052 be32_to_cpu(agf->agf_freeblks) > agf_length)
3053 return __this_address;
3054
3055 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
3056 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
3057 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
3058 mp->m_alloc_maxlevels ||
3059 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
3060 mp->m_alloc_maxlevels)
3061 return __this_address;
3062
3063 if (xfs_has_lazysbcount(mp) &&
3064 be32_to_cpu(agf->agf_btreeblks) > agf_length)
3065 return __this_address;
3066
3067 if (xfs_has_rmapbt(mp)) {
3068 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3069 return __this_address;
3070
3071 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
3072 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
3073 mp->m_rmap_maxlevels)
3074 return __this_address;
3075 }
3076
3077 if (xfs_has_reflink(mp)) {
3078 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3079 return __this_address;
3080
3081 if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3082 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3083 return __this_address;
3084 }
3085
3086 return NULL;
3087 }
3088
3089 static void
xfs_agf_read_verify(struct xfs_buf * bp)3090 xfs_agf_read_verify(
3091 struct xfs_buf *bp)
3092 {
3093 struct xfs_mount *mp = bp->b_mount;
3094 xfs_failaddr_t fa;
3095
3096 if (xfs_has_crc(mp) &&
3097 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3098 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3099 else {
3100 fa = xfs_agf_verify(bp);
3101 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3102 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3103 }
3104 }
3105
3106 static void
xfs_agf_write_verify(struct xfs_buf * bp)3107 xfs_agf_write_verify(
3108 struct xfs_buf *bp)
3109 {
3110 struct xfs_mount *mp = bp->b_mount;
3111 struct xfs_buf_log_item *bip = bp->b_log_item;
3112 struct xfs_agf *agf = bp->b_addr;
3113 xfs_failaddr_t fa;
3114
3115 fa = xfs_agf_verify(bp);
3116 if (fa) {
3117 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3118 return;
3119 }
3120
3121 if (!xfs_has_crc(mp))
3122 return;
3123
3124 if (bip)
3125 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3126
3127 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3128 }
3129
3130 const struct xfs_buf_ops xfs_agf_buf_ops = {
3131 .name = "xfs_agf",
3132 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3133 .verify_read = xfs_agf_read_verify,
3134 .verify_write = xfs_agf_write_verify,
3135 .verify_struct = xfs_agf_verify,
3136 };
3137
3138 /*
3139 * Read in the allocation group header (free/alloc section).
3140 */
3141 int
xfs_read_agf(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agfbpp)3142 xfs_read_agf(
3143 struct xfs_perag *pag,
3144 struct xfs_trans *tp,
3145 int flags,
3146 struct xfs_buf **agfbpp)
3147 {
3148 struct xfs_mount *mp = pag->pag_mount;
3149 int error;
3150
3151 trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3152
3153 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3154 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3155 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3156 if (error)
3157 return error;
3158
3159 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3160 return 0;
3161 }
3162
3163 /*
3164 * Read in the allocation group header (free/alloc section) and initialise the
3165 * perag structure if necessary. If the caller provides @agfbpp, then return the
3166 * locked buffer to the caller, otherwise free it.
3167 */
3168 int
xfs_alloc_read_agf(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agfbpp)3169 xfs_alloc_read_agf(
3170 struct xfs_perag *pag,
3171 struct xfs_trans *tp,
3172 int flags,
3173 struct xfs_buf **agfbpp)
3174 {
3175 struct xfs_buf *agfbp;
3176 struct xfs_agf *agf;
3177 int error;
3178 int allocbt_blks;
3179
3180 trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3181
3182 /* We don't support trylock when freeing. */
3183 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3184 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3185 error = xfs_read_agf(pag, tp,
3186 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3187 &agfbp);
3188 if (error)
3189 return error;
3190
3191 agf = agfbp->b_addr;
3192 if (!xfs_perag_initialised_agf(pag)) {
3193 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3194 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3195 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3196 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3197 pag->pagf_levels[XFS_BTNUM_BNOi] =
3198 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3199 pag->pagf_levels[XFS_BTNUM_CNTi] =
3200 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3201 pag->pagf_levels[XFS_BTNUM_RMAPi] =
3202 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3203 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3204 if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3205 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3206 else
3207 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3208
3209 /*
3210 * Update the in-core allocbt counter. Filter out the rmapbt
3211 * subset of the btreeblks counter because the rmapbt is managed
3212 * by perag reservation. Subtract one for the rmapbt root block
3213 * because the rmap counter includes it while the btreeblks
3214 * counter only tracks non-root blocks.
3215 */
3216 allocbt_blks = pag->pagf_btreeblks;
3217 if (xfs_has_rmapbt(pag->pag_mount))
3218 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3219 if (allocbt_blks > 0)
3220 atomic64_add(allocbt_blks,
3221 &pag->pag_mount->m_allocbt_blks);
3222
3223 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3224 }
3225 #ifdef DEBUG
3226 else if (!xfs_is_shutdown(pag->pag_mount)) {
3227 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3228 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3229 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3230 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3231 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3232 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3233 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3234 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3235 }
3236 #endif
3237 if (agfbpp)
3238 *agfbpp = agfbp;
3239 else
3240 xfs_trans_brelse(tp, agfbp);
3241 return 0;
3242 }
3243
3244 /*
3245 * Pre-proces allocation arguments to set initial state that we don't require
3246 * callers to set up correctly, as well as bounds check the allocation args
3247 * that are set up.
3248 */
3249 static int
xfs_alloc_vextent_check_args(struct xfs_alloc_arg * args,xfs_fsblock_t target,xfs_agnumber_t * minimum_agno)3250 xfs_alloc_vextent_check_args(
3251 struct xfs_alloc_arg *args,
3252 xfs_fsblock_t target,
3253 xfs_agnumber_t *minimum_agno)
3254 {
3255 struct xfs_mount *mp = args->mp;
3256 xfs_agblock_t agsize;
3257
3258 args->fsbno = NULLFSBLOCK;
3259
3260 *minimum_agno = 0;
3261 if (args->tp->t_highest_agno != NULLAGNUMBER)
3262 *minimum_agno = args->tp->t_highest_agno;
3263
3264 /*
3265 * Just fix this up, for the case where the last a.g. is shorter
3266 * (or there's only one a.g.) and the caller couldn't easily figure
3267 * that out (xfs_bmap_alloc).
3268 */
3269 agsize = mp->m_sb.sb_agblocks;
3270 if (args->maxlen > agsize)
3271 args->maxlen = agsize;
3272 if (args->alignment == 0)
3273 args->alignment = 1;
3274
3275 ASSERT(args->minlen > 0);
3276 ASSERT(args->maxlen > 0);
3277 ASSERT(args->alignment > 0);
3278 ASSERT(args->resv != XFS_AG_RESV_AGFL);
3279
3280 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3281 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3282 ASSERT(args->minlen <= args->maxlen);
3283 ASSERT(args->minlen <= agsize);
3284 ASSERT(args->mod < args->prod);
3285
3286 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3287 XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3288 args->minlen > args->maxlen || args->minlen > agsize ||
3289 args->mod >= args->prod) {
3290 trace_xfs_alloc_vextent_badargs(args);
3291 return -ENOSPC;
3292 }
3293
3294 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3295 trace_xfs_alloc_vextent_skip_deadlock(args);
3296 return -ENOSPC;
3297 }
3298 return 0;
3299
3300 }
3301
3302 /*
3303 * Prepare an AG for allocation. If the AG is not prepared to accept the
3304 * allocation, return failure.
3305 *
3306 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3307 * modified to hold their own perag references.
3308 */
3309 static int
xfs_alloc_vextent_prepare_ag(struct xfs_alloc_arg * args,uint32_t alloc_flags)3310 xfs_alloc_vextent_prepare_ag(
3311 struct xfs_alloc_arg *args,
3312 uint32_t alloc_flags)
3313 {
3314 bool need_pag = !args->pag;
3315 int error;
3316
3317 if (need_pag)
3318 args->pag = xfs_perag_get(args->mp, args->agno);
3319
3320 args->agbp = NULL;
3321 error = xfs_alloc_fix_freelist(args, alloc_flags);
3322 if (error) {
3323 trace_xfs_alloc_vextent_nofix(args);
3324 if (need_pag)
3325 xfs_perag_put(args->pag);
3326 args->agbno = NULLAGBLOCK;
3327 return error;
3328 }
3329 if (!args->agbp) {
3330 /* cannot allocate in this AG at all */
3331 trace_xfs_alloc_vextent_noagbp(args);
3332 args->agbno = NULLAGBLOCK;
3333 return 0;
3334 }
3335 args->wasfromfl = 0;
3336 return 0;
3337 }
3338
3339 /*
3340 * Post-process allocation results to account for the allocation if it succeed
3341 * and set the allocated block number correctly for the caller.
3342 *
3343 * XXX: we should really be returning ENOSPC for ENOSPC, not
3344 * hiding it behind a "successful" NULLFSBLOCK allocation.
3345 */
3346 static int
xfs_alloc_vextent_finish(struct xfs_alloc_arg * args,xfs_agnumber_t minimum_agno,int alloc_error,bool drop_perag)3347 xfs_alloc_vextent_finish(
3348 struct xfs_alloc_arg *args,
3349 xfs_agnumber_t minimum_agno,
3350 int alloc_error,
3351 bool drop_perag)
3352 {
3353 struct xfs_mount *mp = args->mp;
3354 int error = 0;
3355
3356 /*
3357 * We can end up here with a locked AGF. If we failed, the caller is
3358 * likely going to try to allocate again with different parameters, and
3359 * that can widen the AGs that are searched for free space. If we have
3360 * to do BMBT block allocation, we have to do a new allocation.
3361 *
3362 * Hence leaving this function with the AGF locked opens up potential
3363 * ABBA AGF deadlocks because a future allocation attempt in this
3364 * transaction may attempt to lock a lower number AGF.
3365 *
3366 * We can't release the AGF until the transaction is commited, so at
3367 * this point we must update the "first allocation" tracker to point at
3368 * this AG if the tracker is empty or points to a lower AG. This allows
3369 * the next allocation attempt to be modified appropriately to avoid
3370 * deadlocks.
3371 */
3372 if (args->agbp &&
3373 (args->tp->t_highest_agno == NULLAGNUMBER ||
3374 args->agno > minimum_agno))
3375 args->tp->t_highest_agno = args->agno;
3376
3377 /*
3378 * If the allocation failed with an error or we had an ENOSPC result,
3379 * preserve the returned error whilst also marking the allocation result
3380 * as "no extent allocated". This ensures that callers that fail to
3381 * capture the error will still treat it as a failed allocation.
3382 */
3383 if (alloc_error || args->agbno == NULLAGBLOCK) {
3384 args->fsbno = NULLFSBLOCK;
3385 error = alloc_error;
3386 goto out_drop_perag;
3387 }
3388
3389 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3390
3391 ASSERT(args->len >= args->minlen);
3392 ASSERT(args->len <= args->maxlen);
3393 ASSERT(args->agbno % args->alignment == 0);
3394 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3395
3396 /* if not file data, insert new block into the reverse map btree */
3397 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3398 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3399 args->agbno, args->len, &args->oinfo);
3400 if (error)
3401 goto out_drop_perag;
3402 }
3403
3404 if (!args->wasfromfl) {
3405 error = xfs_alloc_update_counters(args->tp, args->agbp,
3406 -((long)(args->len)));
3407 if (error)
3408 goto out_drop_perag;
3409
3410 ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3411 args->len));
3412 }
3413
3414 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3415
3416 XFS_STATS_INC(mp, xs_allocx);
3417 XFS_STATS_ADD(mp, xs_allocb, args->len);
3418
3419 trace_xfs_alloc_vextent_finish(args);
3420
3421 out_drop_perag:
3422 if (drop_perag && args->pag) {
3423 xfs_perag_rele(args->pag);
3424 args->pag = NULL;
3425 }
3426 return error;
3427 }
3428
3429 /*
3430 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3431 * you need an exact sized allocation without locality constraints, this is the
3432 * fastest way to do it.
3433 *
3434 * Caller is expected to hold a perag reference in args->pag.
3435 */
3436 int
xfs_alloc_vextent_this_ag(struct xfs_alloc_arg * args,xfs_agnumber_t agno)3437 xfs_alloc_vextent_this_ag(
3438 struct xfs_alloc_arg *args,
3439 xfs_agnumber_t agno)
3440 {
3441 struct xfs_mount *mp = args->mp;
3442 xfs_agnumber_t minimum_agno;
3443 uint32_t alloc_flags = 0;
3444 int error;
3445
3446 ASSERT(args->pag != NULL);
3447 ASSERT(args->pag->pag_agno == agno);
3448
3449 args->agno = agno;
3450 args->agbno = 0;
3451
3452 trace_xfs_alloc_vextent_this_ag(args);
3453
3454 error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3455 &minimum_agno);
3456 if (error) {
3457 if (error == -ENOSPC)
3458 return 0;
3459 return error;
3460 }
3461
3462 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3463 if (!error && args->agbp)
3464 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3465
3466 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3467 }
3468
3469 /*
3470 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3471 *
3472 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3473 * allocation attempts in @start_agno have locality information. If we fail to
3474 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3475 * we attempt to allocation in as there is no locality optimisation possible for
3476 * those allocations.
3477 *
3478 * On return, args->pag may be left referenced if we finish before the "all
3479 * failed" return point. The allocation finish still needs the perag, and
3480 * so the caller will release it once they've finished the allocation.
3481 *
3482 * When we wrap the AG iteration at the end of the filesystem, we have to be
3483 * careful not to wrap into AGs below ones we already have locked in the
3484 * transaction if we are doing a blocking iteration. This will result in an
3485 * out-of-order locking of AGFs and hence can cause deadlocks.
3486 */
3487 static int
xfs_alloc_vextent_iterate_ags(struct xfs_alloc_arg * args,xfs_agnumber_t minimum_agno,xfs_agnumber_t start_agno,xfs_agblock_t target_agbno,uint32_t alloc_flags)3488 xfs_alloc_vextent_iterate_ags(
3489 struct xfs_alloc_arg *args,
3490 xfs_agnumber_t minimum_agno,
3491 xfs_agnumber_t start_agno,
3492 xfs_agblock_t target_agbno,
3493 uint32_t alloc_flags)
3494 {
3495 struct xfs_mount *mp = args->mp;
3496 xfs_agnumber_t restart_agno = minimum_agno;
3497 xfs_agnumber_t agno;
3498 int error = 0;
3499
3500 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3501 restart_agno = 0;
3502 restart:
3503 for_each_perag_wrap_range(mp, start_agno, restart_agno,
3504 mp->m_sb.sb_agcount, agno, args->pag) {
3505 args->agno = agno;
3506 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3507 if (error)
3508 break;
3509 if (!args->agbp) {
3510 trace_xfs_alloc_vextent_loopfailed(args);
3511 continue;
3512 }
3513
3514 /*
3515 * Allocation is supposed to succeed now, so break out of the
3516 * loop regardless of whether we succeed or not.
3517 */
3518 if (args->agno == start_agno && target_agbno) {
3519 args->agbno = target_agbno;
3520 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3521 } else {
3522 args->agbno = 0;
3523 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3524 }
3525 break;
3526 }
3527 if (error) {
3528 xfs_perag_rele(args->pag);
3529 args->pag = NULL;
3530 return error;
3531 }
3532 if (args->agbp)
3533 return 0;
3534
3535 /*
3536 * We didn't find an AG we can alloation from. If we were given
3537 * constraining flags by the caller, drop them and retry the allocation
3538 * without any constraints being set.
3539 */
3540 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3541 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3542 restart_agno = minimum_agno;
3543 goto restart;
3544 }
3545
3546 ASSERT(args->pag == NULL);
3547 trace_xfs_alloc_vextent_allfailed(args);
3548 return 0;
3549 }
3550
3551 /*
3552 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3553 * to allocate blocks. It starts with a near allocation attempt in the initial
3554 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3555 * back to zero if allowed by previous allocations in this transaction,
3556 * otherwise will wrap back to the start AG and run a second blocking pass to
3557 * the end of the filesystem.
3558 */
3559 int
xfs_alloc_vextent_start_ag(struct xfs_alloc_arg * args,xfs_fsblock_t target)3560 xfs_alloc_vextent_start_ag(
3561 struct xfs_alloc_arg *args,
3562 xfs_fsblock_t target)
3563 {
3564 struct xfs_mount *mp = args->mp;
3565 xfs_agnumber_t minimum_agno;
3566 xfs_agnumber_t start_agno;
3567 xfs_agnumber_t rotorstep = xfs_rotorstep;
3568 bool bump_rotor = false;
3569 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3570 int error;
3571
3572 ASSERT(args->pag == NULL);
3573
3574 args->agno = NULLAGNUMBER;
3575 args->agbno = NULLAGBLOCK;
3576
3577 trace_xfs_alloc_vextent_start_ag(args);
3578
3579 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3580 if (error) {
3581 if (error == -ENOSPC)
3582 return 0;
3583 return error;
3584 }
3585
3586 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3587 xfs_is_inode32(mp)) {
3588 target = XFS_AGB_TO_FSB(mp,
3589 ((mp->m_agfrotor / rotorstep) %
3590 mp->m_sb.sb_agcount), 0);
3591 bump_rotor = 1;
3592 }
3593
3594 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3595 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3596 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3597
3598 if (bump_rotor) {
3599 if (args->agno == start_agno)
3600 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3601 (mp->m_sb.sb_agcount * rotorstep);
3602 else
3603 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3604 (mp->m_sb.sb_agcount * rotorstep);
3605 }
3606
3607 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3608 }
3609
3610 /*
3611 * Iterate from the agno indicated via @target through to the end of the
3612 * filesystem attempting blocking allocation. This does not wrap or try a second
3613 * pass, so will not recurse into AGs lower than indicated by the target.
3614 */
3615 int
xfs_alloc_vextent_first_ag(struct xfs_alloc_arg * args,xfs_fsblock_t target)3616 xfs_alloc_vextent_first_ag(
3617 struct xfs_alloc_arg *args,
3618 xfs_fsblock_t target)
3619 {
3620 struct xfs_mount *mp = args->mp;
3621 xfs_agnumber_t minimum_agno;
3622 xfs_agnumber_t start_agno;
3623 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3624 int error;
3625
3626 ASSERT(args->pag == NULL);
3627
3628 args->agno = NULLAGNUMBER;
3629 args->agbno = NULLAGBLOCK;
3630
3631 trace_xfs_alloc_vextent_first_ag(args);
3632
3633 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3634 if (error) {
3635 if (error == -ENOSPC)
3636 return 0;
3637 return error;
3638 }
3639
3640 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3641 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3642 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3643 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3644 }
3645
3646 /*
3647 * Allocate at the exact block target or fail. Caller is expected to hold a
3648 * perag reference in args->pag.
3649 */
3650 int
xfs_alloc_vextent_exact_bno(struct xfs_alloc_arg * args,xfs_fsblock_t target)3651 xfs_alloc_vextent_exact_bno(
3652 struct xfs_alloc_arg *args,
3653 xfs_fsblock_t target)
3654 {
3655 struct xfs_mount *mp = args->mp;
3656 xfs_agnumber_t minimum_agno;
3657 int error;
3658
3659 ASSERT(args->pag != NULL);
3660 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3661
3662 args->agno = XFS_FSB_TO_AGNO(mp, target);
3663 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3664
3665 trace_xfs_alloc_vextent_exact_bno(args);
3666
3667 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3668 if (error) {
3669 if (error == -ENOSPC)
3670 return 0;
3671 return error;
3672 }
3673
3674 error = xfs_alloc_vextent_prepare_ag(args, 0);
3675 if (!error && args->agbp)
3676 error = xfs_alloc_ag_vextent_exact(args);
3677
3678 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3679 }
3680
3681 /*
3682 * Allocate an extent as close to the target as possible. If there are not
3683 * viable candidates in the AG, then fail the allocation.
3684 *
3685 * Caller may or may not have a per-ag reference in args->pag.
3686 */
3687 int
xfs_alloc_vextent_near_bno(struct xfs_alloc_arg * args,xfs_fsblock_t target)3688 xfs_alloc_vextent_near_bno(
3689 struct xfs_alloc_arg *args,
3690 xfs_fsblock_t target)
3691 {
3692 struct xfs_mount *mp = args->mp;
3693 xfs_agnumber_t minimum_agno;
3694 bool needs_perag = args->pag == NULL;
3695 uint32_t alloc_flags = 0;
3696 int error;
3697
3698 if (!needs_perag)
3699 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3700
3701 args->agno = XFS_FSB_TO_AGNO(mp, target);
3702 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3703
3704 trace_xfs_alloc_vextent_near_bno(args);
3705
3706 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3707 if (error) {
3708 if (error == -ENOSPC)
3709 return 0;
3710 return error;
3711 }
3712
3713 if (needs_perag)
3714 args->pag = xfs_perag_grab(mp, args->agno);
3715
3716 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3717 if (!error && args->agbp)
3718 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3719
3720 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3721 }
3722
3723 /* Ensure that the freelist is at full capacity. */
3724 int
xfs_free_extent_fix_freelist(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_buf ** agbp)3725 xfs_free_extent_fix_freelist(
3726 struct xfs_trans *tp,
3727 struct xfs_perag *pag,
3728 struct xfs_buf **agbp)
3729 {
3730 struct xfs_alloc_arg args;
3731 int error;
3732
3733 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3734 args.tp = tp;
3735 args.mp = tp->t_mountp;
3736 args.agno = pag->pag_agno;
3737 args.pag = pag;
3738
3739 /*
3740 * validate that the block number is legal - the enables us to detect
3741 * and handle a silent filesystem corruption rather than crashing.
3742 */
3743 if (args.agno >= args.mp->m_sb.sb_agcount)
3744 return -EFSCORRUPTED;
3745
3746 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3747 if (error)
3748 return error;
3749
3750 *agbp = args.agbp;
3751 return 0;
3752 }
3753
3754 /*
3755 * Free an extent.
3756 * Just break up the extent address and hand off to xfs_free_ag_extent
3757 * after fixing up the freelist.
3758 */
3759 int
__xfs_free_extent(struct xfs_trans * tp,struct xfs_perag * pag,xfs_agblock_t agbno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,bool skip_discard)3760 __xfs_free_extent(
3761 struct xfs_trans *tp,
3762 struct xfs_perag *pag,
3763 xfs_agblock_t agbno,
3764 xfs_extlen_t len,
3765 const struct xfs_owner_info *oinfo,
3766 enum xfs_ag_resv_type type,
3767 bool skip_discard)
3768 {
3769 struct xfs_mount *mp = tp->t_mountp;
3770 struct xfs_buf *agbp;
3771 struct xfs_agf *agf;
3772 int error;
3773 unsigned int busy_flags = 0;
3774
3775 ASSERT(len != 0);
3776 ASSERT(type != XFS_AG_RESV_AGFL);
3777
3778 if (XFS_TEST_ERROR(false, mp,
3779 XFS_ERRTAG_FREE_EXTENT))
3780 return -EIO;
3781
3782 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3783 if (error)
3784 return error;
3785 agf = agbp->b_addr;
3786
3787 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3788 error = -EFSCORRUPTED;
3789 goto err_release;
3790 }
3791
3792 /* validate the extent size is legal now we have the agf locked */
3793 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3794 error = -EFSCORRUPTED;
3795 goto err_release;
3796 }
3797
3798 error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3799 type);
3800 if (error)
3801 goto err_release;
3802
3803 if (skip_discard)
3804 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3805 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3806 return 0;
3807
3808 err_release:
3809 xfs_trans_brelse(tp, agbp);
3810 return error;
3811 }
3812
3813 struct xfs_alloc_query_range_info {
3814 xfs_alloc_query_range_fn fn;
3815 void *priv;
3816 };
3817
3818 /* Format btree record and pass to our callback. */
3819 STATIC int
xfs_alloc_query_range_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)3820 xfs_alloc_query_range_helper(
3821 struct xfs_btree_cur *cur,
3822 const union xfs_btree_rec *rec,
3823 void *priv)
3824 {
3825 struct xfs_alloc_query_range_info *query = priv;
3826 struct xfs_alloc_rec_incore irec;
3827 xfs_failaddr_t fa;
3828
3829 xfs_alloc_btrec_to_irec(rec, &irec);
3830 fa = xfs_alloc_check_irec(cur, &irec);
3831 if (fa)
3832 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
3833
3834 return query->fn(cur, &irec, query->priv);
3835 }
3836
3837 /* Find all free space within a given range of blocks. */
3838 int
xfs_alloc_query_range(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * low_rec,const struct xfs_alloc_rec_incore * high_rec,xfs_alloc_query_range_fn fn,void * priv)3839 xfs_alloc_query_range(
3840 struct xfs_btree_cur *cur,
3841 const struct xfs_alloc_rec_incore *low_rec,
3842 const struct xfs_alloc_rec_incore *high_rec,
3843 xfs_alloc_query_range_fn fn,
3844 void *priv)
3845 {
3846 union xfs_btree_irec low_brec = { .a = *low_rec };
3847 union xfs_btree_irec high_brec = { .a = *high_rec };
3848 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn };
3849
3850 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3851 return xfs_btree_query_range(cur, &low_brec, &high_brec,
3852 xfs_alloc_query_range_helper, &query);
3853 }
3854
3855 /* Find all free space records. */
3856 int
xfs_alloc_query_all(struct xfs_btree_cur * cur,xfs_alloc_query_range_fn fn,void * priv)3857 xfs_alloc_query_all(
3858 struct xfs_btree_cur *cur,
3859 xfs_alloc_query_range_fn fn,
3860 void *priv)
3861 {
3862 struct xfs_alloc_query_range_info query;
3863
3864 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3865 query.priv = priv;
3866 query.fn = fn;
3867 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3868 }
3869
3870 /*
3871 * Scan part of the keyspace of the free space and tell us if the area has no
3872 * records, is fully mapped by records, or is partially filled.
3873 */
3874 int
xfs_alloc_has_records(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,enum xbtree_recpacking * outcome)3875 xfs_alloc_has_records(
3876 struct xfs_btree_cur *cur,
3877 xfs_agblock_t bno,
3878 xfs_extlen_t len,
3879 enum xbtree_recpacking *outcome)
3880 {
3881 union xfs_btree_irec low;
3882 union xfs_btree_irec high;
3883
3884 memset(&low, 0, sizeof(low));
3885 low.a.ar_startblock = bno;
3886 memset(&high, 0xFF, sizeof(high));
3887 high.a.ar_startblock = bno + len - 1;
3888
3889 return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
3890 }
3891
3892 /*
3893 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
3894 * error code or XFS_ITER_*.
3895 */
3896 int
xfs_agfl_walk(struct xfs_mount * mp,struct xfs_agf * agf,struct xfs_buf * agflbp,xfs_agfl_walk_fn walk_fn,void * priv)3897 xfs_agfl_walk(
3898 struct xfs_mount *mp,
3899 struct xfs_agf *agf,
3900 struct xfs_buf *agflbp,
3901 xfs_agfl_walk_fn walk_fn,
3902 void *priv)
3903 {
3904 __be32 *agfl_bno;
3905 unsigned int i;
3906 int error;
3907
3908 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3909 i = be32_to_cpu(agf->agf_flfirst);
3910
3911 /* Nothing to walk in an empty AGFL. */
3912 if (agf->agf_flcount == cpu_to_be32(0))
3913 return 0;
3914
3915 /* Otherwise, walk from first to last, wrapping as needed. */
3916 for (;;) {
3917 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3918 if (error)
3919 return error;
3920 if (i == be32_to_cpu(agf->agf_fllast))
3921 break;
3922 if (++i == xfs_agfl_size(mp))
3923 i = 0;
3924 }
3925
3926 return 0;
3927 }
3928
3929 int __init
xfs_extfree_intent_init_cache(void)3930 xfs_extfree_intent_init_cache(void)
3931 {
3932 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3933 sizeof(struct xfs_extent_free_item),
3934 0, 0, NULL);
3935
3936 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3937 }
3938
3939 void
xfs_extfree_intent_destroy_cache(void)3940 xfs_extfree_intent_destroy_cache(void)
3941 {
3942 kmem_cache_destroy(xfs_extfree_item_cache);
3943 xfs_extfree_item_cache = NULL;
3944 }
3945