1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License. See the file "COPYING" in the main directory of this archive
5 * for more details.
6 *
7 * Copyright (C) 2008 Cavium Networks
8 *
9 * Some parts of the code were originally released under BSD license:
10 *
11 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12 * reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met:
17 *
18 * * Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * * Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials provided
24 * with the distribution.
25 *
26 * * Neither the name of Cavium Networks nor the names of
27 * its contributors may be used to endorse or promote products
28 * derived from this software without specific prior written
29 * permission.
30 *
31 * This Software, including technical data, may be subject to U.S. export
32 * control laws, including the U.S. Export Administration Act and its associated
33 * regulations, and may be subject to export or import regulations in other
34 * countries.
35 *
36 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
46 */
47
48 #include <linux/usb.h>
49 #include <linux/slab.h>
50 #include <linux/module.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/prefetch.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/platform_device.h>
55
56 #include <asm/octeon/octeon.h>
57
58 #include "octeon-hcd.h"
59
60 /**
61 * enum cvmx_usb_speed - the possible USB device speeds
62 *
63 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
64 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
65 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
66 */
67 enum cvmx_usb_speed {
68 CVMX_USB_SPEED_HIGH = 0,
69 CVMX_USB_SPEED_FULL = 1,
70 CVMX_USB_SPEED_LOW = 2,
71 };
72
73 /**
74 * enum cvmx_usb_transfer - the possible USB transfer types
75 *
76 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
77 * transfers
78 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
79 * priority periodic transfers
80 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
81 * transfers
82 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
83 * periodic transfers
84 */
85 enum cvmx_usb_transfer {
86 CVMX_USB_TRANSFER_CONTROL = 0,
87 CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
88 CVMX_USB_TRANSFER_BULK = 2,
89 CVMX_USB_TRANSFER_INTERRUPT = 3,
90 };
91
92 /**
93 * enum cvmx_usb_direction - the transfer directions
94 *
95 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
96 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
97 */
98 enum cvmx_usb_direction {
99 CVMX_USB_DIRECTION_OUT,
100 CVMX_USB_DIRECTION_IN,
101 };
102
103 /**
104 * enum cvmx_usb_status - possible callback function status codes
105 *
106 * @CVMX_USB_STATUS_OK: The transaction / operation finished without
107 * any errors
108 * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
109 * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
110 * by a user call to cvmx_usb_cancel
111 * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
112 * error status
113 * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
114 * from the device
115 * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
116 * device even after a number of retries
117 * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
118 * error even after a number of retries
119 * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
120 * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
121 * even after a number of retries
122 */
123 enum cvmx_usb_status {
124 CVMX_USB_STATUS_OK,
125 CVMX_USB_STATUS_SHORT,
126 CVMX_USB_STATUS_CANCEL,
127 CVMX_USB_STATUS_ERROR,
128 CVMX_USB_STATUS_STALL,
129 CVMX_USB_STATUS_XACTERR,
130 CVMX_USB_STATUS_DATATGLERR,
131 CVMX_USB_STATUS_BABBLEERR,
132 CVMX_USB_STATUS_FRAMEERR,
133 };
134
135 /**
136 * struct cvmx_usb_port_status - the USB port status information
137 *
138 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
139 * @port_over_current: 1 = Over current detected, 0 = Over current not
140 * detected. Octeon doesn't support over current detection.
141 * @port_powered: 1 = Port power is being supplied to the device, 0 =
142 * power is off. Octeon doesn't support turning port power
143 * off.
144 * @port_speed: Current port speed.
145 * @connected: 1 = A device is connected to the port, 0 = No device is
146 * connected.
147 * @connect_change: 1 = Device connected state changed since the last set
148 * status call.
149 */
150 struct cvmx_usb_port_status {
151 u32 reserved : 25;
152 u32 port_enabled : 1;
153 u32 port_over_current : 1;
154 u32 port_powered : 1;
155 enum cvmx_usb_speed port_speed : 2;
156 u32 connected : 1;
157 u32 connect_change : 1;
158 };
159
160 /**
161 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
162 *
163 * @offset: This is the offset in bytes into the main buffer where this data
164 * is stored.
165 * @length: This is the length in bytes of the data.
166 * @status: This is the status of this individual packet transfer.
167 */
168 struct cvmx_usb_iso_packet {
169 int offset;
170 int length;
171 enum cvmx_usb_status status;
172 };
173
174 /**
175 * enum cvmx_usb_initialize_flags - flags used by the initialization function
176 *
177 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
178 * as clock source at USB_XO and
179 * USB_XI.
180 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
181 * board clock source at USB_XO.
182 * USB_XI should be tied to GND.
183 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
184 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
185 * crystal
186 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
187 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
188 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
189 * data transfer use for the USB
190 */
191 enum cvmx_usb_initialize_flags {
192 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
193 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
194 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
195 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
196 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
197 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
198 /* Bits 3-4 used to encode the clock frequency */
199 CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
200 };
201
202 /**
203 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
204 *
205 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
206 * actively using hardware.
207 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
208 * pipe is in the ping state.
209 */
210 enum cvmx_usb_pipe_flags {
211 CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
212 CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
213 };
214
215 /* Maximum number of times to retry failed transactions */
216 #define MAX_RETRIES 3
217
218 /* Maximum number of hardware channels supported by the USB block */
219 #define MAX_CHANNELS 8
220
221 /*
222 * The low level hardware can transfer a maximum of this number of bytes in each
223 * transfer. The field is 19 bits wide
224 */
225 #define MAX_TRANSFER_BYTES ((1 << 19) - 1)
226
227 /*
228 * The low level hardware can transfer a maximum of this number of packets in
229 * each transfer. The field is 10 bits wide
230 */
231 #define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
232
233 /**
234 * Logical transactions may take numerous low level
235 * transactions, especially when splits are concerned. This
236 * enum represents all of the possible stages a transaction can
237 * be in. Note that split completes are always even. This is so
238 * the NAK handler can backup to the previous low level
239 * transaction with a simple clearing of bit 0.
240 */
241 enum cvmx_usb_stage {
242 CVMX_USB_STAGE_NON_CONTROL,
243 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
244 CVMX_USB_STAGE_SETUP,
245 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
246 CVMX_USB_STAGE_DATA,
247 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
248 CVMX_USB_STAGE_STATUS,
249 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
250 };
251
252 /**
253 * struct cvmx_usb_transaction - describes each pending USB transaction
254 * regardless of type. These are linked together
255 * to form a list of pending requests for a pipe.
256 *
257 * @node: List node for transactions in the pipe.
258 * @type: Type of transaction, duplicated of the pipe.
259 * @flags: State flags for this transaction.
260 * @buffer: User's physical buffer address to read/write.
261 * @buffer_length: Size of the user's buffer in bytes.
262 * @control_header: For control transactions, physical address of the 8
263 * byte standard header.
264 * @iso_start_frame: For ISO transactions, the starting frame number.
265 * @iso_number_packets: For ISO transactions, the number of packets in the
266 * request.
267 * @iso_packets: For ISO transactions, the sub packets in the request.
268 * @actual_bytes: Actual bytes transfer for this transaction.
269 * @stage: For control transactions, the current stage.
270 * @urb: URB.
271 */
272 struct cvmx_usb_transaction {
273 struct list_head node;
274 enum cvmx_usb_transfer type;
275 u64 buffer;
276 int buffer_length;
277 u64 control_header;
278 int iso_start_frame;
279 int iso_number_packets;
280 struct cvmx_usb_iso_packet *iso_packets;
281 int xfersize;
282 int pktcnt;
283 int retries;
284 int actual_bytes;
285 enum cvmx_usb_stage stage;
286 struct urb *urb;
287 };
288
289 /**
290 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
291 * and some USB device. It contains a list of pending
292 * request to the device.
293 *
294 * @node: List node for pipe list
295 * @next: Pipe after this one in the list
296 * @transactions: List of pending transactions
297 * @interval: For periodic pipes, the interval between packets in
298 * frames
299 * @next_tx_frame: The next frame this pipe is allowed to transmit on
300 * @flags: State flags for this pipe
301 * @device_speed: Speed of device connected to this pipe
302 * @transfer_type: Type of transaction supported by this pipe
303 * @transfer_dir: IN or OUT. Ignored for Control
304 * @multi_count: Max packet in a row for the device
305 * @max_packet: The device's maximum packet size in bytes
306 * @device_addr: USB device address at other end of pipe
307 * @endpoint_num: USB endpoint number at other end of pipe
308 * @hub_device_addr: Hub address this device is connected to
309 * @hub_port: Hub port this device is connected to
310 * @pid_toggle: This toggles between 0/1 on every packet send to track
311 * the data pid needed
312 * @channel: Hardware DMA channel for this pipe
313 * @split_sc_frame: The low order bits of the frame number the split
314 * complete should be sent on
315 */
316 struct cvmx_usb_pipe {
317 struct list_head node;
318 struct list_head transactions;
319 u64 interval;
320 u64 next_tx_frame;
321 enum cvmx_usb_pipe_flags flags;
322 enum cvmx_usb_speed device_speed;
323 enum cvmx_usb_transfer transfer_type;
324 enum cvmx_usb_direction transfer_dir;
325 int multi_count;
326 u16 max_packet;
327 u8 device_addr;
328 u8 endpoint_num;
329 u8 hub_device_addr;
330 u8 hub_port;
331 u8 pid_toggle;
332 u8 channel;
333 s8 split_sc_frame;
334 };
335
336 struct cvmx_usb_tx_fifo {
337 struct {
338 int channel;
339 int size;
340 u64 address;
341 } entry[MAX_CHANNELS + 1];
342 int head;
343 int tail;
344 };
345
346 /**
347 * struct octeon_hcd - the state of the USB block
348 *
349 * lock: Serialization lock.
350 * init_flags: Flags passed to initialize.
351 * index: Which USB block this is for.
352 * idle_hardware_channels: Bit set for every idle hardware channel.
353 * usbcx_hprt: Stored port status so we don't need to read a CSR to
354 * determine splits.
355 * pipe_for_channel: Map channels to pipes.
356 * pipe: Storage for pipes.
357 * indent: Used by debug output to indent functions.
358 * port_status: Last port status used for change notification.
359 * idle_pipes: List of open pipes that have no transactions.
360 * active_pipes: Active pipes indexed by transfer type.
361 * frame_number: Increments every SOF interrupt for time keeping.
362 * active_split: Points to the current active split, or NULL.
363 */
364 struct octeon_hcd {
365 spinlock_t lock; /* serialization lock */
366 int init_flags;
367 int index;
368 int idle_hardware_channels;
369 union cvmx_usbcx_hprt usbcx_hprt;
370 struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
371 int indent;
372 struct cvmx_usb_port_status port_status;
373 struct list_head idle_pipes;
374 struct list_head active_pipes[4];
375 u64 frame_number;
376 struct cvmx_usb_transaction *active_split;
377 struct cvmx_usb_tx_fifo periodic;
378 struct cvmx_usb_tx_fifo nonperiodic;
379 };
380
381 /*
382 * This macro logically sets a single field in a CSR. It does the sequence
383 * read, modify, and write
384 */
385 #define USB_SET_FIELD32(address, _union, field, value) \
386 do { \
387 union _union c; \
388 \
389 c.u32 = cvmx_usb_read_csr32(usb, address); \
390 c.s.field = value; \
391 cvmx_usb_write_csr32(usb, address, c.u32); \
392 } while (0)
393
394 /* Returns the IO address to push/pop stuff data from the FIFOs */
395 #define USB_FIFO_ADDRESS(channel, usb_index) \
396 (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
397
398 /**
399 * struct octeon_temp_buffer - a bounce buffer for USB transfers
400 * @orig_buffer: the original buffer passed by the USB stack
401 * @data: the newly allocated temporary buffer (excluding meta-data)
402 *
403 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
404 * the buffer is too short, we need to allocate a temporary one, and this struct
405 * represents it.
406 */
407 struct octeon_temp_buffer {
408 void *orig_buffer;
409 u8 data[0];
410 };
411
octeon_to_hcd(struct octeon_hcd * p)412 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
413 {
414 return container_of((void *)p, struct usb_hcd, hcd_priv);
415 }
416
417 /**
418 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
419 * (if needed)
420 * @urb: URB.
421 * @mem_flags: Memory allocation flags.
422 *
423 * This function allocates a temporary bounce buffer whenever it's needed
424 * due to HW limitations.
425 */
octeon_alloc_temp_buffer(struct urb * urb,gfp_t mem_flags)426 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
427 {
428 struct octeon_temp_buffer *temp;
429
430 if (urb->num_sgs || urb->sg ||
431 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
432 !(urb->transfer_buffer_length % sizeof(u32)))
433 return 0;
434
435 temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
436 sizeof(*temp), mem_flags);
437 if (!temp)
438 return -ENOMEM;
439
440 temp->orig_buffer = urb->transfer_buffer;
441 if (usb_urb_dir_out(urb))
442 memcpy(temp->data, urb->transfer_buffer,
443 urb->transfer_buffer_length);
444 urb->transfer_buffer = temp->data;
445 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
446
447 return 0;
448 }
449
450 /**
451 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
452 * @urb: URB.
453 *
454 * Frees a buffer allocated by octeon_alloc_temp_buffer().
455 */
octeon_free_temp_buffer(struct urb * urb)456 static void octeon_free_temp_buffer(struct urb *urb)
457 {
458 struct octeon_temp_buffer *temp;
459 size_t length;
460
461 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
462 return;
463
464 temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
465 data);
466 if (usb_urb_dir_in(urb)) {
467 if (usb_pipeisoc(urb->pipe))
468 length = urb->transfer_buffer_length;
469 else
470 length = urb->actual_length;
471
472 memcpy(temp->orig_buffer, urb->transfer_buffer, length);
473 }
474 urb->transfer_buffer = temp->orig_buffer;
475 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
476 kfree(temp);
477 }
478
479 /**
480 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
481 * @hcd: USB HCD structure.
482 * @urb: URB.
483 * @mem_flags: Memory allocation flags.
484 */
octeon_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)485 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
486 gfp_t mem_flags)
487 {
488 int ret;
489
490 ret = octeon_alloc_temp_buffer(urb, mem_flags);
491 if (ret)
492 return ret;
493
494 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
495 if (ret)
496 octeon_free_temp_buffer(urb);
497
498 return ret;
499 }
500
501 /**
502 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
503 * @hcd: USB HCD structure.
504 * @urb: URB.
505 */
octeon_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)506 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
507 {
508 usb_hcd_unmap_urb_for_dma(hcd, urb);
509 octeon_free_temp_buffer(urb);
510 }
511
512 /**
513 * Read a USB 32bit CSR. It performs the necessary address swizzle
514 * for 32bit CSRs and logs the value in a readable format if
515 * debugging is on.
516 *
517 * @usb: USB block this access is for
518 * @address: 64bit address to read
519 *
520 * Returns: Result of the read
521 */
cvmx_usb_read_csr32(struct octeon_hcd * usb,u64 address)522 static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
523 {
524 return cvmx_read64_uint32(address ^ 4);
525 }
526
527 /**
528 * Write a USB 32bit CSR. It performs the necessary address
529 * swizzle for 32bit CSRs and logs the value in a readable format
530 * if debugging is on.
531 *
532 * @usb: USB block this access is for
533 * @address: 64bit address to write
534 * @value: Value to write
535 */
cvmx_usb_write_csr32(struct octeon_hcd * usb,u64 address,u32 value)536 static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
537 u64 address, u32 value)
538 {
539 cvmx_write64_uint32(address ^ 4, value);
540 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
541 }
542
543 /**
544 * Return non zero if this pipe connects to a non HIGH speed
545 * device through a high speed hub.
546 *
547 * @usb: USB block this access is for
548 * @pipe: Pipe to check
549 *
550 * Returns: Non zero if we need to do split transactions
551 */
cvmx_usb_pipe_needs_split(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)552 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
553 struct cvmx_usb_pipe *pipe)
554 {
555 return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
556 usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
557 }
558
559 /**
560 * Trivial utility function to return the correct PID for a pipe
561 *
562 * @pipe: pipe to check
563 *
564 * Returns: PID for pipe
565 */
cvmx_usb_get_data_pid(struct cvmx_usb_pipe * pipe)566 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
567 {
568 if (pipe->pid_toggle)
569 return 2; /* Data1 */
570 return 0; /* Data0 */
571 }
572
573 /* Loops through register until txfflsh or rxfflsh become zero.*/
cvmx_wait_tx_rx(struct octeon_hcd * usb,int fflsh_type)574 static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
575 {
576 int result;
577 u64 address = CVMX_USBCX_GRSTCTL(usb->index);
578 u64 done = cvmx_get_cycle() + 100 *
579 (u64)octeon_get_clock_rate / 1000000;
580 union cvmx_usbcx_grstctl c;
581
582 while (1) {
583 c.u32 = cvmx_usb_read_csr32(usb, address);
584 if (fflsh_type == 0 && c.s.txfflsh == 0) {
585 result = 0;
586 break;
587 } else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
588 result = 0;
589 break;
590 } else if (cvmx_get_cycle() > done) {
591 result = -1;
592 break;
593 }
594
595 __delay(100);
596 }
597 return result;
598 }
599
cvmx_fifo_setup(struct octeon_hcd * usb)600 static void cvmx_fifo_setup(struct octeon_hcd *usb)
601 {
602 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
603 union cvmx_usbcx_gnptxfsiz npsiz;
604 union cvmx_usbcx_hptxfsiz psiz;
605
606 usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
607 CVMX_USBCX_GHWCFG3(usb->index));
608
609 /*
610 * Program the USBC_GRXFSIZ register to select the size of the receive
611 * FIFO (25%).
612 */
613 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
614 rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
615
616 /*
617 * Program the USBC_GNPTXFSIZ register to select the size and the start
618 * address of the non-periodic transmit FIFO for nonperiodic
619 * transactions (50%).
620 */
621 npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
622 npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
623 npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
624 cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
625
626 /*
627 * Program the USBC_HPTXFSIZ register to select the size and start
628 * address of the periodic transmit FIFO for periodic transactions
629 * (25%).
630 */
631 psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
632 psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
633 psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
634 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
635
636 /* Flush all FIFOs */
637 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
638 cvmx_usbcx_grstctl, txfnum, 0x10);
639 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
640 cvmx_usbcx_grstctl, txfflsh, 1);
641 cvmx_wait_tx_rx(usb, 0);
642 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
643 cvmx_usbcx_grstctl, rxfflsh, 1);
644 cvmx_wait_tx_rx(usb, 1);
645 }
646
647 /**
648 * Shutdown a USB port after a call to cvmx_usb_initialize().
649 * The port should be disabled with all pipes closed when this
650 * function is called.
651 *
652 * @usb: USB device state populated by cvmx_usb_initialize().
653 *
654 * Returns: 0 or a negative error code.
655 */
cvmx_usb_shutdown(struct octeon_hcd * usb)656 static int cvmx_usb_shutdown(struct octeon_hcd *usb)
657 {
658 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
659
660 /* Make sure all pipes are closed */
661 if (!list_empty(&usb->idle_pipes) ||
662 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
663 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
664 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
665 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
666 return -EBUSY;
667
668 /* Disable the clocks and put them in power on reset */
669 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
670 usbn_clk_ctl.s.enable = 1;
671 usbn_clk_ctl.s.por = 1;
672 usbn_clk_ctl.s.hclk_rst = 1;
673 usbn_clk_ctl.s.prst = 0;
674 usbn_clk_ctl.s.hrst = 0;
675 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
676 return 0;
677 }
678
679 /**
680 * Initialize a USB port for use. This must be called before any
681 * other access to the Octeon USB port is made. The port starts
682 * off in the disabled state.
683 *
684 * @dev: Pointer to struct device for logging purposes.
685 * @usb: Pointer to struct octeon_hcd.
686 *
687 * Returns: 0 or a negative error code.
688 */
cvmx_usb_initialize(struct device * dev,struct octeon_hcd * usb)689 static int cvmx_usb_initialize(struct device *dev,
690 struct octeon_hcd *usb)
691 {
692 int channel;
693 int divisor;
694 int retries = 0;
695 union cvmx_usbcx_hcfg usbcx_hcfg;
696 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
697 union cvmx_usbcx_gintsts usbc_gintsts;
698 union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
699 union cvmx_usbcx_gintmsk usbcx_gintmsk;
700 union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
701 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
702
703 retry:
704 /*
705 * Power On Reset and PHY Initialization
706 *
707 * 1. Wait for DCOK to assert (nothing to do)
708 *
709 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
710 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
711 */
712 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
713 usbn_clk_ctl.s.por = 1;
714 usbn_clk_ctl.s.hrst = 0;
715 usbn_clk_ctl.s.prst = 0;
716 usbn_clk_ctl.s.hclk_rst = 0;
717 usbn_clk_ctl.s.enable = 0;
718 /*
719 * 2b. Select the USB reference clock/crystal parameters by writing
720 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
721 */
722 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
723 /*
724 * The USB port uses 12/24/48MHz 2.5V board clock
725 * source at USB_XO. USB_XI should be tied to GND.
726 * Most Octeon evaluation boards require this setting
727 */
728 if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
729 OCTEON_IS_MODEL(OCTEON_CN56XX) ||
730 OCTEON_IS_MODEL(OCTEON_CN50XX))
731 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
732 usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
733 else
734 /* From CN52XX manual */
735 usbn_clk_ctl.s.p_rtype = 1;
736
737 switch (usb->init_flags &
738 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
739 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
740 usbn_clk_ctl.s.p_c_sel = 0;
741 break;
742 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
743 usbn_clk_ctl.s.p_c_sel = 1;
744 break;
745 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
746 usbn_clk_ctl.s.p_c_sel = 2;
747 break;
748 }
749 } else {
750 /*
751 * The USB port uses a 12MHz crystal as clock source
752 * at USB_XO and USB_XI
753 */
754 if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
755 /* From CN31XX,CN30XX manual */
756 usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
757 else
758 /* From CN56XX,CN52XX,CN50XX manuals. */
759 usbn_clk_ctl.s.p_rtype = 0;
760
761 usbn_clk_ctl.s.p_c_sel = 0;
762 }
763 /*
764 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
765 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
766 * such that USB is as close as possible to 125Mhz
767 */
768 divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
769 /* Lower than 4 doesn't seem to work properly */
770 if (divisor < 4)
771 divisor = 4;
772 usbn_clk_ctl.s.divide = divisor;
773 usbn_clk_ctl.s.divide2 = 0;
774 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
775
776 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
777 usbn_clk_ctl.s.hclk_rst = 1;
778 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
779 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
780 __delay(64);
781 /*
782 * 3. Program the power-on reset field in the USBN clock-control
783 * register:
784 * USBN_CLK_CTL[POR] = 0
785 */
786 usbn_clk_ctl.s.por = 0;
787 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
788 /* 4. Wait 1 ms for PHY clock to start */
789 mdelay(1);
790 /*
791 * 5. Program the Reset input from automatic test equipment field in the
792 * USBP control and status register:
793 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
794 */
795 usbn_usbp_ctl_status.u64 =
796 cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
797 usbn_usbp_ctl_status.s.ate_reset = 1;
798 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
799 usbn_usbp_ctl_status.u64);
800 /* 6. Wait 10 cycles */
801 __delay(10);
802 /*
803 * 7. Clear ATE_RESET field in the USBN clock-control register:
804 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
805 */
806 usbn_usbp_ctl_status.s.ate_reset = 0;
807 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
808 usbn_usbp_ctl_status.u64);
809 /*
810 * 8. Program the PHY reset field in the USBN clock-control register:
811 * USBN_CLK_CTL[PRST] = 1
812 */
813 usbn_clk_ctl.s.prst = 1;
814 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
815 /*
816 * 9. Program the USBP control and status register to select host or
817 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
818 * device
819 */
820 usbn_usbp_ctl_status.s.hst_mode = 0;
821 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
822 usbn_usbp_ctl_status.u64);
823 /* 10. Wait 1 us */
824 udelay(1);
825 /*
826 * 11. Program the hreset_n field in the USBN clock-control register:
827 * USBN_CLK_CTL[HRST] = 1
828 */
829 usbn_clk_ctl.s.hrst = 1;
830 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
831 /* 12. Proceed to USB core initialization */
832 usbn_clk_ctl.s.enable = 1;
833 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
834 udelay(1);
835
836 /*
837 * USB Core Initialization
838 *
839 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
840 * determine USB core configuration parameters.
841 *
842 * Nothing needed
843 *
844 * 2. Program the following fields in the global AHB configuration
845 * register (USBC_GAHBCFG)
846 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
847 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
848 * Nonperiodic TxFIFO empty level (slave mode only),
849 * USBC_GAHBCFG[NPTXFEMPLVL]
850 * Periodic TxFIFO empty level (slave mode only),
851 * USBC_GAHBCFG[PTXFEMPLVL]
852 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
853 */
854 usbcx_gahbcfg.u32 = 0;
855 usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
856 CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
857 usbcx_gahbcfg.s.hbstlen = 0;
858 usbcx_gahbcfg.s.nptxfemplvl = 1;
859 usbcx_gahbcfg.s.ptxfemplvl = 1;
860 usbcx_gahbcfg.s.glblintrmsk = 1;
861 cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
862 usbcx_gahbcfg.u32);
863
864 /*
865 * 3. Program the following fields in USBC_GUSBCFG register.
866 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
867 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
868 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
869 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
870 */
871 usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
872 CVMX_USBCX_GUSBCFG(usb->index));
873 usbcx_gusbcfg.s.toutcal = 0;
874 usbcx_gusbcfg.s.ddrsel = 0;
875 usbcx_gusbcfg.s.usbtrdtim = 0x5;
876 usbcx_gusbcfg.s.phylpwrclksel = 0;
877 cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
878 usbcx_gusbcfg.u32);
879
880 /*
881 * 4. The software must unmask the following bits in the USBC_GINTMSK
882 * register.
883 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
884 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
885 */
886 usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
887 CVMX_USBCX_GINTMSK(usb->index));
888 usbcx_gintmsk.s.otgintmsk = 1;
889 usbcx_gintmsk.s.modemismsk = 1;
890 usbcx_gintmsk.s.hchintmsk = 1;
891 usbcx_gintmsk.s.sofmsk = 0;
892 /* We need RX FIFO interrupts if we don't have DMA */
893 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
894 usbcx_gintmsk.s.rxflvlmsk = 1;
895 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
896 usbcx_gintmsk.u32);
897
898 /*
899 * Disable all channel interrupts. We'll enable them per channel later.
900 */
901 for (channel = 0; channel < 8; channel++)
902 cvmx_usb_write_csr32(usb,
903 CVMX_USBCX_HCINTMSKX(channel, usb->index),
904 0);
905
906 /*
907 * Host Port Initialization
908 *
909 * 1. Program the host-port interrupt-mask field to unmask,
910 * USBC_GINTMSK[PRTINT] = 1
911 */
912 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
913 cvmx_usbcx_gintmsk, prtintmsk, 1);
914 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
915 cvmx_usbcx_gintmsk, disconnintmsk, 1);
916
917 /*
918 * 2. Program the USBC_HCFG register to select full-speed host
919 * or high-speed host.
920 */
921 usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
922 usbcx_hcfg.s.fslssupp = 0;
923 usbcx_hcfg.s.fslspclksel = 0;
924 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
925
926 cvmx_fifo_setup(usb);
927
928 /*
929 * If the controller is getting port events right after the reset, it
930 * means the initialization failed. Try resetting the controller again
931 * in such case. This is seen to happen after cold boot on DSR-1000N.
932 */
933 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
934 CVMX_USBCX_GINTSTS(usb->index));
935 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
936 usbc_gintsts.u32);
937 dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
938 if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
939 return 0;
940 if (retries++ >= 5)
941 return -EAGAIN;
942 dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
943 (int)usbc_gintsts.u32);
944 msleep(50);
945 cvmx_usb_shutdown(usb);
946 msleep(50);
947 goto retry;
948 }
949
950 /**
951 * Reset a USB port. After this call succeeds, the USB port is
952 * online and servicing requests.
953 *
954 * @usb: USB device state populated by cvmx_usb_initialize().
955 */
cvmx_usb_reset_port(struct octeon_hcd * usb)956 static void cvmx_usb_reset_port(struct octeon_hcd *usb)
957 {
958 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
959 CVMX_USBCX_HPRT(usb->index));
960
961 /* Program the port reset bit to start the reset process */
962 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
963 prtrst, 1);
964
965 /*
966 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
967 * process to complete.
968 */
969 mdelay(50);
970
971 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
972 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
973 prtrst, 0);
974
975 /*
976 * Read the port speed field to get the enumerated speed,
977 * USBC_HPRT[PRTSPD].
978 */
979 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
980 CVMX_USBCX_HPRT(usb->index));
981 }
982
983 /**
984 * Disable a USB port. After this call the USB port will not
985 * generate data transfers and will not generate events.
986 * Transactions in process will fail and call their
987 * associated callbacks.
988 *
989 * @usb: USB device state populated by cvmx_usb_initialize().
990 *
991 * Returns: 0 or a negative error code.
992 */
cvmx_usb_disable(struct octeon_hcd * usb)993 static int cvmx_usb_disable(struct octeon_hcd *usb)
994 {
995 /* Disable the port */
996 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
997 prtena, 1);
998 return 0;
999 }
1000
1001 /**
1002 * Get the current state of the USB port. Use this call to
1003 * determine if the usb port has anything connected, is enabled,
1004 * or has some sort of error condition. The return value of this
1005 * call has "changed" bits to signal of the value of some fields
1006 * have changed between calls.
1007 *
1008 * @usb: USB device state populated by cvmx_usb_initialize().
1009 *
1010 * Returns: Port status information
1011 */
cvmx_usb_get_status(struct octeon_hcd * usb)1012 static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1013 {
1014 union cvmx_usbcx_hprt usbc_hprt;
1015 struct cvmx_usb_port_status result;
1016
1017 memset(&result, 0, sizeof(result));
1018
1019 usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1020 result.port_enabled = usbc_hprt.s.prtena;
1021 result.port_over_current = usbc_hprt.s.prtovrcurract;
1022 result.port_powered = usbc_hprt.s.prtpwr;
1023 result.port_speed = usbc_hprt.s.prtspd;
1024 result.connected = usbc_hprt.s.prtconnsts;
1025 result.connect_change =
1026 result.connected != usb->port_status.connected;
1027
1028 return result;
1029 }
1030
1031 /**
1032 * Open a virtual pipe between the host and a USB device. A pipe
1033 * must be opened before data can be transferred between a device
1034 * and Octeon.
1035 *
1036 * @usb: USB device state populated by cvmx_usb_initialize().
1037 * @device_addr:
1038 * USB device address to open the pipe to
1039 * (0-127).
1040 * @endpoint_num:
1041 * USB endpoint number to open the pipe to
1042 * (0-15).
1043 * @device_speed:
1044 * The speed of the device the pipe is going
1045 * to. This must match the device's speed,
1046 * which may be different than the port speed.
1047 * @max_packet: The maximum packet length the device can
1048 * transmit/receive (low speed=0-8, full
1049 * speed=0-1023, high speed=0-1024). This value
1050 * comes from the standard endpoint descriptor
1051 * field wMaxPacketSize bits <10:0>.
1052 * @transfer_type:
1053 * The type of transfer this pipe is for.
1054 * @transfer_dir:
1055 * The direction the pipe is in. This is not
1056 * used for control pipes.
1057 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1058 * this is how often the transfer is scheduled
1059 * for. All other transfers should specify
1060 * zero. The units are in frames (8000/sec at
1061 * high speed, 1000/sec for full speed).
1062 * @multi_count:
1063 * For high speed devices, this is the maximum
1064 * allowed number of packet per microframe.
1065 * Specify zero for non high speed devices. This
1066 * value comes from the standard endpoint descriptor
1067 * field wMaxPacketSize bits <12:11>.
1068 * @hub_device_addr:
1069 * Hub device address this device is connected
1070 * to. Devices connected directly to Octeon
1071 * use zero. This is only used when the device
1072 * is full/low speed behind a high speed hub.
1073 * The address will be of the high speed hub,
1074 * not and full speed hubs after it.
1075 * @hub_port: Which port on the hub the device is
1076 * connected. Use zero for devices connected
1077 * directly to Octeon. Like hub_device_addr,
1078 * this is only used for full/low speed
1079 * devices behind a high speed hub.
1080 *
1081 * Returns: A non-NULL value is a pipe. NULL means an error.
1082 */
cvmx_usb_open_pipe(struct octeon_hcd * usb,int device_addr,int endpoint_num,enum cvmx_usb_speed device_speed,int max_packet,enum cvmx_usb_transfer transfer_type,enum cvmx_usb_direction transfer_dir,int interval,int multi_count,int hub_device_addr,int hub_port)1083 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1084 int device_addr,
1085 int endpoint_num,
1086 enum cvmx_usb_speed
1087 device_speed,
1088 int max_packet,
1089 enum cvmx_usb_transfer
1090 transfer_type,
1091 enum cvmx_usb_direction
1092 transfer_dir,
1093 int interval, int multi_count,
1094 int hub_device_addr,
1095 int hub_port)
1096 {
1097 struct cvmx_usb_pipe *pipe;
1098
1099 pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1100 if (!pipe)
1101 return NULL;
1102 if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1103 (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1104 (transfer_type == CVMX_USB_TRANSFER_BULK))
1105 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1106 pipe->device_addr = device_addr;
1107 pipe->endpoint_num = endpoint_num;
1108 pipe->device_speed = device_speed;
1109 pipe->max_packet = max_packet;
1110 pipe->transfer_type = transfer_type;
1111 pipe->transfer_dir = transfer_dir;
1112 INIT_LIST_HEAD(&pipe->transactions);
1113
1114 /*
1115 * All pipes use interval to rate limit NAK processing. Force an
1116 * interval if one wasn't supplied
1117 */
1118 if (!interval)
1119 interval = 1;
1120 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1121 pipe->interval = interval * 8;
1122 /* Force start splits to be schedule on uFrame 0 */
1123 pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1124 pipe->interval;
1125 } else {
1126 pipe->interval = interval;
1127 pipe->next_tx_frame = usb->frame_number + pipe->interval;
1128 }
1129 pipe->multi_count = multi_count;
1130 pipe->hub_device_addr = hub_device_addr;
1131 pipe->hub_port = hub_port;
1132 pipe->pid_toggle = 0;
1133 pipe->split_sc_frame = -1;
1134 list_add_tail(&pipe->node, &usb->idle_pipes);
1135
1136 /*
1137 * We don't need to tell the hardware about this pipe yet since
1138 * it doesn't have any submitted requests
1139 */
1140
1141 return pipe;
1142 }
1143
1144 /**
1145 * Poll the RX FIFOs and remove data as needed. This function is only used
1146 * in non DMA mode. It is very important that this function be called quickly
1147 * enough to prevent FIFO overflow.
1148 *
1149 * @usb: USB device state populated by cvmx_usb_initialize().
1150 */
cvmx_usb_poll_rx_fifo(struct octeon_hcd * usb)1151 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1152 {
1153 union cvmx_usbcx_grxstsph rx_status;
1154 int channel;
1155 int bytes;
1156 u64 address;
1157 u32 *ptr;
1158
1159 rx_status.u32 = cvmx_usb_read_csr32(usb,
1160 CVMX_USBCX_GRXSTSPH(usb->index));
1161 /* Only read data if IN data is there */
1162 if (rx_status.s.pktsts != 2)
1163 return;
1164 /* Check if no data is available */
1165 if (!rx_status.s.bcnt)
1166 return;
1167
1168 channel = rx_status.s.chnum;
1169 bytes = rx_status.s.bcnt;
1170 if (!bytes)
1171 return;
1172
1173 /* Get where the DMA engine would have written this data */
1174 address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1175 channel * 8);
1176
1177 ptr = cvmx_phys_to_ptr(address);
1178 cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1179 address + bytes);
1180
1181 /* Loop writing the FIFO data for this packet into memory */
1182 while (bytes > 0) {
1183 *ptr++ = cvmx_usb_read_csr32(usb,
1184 USB_FIFO_ADDRESS(channel, usb->index));
1185 bytes -= 4;
1186 }
1187 CVMX_SYNCW;
1188 }
1189
1190 /**
1191 * Fill the TX hardware fifo with data out of the software
1192 * fifos
1193 *
1194 * @usb: USB device state populated by cvmx_usb_initialize().
1195 * @fifo: Software fifo to use
1196 * @available: Amount of space in the hardware fifo
1197 *
1198 * Returns: Non zero if the hardware fifo was too small and needs
1199 * to be serviced again.
1200 */
cvmx_usb_fill_tx_hw(struct octeon_hcd * usb,struct cvmx_usb_tx_fifo * fifo,int available)1201 static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1202 struct cvmx_usb_tx_fifo *fifo, int available)
1203 {
1204 /*
1205 * We're done either when there isn't anymore space or the software FIFO
1206 * is empty
1207 */
1208 while (available && (fifo->head != fifo->tail)) {
1209 int i = fifo->tail;
1210 const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1211 u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1212 usb->index) ^ 4;
1213 int words = available;
1214
1215 /* Limit the amount of data to what the SW fifo has */
1216 if (fifo->entry[i].size <= available) {
1217 words = fifo->entry[i].size;
1218 fifo->tail++;
1219 if (fifo->tail > MAX_CHANNELS)
1220 fifo->tail = 0;
1221 }
1222
1223 /* Update the next locations and counts */
1224 available -= words;
1225 fifo->entry[i].address += words * 4;
1226 fifo->entry[i].size -= words;
1227
1228 /*
1229 * Write the HW fifo data. The read every three writes is due
1230 * to an errata on CN3XXX chips
1231 */
1232 while (words > 3) {
1233 cvmx_write64_uint32(csr_address, *ptr++);
1234 cvmx_write64_uint32(csr_address, *ptr++);
1235 cvmx_write64_uint32(csr_address, *ptr++);
1236 cvmx_read64_uint64(
1237 CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1238 words -= 3;
1239 }
1240 cvmx_write64_uint32(csr_address, *ptr++);
1241 if (--words) {
1242 cvmx_write64_uint32(csr_address, *ptr++);
1243 if (--words)
1244 cvmx_write64_uint32(csr_address, *ptr++);
1245 }
1246 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1247 }
1248 return fifo->head != fifo->tail;
1249 }
1250
1251 /**
1252 * Check the hardware FIFOs and fill them as needed
1253 *
1254 * @usb: USB device state populated by cvmx_usb_initialize().
1255 */
cvmx_usb_poll_tx_fifo(struct octeon_hcd * usb)1256 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1257 {
1258 if (usb->periodic.head != usb->periodic.tail) {
1259 union cvmx_usbcx_hptxsts tx_status;
1260
1261 tx_status.u32 = cvmx_usb_read_csr32(usb,
1262 CVMX_USBCX_HPTXSTS(usb->index));
1263 if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1264 tx_status.s.ptxfspcavail))
1265 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1266 cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1267 else
1268 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1269 cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1270 }
1271
1272 if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1273 union cvmx_usbcx_gnptxsts tx_status;
1274
1275 tx_status.u32 = cvmx_usb_read_csr32(usb,
1276 CVMX_USBCX_GNPTXSTS(usb->index));
1277 if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1278 tx_status.s.nptxfspcavail))
1279 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1280 cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1281 else
1282 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1283 cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1284 }
1285 }
1286
1287 /**
1288 * Fill the TX FIFO with an outgoing packet
1289 *
1290 * @usb: USB device state populated by cvmx_usb_initialize().
1291 * @channel: Channel number to get packet from
1292 */
cvmx_usb_fill_tx_fifo(struct octeon_hcd * usb,int channel)1293 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1294 {
1295 union cvmx_usbcx_hccharx hcchar;
1296 union cvmx_usbcx_hcspltx usbc_hcsplt;
1297 union cvmx_usbcx_hctsizx usbc_hctsiz;
1298 struct cvmx_usb_tx_fifo *fifo;
1299
1300 /* We only need to fill data on outbound channels */
1301 hcchar.u32 = cvmx_usb_read_csr32(usb,
1302 CVMX_USBCX_HCCHARX(channel, usb->index));
1303 if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1304 return;
1305
1306 /* OUT Splits only have data on the start and not the complete */
1307 usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1308 CVMX_USBCX_HCSPLTX(channel, usb->index));
1309 if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1310 return;
1311
1312 /*
1313 * Find out how many bytes we need to fill and convert it into 32bit
1314 * words.
1315 */
1316 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1317 CVMX_USBCX_HCTSIZX(channel, usb->index));
1318 if (!usbc_hctsiz.s.xfersize)
1319 return;
1320
1321 if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1322 (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1323 fifo = &usb->periodic;
1324 else
1325 fifo = &usb->nonperiodic;
1326
1327 fifo->entry[fifo->head].channel = channel;
1328 fifo->entry[fifo->head].address =
1329 cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1330 channel * 8);
1331 fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1332 fifo->head++;
1333 if (fifo->head > MAX_CHANNELS)
1334 fifo->head = 0;
1335
1336 cvmx_usb_poll_tx_fifo(usb);
1337 }
1338
1339 /**
1340 * Perform channel specific setup for Control transactions. All
1341 * the generic stuff will already have been done in cvmx_usb_start_channel().
1342 *
1343 * @usb: USB device state populated by cvmx_usb_initialize().
1344 * @channel: Channel to setup
1345 * @pipe: Pipe for control transaction
1346 */
cvmx_usb_start_channel_control(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1347 static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1348 int channel,
1349 struct cvmx_usb_pipe *pipe)
1350 {
1351 struct usb_hcd *hcd = octeon_to_hcd(usb);
1352 struct device *dev = hcd->self.controller;
1353 struct cvmx_usb_transaction *transaction =
1354 list_first_entry(&pipe->transactions, typeof(*transaction),
1355 node);
1356 struct usb_ctrlrequest *header =
1357 cvmx_phys_to_ptr(transaction->control_header);
1358 int bytes_to_transfer = transaction->buffer_length -
1359 transaction->actual_bytes;
1360 int packets_to_transfer;
1361 union cvmx_usbcx_hctsizx usbc_hctsiz;
1362
1363 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1364 CVMX_USBCX_HCTSIZX(channel, usb->index));
1365
1366 switch (transaction->stage) {
1367 case CVMX_USB_STAGE_NON_CONTROL:
1368 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1369 dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1370 break;
1371 case CVMX_USB_STAGE_SETUP:
1372 usbc_hctsiz.s.pid = 3; /* Setup */
1373 bytes_to_transfer = sizeof(*header);
1374 /* All Control operations start with a setup going OUT */
1375 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1376 cvmx_usbcx_hccharx, epdir,
1377 CVMX_USB_DIRECTION_OUT);
1378 /*
1379 * Setup send the control header instead of the buffer data. The
1380 * buffer data will be used in the next stage
1381 */
1382 cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1383 channel * 8,
1384 transaction->control_header);
1385 break;
1386 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1387 usbc_hctsiz.s.pid = 3; /* Setup */
1388 bytes_to_transfer = 0;
1389 /* All Control operations start with a setup going OUT */
1390 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1391 cvmx_usbcx_hccharx, epdir,
1392 CVMX_USB_DIRECTION_OUT);
1393
1394 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1395 cvmx_usbcx_hcspltx, compsplt, 1);
1396 break;
1397 case CVMX_USB_STAGE_DATA:
1398 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1399 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1400 if (header->bRequestType & USB_DIR_IN)
1401 bytes_to_transfer = 0;
1402 else if (bytes_to_transfer > pipe->max_packet)
1403 bytes_to_transfer = pipe->max_packet;
1404 }
1405 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1406 cvmx_usbcx_hccharx, epdir,
1407 ((header->bRequestType & USB_DIR_IN) ?
1408 CVMX_USB_DIRECTION_IN :
1409 CVMX_USB_DIRECTION_OUT));
1410 break;
1411 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1412 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1413 if (!(header->bRequestType & USB_DIR_IN))
1414 bytes_to_transfer = 0;
1415 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1416 cvmx_usbcx_hccharx, epdir,
1417 ((header->bRequestType & USB_DIR_IN) ?
1418 CVMX_USB_DIRECTION_IN :
1419 CVMX_USB_DIRECTION_OUT));
1420 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1421 cvmx_usbcx_hcspltx, compsplt, 1);
1422 break;
1423 case CVMX_USB_STAGE_STATUS:
1424 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1425 bytes_to_transfer = 0;
1426 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1427 cvmx_usbcx_hccharx, epdir,
1428 ((header->bRequestType & USB_DIR_IN) ?
1429 CVMX_USB_DIRECTION_OUT :
1430 CVMX_USB_DIRECTION_IN));
1431 break;
1432 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1433 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1434 bytes_to_transfer = 0;
1435 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1436 cvmx_usbcx_hccharx, epdir,
1437 ((header->bRequestType & USB_DIR_IN) ?
1438 CVMX_USB_DIRECTION_OUT :
1439 CVMX_USB_DIRECTION_IN));
1440 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1441 cvmx_usbcx_hcspltx, compsplt, 1);
1442 break;
1443 }
1444
1445 /*
1446 * Make sure the transfer never exceeds the byte limit of the hardware.
1447 * Further bytes will be sent as continued transactions
1448 */
1449 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1450 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1451 bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1452 bytes_to_transfer *= pipe->max_packet;
1453 }
1454
1455 /*
1456 * Calculate the number of packets to transfer. If the length is zero
1457 * we still need to transfer one packet
1458 */
1459 packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1460 pipe->max_packet);
1461 if (packets_to_transfer == 0) {
1462 packets_to_transfer = 1;
1463 } else if ((packets_to_transfer > 1) &&
1464 (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1465 /*
1466 * Limit to one packet when not using DMA. Channels must be
1467 * restarted between every packet for IN transactions, so there
1468 * is no reason to do multiple packets in a row
1469 */
1470 packets_to_transfer = 1;
1471 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1472 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1473 /*
1474 * Limit the number of packet and data transferred to what the
1475 * hardware can handle
1476 */
1477 packets_to_transfer = MAX_TRANSFER_PACKETS;
1478 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1479 }
1480
1481 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1482 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1483
1484 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1485 usbc_hctsiz.u32);
1486 }
1487
1488 /**
1489 * Start a channel to perform the pipe's head transaction
1490 *
1491 * @usb: USB device state populated by cvmx_usb_initialize().
1492 * @channel: Channel to setup
1493 * @pipe: Pipe to start
1494 */
cvmx_usb_start_channel(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1495 static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1496 struct cvmx_usb_pipe *pipe)
1497 {
1498 struct cvmx_usb_transaction *transaction =
1499 list_first_entry(&pipe->transactions, typeof(*transaction),
1500 node);
1501
1502 /* Make sure all writes to the DMA region get flushed */
1503 CVMX_SYNCW;
1504
1505 /* Attach the channel to the pipe */
1506 usb->pipe_for_channel[channel] = pipe;
1507 pipe->channel = channel;
1508 pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1509
1510 /* Mark this channel as in use */
1511 usb->idle_hardware_channels &= ~(1 << channel);
1512
1513 /* Enable the channel interrupt bits */
1514 {
1515 union cvmx_usbcx_hcintx usbc_hcint;
1516 union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1517 union cvmx_usbcx_haintmsk usbc_haintmsk;
1518
1519 /* Clear all channel status bits */
1520 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1521 CVMX_USBCX_HCINTX(channel, usb->index));
1522
1523 cvmx_usb_write_csr32(usb,
1524 CVMX_USBCX_HCINTX(channel, usb->index),
1525 usbc_hcint.u32);
1526
1527 usbc_hcintmsk.u32 = 0;
1528 usbc_hcintmsk.s.chhltdmsk = 1;
1529 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1530 /*
1531 * Channels need these extra interrupts when we aren't
1532 * in DMA mode.
1533 */
1534 usbc_hcintmsk.s.datatglerrmsk = 1;
1535 usbc_hcintmsk.s.frmovrunmsk = 1;
1536 usbc_hcintmsk.s.bblerrmsk = 1;
1537 usbc_hcintmsk.s.xacterrmsk = 1;
1538 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1539 /*
1540 * Splits don't generate xfercompl, so we need
1541 * ACK and NYET.
1542 */
1543 usbc_hcintmsk.s.nyetmsk = 1;
1544 usbc_hcintmsk.s.ackmsk = 1;
1545 }
1546 usbc_hcintmsk.s.nakmsk = 1;
1547 usbc_hcintmsk.s.stallmsk = 1;
1548 usbc_hcintmsk.s.xfercomplmsk = 1;
1549 }
1550 cvmx_usb_write_csr32(usb,
1551 CVMX_USBCX_HCINTMSKX(channel, usb->index),
1552 usbc_hcintmsk.u32);
1553
1554 /* Enable the channel interrupt to propagate */
1555 usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1556 CVMX_USBCX_HAINTMSK(usb->index));
1557 usbc_haintmsk.s.haintmsk |= 1 << channel;
1558 cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1559 usbc_haintmsk.u32);
1560 }
1561
1562 /* Setup the location the DMA engine uses. */
1563 {
1564 u64 reg;
1565 u64 dma_address = transaction->buffer +
1566 transaction->actual_bytes;
1567
1568 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1569 dma_address = transaction->buffer +
1570 transaction->iso_packets[0].offset +
1571 transaction->actual_bytes;
1572
1573 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1574 reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1575 else
1576 reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1577 cvmx_write64_uint64(reg + channel * 8, dma_address);
1578 }
1579
1580 /* Setup both the size of the transfer and the SPLIT characteristics */
1581 {
1582 union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1583 union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1584 int packets_to_transfer;
1585 int bytes_to_transfer = transaction->buffer_length -
1586 transaction->actual_bytes;
1587
1588 /*
1589 * ISOCHRONOUS transactions store each individual transfer size
1590 * in the packet structure, not the global buffer_length
1591 */
1592 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1593 bytes_to_transfer =
1594 transaction->iso_packets[0].length -
1595 transaction->actual_bytes;
1596
1597 /*
1598 * We need to do split transactions when we are talking to non
1599 * high speed devices that are behind a high speed hub
1600 */
1601 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1602 /*
1603 * On the start split phase (stage is even) record the
1604 * frame number we will need to send the split complete.
1605 * We only store the lower two bits since the time ahead
1606 * can only be two frames
1607 */
1608 if ((transaction->stage & 1) == 0) {
1609 if (transaction->type == CVMX_USB_TRANSFER_BULK)
1610 pipe->split_sc_frame =
1611 (usb->frame_number + 1) & 0x7f;
1612 else
1613 pipe->split_sc_frame =
1614 (usb->frame_number + 2) & 0x7f;
1615 } else {
1616 pipe->split_sc_frame = -1;
1617 }
1618
1619 usbc_hcsplt.s.spltena = 1;
1620 usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1621 usbc_hcsplt.s.prtaddr = pipe->hub_port;
1622 usbc_hcsplt.s.compsplt = (transaction->stage ==
1623 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1624
1625 /*
1626 * SPLIT transactions can only ever transmit one data
1627 * packet so limit the transfer size to the max packet
1628 * size
1629 */
1630 if (bytes_to_transfer > pipe->max_packet)
1631 bytes_to_transfer = pipe->max_packet;
1632
1633 /*
1634 * ISOCHRONOUS OUT splits are unique in that they limit
1635 * data transfers to 188 byte chunks representing the
1636 * begin/middle/end of the data or all
1637 */
1638 if (!usbc_hcsplt.s.compsplt &&
1639 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1640 (pipe->transfer_type ==
1641 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1642 /*
1643 * Clear the split complete frame number as
1644 * there isn't going to be a split complete
1645 */
1646 pipe->split_sc_frame = -1;
1647 /*
1648 * See if we've started this transfer and sent
1649 * data
1650 */
1651 if (transaction->actual_bytes == 0) {
1652 /*
1653 * Nothing sent yet, this is either a
1654 * begin or the entire payload
1655 */
1656 if (bytes_to_transfer <= 188)
1657 /* Entire payload in one go */
1658 usbc_hcsplt.s.xactpos = 3;
1659 else
1660 /* First part of payload */
1661 usbc_hcsplt.s.xactpos = 2;
1662 } else {
1663 /*
1664 * Continuing the previous data, we must
1665 * either be in the middle or at the end
1666 */
1667 if (bytes_to_transfer <= 188)
1668 /* End of payload */
1669 usbc_hcsplt.s.xactpos = 1;
1670 else
1671 /* Middle of payload */
1672 usbc_hcsplt.s.xactpos = 0;
1673 }
1674 /*
1675 * Again, the transfer size is limited to 188
1676 * bytes
1677 */
1678 if (bytes_to_transfer > 188)
1679 bytes_to_transfer = 188;
1680 }
1681 }
1682
1683 /*
1684 * Make sure the transfer never exceeds the byte limit of the
1685 * hardware. Further bytes will be sent as continued
1686 * transactions
1687 */
1688 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1689 /*
1690 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1691 * size
1692 */
1693 bytes_to_transfer = MAX_TRANSFER_BYTES /
1694 pipe->max_packet;
1695 bytes_to_transfer *= pipe->max_packet;
1696 }
1697
1698 /*
1699 * Calculate the number of packets to transfer. If the length is
1700 * zero we still need to transfer one packet
1701 */
1702 packets_to_transfer =
1703 DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1704 if (packets_to_transfer == 0) {
1705 packets_to_transfer = 1;
1706 } else if ((packets_to_transfer > 1) &&
1707 (usb->init_flags &
1708 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1709 /*
1710 * Limit to one packet when not using DMA. Channels must
1711 * be restarted between every packet for IN
1712 * transactions, so there is no reason to do multiple
1713 * packets in a row
1714 */
1715 packets_to_transfer = 1;
1716 bytes_to_transfer = packets_to_transfer *
1717 pipe->max_packet;
1718 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1719 /*
1720 * Limit the number of packet and data transferred to
1721 * what the hardware can handle
1722 */
1723 packets_to_transfer = MAX_TRANSFER_PACKETS;
1724 bytes_to_transfer = packets_to_transfer *
1725 pipe->max_packet;
1726 }
1727
1728 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1729 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1730
1731 /* Update the DATA0/DATA1 toggle */
1732 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1733 /*
1734 * High speed pipes may need a hardware ping before they start
1735 */
1736 if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1737 usbc_hctsiz.s.dopng = 1;
1738
1739 cvmx_usb_write_csr32(usb,
1740 CVMX_USBCX_HCSPLTX(channel, usb->index),
1741 usbc_hcsplt.u32);
1742 cvmx_usb_write_csr32(usb,
1743 CVMX_USBCX_HCTSIZX(channel, usb->index),
1744 usbc_hctsiz.u32);
1745 }
1746
1747 /* Setup the Host Channel Characteristics Register */
1748 {
1749 union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1750
1751 /*
1752 * Set the startframe odd/even properly. This is only used for
1753 * periodic
1754 */
1755 usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1756
1757 /*
1758 * Set the number of back to back packets allowed by this
1759 * endpoint. Split transactions interpret "ec" as the number of
1760 * immediate retries of failure. These retries happen too
1761 * quickly, so we disable these entirely for splits
1762 */
1763 if (cvmx_usb_pipe_needs_split(usb, pipe))
1764 usbc_hcchar.s.ec = 1;
1765 else if (pipe->multi_count < 1)
1766 usbc_hcchar.s.ec = 1;
1767 else if (pipe->multi_count > 3)
1768 usbc_hcchar.s.ec = 3;
1769 else
1770 usbc_hcchar.s.ec = pipe->multi_count;
1771
1772 /* Set the rest of the endpoint specific settings */
1773 usbc_hcchar.s.devaddr = pipe->device_addr;
1774 usbc_hcchar.s.eptype = transaction->type;
1775 usbc_hcchar.s.lspddev =
1776 (pipe->device_speed == CVMX_USB_SPEED_LOW);
1777 usbc_hcchar.s.epdir = pipe->transfer_dir;
1778 usbc_hcchar.s.epnum = pipe->endpoint_num;
1779 usbc_hcchar.s.mps = pipe->max_packet;
1780 cvmx_usb_write_csr32(usb,
1781 CVMX_USBCX_HCCHARX(channel, usb->index),
1782 usbc_hcchar.u32);
1783 }
1784
1785 /* Do transaction type specific fixups as needed */
1786 switch (transaction->type) {
1787 case CVMX_USB_TRANSFER_CONTROL:
1788 cvmx_usb_start_channel_control(usb, channel, pipe);
1789 break;
1790 case CVMX_USB_TRANSFER_BULK:
1791 case CVMX_USB_TRANSFER_INTERRUPT:
1792 break;
1793 case CVMX_USB_TRANSFER_ISOCHRONOUS:
1794 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1795 /*
1796 * ISO transactions require different PIDs depending on
1797 * direction and how many packets are needed
1798 */
1799 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1800 if (pipe->multi_count < 2) /* Need DATA0 */
1801 USB_SET_FIELD32(
1802 CVMX_USBCX_HCTSIZX(channel,
1803 usb->index),
1804 cvmx_usbcx_hctsizx, pid, 0);
1805 else /* Need MDATA */
1806 USB_SET_FIELD32(
1807 CVMX_USBCX_HCTSIZX(channel,
1808 usb->index),
1809 cvmx_usbcx_hctsizx, pid, 3);
1810 }
1811 }
1812 break;
1813 }
1814 {
1815 union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1816 cvmx_usb_read_csr32(usb,
1817 CVMX_USBCX_HCTSIZX(channel,
1818 usb->index))
1819 };
1820 transaction->xfersize = usbc_hctsiz.s.xfersize;
1821 transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1822 }
1823 /* Remember when we start a split transaction */
1824 if (cvmx_usb_pipe_needs_split(usb, pipe))
1825 usb->active_split = transaction;
1826 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1827 cvmx_usbcx_hccharx, chena, 1);
1828 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1829 cvmx_usb_fill_tx_fifo(usb, channel);
1830 }
1831
1832 /**
1833 * Find a pipe that is ready to be scheduled to hardware.
1834 * @usb: USB device state populated by cvmx_usb_initialize().
1835 * @xfer_type: Transfer type
1836 *
1837 * Returns: Pipe or NULL if none are ready
1838 */
cvmx_usb_find_ready_pipe(struct octeon_hcd * usb,enum cvmx_usb_transfer xfer_type)1839 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1840 struct octeon_hcd *usb,
1841 enum cvmx_usb_transfer xfer_type)
1842 {
1843 struct list_head *list = usb->active_pipes + xfer_type;
1844 u64 current_frame = usb->frame_number;
1845 struct cvmx_usb_pipe *pipe;
1846
1847 list_for_each_entry(pipe, list, node) {
1848 struct cvmx_usb_transaction *t =
1849 list_first_entry(&pipe->transactions, typeof(*t),
1850 node);
1851 if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1852 (pipe->next_tx_frame <= current_frame) &&
1853 ((pipe->split_sc_frame == -1) ||
1854 ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1855 0x40)) &&
1856 (!usb->active_split || (usb->active_split == t))) {
1857 prefetch(t);
1858 return pipe;
1859 }
1860 }
1861 return NULL;
1862 }
1863
cvmx_usb_next_pipe(struct octeon_hcd * usb,int is_sof)1864 static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1865 int is_sof)
1866 {
1867 struct cvmx_usb_pipe *pipe;
1868
1869 /* Find a pipe needing service. */
1870 if (is_sof) {
1871 /*
1872 * Only process periodic pipes on SOF interrupts. This way we
1873 * are sure that the periodic data is sent in the beginning of
1874 * the frame.
1875 */
1876 pipe = cvmx_usb_find_ready_pipe(usb,
1877 CVMX_USB_TRANSFER_ISOCHRONOUS);
1878 if (pipe)
1879 return pipe;
1880 pipe = cvmx_usb_find_ready_pipe(usb,
1881 CVMX_USB_TRANSFER_INTERRUPT);
1882 if (pipe)
1883 return pipe;
1884 }
1885 pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1886 if (pipe)
1887 return pipe;
1888 return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1889 }
1890
1891 /**
1892 * Called whenever a pipe might need to be scheduled to the
1893 * hardware.
1894 *
1895 * @usb: USB device state populated by cvmx_usb_initialize().
1896 * @is_sof: True if this schedule was called on a SOF interrupt.
1897 */
cvmx_usb_schedule(struct octeon_hcd * usb,int is_sof)1898 static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1899 {
1900 int channel;
1901 struct cvmx_usb_pipe *pipe;
1902 int need_sof;
1903 enum cvmx_usb_transfer ttype;
1904
1905 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1906 /*
1907 * Without DMA we need to be careful to not schedule something
1908 * at the end of a frame and cause an overrun.
1909 */
1910 union cvmx_usbcx_hfnum hfnum = {
1911 .u32 = cvmx_usb_read_csr32(usb,
1912 CVMX_USBCX_HFNUM(usb->index))
1913 };
1914
1915 union cvmx_usbcx_hfir hfir = {
1916 .u32 = cvmx_usb_read_csr32(usb,
1917 CVMX_USBCX_HFIR(usb->index))
1918 };
1919
1920 if (hfnum.s.frrem < hfir.s.frint / 4)
1921 goto done;
1922 }
1923
1924 while (usb->idle_hardware_channels) {
1925 /* Find an idle channel */
1926 channel = __fls(usb->idle_hardware_channels);
1927 if (unlikely(channel > 7))
1928 break;
1929
1930 pipe = cvmx_usb_next_pipe(usb, is_sof);
1931 if (!pipe)
1932 break;
1933
1934 cvmx_usb_start_channel(usb, channel, pipe);
1935 }
1936
1937 done:
1938 /*
1939 * Only enable SOF interrupts when we have transactions pending in the
1940 * future that might need to be scheduled
1941 */
1942 need_sof = 0;
1943 for (ttype = CVMX_USB_TRANSFER_CONTROL;
1944 ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1945 list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1946 if (pipe->next_tx_frame > usb->frame_number) {
1947 need_sof = 1;
1948 break;
1949 }
1950 }
1951 }
1952 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1953 cvmx_usbcx_gintmsk, sofmsk, need_sof);
1954 }
1955
octeon_usb_urb_complete_callback(struct octeon_hcd * usb,enum cvmx_usb_status status,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int bytes_transferred,struct urb * urb)1956 static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1957 enum cvmx_usb_status status,
1958 struct cvmx_usb_pipe *pipe,
1959 struct cvmx_usb_transaction
1960 *transaction,
1961 int bytes_transferred,
1962 struct urb *urb)
1963 {
1964 struct usb_hcd *hcd = octeon_to_hcd(usb);
1965 struct device *dev = hcd->self.controller;
1966
1967 if (likely(status == CVMX_USB_STATUS_OK))
1968 urb->actual_length = bytes_transferred;
1969 else
1970 urb->actual_length = 0;
1971
1972 urb->hcpriv = NULL;
1973
1974 /* For Isochronous transactions we need to update the URB packet status
1975 * list from data in our private copy
1976 */
1977 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1978 int i;
1979 /*
1980 * The pointer to the private list is stored in the setup_packet
1981 * field.
1982 */
1983 struct cvmx_usb_iso_packet *iso_packet =
1984 (struct cvmx_usb_iso_packet *)urb->setup_packet;
1985 /* Recalculate the transfer size by adding up each packet */
1986 urb->actual_length = 0;
1987 for (i = 0; i < urb->number_of_packets; i++) {
1988 if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1989 urb->iso_frame_desc[i].status = 0;
1990 urb->iso_frame_desc[i].actual_length =
1991 iso_packet[i].length;
1992 urb->actual_length +=
1993 urb->iso_frame_desc[i].actual_length;
1994 } else {
1995 dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1996 i, urb->number_of_packets,
1997 iso_packet[i].status, pipe,
1998 transaction, iso_packet[i].length);
1999 urb->iso_frame_desc[i].status = -EREMOTEIO;
2000 }
2001 }
2002 /* Free the private list now that we don't need it anymore */
2003 kfree(iso_packet);
2004 urb->setup_packet = NULL;
2005 }
2006
2007 switch (status) {
2008 case CVMX_USB_STATUS_OK:
2009 urb->status = 0;
2010 break;
2011 case CVMX_USB_STATUS_CANCEL:
2012 if (urb->status == 0)
2013 urb->status = -ENOENT;
2014 break;
2015 case CVMX_USB_STATUS_STALL:
2016 dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2017 pipe, transaction, bytes_transferred);
2018 urb->status = -EPIPE;
2019 break;
2020 case CVMX_USB_STATUS_BABBLEERR:
2021 dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2022 pipe, transaction, bytes_transferred);
2023 urb->status = -EPIPE;
2024 break;
2025 case CVMX_USB_STATUS_SHORT:
2026 dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2027 pipe, transaction, bytes_transferred);
2028 urb->status = -EREMOTEIO;
2029 break;
2030 case CVMX_USB_STATUS_ERROR:
2031 case CVMX_USB_STATUS_XACTERR:
2032 case CVMX_USB_STATUS_DATATGLERR:
2033 case CVMX_USB_STATUS_FRAMEERR:
2034 dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2035 status, pipe, transaction, bytes_transferred);
2036 urb->status = -EPROTO;
2037 break;
2038 }
2039 usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2040 spin_unlock(&usb->lock);
2041 usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2042 spin_lock(&usb->lock);
2043 }
2044
2045 /**
2046 * Signal the completion of a transaction and free it. The
2047 * transaction will be removed from the pipe transaction list.
2048 *
2049 * @usb: USB device state populated by cvmx_usb_initialize().
2050 * @pipe: Pipe the transaction is on
2051 * @transaction:
2052 * Transaction that completed
2053 * @complete_code:
2054 * Completion code
2055 */
cvmx_usb_complete(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,enum cvmx_usb_status complete_code)2056 static void cvmx_usb_complete(struct octeon_hcd *usb,
2057 struct cvmx_usb_pipe *pipe,
2058 struct cvmx_usb_transaction *transaction,
2059 enum cvmx_usb_status complete_code)
2060 {
2061 /* If this was a split then clear our split in progress marker */
2062 if (usb->active_split == transaction)
2063 usb->active_split = NULL;
2064
2065 /*
2066 * Isochronous transactions need extra processing as they might not be
2067 * done after a single data transfer
2068 */
2069 if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2070 /* Update the number of bytes transferred in this ISO packet */
2071 transaction->iso_packets[0].length = transaction->actual_bytes;
2072 transaction->iso_packets[0].status = complete_code;
2073
2074 /*
2075 * If there are more ISOs pending and we succeeded, schedule the
2076 * next one
2077 */
2078 if ((transaction->iso_number_packets > 1) &&
2079 (complete_code == CVMX_USB_STATUS_OK)) {
2080 /* No bytes transferred for this packet as of yet */
2081 transaction->actual_bytes = 0;
2082 /* One less ISO waiting to transfer */
2083 transaction->iso_number_packets--;
2084 /* Increment to the next location in our packet array */
2085 transaction->iso_packets++;
2086 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2087 return;
2088 }
2089 }
2090
2091 /* Remove the transaction from the pipe list */
2092 list_del(&transaction->node);
2093 if (list_empty(&pipe->transactions))
2094 list_move_tail(&pipe->node, &usb->idle_pipes);
2095 octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2096 transaction,
2097 transaction->actual_bytes,
2098 transaction->urb);
2099 kfree(transaction);
2100 }
2101
2102 /**
2103 * Submit a usb transaction to a pipe. Called for all types
2104 * of transactions.
2105 *
2106 * @usb:
2107 * @pipe: Which pipe to submit to.
2108 * @type: Transaction type
2109 * @buffer: User buffer for the transaction
2110 * @buffer_length:
2111 * User buffer's length in bytes
2112 * @control_header:
2113 * For control transactions, the 8 byte standard header
2114 * @iso_start_frame:
2115 * For ISO transactions, the start frame
2116 * @iso_number_packets:
2117 * For ISO, the number of packet in the transaction.
2118 * @iso_packets:
2119 * A description of each ISO packet
2120 * @urb: URB for the callback
2121 *
2122 * Returns: Transaction or NULL on failure.
2123 */
cvmx_usb_submit_transaction(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,enum cvmx_usb_transfer type,u64 buffer,int buffer_length,u64 control_header,int iso_start_frame,int iso_number_packets,struct cvmx_usb_iso_packet * iso_packets,struct urb * urb)2124 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2125 struct octeon_hcd *usb,
2126 struct cvmx_usb_pipe *pipe,
2127 enum cvmx_usb_transfer type,
2128 u64 buffer,
2129 int buffer_length,
2130 u64 control_header,
2131 int iso_start_frame,
2132 int iso_number_packets,
2133 struct cvmx_usb_iso_packet *iso_packets,
2134 struct urb *urb)
2135 {
2136 struct cvmx_usb_transaction *transaction;
2137
2138 if (unlikely(pipe->transfer_type != type))
2139 return NULL;
2140
2141 transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2142 if (unlikely(!transaction))
2143 return NULL;
2144
2145 transaction->type = type;
2146 transaction->buffer = buffer;
2147 transaction->buffer_length = buffer_length;
2148 transaction->control_header = control_header;
2149 /* FIXME: This is not used, implement it. */
2150 transaction->iso_start_frame = iso_start_frame;
2151 transaction->iso_number_packets = iso_number_packets;
2152 transaction->iso_packets = iso_packets;
2153 transaction->urb = urb;
2154 if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2155 transaction->stage = CVMX_USB_STAGE_SETUP;
2156 else
2157 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2158
2159 if (!list_empty(&pipe->transactions)) {
2160 list_add_tail(&transaction->node, &pipe->transactions);
2161 } else {
2162 list_add_tail(&transaction->node, &pipe->transactions);
2163 list_move_tail(&pipe->node,
2164 &usb->active_pipes[pipe->transfer_type]);
2165
2166 /*
2167 * We may need to schedule the pipe if this was the head of the
2168 * pipe.
2169 */
2170 cvmx_usb_schedule(usb, 0);
2171 }
2172
2173 return transaction;
2174 }
2175
2176 /**
2177 * Call to submit a USB Bulk transfer to a pipe.
2178 *
2179 * @usb: USB device state populated by cvmx_usb_initialize().
2180 * @pipe: Handle to the pipe for the transfer.
2181 * @urb: URB.
2182 *
2183 * Returns: A submitted transaction or NULL on failure.
2184 */
cvmx_usb_submit_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2185 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2186 struct octeon_hcd *usb,
2187 struct cvmx_usb_pipe *pipe,
2188 struct urb *urb)
2189 {
2190 return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2191 urb->transfer_dma,
2192 urb->transfer_buffer_length,
2193 0, /* control_header */
2194 0, /* iso_start_frame */
2195 0, /* iso_number_packets */
2196 NULL, /* iso_packets */
2197 urb);
2198 }
2199
2200 /**
2201 * Call to submit a USB Interrupt transfer to a pipe.
2202 *
2203 * @usb: USB device state populated by cvmx_usb_initialize().
2204 * @pipe: Handle to the pipe for the transfer.
2205 * @urb: URB returned when the callback is called.
2206 *
2207 * Returns: A submitted transaction or NULL on failure.
2208 */
cvmx_usb_submit_interrupt(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2209 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2210 struct octeon_hcd *usb,
2211 struct cvmx_usb_pipe *pipe,
2212 struct urb *urb)
2213 {
2214 return cvmx_usb_submit_transaction(usb, pipe,
2215 CVMX_USB_TRANSFER_INTERRUPT,
2216 urb->transfer_dma,
2217 urb->transfer_buffer_length,
2218 0, /* control_header */
2219 0, /* iso_start_frame */
2220 0, /* iso_number_packets */
2221 NULL, /* iso_packets */
2222 urb);
2223 }
2224
2225 /**
2226 * Call to submit a USB Control transfer to a pipe.
2227 *
2228 * @usb: USB device state populated by cvmx_usb_initialize().
2229 * @pipe: Handle to the pipe for the transfer.
2230 * @urb: URB.
2231 *
2232 * Returns: A submitted transaction or NULL on failure.
2233 */
cvmx_usb_submit_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2234 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2235 struct octeon_hcd *usb,
2236 struct cvmx_usb_pipe *pipe,
2237 struct urb *urb)
2238 {
2239 int buffer_length = urb->transfer_buffer_length;
2240 u64 control_header = urb->setup_dma;
2241 struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2242
2243 if ((header->bRequestType & USB_DIR_IN) == 0)
2244 buffer_length = le16_to_cpu(header->wLength);
2245
2246 return cvmx_usb_submit_transaction(usb, pipe,
2247 CVMX_USB_TRANSFER_CONTROL,
2248 urb->transfer_dma, buffer_length,
2249 control_header,
2250 0, /* iso_start_frame */
2251 0, /* iso_number_packets */
2252 NULL, /* iso_packets */
2253 urb);
2254 }
2255
2256 /**
2257 * Call to submit a USB Isochronous transfer to a pipe.
2258 *
2259 * @usb: USB device state populated by cvmx_usb_initialize().
2260 * @pipe: Handle to the pipe for the transfer.
2261 * @urb: URB returned when the callback is called.
2262 *
2263 * Returns: A submitted transaction or NULL on failure.
2264 */
cvmx_usb_submit_isochronous(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2265 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2266 struct octeon_hcd *usb,
2267 struct cvmx_usb_pipe *pipe,
2268 struct urb *urb)
2269 {
2270 struct cvmx_usb_iso_packet *packets;
2271
2272 packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2273 return cvmx_usb_submit_transaction(usb, pipe,
2274 CVMX_USB_TRANSFER_ISOCHRONOUS,
2275 urb->transfer_dma,
2276 urb->transfer_buffer_length,
2277 0, /* control_header */
2278 urb->start_frame,
2279 urb->number_of_packets,
2280 packets, urb);
2281 }
2282
2283 /**
2284 * Cancel one outstanding request in a pipe. Canceling a request
2285 * can fail if the transaction has already completed before cancel
2286 * is called. Even after a successful cancel call, it may take
2287 * a frame or two for the cvmx_usb_poll() function to call the
2288 * associated callback.
2289 *
2290 * @usb: USB device state populated by cvmx_usb_initialize().
2291 * @pipe: Pipe to cancel requests in.
2292 * @transaction: Transaction to cancel, returned by the submit function.
2293 *
2294 * Returns: 0 or a negative error code.
2295 */
cvmx_usb_cancel(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction)2296 static int cvmx_usb_cancel(struct octeon_hcd *usb,
2297 struct cvmx_usb_pipe *pipe,
2298 struct cvmx_usb_transaction *transaction)
2299 {
2300 /*
2301 * If the transaction is the HEAD of the queue and scheduled. We need to
2302 * treat it special
2303 */
2304 if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2305 transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2306 union cvmx_usbcx_hccharx usbc_hcchar;
2307
2308 usb->pipe_for_channel[pipe->channel] = NULL;
2309 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2310
2311 CVMX_SYNCW;
2312
2313 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2314 CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2315 /*
2316 * If the channel isn't enabled then the transaction already
2317 * completed.
2318 */
2319 if (usbc_hcchar.s.chena) {
2320 usbc_hcchar.s.chdis = 1;
2321 cvmx_usb_write_csr32(usb,
2322 CVMX_USBCX_HCCHARX(pipe->channel,
2323 usb->index),
2324 usbc_hcchar.u32);
2325 }
2326 }
2327 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2328 return 0;
2329 }
2330
2331 /**
2332 * Cancel all outstanding requests in a pipe. Logically all this
2333 * does is call cvmx_usb_cancel() in a loop.
2334 *
2335 * @usb: USB device state populated by cvmx_usb_initialize().
2336 * @pipe: Pipe to cancel requests in.
2337 *
2338 * Returns: 0 or a negative error code.
2339 */
cvmx_usb_cancel_all(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2340 static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2341 struct cvmx_usb_pipe *pipe)
2342 {
2343 struct cvmx_usb_transaction *transaction, *next;
2344
2345 /* Simply loop through and attempt to cancel each transaction */
2346 list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2347 int result = cvmx_usb_cancel(usb, pipe, transaction);
2348
2349 if (unlikely(result != 0))
2350 return result;
2351 }
2352 return 0;
2353 }
2354
2355 /**
2356 * Close a pipe created with cvmx_usb_open_pipe().
2357 *
2358 * @usb: USB device state populated by cvmx_usb_initialize().
2359 * @pipe: Pipe to close.
2360 *
2361 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2362 * outstanding transfers.
2363 */
cvmx_usb_close_pipe(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2364 static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2365 struct cvmx_usb_pipe *pipe)
2366 {
2367 /* Fail if the pipe has pending transactions */
2368 if (!list_empty(&pipe->transactions))
2369 return -EBUSY;
2370
2371 list_del(&pipe->node);
2372 kfree(pipe);
2373
2374 return 0;
2375 }
2376
2377 /**
2378 * Get the current USB protocol level frame number. The frame
2379 * number is always in the range of 0-0x7ff.
2380 *
2381 * @usb: USB device state populated by cvmx_usb_initialize().
2382 *
2383 * Returns: USB frame number
2384 */
cvmx_usb_get_frame_number(struct octeon_hcd * usb)2385 static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2386 {
2387 union cvmx_usbcx_hfnum usbc_hfnum;
2388
2389 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2390
2391 return usbc_hfnum.s.frnum;
2392 }
2393
cvmx_usb_transfer_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hccharx usbc_hcchar,int buffer_space_left,int bytes_in_last_packet)2394 static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2395 struct cvmx_usb_pipe *pipe,
2396 struct cvmx_usb_transaction *transaction,
2397 union cvmx_usbcx_hccharx usbc_hcchar,
2398 int buffer_space_left,
2399 int bytes_in_last_packet)
2400 {
2401 switch (transaction->stage) {
2402 case CVMX_USB_STAGE_NON_CONTROL:
2403 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2404 /* This should be impossible */
2405 cvmx_usb_complete(usb, pipe, transaction,
2406 CVMX_USB_STATUS_ERROR);
2407 break;
2408 case CVMX_USB_STAGE_SETUP:
2409 pipe->pid_toggle = 1;
2410 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2411 transaction->stage =
2412 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2413 } else {
2414 struct usb_ctrlrequest *header =
2415 cvmx_phys_to_ptr(transaction->control_header);
2416 if (header->wLength)
2417 transaction->stage = CVMX_USB_STAGE_DATA;
2418 else
2419 transaction->stage = CVMX_USB_STAGE_STATUS;
2420 }
2421 break;
2422 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2423 {
2424 struct usb_ctrlrequest *header =
2425 cvmx_phys_to_ptr(transaction->control_header);
2426 if (header->wLength)
2427 transaction->stage = CVMX_USB_STAGE_DATA;
2428 else
2429 transaction->stage = CVMX_USB_STAGE_STATUS;
2430 }
2431 break;
2432 case CVMX_USB_STAGE_DATA:
2433 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2434 transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2435 /*
2436 * For setup OUT data that are splits,
2437 * the hardware doesn't appear to count
2438 * transferred data. Here we manually
2439 * update the data transferred
2440 */
2441 if (!usbc_hcchar.s.epdir) {
2442 if (buffer_space_left < pipe->max_packet)
2443 transaction->actual_bytes +=
2444 buffer_space_left;
2445 else
2446 transaction->actual_bytes +=
2447 pipe->max_packet;
2448 }
2449 } else if ((buffer_space_left == 0) ||
2450 (bytes_in_last_packet < pipe->max_packet)) {
2451 pipe->pid_toggle = 1;
2452 transaction->stage = CVMX_USB_STAGE_STATUS;
2453 }
2454 break;
2455 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2456 if ((buffer_space_left == 0) ||
2457 (bytes_in_last_packet < pipe->max_packet)) {
2458 pipe->pid_toggle = 1;
2459 transaction->stage = CVMX_USB_STAGE_STATUS;
2460 } else {
2461 transaction->stage = CVMX_USB_STAGE_DATA;
2462 }
2463 break;
2464 case CVMX_USB_STAGE_STATUS:
2465 if (cvmx_usb_pipe_needs_split(usb, pipe))
2466 transaction->stage =
2467 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2468 else
2469 cvmx_usb_complete(usb, pipe, transaction,
2470 CVMX_USB_STATUS_OK);
2471 break;
2472 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2473 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2474 break;
2475 }
2476 }
2477
cvmx_usb_transfer_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hcintx usbc_hcint,int buffer_space_left,int bytes_in_last_packet)2478 static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2479 struct cvmx_usb_pipe *pipe,
2480 struct cvmx_usb_transaction *transaction,
2481 union cvmx_usbcx_hcintx usbc_hcint,
2482 int buffer_space_left,
2483 int bytes_in_last_packet)
2484 {
2485 /*
2486 * The only time a bulk transfer isn't complete when it finishes with
2487 * an ACK is during a split transaction. For splits we need to continue
2488 * the transfer if more data is needed.
2489 */
2490 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2491 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2492 transaction->stage =
2493 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2494 else if (buffer_space_left &&
2495 (bytes_in_last_packet == pipe->max_packet))
2496 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2497 else
2498 cvmx_usb_complete(usb, pipe, transaction,
2499 CVMX_USB_STATUS_OK);
2500 } else {
2501 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2502 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2503 (usbc_hcint.s.nak))
2504 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2505 if (!buffer_space_left ||
2506 (bytes_in_last_packet < pipe->max_packet))
2507 cvmx_usb_complete(usb, pipe, transaction,
2508 CVMX_USB_STATUS_OK);
2509 }
2510 }
2511
cvmx_usb_transfer_intr(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet)2512 static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2513 struct cvmx_usb_pipe *pipe,
2514 struct cvmx_usb_transaction *transaction,
2515 int buffer_space_left,
2516 int bytes_in_last_packet)
2517 {
2518 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2519 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2520 transaction->stage =
2521 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2522 } else if (buffer_space_left &&
2523 (bytes_in_last_packet == pipe->max_packet)) {
2524 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2525 } else {
2526 pipe->next_tx_frame += pipe->interval;
2527 cvmx_usb_complete(usb, pipe, transaction,
2528 CVMX_USB_STATUS_OK);
2529 }
2530 } else if (!buffer_space_left ||
2531 (bytes_in_last_packet < pipe->max_packet)) {
2532 pipe->next_tx_frame += pipe->interval;
2533 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2534 }
2535 }
2536
cvmx_usb_transfer_isoc(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet,int bytes_this_transfer)2537 static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2538 struct cvmx_usb_pipe *pipe,
2539 struct cvmx_usb_transaction *transaction,
2540 int buffer_space_left,
2541 int bytes_in_last_packet,
2542 int bytes_this_transfer)
2543 {
2544 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2545 /*
2546 * ISOCHRONOUS OUT splits don't require a complete split stage.
2547 * Instead they use a sequence of begin OUT splits to transfer
2548 * the data 188 bytes at a time. Once the transfer is complete,
2549 * the pipe sleeps until the next schedule interval.
2550 */
2551 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2552 /*
2553 * If no space left or this wasn't a max size packet
2554 * then this transfer is complete. Otherwise start it
2555 * again to send the next 188 bytes
2556 */
2557 if (!buffer_space_left || (bytes_this_transfer < 188)) {
2558 pipe->next_tx_frame += pipe->interval;
2559 cvmx_usb_complete(usb, pipe, transaction,
2560 CVMX_USB_STATUS_OK);
2561 }
2562 return;
2563 }
2564 if (transaction->stage ==
2565 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2566 /*
2567 * We are in the incoming data phase. Keep getting data
2568 * until we run out of space or get a small packet
2569 */
2570 if ((buffer_space_left == 0) ||
2571 (bytes_in_last_packet < pipe->max_packet)) {
2572 pipe->next_tx_frame += pipe->interval;
2573 cvmx_usb_complete(usb, pipe, transaction,
2574 CVMX_USB_STATUS_OK);
2575 }
2576 } else {
2577 transaction->stage =
2578 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2579 }
2580 } else {
2581 pipe->next_tx_frame += pipe->interval;
2582 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2583 }
2584 }
2585
2586 /**
2587 * Poll a channel for status
2588 *
2589 * @usb: USB device
2590 * @channel: Channel to poll
2591 *
2592 * Returns: Zero on success
2593 */
cvmx_usb_poll_channel(struct octeon_hcd * usb,int channel)2594 static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2595 {
2596 struct usb_hcd *hcd = octeon_to_hcd(usb);
2597 struct device *dev = hcd->self.controller;
2598 union cvmx_usbcx_hcintx usbc_hcint;
2599 union cvmx_usbcx_hctsizx usbc_hctsiz;
2600 union cvmx_usbcx_hccharx usbc_hcchar;
2601 struct cvmx_usb_pipe *pipe;
2602 struct cvmx_usb_transaction *transaction;
2603 int bytes_this_transfer;
2604 int bytes_in_last_packet;
2605 int packets_processed;
2606 int buffer_space_left;
2607
2608 /* Read the interrupt status bits for the channel */
2609 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2610 CVMX_USBCX_HCINTX(channel, usb->index));
2611
2612 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2613 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2614 CVMX_USBCX_HCCHARX(channel, usb->index));
2615
2616 if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2617 /*
2618 * There seems to be a bug in CN31XX which can cause
2619 * interrupt IN transfers to get stuck until we do a
2620 * write of HCCHARX without changing things
2621 */
2622 cvmx_usb_write_csr32(usb,
2623 CVMX_USBCX_HCCHARX(channel,
2624 usb->index),
2625 usbc_hcchar.u32);
2626 return 0;
2627 }
2628
2629 /*
2630 * In non DMA mode the channels don't halt themselves. We need
2631 * to manually disable channels that are left running
2632 */
2633 if (!usbc_hcint.s.chhltd) {
2634 if (usbc_hcchar.s.chena) {
2635 union cvmx_usbcx_hcintmskx hcintmsk;
2636 /* Disable all interrupts except CHHLTD */
2637 hcintmsk.u32 = 0;
2638 hcintmsk.s.chhltdmsk = 1;
2639 cvmx_usb_write_csr32(usb,
2640 CVMX_USBCX_HCINTMSKX(channel, usb->index),
2641 hcintmsk.u32);
2642 usbc_hcchar.s.chdis = 1;
2643 cvmx_usb_write_csr32(usb,
2644 CVMX_USBCX_HCCHARX(channel, usb->index),
2645 usbc_hcchar.u32);
2646 return 0;
2647 } else if (usbc_hcint.s.xfercompl) {
2648 /*
2649 * Successful IN/OUT with transfer complete.
2650 * Channel halt isn't needed.
2651 */
2652 } else {
2653 dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2654 usb->index, channel);
2655 return 0;
2656 }
2657 }
2658 } else {
2659 /*
2660 * There is are no interrupts that we need to process when the
2661 * channel is still running
2662 */
2663 if (!usbc_hcint.s.chhltd)
2664 return 0;
2665 }
2666
2667 /* Disable the channel interrupts now that it is done */
2668 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2669 usb->idle_hardware_channels |= (1 << channel);
2670
2671 /* Make sure this channel is tied to a valid pipe */
2672 pipe = usb->pipe_for_channel[channel];
2673 prefetch(pipe);
2674 if (!pipe)
2675 return 0;
2676 transaction = list_first_entry(&pipe->transactions,
2677 typeof(*transaction),
2678 node);
2679 prefetch(transaction);
2680
2681 /*
2682 * Disconnect this pipe from the HW channel. Later the schedule
2683 * function will figure out which pipe needs to go
2684 */
2685 usb->pipe_for_channel[channel] = NULL;
2686 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2687
2688 /*
2689 * Read the channel config info so we can figure out how much data
2690 * transferred
2691 */
2692 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2693 CVMX_USBCX_HCCHARX(channel, usb->index));
2694 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2695 CVMX_USBCX_HCTSIZX(channel, usb->index));
2696
2697 /*
2698 * Calculating the number of bytes successfully transferred is dependent
2699 * on the transfer direction
2700 */
2701 packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2702 if (usbc_hcchar.s.epdir) {
2703 /*
2704 * IN transactions are easy. For every byte received the
2705 * hardware decrements xfersize. All we need to do is subtract
2706 * the current value of xfersize from its starting value and we
2707 * know how many bytes were written to the buffer
2708 */
2709 bytes_this_transfer = transaction->xfersize -
2710 usbc_hctsiz.s.xfersize;
2711 } else {
2712 /*
2713 * OUT transaction don't decrement xfersize. Instead pktcnt is
2714 * decremented on every successful packet send. The hardware
2715 * does this when it receives an ACK, or NYET. If it doesn't
2716 * receive one of these responses pktcnt doesn't change
2717 */
2718 bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2719 /*
2720 * The last packet may not be a full transfer if we didn't have
2721 * enough data
2722 */
2723 if (bytes_this_transfer > transaction->xfersize)
2724 bytes_this_transfer = transaction->xfersize;
2725 }
2726 /* Figure out how many bytes were in the last packet of the transfer */
2727 if (packets_processed)
2728 bytes_in_last_packet = bytes_this_transfer -
2729 (packets_processed - 1) * usbc_hcchar.s.mps;
2730 else
2731 bytes_in_last_packet = bytes_this_transfer;
2732
2733 /*
2734 * As a special case, setup transactions output the setup header, not
2735 * the user's data. For this reason we don't count setup data as bytes
2736 * transferred
2737 */
2738 if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2739 (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2740 bytes_this_transfer = 0;
2741
2742 /*
2743 * Add the bytes transferred to the running total. It is important that
2744 * bytes_this_transfer doesn't count any data that needs to be
2745 * retransmitted
2746 */
2747 transaction->actual_bytes += bytes_this_transfer;
2748 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2749 buffer_space_left = transaction->iso_packets[0].length -
2750 transaction->actual_bytes;
2751 else
2752 buffer_space_left = transaction->buffer_length -
2753 transaction->actual_bytes;
2754
2755 /*
2756 * We need to remember the PID toggle state for the next transaction.
2757 * The hardware already updated it for the next transaction
2758 */
2759 pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2760
2761 /*
2762 * For high speed bulk out, assume the next transaction will need to do
2763 * a ping before proceeding. If this isn't true the ACK processing below
2764 * will clear this flag
2765 */
2766 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2767 (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2768 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2769 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2770
2771 if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
2772 /*
2773 * In some rare cases the DMA engine seems to get stuck and
2774 * keeps substracting same byte count over and over again. In
2775 * such case we just need to fail every transaction.
2776 */
2777 cvmx_usb_complete(usb, pipe, transaction,
2778 CVMX_USB_STATUS_ERROR);
2779 return 0;
2780 }
2781
2782 if (usbc_hcint.s.stall) {
2783 /*
2784 * STALL as a response means this transaction cannot be
2785 * completed because the device can't process transactions. Tell
2786 * the user. Any data that was transferred will be counted on
2787 * the actual bytes transferred
2788 */
2789 pipe->pid_toggle = 0;
2790 cvmx_usb_complete(usb, pipe, transaction,
2791 CVMX_USB_STATUS_STALL);
2792 } else if (usbc_hcint.s.xacterr) {
2793 /*
2794 * XactErr as a response means the device signaled
2795 * something wrong with the transfer. For example, PID
2796 * toggle errors cause these.
2797 */
2798 cvmx_usb_complete(usb, pipe, transaction,
2799 CVMX_USB_STATUS_XACTERR);
2800 } else if (usbc_hcint.s.bblerr) {
2801 /* Babble Error (BblErr) */
2802 cvmx_usb_complete(usb, pipe, transaction,
2803 CVMX_USB_STATUS_BABBLEERR);
2804 } else if (usbc_hcint.s.datatglerr) {
2805 /* Data toggle error */
2806 cvmx_usb_complete(usb, pipe, transaction,
2807 CVMX_USB_STATUS_DATATGLERR);
2808 } else if (usbc_hcint.s.nyet) {
2809 /*
2810 * NYET as a response is only allowed in three cases: as a
2811 * response to a ping, as a response to a split transaction, and
2812 * as a response to a bulk out. The ping case is handled by
2813 * hardware, so we only have splits and bulk out
2814 */
2815 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2816 transaction->retries = 0;
2817 /*
2818 * If there is more data to go then we need to try
2819 * again. Otherwise this transaction is complete
2820 */
2821 if ((buffer_space_left == 0) ||
2822 (bytes_in_last_packet < pipe->max_packet))
2823 cvmx_usb_complete(usb, pipe,
2824 transaction,
2825 CVMX_USB_STATUS_OK);
2826 } else {
2827 /*
2828 * Split transactions retry the split complete 4 times
2829 * then rewind to the start split and do the entire
2830 * transactions again
2831 */
2832 transaction->retries++;
2833 if ((transaction->retries & 0x3) == 0) {
2834 /*
2835 * Rewind to the beginning of the transaction by
2836 * anding off the split complete bit
2837 */
2838 transaction->stage &= ~1;
2839 pipe->split_sc_frame = -1;
2840 }
2841 }
2842 } else if (usbc_hcint.s.ack) {
2843 transaction->retries = 0;
2844 /*
2845 * The ACK bit can only be checked after the other error bits.
2846 * This is because a multi packet transfer may succeed in a
2847 * number of packets and then get a different response on the
2848 * last packet. In this case both ACK and the last response bit
2849 * will be set. If none of the other response bits is set, then
2850 * the last packet must have been an ACK
2851 *
2852 * Since we got an ACK, we know we don't need to do a ping on
2853 * this pipe
2854 */
2855 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2856
2857 switch (transaction->type) {
2858 case CVMX_USB_TRANSFER_CONTROL:
2859 cvmx_usb_transfer_control(usb, pipe, transaction,
2860 usbc_hcchar,
2861 buffer_space_left,
2862 bytes_in_last_packet);
2863 break;
2864 case CVMX_USB_TRANSFER_BULK:
2865 cvmx_usb_transfer_bulk(usb, pipe, transaction,
2866 usbc_hcint, buffer_space_left,
2867 bytes_in_last_packet);
2868 break;
2869 case CVMX_USB_TRANSFER_INTERRUPT:
2870 cvmx_usb_transfer_intr(usb, pipe, transaction,
2871 buffer_space_left,
2872 bytes_in_last_packet);
2873 break;
2874 case CVMX_USB_TRANSFER_ISOCHRONOUS:
2875 cvmx_usb_transfer_isoc(usb, pipe, transaction,
2876 buffer_space_left,
2877 bytes_in_last_packet,
2878 bytes_this_transfer);
2879 break;
2880 }
2881 } else if (usbc_hcint.s.nak) {
2882 /*
2883 * If this was a split then clear our split in progress marker.
2884 */
2885 if (usb->active_split == transaction)
2886 usb->active_split = NULL;
2887 /*
2888 * NAK as a response means the device couldn't accept the
2889 * transaction, but it should be retried in the future. Rewind
2890 * to the beginning of the transaction by anding off the split
2891 * complete bit. Retry in the next interval
2892 */
2893 transaction->retries = 0;
2894 transaction->stage &= ~1;
2895 pipe->next_tx_frame += pipe->interval;
2896 if (pipe->next_tx_frame < usb->frame_number)
2897 pipe->next_tx_frame = usb->frame_number +
2898 pipe->interval -
2899 (usb->frame_number - pipe->next_tx_frame) %
2900 pipe->interval;
2901 } else {
2902 struct cvmx_usb_port_status port;
2903
2904 port = cvmx_usb_get_status(usb);
2905 if (port.port_enabled) {
2906 /* We'll retry the exact same transaction again */
2907 transaction->retries++;
2908 } else {
2909 /*
2910 * We get channel halted interrupts with no result bits
2911 * sets when the cable is unplugged
2912 */
2913 cvmx_usb_complete(usb, pipe, transaction,
2914 CVMX_USB_STATUS_ERROR);
2915 }
2916 }
2917 return 0;
2918 }
2919
octeon_usb_port_callback(struct octeon_hcd * usb)2920 static void octeon_usb_port_callback(struct octeon_hcd *usb)
2921 {
2922 spin_unlock(&usb->lock);
2923 usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2924 spin_lock(&usb->lock);
2925 }
2926
2927 /**
2928 * Poll the USB block for status and call all needed callback
2929 * handlers. This function is meant to be called in the interrupt
2930 * handler for the USB controller. It can also be called
2931 * periodically in a loop for non-interrupt based operation.
2932 *
2933 * @usb: USB device state populated by cvmx_usb_initialize().
2934 *
2935 * Returns: 0 or a negative error code.
2936 */
cvmx_usb_poll(struct octeon_hcd * usb)2937 static int cvmx_usb_poll(struct octeon_hcd *usb)
2938 {
2939 union cvmx_usbcx_hfnum usbc_hfnum;
2940 union cvmx_usbcx_gintsts usbc_gintsts;
2941
2942 prefetch_range(usb, sizeof(*usb));
2943
2944 /* Update the frame counter */
2945 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2946 if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2947 usb->frame_number += 0x4000;
2948 usb->frame_number &= ~0x3fffull;
2949 usb->frame_number |= usbc_hfnum.s.frnum;
2950
2951 /* Read the pending interrupts */
2952 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2953 CVMX_USBCX_GINTSTS(usb->index));
2954
2955 /* Clear the interrupts now that we know about them */
2956 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2957 usbc_gintsts.u32);
2958
2959 if (usbc_gintsts.s.rxflvl) {
2960 /*
2961 * RxFIFO Non-Empty (RxFLvl)
2962 * Indicates that there is at least one packet pending to be
2963 * read from the RxFIFO.
2964 *
2965 * In DMA mode this is handled by hardware
2966 */
2967 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2968 cvmx_usb_poll_rx_fifo(usb);
2969 }
2970 if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2971 /* Fill the Tx FIFOs when not in DMA mode */
2972 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2973 cvmx_usb_poll_tx_fifo(usb);
2974 }
2975 if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2976 union cvmx_usbcx_hprt usbc_hprt;
2977 /*
2978 * Disconnect Detected Interrupt (DisconnInt)
2979 * Asserted when a device disconnect is detected.
2980 *
2981 * Host Port Interrupt (PrtInt)
2982 * The core sets this bit to indicate a change in port status of
2983 * one of the O2P USB core ports in Host mode. The application
2984 * must read the Host Port Control and Status (HPRT) register to
2985 * determine the exact event that caused this interrupt. The
2986 * application must clear the appropriate status bit in the Host
2987 * Port Control and Status register to clear this bit.
2988 *
2989 * Call the user's port callback
2990 */
2991 octeon_usb_port_callback(usb);
2992 /* Clear the port change bits */
2993 usbc_hprt.u32 =
2994 cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2995 usbc_hprt.s.prtena = 0;
2996 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2997 usbc_hprt.u32);
2998 }
2999 if (usbc_gintsts.s.hchint) {
3000 /*
3001 * Host Channels Interrupt (HChInt)
3002 * The core sets this bit to indicate that an interrupt is
3003 * pending on one of the channels of the core (in Host mode).
3004 * The application must read the Host All Channels Interrupt
3005 * (HAINT) register to determine the exact number of the channel
3006 * on which the interrupt occurred, and then read the
3007 * corresponding Host Channel-n Interrupt (HCINTn) register to
3008 * determine the exact cause of the interrupt. The application
3009 * must clear the appropriate status bit in the HCINTn register
3010 * to clear this bit.
3011 */
3012 union cvmx_usbcx_haint usbc_haint;
3013
3014 usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3015 CVMX_USBCX_HAINT(usb->index));
3016 while (usbc_haint.u32) {
3017 int channel;
3018
3019 channel = __fls(usbc_haint.u32);
3020 cvmx_usb_poll_channel(usb, channel);
3021 usbc_haint.u32 ^= 1 << channel;
3022 }
3023 }
3024
3025 cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3026
3027 return 0;
3028 }
3029
3030 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
hcd_to_octeon(struct usb_hcd * hcd)3031 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3032 {
3033 return (struct octeon_hcd *)(hcd->hcd_priv);
3034 }
3035
octeon_usb_irq(struct usb_hcd * hcd)3036 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3037 {
3038 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3039 unsigned long flags;
3040
3041 spin_lock_irqsave(&usb->lock, flags);
3042 cvmx_usb_poll(usb);
3043 spin_unlock_irqrestore(&usb->lock, flags);
3044 return IRQ_HANDLED;
3045 }
3046
octeon_usb_start(struct usb_hcd * hcd)3047 static int octeon_usb_start(struct usb_hcd *hcd)
3048 {
3049 hcd->state = HC_STATE_RUNNING;
3050 return 0;
3051 }
3052
octeon_usb_stop(struct usb_hcd * hcd)3053 static void octeon_usb_stop(struct usb_hcd *hcd)
3054 {
3055 hcd->state = HC_STATE_HALT;
3056 }
3057
octeon_usb_get_frame_number(struct usb_hcd * hcd)3058 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3059 {
3060 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3061
3062 return cvmx_usb_get_frame_number(usb);
3063 }
3064
octeon_usb_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3065 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3066 struct urb *urb,
3067 gfp_t mem_flags)
3068 {
3069 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3070 struct device *dev = hcd->self.controller;
3071 struct cvmx_usb_transaction *transaction = NULL;
3072 struct cvmx_usb_pipe *pipe;
3073 unsigned long flags;
3074 struct cvmx_usb_iso_packet *iso_packet;
3075 struct usb_host_endpoint *ep = urb->ep;
3076 int rc;
3077
3078 urb->status = 0;
3079 spin_lock_irqsave(&usb->lock, flags);
3080
3081 rc = usb_hcd_link_urb_to_ep(hcd, urb);
3082 if (rc) {
3083 spin_unlock_irqrestore(&usb->lock, flags);
3084 return rc;
3085 }
3086
3087 if (!ep->hcpriv) {
3088 enum cvmx_usb_transfer transfer_type;
3089 enum cvmx_usb_speed speed;
3090 int split_device = 0;
3091 int split_port = 0;
3092
3093 switch (usb_pipetype(urb->pipe)) {
3094 case PIPE_ISOCHRONOUS:
3095 transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3096 break;
3097 case PIPE_INTERRUPT:
3098 transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3099 break;
3100 case PIPE_CONTROL:
3101 transfer_type = CVMX_USB_TRANSFER_CONTROL;
3102 break;
3103 default:
3104 transfer_type = CVMX_USB_TRANSFER_BULK;
3105 break;
3106 }
3107 switch (urb->dev->speed) {
3108 case USB_SPEED_LOW:
3109 speed = CVMX_USB_SPEED_LOW;
3110 break;
3111 case USB_SPEED_FULL:
3112 speed = CVMX_USB_SPEED_FULL;
3113 break;
3114 default:
3115 speed = CVMX_USB_SPEED_HIGH;
3116 break;
3117 }
3118 /*
3119 * For slow devices on high speed ports we need to find the hub
3120 * that does the speed translation so we know where to send the
3121 * split transactions.
3122 */
3123 if (speed != CVMX_USB_SPEED_HIGH) {
3124 /*
3125 * Start at this device and work our way up the usb
3126 * tree.
3127 */
3128 struct usb_device *dev = urb->dev;
3129
3130 while (dev->parent) {
3131 /*
3132 * If our parent is high speed then he'll
3133 * receive the splits.
3134 */
3135 if (dev->parent->speed == USB_SPEED_HIGH) {
3136 split_device = dev->parent->devnum;
3137 split_port = dev->portnum;
3138 break;
3139 }
3140 /*
3141 * Move up the tree one level. If we make it all
3142 * the way up the tree, then the port must not
3143 * be in high speed mode and we don't need a
3144 * split.
3145 */
3146 dev = dev->parent;
3147 }
3148 }
3149 pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3150 usb_pipeendpoint(urb->pipe), speed,
3151 le16_to_cpu(ep->desc.wMaxPacketSize)
3152 & 0x7ff,
3153 transfer_type,
3154 usb_pipein(urb->pipe) ?
3155 CVMX_USB_DIRECTION_IN :
3156 CVMX_USB_DIRECTION_OUT,
3157 urb->interval,
3158 (le16_to_cpu(ep->desc.wMaxPacketSize)
3159 >> 11) & 0x3,
3160 split_device, split_port);
3161 if (!pipe) {
3162 usb_hcd_unlink_urb_from_ep(hcd, urb);
3163 spin_unlock_irqrestore(&usb->lock, flags);
3164 dev_dbg(dev, "Failed to create pipe\n");
3165 return -ENOMEM;
3166 }
3167 ep->hcpriv = pipe;
3168 } else {
3169 pipe = ep->hcpriv;
3170 }
3171
3172 switch (usb_pipetype(urb->pipe)) {
3173 case PIPE_ISOCHRONOUS:
3174 dev_dbg(dev, "Submit isochronous to %d.%d\n",
3175 usb_pipedevice(urb->pipe),
3176 usb_pipeendpoint(urb->pipe));
3177 /*
3178 * Allocate a structure to use for our private list of
3179 * isochronous packets.
3180 */
3181 iso_packet = kmalloc_array(urb->number_of_packets,
3182 sizeof(struct cvmx_usb_iso_packet),
3183 GFP_ATOMIC);
3184 if (iso_packet) {
3185 int i;
3186 /* Fill the list with the data from the URB */
3187 for (i = 0; i < urb->number_of_packets; i++) {
3188 iso_packet[i].offset =
3189 urb->iso_frame_desc[i].offset;
3190 iso_packet[i].length =
3191 urb->iso_frame_desc[i].length;
3192 iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3193 }
3194 /*
3195 * Store a pointer to the list in the URB setup_packet
3196 * field. We know this currently isn't being used and
3197 * this saves us a bunch of logic.
3198 */
3199 urb->setup_packet = (char *)iso_packet;
3200 transaction = cvmx_usb_submit_isochronous(usb,
3201 pipe, urb);
3202 /*
3203 * If submit failed we need to free our private packet
3204 * list.
3205 */
3206 if (!transaction) {
3207 urb->setup_packet = NULL;
3208 kfree(iso_packet);
3209 }
3210 }
3211 break;
3212 case PIPE_INTERRUPT:
3213 dev_dbg(dev, "Submit interrupt to %d.%d\n",
3214 usb_pipedevice(urb->pipe),
3215 usb_pipeendpoint(urb->pipe));
3216 transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3217 break;
3218 case PIPE_CONTROL:
3219 dev_dbg(dev, "Submit control to %d.%d\n",
3220 usb_pipedevice(urb->pipe),
3221 usb_pipeendpoint(urb->pipe));
3222 transaction = cvmx_usb_submit_control(usb, pipe, urb);
3223 break;
3224 case PIPE_BULK:
3225 dev_dbg(dev, "Submit bulk to %d.%d\n",
3226 usb_pipedevice(urb->pipe),
3227 usb_pipeendpoint(urb->pipe));
3228 transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3229 break;
3230 }
3231 if (!transaction) {
3232 usb_hcd_unlink_urb_from_ep(hcd, urb);
3233 spin_unlock_irqrestore(&usb->lock, flags);
3234 dev_dbg(dev, "Failed to submit\n");
3235 return -ENOMEM;
3236 }
3237 urb->hcpriv = transaction;
3238 spin_unlock_irqrestore(&usb->lock, flags);
3239 return 0;
3240 }
3241
octeon_usb_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3242 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3243 struct urb *urb,
3244 int status)
3245 {
3246 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3247 unsigned long flags;
3248 int rc;
3249
3250 if (!urb->dev)
3251 return -EINVAL;
3252
3253 spin_lock_irqsave(&usb->lock, flags);
3254
3255 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3256 if (rc)
3257 goto out;
3258
3259 urb->status = status;
3260 cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3261
3262 out:
3263 spin_unlock_irqrestore(&usb->lock, flags);
3264
3265 return rc;
3266 }
3267
octeon_usb_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3268 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3269 struct usb_host_endpoint *ep)
3270 {
3271 struct device *dev = hcd->self.controller;
3272
3273 if (ep->hcpriv) {
3274 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3275 struct cvmx_usb_pipe *pipe = ep->hcpriv;
3276 unsigned long flags;
3277
3278 spin_lock_irqsave(&usb->lock, flags);
3279 cvmx_usb_cancel_all(usb, pipe);
3280 if (cvmx_usb_close_pipe(usb, pipe))
3281 dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3282 spin_unlock_irqrestore(&usb->lock, flags);
3283 ep->hcpriv = NULL;
3284 }
3285 }
3286
octeon_usb_hub_status_data(struct usb_hcd * hcd,char * buf)3287 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3288 {
3289 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3290 struct cvmx_usb_port_status port_status;
3291 unsigned long flags;
3292
3293 spin_lock_irqsave(&usb->lock, flags);
3294 port_status = cvmx_usb_get_status(usb);
3295 spin_unlock_irqrestore(&usb->lock, flags);
3296 buf[0] = port_status.connect_change << 1;
3297
3298 return buf[0] != 0;
3299 }
3300
octeon_usb_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3301 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3302 u16 wIndex, char *buf, u16 wLength)
3303 {
3304 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3305 struct device *dev = hcd->self.controller;
3306 struct cvmx_usb_port_status usb_port_status;
3307 int port_status;
3308 struct usb_hub_descriptor *desc;
3309 unsigned long flags;
3310
3311 switch (typeReq) {
3312 case ClearHubFeature:
3313 dev_dbg(dev, "ClearHubFeature\n");
3314 switch (wValue) {
3315 case C_HUB_LOCAL_POWER:
3316 case C_HUB_OVER_CURRENT:
3317 /* Nothing required here */
3318 break;
3319 default:
3320 return -EINVAL;
3321 }
3322 break;
3323 case ClearPortFeature:
3324 dev_dbg(dev, "ClearPortFeature\n");
3325 if (wIndex != 1) {
3326 dev_dbg(dev, " INVALID\n");
3327 return -EINVAL;
3328 }
3329
3330 switch (wValue) {
3331 case USB_PORT_FEAT_ENABLE:
3332 dev_dbg(dev, " ENABLE\n");
3333 spin_lock_irqsave(&usb->lock, flags);
3334 cvmx_usb_disable(usb);
3335 spin_unlock_irqrestore(&usb->lock, flags);
3336 break;
3337 case USB_PORT_FEAT_SUSPEND:
3338 dev_dbg(dev, " SUSPEND\n");
3339 /* Not supported on Octeon */
3340 break;
3341 case USB_PORT_FEAT_POWER:
3342 dev_dbg(dev, " POWER\n");
3343 /* Not supported on Octeon */
3344 break;
3345 case USB_PORT_FEAT_INDICATOR:
3346 dev_dbg(dev, " INDICATOR\n");
3347 /* Port inidicator not supported */
3348 break;
3349 case USB_PORT_FEAT_C_CONNECTION:
3350 dev_dbg(dev, " C_CONNECTION\n");
3351 /* Clears drivers internal connect status change flag */
3352 spin_lock_irqsave(&usb->lock, flags);
3353 usb->port_status = cvmx_usb_get_status(usb);
3354 spin_unlock_irqrestore(&usb->lock, flags);
3355 break;
3356 case USB_PORT_FEAT_C_RESET:
3357 dev_dbg(dev, " C_RESET\n");
3358 /*
3359 * Clears the driver's internal Port Reset Change flag.
3360 */
3361 spin_lock_irqsave(&usb->lock, flags);
3362 usb->port_status = cvmx_usb_get_status(usb);
3363 spin_unlock_irqrestore(&usb->lock, flags);
3364 break;
3365 case USB_PORT_FEAT_C_ENABLE:
3366 dev_dbg(dev, " C_ENABLE\n");
3367 /*
3368 * Clears the driver's internal Port Enable/Disable
3369 * Change flag.
3370 */
3371 spin_lock_irqsave(&usb->lock, flags);
3372 usb->port_status = cvmx_usb_get_status(usb);
3373 spin_unlock_irqrestore(&usb->lock, flags);
3374 break;
3375 case USB_PORT_FEAT_C_SUSPEND:
3376 dev_dbg(dev, " C_SUSPEND\n");
3377 /*
3378 * Clears the driver's internal Port Suspend Change
3379 * flag, which is set when resume signaling on the host
3380 * port is complete.
3381 */
3382 break;
3383 case USB_PORT_FEAT_C_OVER_CURRENT:
3384 dev_dbg(dev, " C_OVER_CURRENT\n");
3385 /* Clears the driver's overcurrent Change flag */
3386 spin_lock_irqsave(&usb->lock, flags);
3387 usb->port_status = cvmx_usb_get_status(usb);
3388 spin_unlock_irqrestore(&usb->lock, flags);
3389 break;
3390 default:
3391 dev_dbg(dev, " UNKNOWN\n");
3392 return -EINVAL;
3393 }
3394 break;
3395 case GetHubDescriptor:
3396 dev_dbg(dev, "GetHubDescriptor\n");
3397 desc = (struct usb_hub_descriptor *)buf;
3398 desc->bDescLength = 9;
3399 desc->bDescriptorType = 0x29;
3400 desc->bNbrPorts = 1;
3401 desc->wHubCharacteristics = cpu_to_le16(0x08);
3402 desc->bPwrOn2PwrGood = 1;
3403 desc->bHubContrCurrent = 0;
3404 desc->u.hs.DeviceRemovable[0] = 0;
3405 desc->u.hs.DeviceRemovable[1] = 0xff;
3406 break;
3407 case GetHubStatus:
3408 dev_dbg(dev, "GetHubStatus\n");
3409 *(__le32 *)buf = 0;
3410 break;
3411 case GetPortStatus:
3412 dev_dbg(dev, "GetPortStatus\n");
3413 if (wIndex != 1) {
3414 dev_dbg(dev, " INVALID\n");
3415 return -EINVAL;
3416 }
3417
3418 spin_lock_irqsave(&usb->lock, flags);
3419 usb_port_status = cvmx_usb_get_status(usb);
3420 spin_unlock_irqrestore(&usb->lock, flags);
3421 port_status = 0;
3422
3423 if (usb_port_status.connect_change) {
3424 port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3425 dev_dbg(dev, " C_CONNECTION\n");
3426 }
3427
3428 if (usb_port_status.port_enabled) {
3429 port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3430 dev_dbg(dev, " C_ENABLE\n");
3431 }
3432
3433 if (usb_port_status.connected) {
3434 port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3435 dev_dbg(dev, " CONNECTION\n");
3436 }
3437
3438 if (usb_port_status.port_enabled) {
3439 port_status |= (1 << USB_PORT_FEAT_ENABLE);
3440 dev_dbg(dev, " ENABLE\n");
3441 }
3442
3443 if (usb_port_status.port_over_current) {
3444 port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3445 dev_dbg(dev, " OVER_CURRENT\n");
3446 }
3447
3448 if (usb_port_status.port_powered) {
3449 port_status |= (1 << USB_PORT_FEAT_POWER);
3450 dev_dbg(dev, " POWER\n");
3451 }
3452
3453 if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3454 port_status |= USB_PORT_STAT_HIGH_SPEED;
3455 dev_dbg(dev, " HIGHSPEED\n");
3456 } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3457 port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3458 dev_dbg(dev, " LOWSPEED\n");
3459 }
3460
3461 *((__le32 *)buf) = cpu_to_le32(port_status);
3462 break;
3463 case SetHubFeature:
3464 dev_dbg(dev, "SetHubFeature\n");
3465 /* No HUB features supported */
3466 break;
3467 case SetPortFeature:
3468 dev_dbg(dev, "SetPortFeature\n");
3469 if (wIndex != 1) {
3470 dev_dbg(dev, " INVALID\n");
3471 return -EINVAL;
3472 }
3473
3474 switch (wValue) {
3475 case USB_PORT_FEAT_SUSPEND:
3476 dev_dbg(dev, " SUSPEND\n");
3477 return -EINVAL;
3478 case USB_PORT_FEAT_POWER:
3479 dev_dbg(dev, " POWER\n");
3480 /*
3481 * Program the port power bit to drive VBUS on the USB.
3482 */
3483 spin_lock_irqsave(&usb->lock, flags);
3484 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3485 cvmx_usbcx_hprt, prtpwr, 1);
3486 spin_unlock_irqrestore(&usb->lock, flags);
3487 return 0;
3488 case USB_PORT_FEAT_RESET:
3489 dev_dbg(dev, " RESET\n");
3490 spin_lock_irqsave(&usb->lock, flags);
3491 cvmx_usb_reset_port(usb);
3492 spin_unlock_irqrestore(&usb->lock, flags);
3493 return 0;
3494 case USB_PORT_FEAT_INDICATOR:
3495 dev_dbg(dev, " INDICATOR\n");
3496 /* Not supported */
3497 break;
3498 default:
3499 dev_dbg(dev, " UNKNOWN\n");
3500 return -EINVAL;
3501 }
3502 break;
3503 default:
3504 dev_dbg(dev, "Unknown root hub request\n");
3505 return -EINVAL;
3506 }
3507 return 0;
3508 }
3509
3510 static const struct hc_driver octeon_hc_driver = {
3511 .description = "Octeon USB",
3512 .product_desc = "Octeon Host Controller",
3513 .hcd_priv_size = sizeof(struct octeon_hcd),
3514 .irq = octeon_usb_irq,
3515 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
3516 .start = octeon_usb_start,
3517 .stop = octeon_usb_stop,
3518 .urb_enqueue = octeon_usb_urb_enqueue,
3519 .urb_dequeue = octeon_usb_urb_dequeue,
3520 .endpoint_disable = octeon_usb_endpoint_disable,
3521 .get_frame_number = octeon_usb_get_frame_number,
3522 .hub_status_data = octeon_usb_hub_status_data,
3523 .hub_control = octeon_usb_hub_control,
3524 .map_urb_for_dma = octeon_map_urb_for_dma,
3525 .unmap_urb_for_dma = octeon_unmap_urb_for_dma,
3526 };
3527
octeon_usb_probe(struct platform_device * pdev)3528 static int octeon_usb_probe(struct platform_device *pdev)
3529 {
3530 int status;
3531 int initialize_flags;
3532 int usb_num;
3533 struct resource *res_mem;
3534 struct device_node *usbn_node;
3535 int irq = platform_get_irq(pdev, 0);
3536 struct device *dev = &pdev->dev;
3537 struct octeon_hcd *usb;
3538 struct usb_hcd *hcd;
3539 u32 clock_rate = 48000000;
3540 bool is_crystal_clock = false;
3541 const char *clock_type;
3542 int i;
3543
3544 if (!dev->of_node) {
3545 dev_err(dev, "Error: empty of_node\n");
3546 return -ENXIO;
3547 }
3548 usbn_node = dev->of_node->parent;
3549
3550 i = of_property_read_u32(usbn_node,
3551 "clock-frequency", &clock_rate);
3552 if (i)
3553 i = of_property_read_u32(usbn_node,
3554 "refclk-frequency", &clock_rate);
3555 if (i) {
3556 dev_err(dev, "No USBN \"clock-frequency\"\n");
3557 return -ENXIO;
3558 }
3559 switch (clock_rate) {
3560 case 12000000:
3561 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3562 break;
3563 case 24000000:
3564 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3565 break;
3566 case 48000000:
3567 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3568 break;
3569 default:
3570 dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3571 clock_rate);
3572 return -ENXIO;
3573 }
3574
3575 i = of_property_read_string(usbn_node,
3576 "cavium,refclk-type", &clock_type);
3577 if (i)
3578 i = of_property_read_string(usbn_node,
3579 "refclk-type", &clock_type);
3580
3581 if (!i && strcmp("crystal", clock_type) == 0)
3582 is_crystal_clock = true;
3583
3584 if (is_crystal_clock)
3585 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3586 else
3587 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3588
3589 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3590 if (!res_mem) {
3591 dev_err(dev, "found no memory resource\n");
3592 return -ENXIO;
3593 }
3594 usb_num = (res_mem->start >> 44) & 1;
3595
3596 if (irq < 0) {
3597 /* Defective device tree, but we know how to fix it. */
3598 irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3599
3600 irq = irq_create_mapping(NULL, hwirq);
3601 }
3602
3603 /*
3604 * Set the DMA mask to 64bits so we get buffers already translated for
3605 * DMA.
3606 */
3607 i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
3608 if (i)
3609 return i;
3610
3611 /*
3612 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3613 * IOB priority registers. Under heavy network load USB
3614 * hardware can be starved by the IOB causing a crash. Give
3615 * it a priority boost if it has been waiting more than 400
3616 * cycles to avoid this situation.
3617 *
3618 * Testing indicates that a cnt_val of 8192 is not sufficient,
3619 * but no failures are seen with 4096. We choose a value of
3620 * 400 to give a safety factor of 10.
3621 */
3622 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3623 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3624
3625 pri_cnt.u64 = 0;
3626 pri_cnt.s.cnt_enb = 1;
3627 pri_cnt.s.cnt_val = 400;
3628 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3629 }
3630
3631 hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3632 if (!hcd) {
3633 dev_dbg(dev, "Failed to allocate memory for HCD\n");
3634 return -1;
3635 }
3636 hcd->uses_new_polling = 1;
3637 usb = (struct octeon_hcd *)hcd->hcd_priv;
3638
3639 spin_lock_init(&usb->lock);
3640
3641 usb->init_flags = initialize_flags;
3642
3643 /* Initialize the USB state structure */
3644 usb->index = usb_num;
3645 INIT_LIST_HEAD(&usb->idle_pipes);
3646 for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3647 INIT_LIST_HEAD(&usb->active_pipes[i]);
3648
3649 /* Due to an errata, CN31XX doesn't support DMA */
3650 if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3651 usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3652 /* Only use one channel with non DMA */
3653 usb->idle_hardware_channels = 0x1;
3654 } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3655 /* CN5XXX have an errata with channel 3 */
3656 usb->idle_hardware_channels = 0xf7;
3657 } else {
3658 usb->idle_hardware_channels = 0xff;
3659 }
3660
3661 status = cvmx_usb_initialize(dev, usb);
3662 if (status) {
3663 dev_dbg(dev, "USB initialization failed with %d\n", status);
3664 usb_put_hcd(hcd);
3665 return -1;
3666 }
3667
3668 status = usb_add_hcd(hcd, irq, 0);
3669 if (status) {
3670 dev_dbg(dev, "USB add HCD failed with %d\n", status);
3671 usb_put_hcd(hcd);
3672 return -1;
3673 }
3674 device_wakeup_enable(hcd->self.controller);
3675
3676 dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3677
3678 return 0;
3679 }
3680
octeon_usb_remove(struct platform_device * pdev)3681 static int octeon_usb_remove(struct platform_device *pdev)
3682 {
3683 int status;
3684 struct device *dev = &pdev->dev;
3685 struct usb_hcd *hcd = dev_get_drvdata(dev);
3686 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3687 unsigned long flags;
3688
3689 usb_remove_hcd(hcd);
3690 spin_lock_irqsave(&usb->lock, flags);
3691 status = cvmx_usb_shutdown(usb);
3692 spin_unlock_irqrestore(&usb->lock, flags);
3693 if (status)
3694 dev_dbg(dev, "USB shutdown failed with %d\n", status);
3695
3696 usb_put_hcd(hcd);
3697
3698 return 0;
3699 }
3700
3701 static const struct of_device_id octeon_usb_match[] = {
3702 {
3703 .compatible = "cavium,octeon-5750-usbc",
3704 },
3705 {},
3706 };
3707 MODULE_DEVICE_TABLE(of, octeon_usb_match);
3708
3709 static struct platform_driver octeon_usb_driver = {
3710 .driver = {
3711 .name = "octeon-hcd",
3712 .of_match_table = octeon_usb_match,
3713 },
3714 .probe = octeon_usb_probe,
3715 .remove = octeon_usb_remove,
3716 };
3717
octeon_usb_driver_init(void)3718 static int __init octeon_usb_driver_init(void)
3719 {
3720 if (usb_disabled())
3721 return 0;
3722
3723 return platform_driver_register(&octeon_usb_driver);
3724 }
3725 module_init(octeon_usb_driver_init);
3726
octeon_usb_driver_exit(void)3727 static void __exit octeon_usb_driver_exit(void)
3728 {
3729 if (usb_disabled())
3730 return;
3731
3732 platform_driver_unregister(&octeon_usb_driver);
3733 }
3734 module_exit(octeon_usb_driver_exit);
3735
3736 MODULE_LICENSE("GPL");
3737 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3738 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3739