1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is subject to the terms and conditions of the GNU General Public
4  * License.  See the file "COPYING" in the main directory of this archive
5  * for more details.
6  *
7  * Copyright (C) 2008 Cavium Networks
8  *
9  * Some parts of the code were originally released under BSD license:
10  *
11  * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12  * reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions are
16  * met:
17  *
18  *   * Redistributions of source code must retain the above copyright
19  *     notice, this list of conditions and the following disclaimer.
20  *
21  *   * Redistributions in binary form must reproduce the above
22  *     copyright notice, this list of conditions and the following
23  *     disclaimer in the documentation and/or other materials provided
24  *     with the distribution.
25  *
26  *   * Neither the name of Cavium Networks nor the names of
27  *     its contributors may be used to endorse or promote products
28  *     derived from this software without specific prior written
29  *     permission.
30  *
31  * This Software, including technical data, may be subject to U.S. export
32  * control laws, including the U.S. Export Administration Act and its associated
33  * regulations, and may be subject to export or import regulations in other
34  * countries.
35  *
36  * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37  * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38  * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39  * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40  * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41  * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42  * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43  * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44  * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45  * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
46  */
47 
48 #include <linux/usb.h>
49 #include <linux/slab.h>
50 #include <linux/module.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/prefetch.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/platform_device.h>
55 
56 #include <asm/octeon/octeon.h>
57 
58 #include "octeon-hcd.h"
59 
60 /**
61  * enum cvmx_usb_speed - the possible USB device speeds
62  *
63  * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
64  * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
65  * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps
66  */
67 enum cvmx_usb_speed {
68 	CVMX_USB_SPEED_HIGH = 0,
69 	CVMX_USB_SPEED_FULL = 1,
70 	CVMX_USB_SPEED_LOW = 2,
71 };
72 
73 /**
74  * enum cvmx_usb_transfer - the possible USB transfer types
75  *
76  * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status
77  *				   transfers
78  * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
79  *				   priority periodic transfers
80  * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority
81  *				   transfers
82  * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority
83  *				   periodic transfers
84  */
85 enum cvmx_usb_transfer {
86 	CVMX_USB_TRANSFER_CONTROL = 0,
87 	CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
88 	CVMX_USB_TRANSFER_BULK = 2,
89 	CVMX_USB_TRANSFER_INTERRUPT = 3,
90 };
91 
92 /**
93  * enum cvmx_usb_direction - the transfer directions
94  *
95  * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
96  * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon
97  */
98 enum cvmx_usb_direction {
99 	CVMX_USB_DIRECTION_OUT,
100 	CVMX_USB_DIRECTION_IN,
101 };
102 
103 /**
104  * enum cvmx_usb_status - possible callback function status codes
105  *
106  * @CVMX_USB_STATUS_OK:		  The transaction / operation finished without
107  *				  any errors
108  * @CVMX_USB_STATUS_SHORT:	  FIXME: This is currently not implemented
109  * @CVMX_USB_STATUS_CANCEL:	  The transaction was canceled while in flight
110  *				  by a user call to cvmx_usb_cancel
111  * @CVMX_USB_STATUS_ERROR:	  The transaction aborted with an unexpected
112  *				  error status
113  * @CVMX_USB_STATUS_STALL:	  The transaction received a USB STALL response
114  *				  from the device
115  * @CVMX_USB_STATUS_XACTERR:	  The transaction failed with an error from the
116  *				  device even after a number of retries
117  * @CVMX_USB_STATUS_DATATGLERR:	  The transaction failed with a data toggle
118  *				  error even after a number of retries
119  * @CVMX_USB_STATUS_BABBLEERR:	  The transaction failed with a babble error
120  * @CVMX_USB_STATUS_FRAMEERR:	  The transaction failed with a frame error
121  *				  even after a number of retries
122  */
123 enum cvmx_usb_status {
124 	CVMX_USB_STATUS_OK,
125 	CVMX_USB_STATUS_SHORT,
126 	CVMX_USB_STATUS_CANCEL,
127 	CVMX_USB_STATUS_ERROR,
128 	CVMX_USB_STATUS_STALL,
129 	CVMX_USB_STATUS_XACTERR,
130 	CVMX_USB_STATUS_DATATGLERR,
131 	CVMX_USB_STATUS_BABBLEERR,
132 	CVMX_USB_STATUS_FRAMEERR,
133 };
134 
135 /**
136  * struct cvmx_usb_port_status - the USB port status information
137  *
138  * @port_enabled:	1 = Usb port is enabled, 0 = disabled
139  * @port_over_current:	1 = Over current detected, 0 = Over current not
140  *			detected. Octeon doesn't support over current detection.
141  * @port_powered:	1 = Port power is being supplied to the device, 0 =
142  *			power is off. Octeon doesn't support turning port power
143  *			off.
144  * @port_speed:		Current port speed.
145  * @connected:		1 = A device is connected to the port, 0 = No device is
146  *			connected.
147  * @connect_change:	1 = Device connected state changed since the last set
148  *			status call.
149  */
150 struct cvmx_usb_port_status {
151 	u32 reserved			: 25;
152 	u32 port_enabled		: 1;
153 	u32 port_over_current		: 1;
154 	u32 port_powered		: 1;
155 	enum cvmx_usb_speed port_speed	: 2;
156 	u32 connected			: 1;
157 	u32 connect_change		: 1;
158 };
159 
160 /**
161  * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
162  *
163  * @offset:	This is the offset in bytes into the main buffer where this data
164  *		is stored.
165  * @length:	This is the length in bytes of the data.
166  * @status:	This is the status of this individual packet transfer.
167  */
168 struct cvmx_usb_iso_packet {
169 	int offset;
170 	int length;
171 	enum cvmx_usb_status status;
172 };
173 
174 /**
175  * enum cvmx_usb_initialize_flags - flags used by the initialization function
176  *
177  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal
178  *					      as clock source at USB_XO and
179  *					      USB_XI.
180  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V
181  *					      board clock source at USB_XO.
182  *					      USB_XI should be tied to GND.
183  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
184  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or
185  *					      crystal
186  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock
187  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock
188  * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for
189  *					      data transfer use for the USB
190  */
191 enum cvmx_usb_initialize_flags {
192 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0,
193 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1,
194 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3,
195 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3,
196 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3,
197 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3,
198 	/* Bits 3-4 used to encode the clock frequency */
199 	CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5,
200 };
201 
202 /**
203  * enum cvmx_usb_pipe_flags - internal flags for a pipe.
204  *
205  * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
206  *				   actively using hardware.
207  * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
208  *				   pipe is in the ping state.
209  */
210 enum cvmx_usb_pipe_flags {
211 	CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17,
212 	CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18,
213 };
214 
215 /* Maximum number of times to retry failed transactions */
216 #define MAX_RETRIES		3
217 
218 /* Maximum number of hardware channels supported by the USB block */
219 #define MAX_CHANNELS		8
220 
221 /*
222  * The low level hardware can transfer a maximum of this number of bytes in each
223  * transfer. The field is 19 bits wide
224  */
225 #define MAX_TRANSFER_BYTES	((1 << 19) - 1)
226 
227 /*
228  * The low level hardware can transfer a maximum of this number of packets in
229  * each transfer. The field is 10 bits wide
230  */
231 #define MAX_TRANSFER_PACKETS	((1 << 10) - 1)
232 
233 /**
234  * Logical transactions may take numerous low level
235  * transactions, especially when splits are concerned. This
236  * enum represents all of the possible stages a transaction can
237  * be in. Note that split completes are always even. This is so
238  * the NAK handler can backup to the previous low level
239  * transaction with a simple clearing of bit 0.
240  */
241 enum cvmx_usb_stage {
242 	CVMX_USB_STAGE_NON_CONTROL,
243 	CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
244 	CVMX_USB_STAGE_SETUP,
245 	CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
246 	CVMX_USB_STAGE_DATA,
247 	CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
248 	CVMX_USB_STAGE_STATUS,
249 	CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
250 };
251 
252 /**
253  * struct cvmx_usb_transaction - describes each pending USB transaction
254  *				 regardless of type. These are linked together
255  *				 to form a list of pending requests for a pipe.
256  *
257  * @node:		List node for transactions in the pipe.
258  * @type:		Type of transaction, duplicated of the pipe.
259  * @flags:		State flags for this transaction.
260  * @buffer:		User's physical buffer address to read/write.
261  * @buffer_length:	Size of the user's buffer in bytes.
262  * @control_header:	For control transactions, physical address of the 8
263  *			byte standard header.
264  * @iso_start_frame:	For ISO transactions, the starting frame number.
265  * @iso_number_packets:	For ISO transactions, the number of packets in the
266  *			request.
267  * @iso_packets:	For ISO transactions, the sub packets in the request.
268  * @actual_bytes:	Actual bytes transfer for this transaction.
269  * @stage:		For control transactions, the current stage.
270  * @urb:		URB.
271  */
272 struct cvmx_usb_transaction {
273 	struct list_head node;
274 	enum cvmx_usb_transfer type;
275 	u64 buffer;
276 	int buffer_length;
277 	u64 control_header;
278 	int iso_start_frame;
279 	int iso_number_packets;
280 	struct cvmx_usb_iso_packet *iso_packets;
281 	int xfersize;
282 	int pktcnt;
283 	int retries;
284 	int actual_bytes;
285 	enum cvmx_usb_stage stage;
286 	struct urb *urb;
287 };
288 
289 /**
290  * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
291  *			  and some USB device. It contains a list of pending
292  *			  request to the device.
293  *
294  * @node:		List node for pipe list
295  * @next:		Pipe after this one in the list
296  * @transactions:	List of pending transactions
297  * @interval:		For periodic pipes, the interval between packets in
298  *			frames
299  * @next_tx_frame:	The next frame this pipe is allowed to transmit on
300  * @flags:		State flags for this pipe
301  * @device_speed:	Speed of device connected to this pipe
302  * @transfer_type:	Type of transaction supported by this pipe
303  * @transfer_dir:	IN or OUT. Ignored for Control
304  * @multi_count:	Max packet in a row for the device
305  * @max_packet:		The device's maximum packet size in bytes
306  * @device_addr:	USB device address at other end of pipe
307  * @endpoint_num:	USB endpoint number at other end of pipe
308  * @hub_device_addr:	Hub address this device is connected to
309  * @hub_port:		Hub port this device is connected to
310  * @pid_toggle:		This toggles between 0/1 on every packet send to track
311  *			the data pid needed
312  * @channel:		Hardware DMA channel for this pipe
313  * @split_sc_frame:	The low order bits of the frame number the split
314  *			complete should be sent on
315  */
316 struct cvmx_usb_pipe {
317 	struct list_head node;
318 	struct list_head transactions;
319 	u64 interval;
320 	u64 next_tx_frame;
321 	enum cvmx_usb_pipe_flags flags;
322 	enum cvmx_usb_speed device_speed;
323 	enum cvmx_usb_transfer transfer_type;
324 	enum cvmx_usb_direction transfer_dir;
325 	int multi_count;
326 	u16 max_packet;
327 	u8 device_addr;
328 	u8 endpoint_num;
329 	u8 hub_device_addr;
330 	u8 hub_port;
331 	u8 pid_toggle;
332 	u8 channel;
333 	s8 split_sc_frame;
334 };
335 
336 struct cvmx_usb_tx_fifo {
337 	struct {
338 		int channel;
339 		int size;
340 		u64 address;
341 	} entry[MAX_CHANNELS + 1];
342 	int head;
343 	int tail;
344 };
345 
346 /**
347  * struct octeon_hcd - the state of the USB block
348  *
349  * lock:		   Serialization lock.
350  * init_flags:		   Flags passed to initialize.
351  * index:		   Which USB block this is for.
352  * idle_hardware_channels: Bit set for every idle hardware channel.
353  * usbcx_hprt:		   Stored port status so we don't need to read a CSR to
354  *			   determine splits.
355  * pipe_for_channel:	   Map channels to pipes.
356  * pipe:		   Storage for pipes.
357  * indent:		   Used by debug output to indent functions.
358  * port_status:		   Last port status used for change notification.
359  * idle_pipes:		   List of open pipes that have no transactions.
360  * active_pipes:	   Active pipes indexed by transfer type.
361  * frame_number:	   Increments every SOF interrupt for time keeping.
362  * active_split:	   Points to the current active split, or NULL.
363  */
364 struct octeon_hcd {
365 	spinlock_t lock; /* serialization lock */
366 	int init_flags;
367 	int index;
368 	int idle_hardware_channels;
369 	union cvmx_usbcx_hprt usbcx_hprt;
370 	struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
371 	int indent;
372 	struct cvmx_usb_port_status port_status;
373 	struct list_head idle_pipes;
374 	struct list_head active_pipes[4];
375 	u64 frame_number;
376 	struct cvmx_usb_transaction *active_split;
377 	struct cvmx_usb_tx_fifo periodic;
378 	struct cvmx_usb_tx_fifo nonperiodic;
379 };
380 
381 /*
382  * This macro logically sets a single field in a CSR. It does the sequence
383  * read, modify, and write
384  */
385 #define USB_SET_FIELD32(address, _union, field, value)		\
386 	do {							\
387 		union _union c;					\
388 								\
389 		c.u32 = cvmx_usb_read_csr32(usb, address);	\
390 		c.s.field = value;				\
391 		cvmx_usb_write_csr32(usb, address, c.u32);	\
392 	} while (0)
393 
394 /* Returns the IO address to push/pop stuff data from the FIFOs */
395 #define USB_FIFO_ADDRESS(channel, usb_index) \
396 	(CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
397 
398 /**
399  * struct octeon_temp_buffer - a bounce buffer for USB transfers
400  * @orig_buffer: the original buffer passed by the USB stack
401  * @data:	 the newly allocated temporary buffer (excluding meta-data)
402  *
403  * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
404  * the buffer is too short, we need to allocate a temporary one, and this struct
405  * represents it.
406  */
407 struct octeon_temp_buffer {
408 	void *orig_buffer;
409 	u8 data[0];
410 };
411 
octeon_to_hcd(struct octeon_hcd * p)412 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
413 {
414 	return container_of((void *)p, struct usb_hcd, hcd_priv);
415 }
416 
417 /**
418  * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
419  *                            (if needed)
420  * @urb:	URB.
421  * @mem_flags:	Memory allocation flags.
422  *
423  * This function allocates a temporary bounce buffer whenever it's needed
424  * due to HW limitations.
425  */
octeon_alloc_temp_buffer(struct urb * urb,gfp_t mem_flags)426 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
427 {
428 	struct octeon_temp_buffer *temp;
429 
430 	if (urb->num_sgs || urb->sg ||
431 	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
432 	    !(urb->transfer_buffer_length % sizeof(u32)))
433 		return 0;
434 
435 	temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
436 		       sizeof(*temp), mem_flags);
437 	if (!temp)
438 		return -ENOMEM;
439 
440 	temp->orig_buffer = urb->transfer_buffer;
441 	if (usb_urb_dir_out(urb))
442 		memcpy(temp->data, urb->transfer_buffer,
443 		       urb->transfer_buffer_length);
444 	urb->transfer_buffer = temp->data;
445 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
446 
447 	return 0;
448 }
449 
450 /**
451  * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
452  * @urb: URB.
453  *
454  * Frees a buffer allocated by octeon_alloc_temp_buffer().
455  */
octeon_free_temp_buffer(struct urb * urb)456 static void octeon_free_temp_buffer(struct urb *urb)
457 {
458 	struct octeon_temp_buffer *temp;
459 	size_t length;
460 
461 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
462 		return;
463 
464 	temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
465 			    data);
466 	if (usb_urb_dir_in(urb)) {
467 		if (usb_pipeisoc(urb->pipe))
468 			length = urb->transfer_buffer_length;
469 		else
470 			length = urb->actual_length;
471 
472 		memcpy(temp->orig_buffer, urb->transfer_buffer, length);
473 	}
474 	urb->transfer_buffer = temp->orig_buffer;
475 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
476 	kfree(temp);
477 }
478 
479 /**
480  * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
481  * @hcd:	USB HCD structure.
482  * @urb:	URB.
483  * @mem_flags:	Memory allocation flags.
484  */
octeon_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)485 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
486 				  gfp_t mem_flags)
487 {
488 	int ret;
489 
490 	ret = octeon_alloc_temp_buffer(urb, mem_flags);
491 	if (ret)
492 		return ret;
493 
494 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
495 	if (ret)
496 		octeon_free_temp_buffer(urb);
497 
498 	return ret;
499 }
500 
501 /**
502  * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
503  * @hcd:	USB HCD structure.
504  * @urb:	URB.
505  */
octeon_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)506 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
507 {
508 	usb_hcd_unmap_urb_for_dma(hcd, urb);
509 	octeon_free_temp_buffer(urb);
510 }
511 
512 /**
513  * Read a USB 32bit CSR. It performs the necessary address swizzle
514  * for 32bit CSRs and logs the value in a readable format if
515  * debugging is on.
516  *
517  * @usb:     USB block this access is for
518  * @address: 64bit address to read
519  *
520  * Returns: Result of the read
521  */
cvmx_usb_read_csr32(struct octeon_hcd * usb,u64 address)522 static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
523 {
524 	return cvmx_read64_uint32(address ^ 4);
525 }
526 
527 /**
528  * Write a USB 32bit CSR. It performs the necessary address
529  * swizzle for 32bit CSRs and logs the value in a readable format
530  * if debugging is on.
531  *
532  * @usb:     USB block this access is for
533  * @address: 64bit address to write
534  * @value:   Value to write
535  */
cvmx_usb_write_csr32(struct octeon_hcd * usb,u64 address,u32 value)536 static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
537 					u64 address, u32 value)
538 {
539 	cvmx_write64_uint32(address ^ 4, value);
540 	cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
541 }
542 
543 /**
544  * Return non zero if this pipe connects to a non HIGH speed
545  * device through a high speed hub.
546  *
547  * @usb:    USB block this access is for
548  * @pipe:   Pipe to check
549  *
550  * Returns: Non zero if we need to do split transactions
551  */
cvmx_usb_pipe_needs_split(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)552 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
553 					    struct cvmx_usb_pipe *pipe)
554 {
555 	return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
556 	       usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
557 }
558 
559 /**
560  * Trivial utility function to return the correct PID for a pipe
561  *
562  * @pipe:   pipe to check
563  *
564  * Returns: PID for pipe
565  */
cvmx_usb_get_data_pid(struct cvmx_usb_pipe * pipe)566 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
567 {
568 	if (pipe->pid_toggle)
569 		return 2; /* Data1 */
570 	return 0; /* Data0 */
571 }
572 
573 /* Loops through register until txfflsh or rxfflsh become zero.*/
cvmx_wait_tx_rx(struct octeon_hcd * usb,int fflsh_type)574 static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
575 {
576 	int result;
577 	u64 address = CVMX_USBCX_GRSTCTL(usb->index);
578 	u64 done = cvmx_get_cycle() + 100 *
579 		   (u64)octeon_get_clock_rate / 1000000;
580 	union cvmx_usbcx_grstctl c;
581 
582 	while (1) {
583 		c.u32 = cvmx_usb_read_csr32(usb, address);
584 		if (fflsh_type == 0 && c.s.txfflsh == 0) {
585 			result = 0;
586 			break;
587 		} else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
588 			result = 0;
589 			break;
590 		} else if (cvmx_get_cycle() > done) {
591 			result = -1;
592 			break;
593 		}
594 
595 		__delay(100);
596 	}
597 	return result;
598 }
599 
cvmx_fifo_setup(struct octeon_hcd * usb)600 static void cvmx_fifo_setup(struct octeon_hcd *usb)
601 {
602 	union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
603 	union cvmx_usbcx_gnptxfsiz npsiz;
604 	union cvmx_usbcx_hptxfsiz psiz;
605 
606 	usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
607 						CVMX_USBCX_GHWCFG3(usb->index));
608 
609 	/*
610 	 * Program the USBC_GRXFSIZ register to select the size of the receive
611 	 * FIFO (25%).
612 	 */
613 	USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
614 			rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
615 
616 	/*
617 	 * Program the USBC_GNPTXFSIZ register to select the size and the start
618 	 * address of the non-periodic transmit FIFO for nonperiodic
619 	 * transactions (50%).
620 	 */
621 	npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
622 	npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
623 	npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
624 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
625 
626 	/*
627 	 * Program the USBC_HPTXFSIZ register to select the size and start
628 	 * address of the periodic transmit FIFO for periodic transactions
629 	 * (25%).
630 	 */
631 	psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
632 	psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
633 	psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
634 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
635 
636 	/* Flush all FIFOs */
637 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
638 			cvmx_usbcx_grstctl, txfnum, 0x10);
639 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
640 			cvmx_usbcx_grstctl, txfflsh, 1);
641 	cvmx_wait_tx_rx(usb, 0);
642 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
643 			cvmx_usbcx_grstctl, rxfflsh, 1);
644 	cvmx_wait_tx_rx(usb, 1);
645 }
646 
647 /**
648  * Shutdown a USB port after a call to cvmx_usb_initialize().
649  * The port should be disabled with all pipes closed when this
650  * function is called.
651  *
652  * @usb: USB device state populated by cvmx_usb_initialize().
653  *
654  * Returns: 0 or a negative error code.
655  */
cvmx_usb_shutdown(struct octeon_hcd * usb)656 static int cvmx_usb_shutdown(struct octeon_hcd *usb)
657 {
658 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
659 
660 	/* Make sure all pipes are closed */
661 	if (!list_empty(&usb->idle_pipes) ||
662 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
663 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
664 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
665 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
666 		return -EBUSY;
667 
668 	/* Disable the clocks and put them in power on reset */
669 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
670 	usbn_clk_ctl.s.enable = 1;
671 	usbn_clk_ctl.s.por = 1;
672 	usbn_clk_ctl.s.hclk_rst = 1;
673 	usbn_clk_ctl.s.prst = 0;
674 	usbn_clk_ctl.s.hrst = 0;
675 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
676 	return 0;
677 }
678 
679 /**
680  * Initialize a USB port for use. This must be called before any
681  * other access to the Octeon USB port is made. The port starts
682  * off in the disabled state.
683  *
684  * @dev:	 Pointer to struct device for logging purposes.
685  * @usb:	 Pointer to struct octeon_hcd.
686  *
687  * Returns: 0 or a negative error code.
688  */
cvmx_usb_initialize(struct device * dev,struct octeon_hcd * usb)689 static int cvmx_usb_initialize(struct device *dev,
690 			       struct octeon_hcd *usb)
691 {
692 	int channel;
693 	int divisor;
694 	int retries = 0;
695 	union cvmx_usbcx_hcfg usbcx_hcfg;
696 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
697 	union cvmx_usbcx_gintsts usbc_gintsts;
698 	union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
699 	union cvmx_usbcx_gintmsk usbcx_gintmsk;
700 	union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
701 	union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
702 
703 retry:
704 	/*
705 	 * Power On Reset and PHY Initialization
706 	 *
707 	 * 1. Wait for DCOK to assert (nothing to do)
708 	 *
709 	 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
710 	 *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
711 	 */
712 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
713 	usbn_clk_ctl.s.por = 1;
714 	usbn_clk_ctl.s.hrst = 0;
715 	usbn_clk_ctl.s.prst = 0;
716 	usbn_clk_ctl.s.hclk_rst = 0;
717 	usbn_clk_ctl.s.enable = 0;
718 	/*
719 	 * 2b. Select the USB reference clock/crystal parameters by writing
720 	 *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
721 	 */
722 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
723 		/*
724 		 * The USB port uses 12/24/48MHz 2.5V board clock
725 		 * source at USB_XO. USB_XI should be tied to GND.
726 		 * Most Octeon evaluation boards require this setting
727 		 */
728 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
729 		    OCTEON_IS_MODEL(OCTEON_CN56XX) ||
730 		    OCTEON_IS_MODEL(OCTEON_CN50XX))
731 			/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
732 			usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
733 		else
734 			/* From CN52XX manual */
735 			usbn_clk_ctl.s.p_rtype = 1;
736 
737 		switch (usb->init_flags &
738 			CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
739 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
740 			usbn_clk_ctl.s.p_c_sel = 0;
741 			break;
742 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
743 			usbn_clk_ctl.s.p_c_sel = 1;
744 			break;
745 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
746 			usbn_clk_ctl.s.p_c_sel = 2;
747 			break;
748 		}
749 	} else {
750 		/*
751 		 * The USB port uses a 12MHz crystal as clock source
752 		 * at USB_XO and USB_XI
753 		 */
754 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
755 			/* From CN31XX,CN30XX manual */
756 			usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
757 		else
758 			/* From CN56XX,CN52XX,CN50XX manuals. */
759 			usbn_clk_ctl.s.p_rtype = 0;
760 
761 		usbn_clk_ctl.s.p_c_sel = 0;
762 	}
763 	/*
764 	 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
765 	 *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
766 	 *     such that USB is as close as possible to 125Mhz
767 	 */
768 	divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
769 	/* Lower than 4 doesn't seem to work properly */
770 	if (divisor < 4)
771 		divisor = 4;
772 	usbn_clk_ctl.s.divide = divisor;
773 	usbn_clk_ctl.s.divide2 = 0;
774 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
775 
776 	/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
777 	usbn_clk_ctl.s.hclk_rst = 1;
778 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
779 	/* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
780 	__delay(64);
781 	/*
782 	 * 3. Program the power-on reset field in the USBN clock-control
783 	 *    register:
784 	 *    USBN_CLK_CTL[POR] = 0
785 	 */
786 	usbn_clk_ctl.s.por = 0;
787 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
788 	/* 4. Wait 1 ms for PHY clock to start */
789 	mdelay(1);
790 	/*
791 	 * 5. Program the Reset input from automatic test equipment field in the
792 	 *    USBP control and status register:
793 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1
794 	 */
795 	usbn_usbp_ctl_status.u64 =
796 		cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
797 	usbn_usbp_ctl_status.s.ate_reset = 1;
798 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
799 			    usbn_usbp_ctl_status.u64);
800 	/* 6. Wait 10 cycles */
801 	__delay(10);
802 	/*
803 	 * 7. Clear ATE_RESET field in the USBN clock-control register:
804 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0
805 	 */
806 	usbn_usbp_ctl_status.s.ate_reset = 0;
807 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
808 			    usbn_usbp_ctl_status.u64);
809 	/*
810 	 * 8. Program the PHY reset field in the USBN clock-control register:
811 	 *    USBN_CLK_CTL[PRST] = 1
812 	 */
813 	usbn_clk_ctl.s.prst = 1;
814 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
815 	/*
816 	 * 9. Program the USBP control and status register to select host or
817 	 *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
818 	 *    device
819 	 */
820 	usbn_usbp_ctl_status.s.hst_mode = 0;
821 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
822 			    usbn_usbp_ctl_status.u64);
823 	/* 10. Wait 1 us */
824 	udelay(1);
825 	/*
826 	 * 11. Program the hreset_n field in the USBN clock-control register:
827 	 *     USBN_CLK_CTL[HRST] = 1
828 	 */
829 	usbn_clk_ctl.s.hrst = 1;
830 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
831 	/* 12. Proceed to USB core initialization */
832 	usbn_clk_ctl.s.enable = 1;
833 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
834 	udelay(1);
835 
836 	/*
837 	 * USB Core Initialization
838 	 *
839 	 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
840 	 *    determine USB core configuration parameters.
841 	 *
842 	 *    Nothing needed
843 	 *
844 	 * 2. Program the following fields in the global AHB configuration
845 	 *    register (USBC_GAHBCFG)
846 	 *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
847 	 *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0
848 	 *    Nonperiodic TxFIFO empty level (slave mode only),
849 	 *    USBC_GAHBCFG[NPTXFEMPLVL]
850 	 *    Periodic TxFIFO empty level (slave mode only),
851 	 *    USBC_GAHBCFG[PTXFEMPLVL]
852 	 *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
853 	 */
854 	usbcx_gahbcfg.u32 = 0;
855 	usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
856 				  CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
857 	usbcx_gahbcfg.s.hbstlen = 0;
858 	usbcx_gahbcfg.s.nptxfemplvl = 1;
859 	usbcx_gahbcfg.s.ptxfemplvl = 1;
860 	usbcx_gahbcfg.s.glblintrmsk = 1;
861 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
862 			     usbcx_gahbcfg.u32);
863 
864 	/*
865 	 * 3. Program the following fields in USBC_GUSBCFG register.
866 	 *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
867 	 *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
868 	 *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
869 	 *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
870 	 */
871 	usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
872 						CVMX_USBCX_GUSBCFG(usb->index));
873 	usbcx_gusbcfg.s.toutcal = 0;
874 	usbcx_gusbcfg.s.ddrsel = 0;
875 	usbcx_gusbcfg.s.usbtrdtim = 0x5;
876 	usbcx_gusbcfg.s.phylpwrclksel = 0;
877 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
878 			     usbcx_gusbcfg.u32);
879 
880 	/*
881 	 * 4. The software must unmask the following bits in the USBC_GINTMSK
882 	 *    register.
883 	 *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
884 	 *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
885 	 */
886 	usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
887 						CVMX_USBCX_GINTMSK(usb->index));
888 	usbcx_gintmsk.s.otgintmsk = 1;
889 	usbcx_gintmsk.s.modemismsk = 1;
890 	usbcx_gintmsk.s.hchintmsk = 1;
891 	usbcx_gintmsk.s.sofmsk = 0;
892 	/* We need RX FIFO interrupts if we don't have DMA */
893 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
894 		usbcx_gintmsk.s.rxflvlmsk = 1;
895 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
896 			     usbcx_gintmsk.u32);
897 
898 	/*
899 	 * Disable all channel interrupts. We'll enable them per channel later.
900 	 */
901 	for (channel = 0; channel < 8; channel++)
902 		cvmx_usb_write_csr32(usb,
903 				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
904 				     0);
905 
906 	/*
907 	 * Host Port Initialization
908 	 *
909 	 * 1. Program the host-port interrupt-mask field to unmask,
910 	 *    USBC_GINTMSK[PRTINT] = 1
911 	 */
912 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
913 			cvmx_usbcx_gintmsk, prtintmsk, 1);
914 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
915 			cvmx_usbcx_gintmsk, disconnintmsk, 1);
916 
917 	/*
918 	 * 2. Program the USBC_HCFG register to select full-speed host
919 	 *    or high-speed host.
920 	 */
921 	usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
922 	usbcx_hcfg.s.fslssupp = 0;
923 	usbcx_hcfg.s.fslspclksel = 0;
924 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
925 
926 	cvmx_fifo_setup(usb);
927 
928 	/*
929 	 * If the controller is getting port events right after the reset, it
930 	 * means the initialization failed. Try resetting the controller again
931 	 * in such case. This is seen to happen after cold boot on DSR-1000N.
932 	 */
933 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
934 					       CVMX_USBCX_GINTSTS(usb->index));
935 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
936 			     usbc_gintsts.u32);
937 	dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
938 	if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
939 		return 0;
940 	if (retries++ >= 5)
941 		return -EAGAIN;
942 	dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
943 		 (int)usbc_gintsts.u32);
944 	msleep(50);
945 	cvmx_usb_shutdown(usb);
946 	msleep(50);
947 	goto retry;
948 }
949 
950 /**
951  * Reset a USB port. After this call succeeds, the USB port is
952  * online and servicing requests.
953  *
954  * @usb: USB device state populated by cvmx_usb_initialize().
955  */
cvmx_usb_reset_port(struct octeon_hcd * usb)956 static void cvmx_usb_reset_port(struct octeon_hcd *usb)
957 {
958 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
959 						  CVMX_USBCX_HPRT(usb->index));
960 
961 	/* Program the port reset bit to start the reset process */
962 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
963 			prtrst, 1);
964 
965 	/*
966 	 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
967 	 * process to complete.
968 	 */
969 	mdelay(50);
970 
971 	/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
972 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
973 			prtrst, 0);
974 
975 	/*
976 	 * Read the port speed field to get the enumerated speed,
977 	 * USBC_HPRT[PRTSPD].
978 	 */
979 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
980 						  CVMX_USBCX_HPRT(usb->index));
981 }
982 
983 /**
984  * Disable a USB port. After this call the USB port will not
985  * generate data transfers and will not generate events.
986  * Transactions in process will fail and call their
987  * associated callbacks.
988  *
989  * @usb: USB device state populated by cvmx_usb_initialize().
990  *
991  * Returns: 0 or a negative error code.
992  */
cvmx_usb_disable(struct octeon_hcd * usb)993 static int cvmx_usb_disable(struct octeon_hcd *usb)
994 {
995 	/* Disable the port */
996 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
997 			prtena, 1);
998 	return 0;
999 }
1000 
1001 /**
1002  * Get the current state of the USB port. Use this call to
1003  * determine if the usb port has anything connected, is enabled,
1004  * or has some sort of error condition. The return value of this
1005  * call has "changed" bits to signal of the value of some fields
1006  * have changed between calls.
1007  *
1008  * @usb: USB device state populated by cvmx_usb_initialize().
1009  *
1010  * Returns: Port status information
1011  */
cvmx_usb_get_status(struct octeon_hcd * usb)1012 static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1013 {
1014 	union cvmx_usbcx_hprt usbc_hprt;
1015 	struct cvmx_usb_port_status result;
1016 
1017 	memset(&result, 0, sizeof(result));
1018 
1019 	usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1020 	result.port_enabled = usbc_hprt.s.prtena;
1021 	result.port_over_current = usbc_hprt.s.prtovrcurract;
1022 	result.port_powered = usbc_hprt.s.prtpwr;
1023 	result.port_speed = usbc_hprt.s.prtspd;
1024 	result.connected = usbc_hprt.s.prtconnsts;
1025 	result.connect_change =
1026 		result.connected != usb->port_status.connected;
1027 
1028 	return result;
1029 }
1030 
1031 /**
1032  * Open a virtual pipe between the host and a USB device. A pipe
1033  * must be opened before data can be transferred between a device
1034  * and Octeon.
1035  *
1036  * @usb:	     USB device state populated by cvmx_usb_initialize().
1037  * @device_addr:
1038  *		     USB device address to open the pipe to
1039  *		     (0-127).
1040  * @endpoint_num:
1041  *		     USB endpoint number to open the pipe to
1042  *		     (0-15).
1043  * @device_speed:
1044  *		     The speed of the device the pipe is going
1045  *		     to. This must match the device's speed,
1046  *		     which may be different than the port speed.
1047  * @max_packet:	     The maximum packet length the device can
1048  *		     transmit/receive (low speed=0-8, full
1049  *		     speed=0-1023, high speed=0-1024). This value
1050  *		     comes from the standard endpoint descriptor
1051  *		     field wMaxPacketSize bits <10:0>.
1052  * @transfer_type:
1053  *		     The type of transfer this pipe is for.
1054  * @transfer_dir:
1055  *		     The direction the pipe is in. This is not
1056  *		     used for control pipes.
1057  * @interval:	     For ISOCHRONOUS and INTERRUPT transfers,
1058  *		     this is how often the transfer is scheduled
1059  *		     for. All other transfers should specify
1060  *		     zero. The units are in frames (8000/sec at
1061  *		     high speed, 1000/sec for full speed).
1062  * @multi_count:
1063  *		     For high speed devices, this is the maximum
1064  *		     allowed number of packet per microframe.
1065  *		     Specify zero for non high speed devices. This
1066  *		     value comes from the standard endpoint descriptor
1067  *		     field wMaxPacketSize bits <12:11>.
1068  * @hub_device_addr:
1069  *		     Hub device address this device is connected
1070  *		     to. Devices connected directly to Octeon
1071  *		     use zero. This is only used when the device
1072  *		     is full/low speed behind a high speed hub.
1073  *		     The address will be of the high speed hub,
1074  *		     not and full speed hubs after it.
1075  * @hub_port:	     Which port on the hub the device is
1076  *		     connected. Use zero for devices connected
1077  *		     directly to Octeon. Like hub_device_addr,
1078  *		     this is only used for full/low speed
1079  *		     devices behind a high speed hub.
1080  *
1081  * Returns: A non-NULL value is a pipe. NULL means an error.
1082  */
cvmx_usb_open_pipe(struct octeon_hcd * usb,int device_addr,int endpoint_num,enum cvmx_usb_speed device_speed,int max_packet,enum cvmx_usb_transfer transfer_type,enum cvmx_usb_direction transfer_dir,int interval,int multi_count,int hub_device_addr,int hub_port)1083 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1084 						int device_addr,
1085 						int endpoint_num,
1086 						enum cvmx_usb_speed
1087 							device_speed,
1088 						int max_packet,
1089 						enum cvmx_usb_transfer
1090 							transfer_type,
1091 						enum cvmx_usb_direction
1092 							transfer_dir,
1093 						int interval, int multi_count,
1094 						int hub_device_addr,
1095 						int hub_port)
1096 {
1097 	struct cvmx_usb_pipe *pipe;
1098 
1099 	pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1100 	if (!pipe)
1101 		return NULL;
1102 	if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1103 	    (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1104 	    (transfer_type == CVMX_USB_TRANSFER_BULK))
1105 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1106 	pipe->device_addr = device_addr;
1107 	pipe->endpoint_num = endpoint_num;
1108 	pipe->device_speed = device_speed;
1109 	pipe->max_packet = max_packet;
1110 	pipe->transfer_type = transfer_type;
1111 	pipe->transfer_dir = transfer_dir;
1112 	INIT_LIST_HEAD(&pipe->transactions);
1113 
1114 	/*
1115 	 * All pipes use interval to rate limit NAK processing. Force an
1116 	 * interval if one wasn't supplied
1117 	 */
1118 	if (!interval)
1119 		interval = 1;
1120 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1121 		pipe->interval = interval * 8;
1122 		/* Force start splits to be schedule on uFrame 0 */
1123 		pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1124 					pipe->interval;
1125 	} else {
1126 		pipe->interval = interval;
1127 		pipe->next_tx_frame = usb->frame_number + pipe->interval;
1128 	}
1129 	pipe->multi_count = multi_count;
1130 	pipe->hub_device_addr = hub_device_addr;
1131 	pipe->hub_port = hub_port;
1132 	pipe->pid_toggle = 0;
1133 	pipe->split_sc_frame = -1;
1134 	list_add_tail(&pipe->node, &usb->idle_pipes);
1135 
1136 	/*
1137 	 * We don't need to tell the hardware about this pipe yet since
1138 	 * it doesn't have any submitted requests
1139 	 */
1140 
1141 	return pipe;
1142 }
1143 
1144 /**
1145  * Poll the RX FIFOs and remove data as needed. This function is only used
1146  * in non DMA mode. It is very important that this function be called quickly
1147  * enough to prevent FIFO overflow.
1148  *
1149  * @usb:	USB device state populated by cvmx_usb_initialize().
1150  */
cvmx_usb_poll_rx_fifo(struct octeon_hcd * usb)1151 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1152 {
1153 	union cvmx_usbcx_grxstsph rx_status;
1154 	int channel;
1155 	int bytes;
1156 	u64 address;
1157 	u32 *ptr;
1158 
1159 	rx_status.u32 = cvmx_usb_read_csr32(usb,
1160 					    CVMX_USBCX_GRXSTSPH(usb->index));
1161 	/* Only read data if IN data is there */
1162 	if (rx_status.s.pktsts != 2)
1163 		return;
1164 	/* Check if no data is available */
1165 	if (!rx_status.s.bcnt)
1166 		return;
1167 
1168 	channel = rx_status.s.chnum;
1169 	bytes = rx_status.s.bcnt;
1170 	if (!bytes)
1171 		return;
1172 
1173 	/* Get where the DMA engine would have written this data */
1174 	address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1175 				     channel * 8);
1176 
1177 	ptr = cvmx_phys_to_ptr(address);
1178 	cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1179 			    address + bytes);
1180 
1181 	/* Loop writing the FIFO data for this packet into memory */
1182 	while (bytes > 0) {
1183 		*ptr++ = cvmx_usb_read_csr32(usb,
1184 					USB_FIFO_ADDRESS(channel, usb->index));
1185 		bytes -= 4;
1186 	}
1187 	CVMX_SYNCW;
1188 }
1189 
1190 /**
1191  * Fill the TX hardware fifo with data out of the software
1192  * fifos
1193  *
1194  * @usb:	    USB device state populated by cvmx_usb_initialize().
1195  * @fifo:	    Software fifo to use
1196  * @available:	    Amount of space in the hardware fifo
1197  *
1198  * Returns: Non zero if the hardware fifo was too small and needs
1199  *	    to be serviced again.
1200  */
cvmx_usb_fill_tx_hw(struct octeon_hcd * usb,struct cvmx_usb_tx_fifo * fifo,int available)1201 static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1202 			       struct cvmx_usb_tx_fifo *fifo, int available)
1203 {
1204 	/*
1205 	 * We're done either when there isn't anymore space or the software FIFO
1206 	 * is empty
1207 	 */
1208 	while (available && (fifo->head != fifo->tail)) {
1209 		int i = fifo->tail;
1210 		const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1211 		u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1212 						   usb->index) ^ 4;
1213 		int words = available;
1214 
1215 		/* Limit the amount of data to what the SW fifo has */
1216 		if (fifo->entry[i].size <= available) {
1217 			words = fifo->entry[i].size;
1218 			fifo->tail++;
1219 			if (fifo->tail > MAX_CHANNELS)
1220 				fifo->tail = 0;
1221 		}
1222 
1223 		/* Update the next locations and counts */
1224 		available -= words;
1225 		fifo->entry[i].address += words * 4;
1226 		fifo->entry[i].size -= words;
1227 
1228 		/*
1229 		 * Write the HW fifo data. The read every three writes is due
1230 		 * to an errata on CN3XXX chips
1231 		 */
1232 		while (words > 3) {
1233 			cvmx_write64_uint32(csr_address, *ptr++);
1234 			cvmx_write64_uint32(csr_address, *ptr++);
1235 			cvmx_write64_uint32(csr_address, *ptr++);
1236 			cvmx_read64_uint64(
1237 					CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1238 			words -= 3;
1239 		}
1240 		cvmx_write64_uint32(csr_address, *ptr++);
1241 		if (--words) {
1242 			cvmx_write64_uint32(csr_address, *ptr++);
1243 			if (--words)
1244 				cvmx_write64_uint32(csr_address, *ptr++);
1245 		}
1246 		cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1247 	}
1248 	return fifo->head != fifo->tail;
1249 }
1250 
1251 /**
1252  * Check the hardware FIFOs and fill them as needed
1253  *
1254  * @usb:	USB device state populated by cvmx_usb_initialize().
1255  */
cvmx_usb_poll_tx_fifo(struct octeon_hcd * usb)1256 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1257 {
1258 	if (usb->periodic.head != usb->periodic.tail) {
1259 		union cvmx_usbcx_hptxsts tx_status;
1260 
1261 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1262 					CVMX_USBCX_HPTXSTS(usb->index));
1263 		if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1264 					tx_status.s.ptxfspcavail))
1265 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1266 					cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1267 		else
1268 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1269 					cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1270 	}
1271 
1272 	if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1273 		union cvmx_usbcx_gnptxsts tx_status;
1274 
1275 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1276 					CVMX_USBCX_GNPTXSTS(usb->index));
1277 		if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1278 					tx_status.s.nptxfspcavail))
1279 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1280 					cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1281 		else
1282 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1283 					cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1284 	}
1285 }
1286 
1287 /**
1288  * Fill the TX FIFO with an outgoing packet
1289  *
1290  * @usb:	  USB device state populated by cvmx_usb_initialize().
1291  * @channel:	  Channel number to get packet from
1292  */
cvmx_usb_fill_tx_fifo(struct octeon_hcd * usb,int channel)1293 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1294 {
1295 	union cvmx_usbcx_hccharx hcchar;
1296 	union cvmx_usbcx_hcspltx usbc_hcsplt;
1297 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1298 	struct cvmx_usb_tx_fifo *fifo;
1299 
1300 	/* We only need to fill data on outbound channels */
1301 	hcchar.u32 = cvmx_usb_read_csr32(usb,
1302 			CVMX_USBCX_HCCHARX(channel, usb->index));
1303 	if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1304 		return;
1305 
1306 	/* OUT Splits only have data on the start and not the complete */
1307 	usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1308 				CVMX_USBCX_HCSPLTX(channel, usb->index));
1309 	if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1310 		return;
1311 
1312 	/*
1313 	 * Find out how many bytes we need to fill and convert it into 32bit
1314 	 * words.
1315 	 */
1316 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1317 				CVMX_USBCX_HCTSIZX(channel, usb->index));
1318 	if (!usbc_hctsiz.s.xfersize)
1319 		return;
1320 
1321 	if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1322 	    (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1323 		fifo = &usb->periodic;
1324 	else
1325 		fifo = &usb->nonperiodic;
1326 
1327 	fifo->entry[fifo->head].channel = channel;
1328 	fifo->entry[fifo->head].address =
1329 		cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1330 				   channel * 8);
1331 	fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1332 	fifo->head++;
1333 	if (fifo->head > MAX_CHANNELS)
1334 		fifo->head = 0;
1335 
1336 	cvmx_usb_poll_tx_fifo(usb);
1337 }
1338 
1339 /**
1340  * Perform channel specific setup for Control transactions. All
1341  * the generic stuff will already have been done in cvmx_usb_start_channel().
1342  *
1343  * @usb:	  USB device state populated by cvmx_usb_initialize().
1344  * @channel:	  Channel to setup
1345  * @pipe:	  Pipe for control transaction
1346  */
cvmx_usb_start_channel_control(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1347 static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1348 					   int channel,
1349 					   struct cvmx_usb_pipe *pipe)
1350 {
1351 	struct usb_hcd *hcd = octeon_to_hcd(usb);
1352 	struct device *dev = hcd->self.controller;
1353 	struct cvmx_usb_transaction *transaction =
1354 		list_first_entry(&pipe->transactions, typeof(*transaction),
1355 				 node);
1356 	struct usb_ctrlrequest *header =
1357 		cvmx_phys_to_ptr(transaction->control_header);
1358 	int bytes_to_transfer = transaction->buffer_length -
1359 		transaction->actual_bytes;
1360 	int packets_to_transfer;
1361 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1362 
1363 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1364 				CVMX_USBCX_HCTSIZX(channel, usb->index));
1365 
1366 	switch (transaction->stage) {
1367 	case CVMX_USB_STAGE_NON_CONTROL:
1368 	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1369 		dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1370 		break;
1371 	case CVMX_USB_STAGE_SETUP:
1372 		usbc_hctsiz.s.pid = 3; /* Setup */
1373 		bytes_to_transfer = sizeof(*header);
1374 		/* All Control operations start with a setup going OUT */
1375 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1376 				cvmx_usbcx_hccharx, epdir,
1377 				CVMX_USB_DIRECTION_OUT);
1378 		/*
1379 		 * Setup send the control header instead of the buffer data. The
1380 		 * buffer data will be used in the next stage
1381 		 */
1382 		cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1383 					channel * 8,
1384 				    transaction->control_header);
1385 		break;
1386 	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1387 		usbc_hctsiz.s.pid = 3; /* Setup */
1388 		bytes_to_transfer = 0;
1389 		/* All Control operations start with a setup going OUT */
1390 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1391 				cvmx_usbcx_hccharx, epdir,
1392 				CVMX_USB_DIRECTION_OUT);
1393 
1394 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1395 				cvmx_usbcx_hcspltx, compsplt, 1);
1396 		break;
1397 	case CVMX_USB_STAGE_DATA:
1398 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1399 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1400 			if (header->bRequestType & USB_DIR_IN)
1401 				bytes_to_transfer = 0;
1402 			else if (bytes_to_transfer > pipe->max_packet)
1403 				bytes_to_transfer = pipe->max_packet;
1404 		}
1405 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1406 				cvmx_usbcx_hccharx, epdir,
1407 				((header->bRequestType & USB_DIR_IN) ?
1408 					CVMX_USB_DIRECTION_IN :
1409 					CVMX_USB_DIRECTION_OUT));
1410 		break;
1411 	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1412 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1413 		if (!(header->bRequestType & USB_DIR_IN))
1414 			bytes_to_transfer = 0;
1415 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1416 				cvmx_usbcx_hccharx, epdir,
1417 				((header->bRequestType & USB_DIR_IN) ?
1418 					CVMX_USB_DIRECTION_IN :
1419 					CVMX_USB_DIRECTION_OUT));
1420 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1421 				cvmx_usbcx_hcspltx, compsplt, 1);
1422 		break;
1423 	case CVMX_USB_STAGE_STATUS:
1424 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1425 		bytes_to_transfer = 0;
1426 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1427 				cvmx_usbcx_hccharx, epdir,
1428 				((header->bRequestType & USB_DIR_IN) ?
1429 					CVMX_USB_DIRECTION_OUT :
1430 					CVMX_USB_DIRECTION_IN));
1431 		break;
1432 	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1433 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1434 		bytes_to_transfer = 0;
1435 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1436 				cvmx_usbcx_hccharx, epdir,
1437 				((header->bRequestType & USB_DIR_IN) ?
1438 					CVMX_USB_DIRECTION_OUT :
1439 					CVMX_USB_DIRECTION_IN));
1440 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1441 				cvmx_usbcx_hcspltx, compsplt, 1);
1442 		break;
1443 	}
1444 
1445 	/*
1446 	 * Make sure the transfer never exceeds the byte limit of the hardware.
1447 	 * Further bytes will be sent as continued transactions
1448 	 */
1449 	if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1450 		/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1451 		bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1452 		bytes_to_transfer *= pipe->max_packet;
1453 	}
1454 
1455 	/*
1456 	 * Calculate the number of packets to transfer. If the length is zero
1457 	 * we still need to transfer one packet
1458 	 */
1459 	packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1460 					   pipe->max_packet);
1461 	if (packets_to_transfer == 0) {
1462 		packets_to_transfer = 1;
1463 	} else if ((packets_to_transfer > 1) &&
1464 			(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1465 		/*
1466 		 * Limit to one packet when not using DMA. Channels must be
1467 		 * restarted between every packet for IN transactions, so there
1468 		 * is no reason to do multiple packets in a row
1469 		 */
1470 		packets_to_transfer = 1;
1471 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1472 	} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1473 		/*
1474 		 * Limit the number of packet and data transferred to what the
1475 		 * hardware can handle
1476 		 */
1477 		packets_to_transfer = MAX_TRANSFER_PACKETS;
1478 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1479 	}
1480 
1481 	usbc_hctsiz.s.xfersize = bytes_to_transfer;
1482 	usbc_hctsiz.s.pktcnt = packets_to_transfer;
1483 
1484 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1485 			     usbc_hctsiz.u32);
1486 }
1487 
1488 /**
1489  * Start a channel to perform the pipe's head transaction
1490  *
1491  * @usb:	  USB device state populated by cvmx_usb_initialize().
1492  * @channel:	  Channel to setup
1493  * @pipe:	  Pipe to start
1494  */
cvmx_usb_start_channel(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1495 static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1496 				   struct cvmx_usb_pipe *pipe)
1497 {
1498 	struct cvmx_usb_transaction *transaction =
1499 		list_first_entry(&pipe->transactions, typeof(*transaction),
1500 				 node);
1501 
1502 	/* Make sure all writes to the DMA region get flushed */
1503 	CVMX_SYNCW;
1504 
1505 	/* Attach the channel to the pipe */
1506 	usb->pipe_for_channel[channel] = pipe;
1507 	pipe->channel = channel;
1508 	pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1509 
1510 	/* Mark this channel as in use */
1511 	usb->idle_hardware_channels &= ~(1 << channel);
1512 
1513 	/* Enable the channel interrupt bits */
1514 	{
1515 		union cvmx_usbcx_hcintx usbc_hcint;
1516 		union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1517 		union cvmx_usbcx_haintmsk usbc_haintmsk;
1518 
1519 		/* Clear all channel status bits */
1520 		usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1521 					CVMX_USBCX_HCINTX(channel, usb->index));
1522 
1523 		cvmx_usb_write_csr32(usb,
1524 				     CVMX_USBCX_HCINTX(channel, usb->index),
1525 				     usbc_hcint.u32);
1526 
1527 		usbc_hcintmsk.u32 = 0;
1528 		usbc_hcintmsk.s.chhltdmsk = 1;
1529 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1530 			/*
1531 			 * Channels need these extra interrupts when we aren't
1532 			 * in DMA mode.
1533 			 */
1534 			usbc_hcintmsk.s.datatglerrmsk = 1;
1535 			usbc_hcintmsk.s.frmovrunmsk = 1;
1536 			usbc_hcintmsk.s.bblerrmsk = 1;
1537 			usbc_hcintmsk.s.xacterrmsk = 1;
1538 			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1539 				/*
1540 				 * Splits don't generate xfercompl, so we need
1541 				 * ACK and NYET.
1542 				 */
1543 				usbc_hcintmsk.s.nyetmsk = 1;
1544 				usbc_hcintmsk.s.ackmsk = 1;
1545 			}
1546 			usbc_hcintmsk.s.nakmsk = 1;
1547 			usbc_hcintmsk.s.stallmsk = 1;
1548 			usbc_hcintmsk.s.xfercomplmsk = 1;
1549 		}
1550 		cvmx_usb_write_csr32(usb,
1551 				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
1552 				     usbc_hcintmsk.u32);
1553 
1554 		/* Enable the channel interrupt to propagate */
1555 		usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1556 					CVMX_USBCX_HAINTMSK(usb->index));
1557 		usbc_haintmsk.s.haintmsk |= 1 << channel;
1558 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1559 				     usbc_haintmsk.u32);
1560 	}
1561 
1562 	/* Setup the location the DMA engine uses. */
1563 	{
1564 		u64 reg;
1565 		u64 dma_address = transaction->buffer +
1566 				  transaction->actual_bytes;
1567 
1568 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1569 			dma_address = transaction->buffer +
1570 					transaction->iso_packets[0].offset +
1571 					transaction->actual_bytes;
1572 
1573 		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1574 			reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1575 		else
1576 			reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1577 		cvmx_write64_uint64(reg + channel * 8, dma_address);
1578 	}
1579 
1580 	/* Setup both the size of the transfer and the SPLIT characteristics */
1581 	{
1582 		union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1583 		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1584 		int packets_to_transfer;
1585 		int bytes_to_transfer = transaction->buffer_length -
1586 			transaction->actual_bytes;
1587 
1588 		/*
1589 		 * ISOCHRONOUS transactions store each individual transfer size
1590 		 * in the packet structure, not the global buffer_length
1591 		 */
1592 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1593 			bytes_to_transfer =
1594 				transaction->iso_packets[0].length -
1595 				transaction->actual_bytes;
1596 
1597 		/*
1598 		 * We need to do split transactions when we are talking to non
1599 		 * high speed devices that are behind a high speed hub
1600 		 */
1601 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1602 			/*
1603 			 * On the start split phase (stage is even) record the
1604 			 * frame number we will need to send the split complete.
1605 			 * We only store the lower two bits since the time ahead
1606 			 * can only be two frames
1607 			 */
1608 			if ((transaction->stage & 1) == 0) {
1609 				if (transaction->type == CVMX_USB_TRANSFER_BULK)
1610 					pipe->split_sc_frame =
1611 						(usb->frame_number + 1) & 0x7f;
1612 				else
1613 					pipe->split_sc_frame =
1614 						(usb->frame_number + 2) & 0x7f;
1615 			} else {
1616 				pipe->split_sc_frame = -1;
1617 			}
1618 
1619 			usbc_hcsplt.s.spltena = 1;
1620 			usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1621 			usbc_hcsplt.s.prtaddr = pipe->hub_port;
1622 			usbc_hcsplt.s.compsplt = (transaction->stage ==
1623 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1624 
1625 			/*
1626 			 * SPLIT transactions can only ever transmit one data
1627 			 * packet so limit the transfer size to the max packet
1628 			 * size
1629 			 */
1630 			if (bytes_to_transfer > pipe->max_packet)
1631 				bytes_to_transfer = pipe->max_packet;
1632 
1633 			/*
1634 			 * ISOCHRONOUS OUT splits are unique in that they limit
1635 			 * data transfers to 188 byte chunks representing the
1636 			 * begin/middle/end of the data or all
1637 			 */
1638 			if (!usbc_hcsplt.s.compsplt &&
1639 			    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1640 			    (pipe->transfer_type ==
1641 			     CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1642 				/*
1643 				 * Clear the split complete frame number as
1644 				 * there isn't going to be a split complete
1645 				 */
1646 				pipe->split_sc_frame = -1;
1647 				/*
1648 				 * See if we've started this transfer and sent
1649 				 * data
1650 				 */
1651 				if (transaction->actual_bytes == 0) {
1652 					/*
1653 					 * Nothing sent yet, this is either a
1654 					 * begin or the entire payload
1655 					 */
1656 					if (bytes_to_transfer <= 188)
1657 						/* Entire payload in one go */
1658 						usbc_hcsplt.s.xactpos = 3;
1659 					else
1660 						/* First part of payload */
1661 						usbc_hcsplt.s.xactpos = 2;
1662 				} else {
1663 					/*
1664 					 * Continuing the previous data, we must
1665 					 * either be in the middle or at the end
1666 					 */
1667 					if (bytes_to_transfer <= 188)
1668 						/* End of payload */
1669 						usbc_hcsplt.s.xactpos = 1;
1670 					else
1671 						/* Middle of payload */
1672 						usbc_hcsplt.s.xactpos = 0;
1673 				}
1674 				/*
1675 				 * Again, the transfer size is limited to 188
1676 				 * bytes
1677 				 */
1678 				if (bytes_to_transfer > 188)
1679 					bytes_to_transfer = 188;
1680 			}
1681 		}
1682 
1683 		/*
1684 		 * Make sure the transfer never exceeds the byte limit of the
1685 		 * hardware. Further bytes will be sent as continued
1686 		 * transactions
1687 		 */
1688 		if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1689 			/*
1690 			 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1691 			 * size
1692 			 */
1693 			bytes_to_transfer = MAX_TRANSFER_BYTES /
1694 				pipe->max_packet;
1695 			bytes_to_transfer *= pipe->max_packet;
1696 		}
1697 
1698 		/*
1699 		 * Calculate the number of packets to transfer. If the length is
1700 		 * zero we still need to transfer one packet
1701 		 */
1702 		packets_to_transfer =
1703 			DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1704 		if (packets_to_transfer == 0) {
1705 			packets_to_transfer = 1;
1706 		} else if ((packets_to_transfer > 1) &&
1707 			   (usb->init_flags &
1708 			    CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1709 			/*
1710 			 * Limit to one packet when not using DMA. Channels must
1711 			 * be restarted between every packet for IN
1712 			 * transactions, so there is no reason to do multiple
1713 			 * packets in a row
1714 			 */
1715 			packets_to_transfer = 1;
1716 			bytes_to_transfer = packets_to_transfer *
1717 				pipe->max_packet;
1718 		} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1719 			/*
1720 			 * Limit the number of packet and data transferred to
1721 			 * what the hardware can handle
1722 			 */
1723 			packets_to_transfer = MAX_TRANSFER_PACKETS;
1724 			bytes_to_transfer = packets_to_transfer *
1725 				pipe->max_packet;
1726 		}
1727 
1728 		usbc_hctsiz.s.xfersize = bytes_to_transfer;
1729 		usbc_hctsiz.s.pktcnt = packets_to_transfer;
1730 
1731 		/* Update the DATA0/DATA1 toggle */
1732 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1733 		/*
1734 		 * High speed pipes may need a hardware ping before they start
1735 		 */
1736 		if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1737 			usbc_hctsiz.s.dopng = 1;
1738 
1739 		cvmx_usb_write_csr32(usb,
1740 				     CVMX_USBCX_HCSPLTX(channel, usb->index),
1741 				     usbc_hcsplt.u32);
1742 		cvmx_usb_write_csr32(usb,
1743 				     CVMX_USBCX_HCTSIZX(channel, usb->index),
1744 				     usbc_hctsiz.u32);
1745 	}
1746 
1747 	/* Setup the Host Channel Characteristics Register */
1748 	{
1749 		union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1750 
1751 		/*
1752 		 * Set the startframe odd/even properly. This is only used for
1753 		 * periodic
1754 		 */
1755 		usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1756 
1757 		/*
1758 		 * Set the number of back to back packets allowed by this
1759 		 * endpoint. Split transactions interpret "ec" as the number of
1760 		 * immediate retries of failure. These retries happen too
1761 		 * quickly, so we disable these entirely for splits
1762 		 */
1763 		if (cvmx_usb_pipe_needs_split(usb, pipe))
1764 			usbc_hcchar.s.ec = 1;
1765 		else if (pipe->multi_count < 1)
1766 			usbc_hcchar.s.ec = 1;
1767 		else if (pipe->multi_count > 3)
1768 			usbc_hcchar.s.ec = 3;
1769 		else
1770 			usbc_hcchar.s.ec = pipe->multi_count;
1771 
1772 		/* Set the rest of the endpoint specific settings */
1773 		usbc_hcchar.s.devaddr = pipe->device_addr;
1774 		usbc_hcchar.s.eptype = transaction->type;
1775 		usbc_hcchar.s.lspddev =
1776 			(pipe->device_speed == CVMX_USB_SPEED_LOW);
1777 		usbc_hcchar.s.epdir = pipe->transfer_dir;
1778 		usbc_hcchar.s.epnum = pipe->endpoint_num;
1779 		usbc_hcchar.s.mps = pipe->max_packet;
1780 		cvmx_usb_write_csr32(usb,
1781 				     CVMX_USBCX_HCCHARX(channel, usb->index),
1782 				     usbc_hcchar.u32);
1783 	}
1784 
1785 	/* Do transaction type specific fixups as needed */
1786 	switch (transaction->type) {
1787 	case CVMX_USB_TRANSFER_CONTROL:
1788 		cvmx_usb_start_channel_control(usb, channel, pipe);
1789 		break;
1790 	case CVMX_USB_TRANSFER_BULK:
1791 	case CVMX_USB_TRANSFER_INTERRUPT:
1792 		break;
1793 	case CVMX_USB_TRANSFER_ISOCHRONOUS:
1794 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1795 			/*
1796 			 * ISO transactions require different PIDs depending on
1797 			 * direction and how many packets are needed
1798 			 */
1799 			if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1800 				if (pipe->multi_count < 2) /* Need DATA0 */
1801 					USB_SET_FIELD32(
1802 						CVMX_USBCX_HCTSIZX(channel,
1803 								   usb->index),
1804 						cvmx_usbcx_hctsizx, pid, 0);
1805 				else /* Need MDATA */
1806 					USB_SET_FIELD32(
1807 						CVMX_USBCX_HCTSIZX(channel,
1808 								   usb->index),
1809 						cvmx_usbcx_hctsizx, pid, 3);
1810 			}
1811 		}
1812 		break;
1813 	}
1814 	{
1815 		union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1816 			cvmx_usb_read_csr32(usb,
1817 					    CVMX_USBCX_HCTSIZX(channel,
1818 							       usb->index))
1819 		};
1820 		transaction->xfersize = usbc_hctsiz.s.xfersize;
1821 		transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1822 	}
1823 	/* Remember when we start a split transaction */
1824 	if (cvmx_usb_pipe_needs_split(usb, pipe))
1825 		usb->active_split = transaction;
1826 	USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1827 			cvmx_usbcx_hccharx, chena, 1);
1828 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1829 		cvmx_usb_fill_tx_fifo(usb, channel);
1830 }
1831 
1832 /**
1833  * Find a pipe that is ready to be scheduled to hardware.
1834  * @usb:	 USB device state populated by cvmx_usb_initialize().
1835  * @xfer_type:	 Transfer type
1836  *
1837  * Returns: Pipe or NULL if none are ready
1838  */
cvmx_usb_find_ready_pipe(struct octeon_hcd * usb,enum cvmx_usb_transfer xfer_type)1839 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1840 		struct octeon_hcd *usb,
1841 		enum cvmx_usb_transfer xfer_type)
1842 {
1843 	struct list_head *list = usb->active_pipes + xfer_type;
1844 	u64 current_frame = usb->frame_number;
1845 	struct cvmx_usb_pipe *pipe;
1846 
1847 	list_for_each_entry(pipe, list, node) {
1848 		struct cvmx_usb_transaction *t =
1849 			list_first_entry(&pipe->transactions, typeof(*t),
1850 					 node);
1851 		if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1852 		    (pipe->next_tx_frame <= current_frame) &&
1853 		    ((pipe->split_sc_frame == -1) ||
1854 		     ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1855 		      0x40)) &&
1856 		    (!usb->active_split || (usb->active_split == t))) {
1857 			prefetch(t);
1858 			return pipe;
1859 		}
1860 	}
1861 	return NULL;
1862 }
1863 
cvmx_usb_next_pipe(struct octeon_hcd * usb,int is_sof)1864 static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1865 						int is_sof)
1866 {
1867 	struct cvmx_usb_pipe *pipe;
1868 
1869 	/* Find a pipe needing service. */
1870 	if (is_sof) {
1871 		/*
1872 		 * Only process periodic pipes on SOF interrupts. This way we
1873 		 * are sure that the periodic data is sent in the beginning of
1874 		 * the frame.
1875 		 */
1876 		pipe = cvmx_usb_find_ready_pipe(usb,
1877 						CVMX_USB_TRANSFER_ISOCHRONOUS);
1878 		if (pipe)
1879 			return pipe;
1880 		pipe = cvmx_usb_find_ready_pipe(usb,
1881 						CVMX_USB_TRANSFER_INTERRUPT);
1882 		if (pipe)
1883 			return pipe;
1884 	}
1885 	pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1886 	if (pipe)
1887 		return pipe;
1888 	return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1889 }
1890 
1891 /**
1892  * Called whenever a pipe might need to be scheduled to the
1893  * hardware.
1894  *
1895  * @usb:	 USB device state populated by cvmx_usb_initialize().
1896  * @is_sof:	 True if this schedule was called on a SOF interrupt.
1897  */
cvmx_usb_schedule(struct octeon_hcd * usb,int is_sof)1898 static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1899 {
1900 	int channel;
1901 	struct cvmx_usb_pipe *pipe;
1902 	int need_sof;
1903 	enum cvmx_usb_transfer ttype;
1904 
1905 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1906 		/*
1907 		 * Without DMA we need to be careful to not schedule something
1908 		 * at the end of a frame and cause an overrun.
1909 		 */
1910 		union cvmx_usbcx_hfnum hfnum = {
1911 			.u32 = cvmx_usb_read_csr32(usb,
1912 						CVMX_USBCX_HFNUM(usb->index))
1913 		};
1914 
1915 		union cvmx_usbcx_hfir hfir = {
1916 			.u32 = cvmx_usb_read_csr32(usb,
1917 						CVMX_USBCX_HFIR(usb->index))
1918 		};
1919 
1920 		if (hfnum.s.frrem < hfir.s.frint / 4)
1921 			goto done;
1922 	}
1923 
1924 	while (usb->idle_hardware_channels) {
1925 		/* Find an idle channel */
1926 		channel = __fls(usb->idle_hardware_channels);
1927 		if (unlikely(channel > 7))
1928 			break;
1929 
1930 		pipe = cvmx_usb_next_pipe(usb, is_sof);
1931 		if (!pipe)
1932 			break;
1933 
1934 		cvmx_usb_start_channel(usb, channel, pipe);
1935 	}
1936 
1937 done:
1938 	/*
1939 	 * Only enable SOF interrupts when we have transactions pending in the
1940 	 * future that might need to be scheduled
1941 	 */
1942 	need_sof = 0;
1943 	for (ttype = CVMX_USB_TRANSFER_CONTROL;
1944 	     ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1945 		list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1946 			if (pipe->next_tx_frame > usb->frame_number) {
1947 				need_sof = 1;
1948 				break;
1949 			}
1950 		}
1951 	}
1952 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1953 			cvmx_usbcx_gintmsk, sofmsk, need_sof);
1954 }
1955 
octeon_usb_urb_complete_callback(struct octeon_hcd * usb,enum cvmx_usb_status status,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int bytes_transferred,struct urb * urb)1956 static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1957 					     enum cvmx_usb_status status,
1958 					     struct cvmx_usb_pipe *pipe,
1959 					     struct cvmx_usb_transaction
1960 						*transaction,
1961 					     int bytes_transferred,
1962 					     struct urb *urb)
1963 {
1964 	struct usb_hcd *hcd = octeon_to_hcd(usb);
1965 	struct device *dev = hcd->self.controller;
1966 
1967 	if (likely(status == CVMX_USB_STATUS_OK))
1968 		urb->actual_length = bytes_transferred;
1969 	else
1970 		urb->actual_length = 0;
1971 
1972 	urb->hcpriv = NULL;
1973 
1974 	/* For Isochronous transactions we need to update the URB packet status
1975 	 * list from data in our private copy
1976 	 */
1977 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1978 		int i;
1979 		/*
1980 		 * The pointer to the private list is stored in the setup_packet
1981 		 * field.
1982 		 */
1983 		struct cvmx_usb_iso_packet *iso_packet =
1984 			(struct cvmx_usb_iso_packet *)urb->setup_packet;
1985 		/* Recalculate the transfer size by adding up each packet */
1986 		urb->actual_length = 0;
1987 		for (i = 0; i < urb->number_of_packets; i++) {
1988 			if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1989 				urb->iso_frame_desc[i].status = 0;
1990 				urb->iso_frame_desc[i].actual_length =
1991 					iso_packet[i].length;
1992 				urb->actual_length +=
1993 					urb->iso_frame_desc[i].actual_length;
1994 			} else {
1995 				dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1996 					i, urb->number_of_packets,
1997 					iso_packet[i].status, pipe,
1998 					transaction, iso_packet[i].length);
1999 				urb->iso_frame_desc[i].status = -EREMOTEIO;
2000 			}
2001 		}
2002 		/* Free the private list now that we don't need it anymore */
2003 		kfree(iso_packet);
2004 		urb->setup_packet = NULL;
2005 	}
2006 
2007 	switch (status) {
2008 	case CVMX_USB_STATUS_OK:
2009 		urb->status = 0;
2010 		break;
2011 	case CVMX_USB_STATUS_CANCEL:
2012 		if (urb->status == 0)
2013 			urb->status = -ENOENT;
2014 		break;
2015 	case CVMX_USB_STATUS_STALL:
2016 		dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2017 			pipe, transaction, bytes_transferred);
2018 		urb->status = -EPIPE;
2019 		break;
2020 	case CVMX_USB_STATUS_BABBLEERR:
2021 		dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2022 			pipe, transaction, bytes_transferred);
2023 		urb->status = -EPIPE;
2024 		break;
2025 	case CVMX_USB_STATUS_SHORT:
2026 		dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2027 			pipe, transaction, bytes_transferred);
2028 		urb->status = -EREMOTEIO;
2029 		break;
2030 	case CVMX_USB_STATUS_ERROR:
2031 	case CVMX_USB_STATUS_XACTERR:
2032 	case CVMX_USB_STATUS_DATATGLERR:
2033 	case CVMX_USB_STATUS_FRAMEERR:
2034 		dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2035 			status, pipe, transaction, bytes_transferred);
2036 		urb->status = -EPROTO;
2037 		break;
2038 	}
2039 	usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2040 	spin_unlock(&usb->lock);
2041 	usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2042 	spin_lock(&usb->lock);
2043 }
2044 
2045 /**
2046  * Signal the completion of a transaction and free it. The
2047  * transaction will be removed from the pipe transaction list.
2048  *
2049  * @usb:	 USB device state populated by cvmx_usb_initialize().
2050  * @pipe:	 Pipe the transaction is on
2051  * @transaction:
2052  *		 Transaction that completed
2053  * @complete_code:
2054  *		 Completion code
2055  */
cvmx_usb_complete(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,enum cvmx_usb_status complete_code)2056 static void cvmx_usb_complete(struct octeon_hcd *usb,
2057 			      struct cvmx_usb_pipe *pipe,
2058 			      struct cvmx_usb_transaction *transaction,
2059 			      enum cvmx_usb_status complete_code)
2060 {
2061 	/* If this was a split then clear our split in progress marker */
2062 	if (usb->active_split == transaction)
2063 		usb->active_split = NULL;
2064 
2065 	/*
2066 	 * Isochronous transactions need extra processing as they might not be
2067 	 * done after a single data transfer
2068 	 */
2069 	if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2070 		/* Update the number of bytes transferred in this ISO packet */
2071 		transaction->iso_packets[0].length = transaction->actual_bytes;
2072 		transaction->iso_packets[0].status = complete_code;
2073 
2074 		/*
2075 		 * If there are more ISOs pending and we succeeded, schedule the
2076 		 * next one
2077 		 */
2078 		if ((transaction->iso_number_packets > 1) &&
2079 		    (complete_code == CVMX_USB_STATUS_OK)) {
2080 			/* No bytes transferred for this packet as of yet */
2081 			transaction->actual_bytes = 0;
2082 			/* One less ISO waiting to transfer */
2083 			transaction->iso_number_packets--;
2084 			/* Increment to the next location in our packet array */
2085 			transaction->iso_packets++;
2086 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2087 			return;
2088 		}
2089 	}
2090 
2091 	/* Remove the transaction from the pipe list */
2092 	list_del(&transaction->node);
2093 	if (list_empty(&pipe->transactions))
2094 		list_move_tail(&pipe->node, &usb->idle_pipes);
2095 	octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2096 					 transaction,
2097 					 transaction->actual_bytes,
2098 					 transaction->urb);
2099 	kfree(transaction);
2100 }
2101 
2102 /**
2103  * Submit a usb transaction to a pipe. Called for all types
2104  * of transactions.
2105  *
2106  * @usb:
2107  * @pipe:	    Which pipe to submit to.
2108  * @type:	    Transaction type
2109  * @buffer:	    User buffer for the transaction
2110  * @buffer_length:
2111  *		    User buffer's length in bytes
2112  * @control_header:
2113  *		    For control transactions, the 8 byte standard header
2114  * @iso_start_frame:
2115  *		    For ISO transactions, the start frame
2116  * @iso_number_packets:
2117  *		    For ISO, the number of packet in the transaction.
2118  * @iso_packets:
2119  *		    A description of each ISO packet
2120  * @urb:	    URB for the callback
2121  *
2122  * Returns: Transaction or NULL on failure.
2123  */
cvmx_usb_submit_transaction(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,enum cvmx_usb_transfer type,u64 buffer,int buffer_length,u64 control_header,int iso_start_frame,int iso_number_packets,struct cvmx_usb_iso_packet * iso_packets,struct urb * urb)2124 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2125 				struct octeon_hcd *usb,
2126 				struct cvmx_usb_pipe *pipe,
2127 				enum cvmx_usb_transfer type,
2128 				u64 buffer,
2129 				int buffer_length,
2130 				u64 control_header,
2131 				int iso_start_frame,
2132 				int iso_number_packets,
2133 				struct cvmx_usb_iso_packet *iso_packets,
2134 				struct urb *urb)
2135 {
2136 	struct cvmx_usb_transaction *transaction;
2137 
2138 	if (unlikely(pipe->transfer_type != type))
2139 		return NULL;
2140 
2141 	transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2142 	if (unlikely(!transaction))
2143 		return NULL;
2144 
2145 	transaction->type = type;
2146 	transaction->buffer = buffer;
2147 	transaction->buffer_length = buffer_length;
2148 	transaction->control_header = control_header;
2149 	/* FIXME: This is not used, implement it. */
2150 	transaction->iso_start_frame = iso_start_frame;
2151 	transaction->iso_number_packets = iso_number_packets;
2152 	transaction->iso_packets = iso_packets;
2153 	transaction->urb = urb;
2154 	if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2155 		transaction->stage = CVMX_USB_STAGE_SETUP;
2156 	else
2157 		transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2158 
2159 	if (!list_empty(&pipe->transactions)) {
2160 		list_add_tail(&transaction->node, &pipe->transactions);
2161 	} else {
2162 		list_add_tail(&transaction->node, &pipe->transactions);
2163 		list_move_tail(&pipe->node,
2164 			       &usb->active_pipes[pipe->transfer_type]);
2165 
2166 		/*
2167 		 * We may need to schedule the pipe if this was the head of the
2168 		 * pipe.
2169 		 */
2170 		cvmx_usb_schedule(usb, 0);
2171 	}
2172 
2173 	return transaction;
2174 }
2175 
2176 /**
2177  * Call to submit a USB Bulk transfer to a pipe.
2178  *
2179  * @usb:	    USB device state populated by cvmx_usb_initialize().
2180  * @pipe:	    Handle to the pipe for the transfer.
2181  * @urb:	    URB.
2182  *
2183  * Returns: A submitted transaction or NULL on failure.
2184  */
cvmx_usb_submit_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2185 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2186 						struct octeon_hcd *usb,
2187 						struct cvmx_usb_pipe *pipe,
2188 						struct urb *urb)
2189 {
2190 	return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2191 					   urb->transfer_dma,
2192 					   urb->transfer_buffer_length,
2193 					   0, /* control_header */
2194 					   0, /* iso_start_frame */
2195 					   0, /* iso_number_packets */
2196 					   NULL, /* iso_packets */
2197 					   urb);
2198 }
2199 
2200 /**
2201  * Call to submit a USB Interrupt transfer to a pipe.
2202  *
2203  * @usb:	    USB device state populated by cvmx_usb_initialize().
2204  * @pipe:	    Handle to the pipe for the transfer.
2205  * @urb:	    URB returned when the callback is called.
2206  *
2207  * Returns: A submitted transaction or NULL on failure.
2208  */
cvmx_usb_submit_interrupt(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2209 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2210 						struct octeon_hcd *usb,
2211 						struct cvmx_usb_pipe *pipe,
2212 						struct urb *urb)
2213 {
2214 	return cvmx_usb_submit_transaction(usb, pipe,
2215 					   CVMX_USB_TRANSFER_INTERRUPT,
2216 					   urb->transfer_dma,
2217 					   urb->transfer_buffer_length,
2218 					   0, /* control_header */
2219 					   0, /* iso_start_frame */
2220 					   0, /* iso_number_packets */
2221 					   NULL, /* iso_packets */
2222 					   urb);
2223 }
2224 
2225 /**
2226  * Call to submit a USB Control transfer to a pipe.
2227  *
2228  * @usb:	    USB device state populated by cvmx_usb_initialize().
2229  * @pipe:	    Handle to the pipe for the transfer.
2230  * @urb:	    URB.
2231  *
2232  * Returns: A submitted transaction or NULL on failure.
2233  */
cvmx_usb_submit_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2234 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2235 						struct octeon_hcd *usb,
2236 						struct cvmx_usb_pipe *pipe,
2237 						struct urb *urb)
2238 {
2239 	int buffer_length = urb->transfer_buffer_length;
2240 	u64 control_header = urb->setup_dma;
2241 	struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2242 
2243 	if ((header->bRequestType & USB_DIR_IN) == 0)
2244 		buffer_length = le16_to_cpu(header->wLength);
2245 
2246 	return cvmx_usb_submit_transaction(usb, pipe,
2247 					   CVMX_USB_TRANSFER_CONTROL,
2248 					   urb->transfer_dma, buffer_length,
2249 					   control_header,
2250 					   0, /* iso_start_frame */
2251 					   0, /* iso_number_packets */
2252 					   NULL, /* iso_packets */
2253 					   urb);
2254 }
2255 
2256 /**
2257  * Call to submit a USB Isochronous transfer to a pipe.
2258  *
2259  * @usb:	    USB device state populated by cvmx_usb_initialize().
2260  * @pipe:	    Handle to the pipe for the transfer.
2261  * @urb:	    URB returned when the callback is called.
2262  *
2263  * Returns: A submitted transaction or NULL on failure.
2264  */
cvmx_usb_submit_isochronous(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2265 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2266 						struct octeon_hcd *usb,
2267 						struct cvmx_usb_pipe *pipe,
2268 						struct urb *urb)
2269 {
2270 	struct cvmx_usb_iso_packet *packets;
2271 
2272 	packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2273 	return cvmx_usb_submit_transaction(usb, pipe,
2274 					   CVMX_USB_TRANSFER_ISOCHRONOUS,
2275 					   urb->transfer_dma,
2276 					   urb->transfer_buffer_length,
2277 					   0, /* control_header */
2278 					   urb->start_frame,
2279 					   urb->number_of_packets,
2280 					   packets, urb);
2281 }
2282 
2283 /**
2284  * Cancel one outstanding request in a pipe. Canceling a request
2285  * can fail if the transaction has already completed before cancel
2286  * is called. Even after a successful cancel call, it may take
2287  * a frame or two for the cvmx_usb_poll() function to call the
2288  * associated callback.
2289  *
2290  * @usb:	 USB device state populated by cvmx_usb_initialize().
2291  * @pipe:	 Pipe to cancel requests in.
2292  * @transaction: Transaction to cancel, returned by the submit function.
2293  *
2294  * Returns: 0 or a negative error code.
2295  */
cvmx_usb_cancel(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction)2296 static int cvmx_usb_cancel(struct octeon_hcd *usb,
2297 			   struct cvmx_usb_pipe *pipe,
2298 			   struct cvmx_usb_transaction *transaction)
2299 {
2300 	/*
2301 	 * If the transaction is the HEAD of the queue and scheduled. We need to
2302 	 * treat it special
2303 	 */
2304 	if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2305 	    transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2306 		union cvmx_usbcx_hccharx usbc_hcchar;
2307 
2308 		usb->pipe_for_channel[pipe->channel] = NULL;
2309 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2310 
2311 		CVMX_SYNCW;
2312 
2313 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2314 				CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2315 		/*
2316 		 * If the channel isn't enabled then the transaction already
2317 		 * completed.
2318 		 */
2319 		if (usbc_hcchar.s.chena) {
2320 			usbc_hcchar.s.chdis = 1;
2321 			cvmx_usb_write_csr32(usb,
2322 					     CVMX_USBCX_HCCHARX(pipe->channel,
2323 								usb->index),
2324 					     usbc_hcchar.u32);
2325 		}
2326 	}
2327 	cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2328 	return 0;
2329 }
2330 
2331 /**
2332  * Cancel all outstanding requests in a pipe. Logically all this
2333  * does is call cvmx_usb_cancel() in a loop.
2334  *
2335  * @usb:	 USB device state populated by cvmx_usb_initialize().
2336  * @pipe:	 Pipe to cancel requests in.
2337  *
2338  * Returns: 0 or a negative error code.
2339  */
cvmx_usb_cancel_all(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2340 static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2341 			       struct cvmx_usb_pipe *pipe)
2342 {
2343 	struct cvmx_usb_transaction *transaction, *next;
2344 
2345 	/* Simply loop through and attempt to cancel each transaction */
2346 	list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2347 		int result = cvmx_usb_cancel(usb, pipe, transaction);
2348 
2349 		if (unlikely(result != 0))
2350 			return result;
2351 	}
2352 	return 0;
2353 }
2354 
2355 /**
2356  * Close a pipe created with cvmx_usb_open_pipe().
2357  *
2358  * @usb:	 USB device state populated by cvmx_usb_initialize().
2359  * @pipe:	 Pipe to close.
2360  *
2361  * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2362  *	    outstanding transfers.
2363  */
cvmx_usb_close_pipe(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2364 static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2365 			       struct cvmx_usb_pipe *pipe)
2366 {
2367 	/* Fail if the pipe has pending transactions */
2368 	if (!list_empty(&pipe->transactions))
2369 		return -EBUSY;
2370 
2371 	list_del(&pipe->node);
2372 	kfree(pipe);
2373 
2374 	return 0;
2375 }
2376 
2377 /**
2378  * Get the current USB protocol level frame number. The frame
2379  * number is always in the range of 0-0x7ff.
2380  *
2381  * @usb: USB device state populated by cvmx_usb_initialize().
2382  *
2383  * Returns: USB frame number
2384  */
cvmx_usb_get_frame_number(struct octeon_hcd * usb)2385 static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2386 {
2387 	union cvmx_usbcx_hfnum usbc_hfnum;
2388 
2389 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2390 
2391 	return usbc_hfnum.s.frnum;
2392 }
2393 
cvmx_usb_transfer_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hccharx usbc_hcchar,int buffer_space_left,int bytes_in_last_packet)2394 static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2395 				      struct cvmx_usb_pipe *pipe,
2396 				      struct cvmx_usb_transaction *transaction,
2397 				      union cvmx_usbcx_hccharx usbc_hcchar,
2398 				      int buffer_space_left,
2399 				      int bytes_in_last_packet)
2400 {
2401 	switch (transaction->stage) {
2402 	case CVMX_USB_STAGE_NON_CONTROL:
2403 	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2404 		/* This should be impossible */
2405 		cvmx_usb_complete(usb, pipe, transaction,
2406 				  CVMX_USB_STATUS_ERROR);
2407 		break;
2408 	case CVMX_USB_STAGE_SETUP:
2409 		pipe->pid_toggle = 1;
2410 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2411 			transaction->stage =
2412 				CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2413 		} else {
2414 			struct usb_ctrlrequest *header =
2415 				cvmx_phys_to_ptr(transaction->control_header);
2416 			if (header->wLength)
2417 				transaction->stage = CVMX_USB_STAGE_DATA;
2418 			else
2419 				transaction->stage = CVMX_USB_STAGE_STATUS;
2420 		}
2421 		break;
2422 	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2423 		{
2424 			struct usb_ctrlrequest *header =
2425 				cvmx_phys_to_ptr(transaction->control_header);
2426 			if (header->wLength)
2427 				transaction->stage = CVMX_USB_STAGE_DATA;
2428 			else
2429 				transaction->stage = CVMX_USB_STAGE_STATUS;
2430 		}
2431 		break;
2432 	case CVMX_USB_STAGE_DATA:
2433 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2434 			transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2435 			/*
2436 			 * For setup OUT data that are splits,
2437 			 * the hardware doesn't appear to count
2438 			 * transferred data. Here we manually
2439 			 * update the data transferred
2440 			 */
2441 			if (!usbc_hcchar.s.epdir) {
2442 				if (buffer_space_left < pipe->max_packet)
2443 					transaction->actual_bytes +=
2444 						buffer_space_left;
2445 				else
2446 					transaction->actual_bytes +=
2447 						pipe->max_packet;
2448 			}
2449 		} else if ((buffer_space_left == 0) ||
2450 			   (bytes_in_last_packet < pipe->max_packet)) {
2451 			pipe->pid_toggle = 1;
2452 			transaction->stage = CVMX_USB_STAGE_STATUS;
2453 		}
2454 		break;
2455 	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2456 		if ((buffer_space_left == 0) ||
2457 		    (bytes_in_last_packet < pipe->max_packet)) {
2458 			pipe->pid_toggle = 1;
2459 			transaction->stage = CVMX_USB_STAGE_STATUS;
2460 		} else {
2461 			transaction->stage = CVMX_USB_STAGE_DATA;
2462 		}
2463 		break;
2464 	case CVMX_USB_STAGE_STATUS:
2465 		if (cvmx_usb_pipe_needs_split(usb, pipe))
2466 			transaction->stage =
2467 				CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2468 		else
2469 			cvmx_usb_complete(usb, pipe, transaction,
2470 					  CVMX_USB_STATUS_OK);
2471 		break;
2472 	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2473 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2474 		break;
2475 	}
2476 }
2477 
cvmx_usb_transfer_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hcintx usbc_hcint,int buffer_space_left,int bytes_in_last_packet)2478 static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2479 				   struct cvmx_usb_pipe *pipe,
2480 				   struct cvmx_usb_transaction *transaction,
2481 				   union cvmx_usbcx_hcintx usbc_hcint,
2482 				   int buffer_space_left,
2483 				   int bytes_in_last_packet)
2484 {
2485 	/*
2486 	 * The only time a bulk transfer isn't complete when it finishes with
2487 	 * an ACK is during a split transaction. For splits we need to continue
2488 	 * the transfer if more data is needed.
2489 	 */
2490 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2491 		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2492 			transaction->stage =
2493 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2494 		else if (buffer_space_left &&
2495 			 (bytes_in_last_packet == pipe->max_packet))
2496 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2497 		else
2498 			cvmx_usb_complete(usb, pipe, transaction,
2499 					  CVMX_USB_STATUS_OK);
2500 	} else {
2501 		if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2502 		    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2503 		    (usbc_hcint.s.nak))
2504 			pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2505 		if (!buffer_space_left ||
2506 		    (bytes_in_last_packet < pipe->max_packet))
2507 			cvmx_usb_complete(usb, pipe, transaction,
2508 					  CVMX_USB_STATUS_OK);
2509 	}
2510 }
2511 
cvmx_usb_transfer_intr(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet)2512 static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2513 				   struct cvmx_usb_pipe *pipe,
2514 				   struct cvmx_usb_transaction *transaction,
2515 				   int buffer_space_left,
2516 				   int bytes_in_last_packet)
2517 {
2518 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2519 		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2520 			transaction->stage =
2521 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2522 		} else if (buffer_space_left &&
2523 			   (bytes_in_last_packet == pipe->max_packet)) {
2524 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2525 		} else {
2526 			pipe->next_tx_frame += pipe->interval;
2527 			cvmx_usb_complete(usb, pipe, transaction,
2528 					  CVMX_USB_STATUS_OK);
2529 		}
2530 	} else if (!buffer_space_left ||
2531 		   (bytes_in_last_packet < pipe->max_packet)) {
2532 		pipe->next_tx_frame += pipe->interval;
2533 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2534 	}
2535 }
2536 
cvmx_usb_transfer_isoc(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet,int bytes_this_transfer)2537 static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2538 				   struct cvmx_usb_pipe *pipe,
2539 				   struct cvmx_usb_transaction *transaction,
2540 				   int buffer_space_left,
2541 				   int bytes_in_last_packet,
2542 				   int bytes_this_transfer)
2543 {
2544 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2545 		/*
2546 		 * ISOCHRONOUS OUT splits don't require a complete split stage.
2547 		 * Instead they use a sequence of begin OUT splits to transfer
2548 		 * the data 188 bytes at a time. Once the transfer is complete,
2549 		 * the pipe sleeps until the next schedule interval.
2550 		 */
2551 		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2552 			/*
2553 			 * If no space left or this wasn't a max size packet
2554 			 * then this transfer is complete. Otherwise start it
2555 			 * again to send the next 188 bytes
2556 			 */
2557 			if (!buffer_space_left || (bytes_this_transfer < 188)) {
2558 				pipe->next_tx_frame += pipe->interval;
2559 				cvmx_usb_complete(usb, pipe, transaction,
2560 						  CVMX_USB_STATUS_OK);
2561 			}
2562 			return;
2563 		}
2564 		if (transaction->stage ==
2565 		    CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2566 			/*
2567 			 * We are in the incoming data phase. Keep getting data
2568 			 * until we run out of space or get a small packet
2569 			 */
2570 			if ((buffer_space_left == 0) ||
2571 			    (bytes_in_last_packet < pipe->max_packet)) {
2572 				pipe->next_tx_frame += pipe->interval;
2573 				cvmx_usb_complete(usb, pipe, transaction,
2574 						  CVMX_USB_STATUS_OK);
2575 			}
2576 		} else {
2577 			transaction->stage =
2578 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2579 		}
2580 	} else {
2581 		pipe->next_tx_frame += pipe->interval;
2582 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2583 	}
2584 }
2585 
2586 /**
2587  * Poll a channel for status
2588  *
2589  * @usb:     USB device
2590  * @channel: Channel to poll
2591  *
2592  * Returns: Zero on success
2593  */
cvmx_usb_poll_channel(struct octeon_hcd * usb,int channel)2594 static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2595 {
2596 	struct usb_hcd *hcd = octeon_to_hcd(usb);
2597 	struct device *dev = hcd->self.controller;
2598 	union cvmx_usbcx_hcintx usbc_hcint;
2599 	union cvmx_usbcx_hctsizx usbc_hctsiz;
2600 	union cvmx_usbcx_hccharx usbc_hcchar;
2601 	struct cvmx_usb_pipe *pipe;
2602 	struct cvmx_usb_transaction *transaction;
2603 	int bytes_this_transfer;
2604 	int bytes_in_last_packet;
2605 	int packets_processed;
2606 	int buffer_space_left;
2607 
2608 	/* Read the interrupt status bits for the channel */
2609 	usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2610 				CVMX_USBCX_HCINTX(channel, usb->index));
2611 
2612 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2613 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2614 				CVMX_USBCX_HCCHARX(channel, usb->index));
2615 
2616 		if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2617 			/*
2618 			 * There seems to be a bug in CN31XX which can cause
2619 			 * interrupt IN transfers to get stuck until we do a
2620 			 * write of HCCHARX without changing things
2621 			 */
2622 			cvmx_usb_write_csr32(usb,
2623 					     CVMX_USBCX_HCCHARX(channel,
2624 								usb->index),
2625 					     usbc_hcchar.u32);
2626 			return 0;
2627 		}
2628 
2629 		/*
2630 		 * In non DMA mode the channels don't halt themselves. We need
2631 		 * to manually disable channels that are left running
2632 		 */
2633 		if (!usbc_hcint.s.chhltd) {
2634 			if (usbc_hcchar.s.chena) {
2635 				union cvmx_usbcx_hcintmskx hcintmsk;
2636 				/* Disable all interrupts except CHHLTD */
2637 				hcintmsk.u32 = 0;
2638 				hcintmsk.s.chhltdmsk = 1;
2639 				cvmx_usb_write_csr32(usb,
2640 						     CVMX_USBCX_HCINTMSKX(channel, usb->index),
2641 						     hcintmsk.u32);
2642 				usbc_hcchar.s.chdis = 1;
2643 				cvmx_usb_write_csr32(usb,
2644 						     CVMX_USBCX_HCCHARX(channel, usb->index),
2645 						     usbc_hcchar.u32);
2646 				return 0;
2647 			} else if (usbc_hcint.s.xfercompl) {
2648 				/*
2649 				 * Successful IN/OUT with transfer complete.
2650 				 * Channel halt isn't needed.
2651 				 */
2652 			} else {
2653 				dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2654 					usb->index, channel);
2655 				return 0;
2656 			}
2657 		}
2658 	} else {
2659 		/*
2660 		 * There is are no interrupts that we need to process when the
2661 		 * channel is still running
2662 		 */
2663 		if (!usbc_hcint.s.chhltd)
2664 			return 0;
2665 	}
2666 
2667 	/* Disable the channel interrupts now that it is done */
2668 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2669 	usb->idle_hardware_channels |= (1 << channel);
2670 
2671 	/* Make sure this channel is tied to a valid pipe */
2672 	pipe = usb->pipe_for_channel[channel];
2673 	prefetch(pipe);
2674 	if (!pipe)
2675 		return 0;
2676 	transaction = list_first_entry(&pipe->transactions,
2677 				       typeof(*transaction),
2678 				       node);
2679 	prefetch(transaction);
2680 
2681 	/*
2682 	 * Disconnect this pipe from the HW channel. Later the schedule
2683 	 * function will figure out which pipe needs to go
2684 	 */
2685 	usb->pipe_for_channel[channel] = NULL;
2686 	pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2687 
2688 	/*
2689 	 * Read the channel config info so we can figure out how much data
2690 	 * transferred
2691 	 */
2692 	usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2693 			CVMX_USBCX_HCCHARX(channel, usb->index));
2694 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2695 			CVMX_USBCX_HCTSIZX(channel, usb->index));
2696 
2697 	/*
2698 	 * Calculating the number of bytes successfully transferred is dependent
2699 	 * on the transfer direction
2700 	 */
2701 	packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2702 	if (usbc_hcchar.s.epdir) {
2703 		/*
2704 		 * IN transactions are easy. For every byte received the
2705 		 * hardware decrements xfersize. All we need to do is subtract
2706 		 * the current value of xfersize from its starting value and we
2707 		 * know how many bytes were written to the buffer
2708 		 */
2709 		bytes_this_transfer = transaction->xfersize -
2710 			usbc_hctsiz.s.xfersize;
2711 	} else {
2712 		/*
2713 		 * OUT transaction don't decrement xfersize. Instead pktcnt is
2714 		 * decremented on every successful packet send. The hardware
2715 		 * does this when it receives an ACK, or NYET. If it doesn't
2716 		 * receive one of these responses pktcnt doesn't change
2717 		 */
2718 		bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2719 		/*
2720 		 * The last packet may not be a full transfer if we didn't have
2721 		 * enough data
2722 		 */
2723 		if (bytes_this_transfer > transaction->xfersize)
2724 			bytes_this_transfer = transaction->xfersize;
2725 	}
2726 	/* Figure out how many bytes were in the last packet of the transfer */
2727 	if (packets_processed)
2728 		bytes_in_last_packet = bytes_this_transfer -
2729 			(packets_processed - 1) * usbc_hcchar.s.mps;
2730 	else
2731 		bytes_in_last_packet = bytes_this_transfer;
2732 
2733 	/*
2734 	 * As a special case, setup transactions output the setup header, not
2735 	 * the user's data. For this reason we don't count setup data as bytes
2736 	 * transferred
2737 	 */
2738 	if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2739 	    (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2740 		bytes_this_transfer = 0;
2741 
2742 	/*
2743 	 * Add the bytes transferred to the running total. It is important that
2744 	 * bytes_this_transfer doesn't count any data that needs to be
2745 	 * retransmitted
2746 	 */
2747 	transaction->actual_bytes += bytes_this_transfer;
2748 	if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2749 		buffer_space_left = transaction->iso_packets[0].length -
2750 			transaction->actual_bytes;
2751 	else
2752 		buffer_space_left = transaction->buffer_length -
2753 			transaction->actual_bytes;
2754 
2755 	/*
2756 	 * We need to remember the PID toggle state for the next transaction.
2757 	 * The hardware already updated it for the next transaction
2758 	 */
2759 	pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2760 
2761 	/*
2762 	 * For high speed bulk out, assume the next transaction will need to do
2763 	 * a ping before proceeding. If this isn't true the ACK processing below
2764 	 * will clear this flag
2765 	 */
2766 	if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2767 	    (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2768 	    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2769 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2770 
2771 	if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
2772 		/*
2773 		 * In some rare cases the DMA engine seems to get stuck and
2774 		 * keeps substracting same byte count over and over again. In
2775 		 * such case we just need to fail every transaction.
2776 		 */
2777 		cvmx_usb_complete(usb, pipe, transaction,
2778 				  CVMX_USB_STATUS_ERROR);
2779 		return 0;
2780 	}
2781 
2782 	if (usbc_hcint.s.stall) {
2783 		/*
2784 		 * STALL as a response means this transaction cannot be
2785 		 * completed because the device can't process transactions. Tell
2786 		 * the user. Any data that was transferred will be counted on
2787 		 * the actual bytes transferred
2788 		 */
2789 		pipe->pid_toggle = 0;
2790 		cvmx_usb_complete(usb, pipe, transaction,
2791 				  CVMX_USB_STATUS_STALL);
2792 	} else if (usbc_hcint.s.xacterr) {
2793 		/*
2794 		 * XactErr as a response means the device signaled
2795 		 * something wrong with the transfer. For example, PID
2796 		 * toggle errors cause these.
2797 		 */
2798 		cvmx_usb_complete(usb, pipe, transaction,
2799 				  CVMX_USB_STATUS_XACTERR);
2800 	} else if (usbc_hcint.s.bblerr) {
2801 		/* Babble Error (BblErr) */
2802 		cvmx_usb_complete(usb, pipe, transaction,
2803 				  CVMX_USB_STATUS_BABBLEERR);
2804 	} else if (usbc_hcint.s.datatglerr) {
2805 		/* Data toggle error */
2806 		cvmx_usb_complete(usb, pipe, transaction,
2807 				  CVMX_USB_STATUS_DATATGLERR);
2808 	} else if (usbc_hcint.s.nyet) {
2809 		/*
2810 		 * NYET as a response is only allowed in three cases: as a
2811 		 * response to a ping, as a response to a split transaction, and
2812 		 * as a response to a bulk out. The ping case is handled by
2813 		 * hardware, so we only have splits and bulk out
2814 		 */
2815 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2816 			transaction->retries = 0;
2817 			/*
2818 			 * If there is more data to go then we need to try
2819 			 * again. Otherwise this transaction is complete
2820 			 */
2821 			if ((buffer_space_left == 0) ||
2822 			    (bytes_in_last_packet < pipe->max_packet))
2823 				cvmx_usb_complete(usb, pipe,
2824 						  transaction,
2825 						  CVMX_USB_STATUS_OK);
2826 		} else {
2827 			/*
2828 			 * Split transactions retry the split complete 4 times
2829 			 * then rewind to the start split and do the entire
2830 			 * transactions again
2831 			 */
2832 			transaction->retries++;
2833 			if ((transaction->retries & 0x3) == 0) {
2834 				/*
2835 				 * Rewind to the beginning of the transaction by
2836 				 * anding off the split complete bit
2837 				 */
2838 				transaction->stage &= ~1;
2839 				pipe->split_sc_frame = -1;
2840 			}
2841 		}
2842 	} else if (usbc_hcint.s.ack) {
2843 		transaction->retries = 0;
2844 		/*
2845 		 * The ACK bit can only be checked after the other error bits.
2846 		 * This is because a multi packet transfer may succeed in a
2847 		 * number of packets and then get a different response on the
2848 		 * last packet. In this case both ACK and the last response bit
2849 		 * will be set. If none of the other response bits is set, then
2850 		 * the last packet must have been an ACK
2851 		 *
2852 		 * Since we got an ACK, we know we don't need to do a ping on
2853 		 * this pipe
2854 		 */
2855 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2856 
2857 		switch (transaction->type) {
2858 		case CVMX_USB_TRANSFER_CONTROL:
2859 			cvmx_usb_transfer_control(usb, pipe, transaction,
2860 						  usbc_hcchar,
2861 						  buffer_space_left,
2862 						  bytes_in_last_packet);
2863 			break;
2864 		case CVMX_USB_TRANSFER_BULK:
2865 			cvmx_usb_transfer_bulk(usb, pipe, transaction,
2866 					       usbc_hcint, buffer_space_left,
2867 					       bytes_in_last_packet);
2868 			break;
2869 		case CVMX_USB_TRANSFER_INTERRUPT:
2870 			cvmx_usb_transfer_intr(usb, pipe, transaction,
2871 					       buffer_space_left,
2872 					       bytes_in_last_packet);
2873 			break;
2874 		case CVMX_USB_TRANSFER_ISOCHRONOUS:
2875 			cvmx_usb_transfer_isoc(usb, pipe, transaction,
2876 					       buffer_space_left,
2877 					       bytes_in_last_packet,
2878 					       bytes_this_transfer);
2879 			break;
2880 		}
2881 	} else if (usbc_hcint.s.nak) {
2882 		/*
2883 		 * If this was a split then clear our split in progress marker.
2884 		 */
2885 		if (usb->active_split == transaction)
2886 			usb->active_split = NULL;
2887 		/*
2888 		 * NAK as a response means the device couldn't accept the
2889 		 * transaction, but it should be retried in the future. Rewind
2890 		 * to the beginning of the transaction by anding off the split
2891 		 * complete bit. Retry in the next interval
2892 		 */
2893 		transaction->retries = 0;
2894 		transaction->stage &= ~1;
2895 		pipe->next_tx_frame += pipe->interval;
2896 		if (pipe->next_tx_frame < usb->frame_number)
2897 			pipe->next_tx_frame = usb->frame_number +
2898 				pipe->interval -
2899 				(usb->frame_number - pipe->next_tx_frame) %
2900 				pipe->interval;
2901 	} else {
2902 		struct cvmx_usb_port_status port;
2903 
2904 		port = cvmx_usb_get_status(usb);
2905 		if (port.port_enabled) {
2906 			/* We'll retry the exact same transaction again */
2907 			transaction->retries++;
2908 		} else {
2909 			/*
2910 			 * We get channel halted interrupts with no result bits
2911 			 * sets when the cable is unplugged
2912 			 */
2913 			cvmx_usb_complete(usb, pipe, transaction,
2914 					  CVMX_USB_STATUS_ERROR);
2915 		}
2916 	}
2917 	return 0;
2918 }
2919 
octeon_usb_port_callback(struct octeon_hcd * usb)2920 static void octeon_usb_port_callback(struct octeon_hcd *usb)
2921 {
2922 	spin_unlock(&usb->lock);
2923 	usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2924 	spin_lock(&usb->lock);
2925 }
2926 
2927 /**
2928  * Poll the USB block for status and call all needed callback
2929  * handlers. This function is meant to be called in the interrupt
2930  * handler for the USB controller. It can also be called
2931  * periodically in a loop for non-interrupt based operation.
2932  *
2933  * @usb: USB device state populated by cvmx_usb_initialize().
2934  *
2935  * Returns: 0 or a negative error code.
2936  */
cvmx_usb_poll(struct octeon_hcd * usb)2937 static int cvmx_usb_poll(struct octeon_hcd *usb)
2938 {
2939 	union cvmx_usbcx_hfnum usbc_hfnum;
2940 	union cvmx_usbcx_gintsts usbc_gintsts;
2941 
2942 	prefetch_range(usb, sizeof(*usb));
2943 
2944 	/* Update the frame counter */
2945 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2946 	if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2947 		usb->frame_number += 0x4000;
2948 	usb->frame_number &= ~0x3fffull;
2949 	usb->frame_number |= usbc_hfnum.s.frnum;
2950 
2951 	/* Read the pending interrupts */
2952 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2953 					       CVMX_USBCX_GINTSTS(usb->index));
2954 
2955 	/* Clear the interrupts now that we know about them */
2956 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2957 			     usbc_gintsts.u32);
2958 
2959 	if (usbc_gintsts.s.rxflvl) {
2960 		/*
2961 		 * RxFIFO Non-Empty (RxFLvl)
2962 		 * Indicates that there is at least one packet pending to be
2963 		 * read from the RxFIFO.
2964 		 *
2965 		 * In DMA mode this is handled by hardware
2966 		 */
2967 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2968 			cvmx_usb_poll_rx_fifo(usb);
2969 	}
2970 	if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2971 		/* Fill the Tx FIFOs when not in DMA mode */
2972 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2973 			cvmx_usb_poll_tx_fifo(usb);
2974 	}
2975 	if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2976 		union cvmx_usbcx_hprt usbc_hprt;
2977 		/*
2978 		 * Disconnect Detected Interrupt (DisconnInt)
2979 		 * Asserted when a device disconnect is detected.
2980 		 *
2981 		 * Host Port Interrupt (PrtInt)
2982 		 * The core sets this bit to indicate a change in port status of
2983 		 * one of the O2P USB core ports in Host mode. The application
2984 		 * must read the Host Port Control and Status (HPRT) register to
2985 		 * determine the exact event that caused this interrupt. The
2986 		 * application must clear the appropriate status bit in the Host
2987 		 * Port Control and Status register to clear this bit.
2988 		 *
2989 		 * Call the user's port callback
2990 		 */
2991 		octeon_usb_port_callback(usb);
2992 		/* Clear the port change bits */
2993 		usbc_hprt.u32 =
2994 			cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2995 		usbc_hprt.s.prtena = 0;
2996 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2997 				     usbc_hprt.u32);
2998 	}
2999 	if (usbc_gintsts.s.hchint) {
3000 		/*
3001 		 * Host Channels Interrupt (HChInt)
3002 		 * The core sets this bit to indicate that an interrupt is
3003 		 * pending on one of the channels of the core (in Host mode).
3004 		 * The application must read the Host All Channels Interrupt
3005 		 * (HAINT) register to determine the exact number of the channel
3006 		 * on which the interrupt occurred, and then read the
3007 		 * corresponding Host Channel-n Interrupt (HCINTn) register to
3008 		 * determine the exact cause of the interrupt. The application
3009 		 * must clear the appropriate status bit in the HCINTn register
3010 		 * to clear this bit.
3011 		 */
3012 		union cvmx_usbcx_haint usbc_haint;
3013 
3014 		usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3015 					CVMX_USBCX_HAINT(usb->index));
3016 		while (usbc_haint.u32) {
3017 			int channel;
3018 
3019 			channel = __fls(usbc_haint.u32);
3020 			cvmx_usb_poll_channel(usb, channel);
3021 			usbc_haint.u32 ^= 1 << channel;
3022 		}
3023 	}
3024 
3025 	cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3026 
3027 	return 0;
3028 }
3029 
3030 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
hcd_to_octeon(struct usb_hcd * hcd)3031 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3032 {
3033 	return (struct octeon_hcd *)(hcd->hcd_priv);
3034 }
3035 
octeon_usb_irq(struct usb_hcd * hcd)3036 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3037 {
3038 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3039 	unsigned long flags;
3040 
3041 	spin_lock_irqsave(&usb->lock, flags);
3042 	cvmx_usb_poll(usb);
3043 	spin_unlock_irqrestore(&usb->lock, flags);
3044 	return IRQ_HANDLED;
3045 }
3046 
octeon_usb_start(struct usb_hcd * hcd)3047 static int octeon_usb_start(struct usb_hcd *hcd)
3048 {
3049 	hcd->state = HC_STATE_RUNNING;
3050 	return 0;
3051 }
3052 
octeon_usb_stop(struct usb_hcd * hcd)3053 static void octeon_usb_stop(struct usb_hcd *hcd)
3054 {
3055 	hcd->state = HC_STATE_HALT;
3056 }
3057 
octeon_usb_get_frame_number(struct usb_hcd * hcd)3058 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3059 {
3060 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3061 
3062 	return cvmx_usb_get_frame_number(usb);
3063 }
3064 
octeon_usb_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3065 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3066 				  struct urb *urb,
3067 				  gfp_t mem_flags)
3068 {
3069 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3070 	struct device *dev = hcd->self.controller;
3071 	struct cvmx_usb_transaction *transaction = NULL;
3072 	struct cvmx_usb_pipe *pipe;
3073 	unsigned long flags;
3074 	struct cvmx_usb_iso_packet *iso_packet;
3075 	struct usb_host_endpoint *ep = urb->ep;
3076 	int rc;
3077 
3078 	urb->status = 0;
3079 	spin_lock_irqsave(&usb->lock, flags);
3080 
3081 	rc = usb_hcd_link_urb_to_ep(hcd, urb);
3082 	if (rc) {
3083 		spin_unlock_irqrestore(&usb->lock, flags);
3084 		return rc;
3085 	}
3086 
3087 	if (!ep->hcpriv) {
3088 		enum cvmx_usb_transfer transfer_type;
3089 		enum cvmx_usb_speed speed;
3090 		int split_device = 0;
3091 		int split_port = 0;
3092 
3093 		switch (usb_pipetype(urb->pipe)) {
3094 		case PIPE_ISOCHRONOUS:
3095 			transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3096 			break;
3097 		case PIPE_INTERRUPT:
3098 			transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3099 			break;
3100 		case PIPE_CONTROL:
3101 			transfer_type = CVMX_USB_TRANSFER_CONTROL;
3102 			break;
3103 		default:
3104 			transfer_type = CVMX_USB_TRANSFER_BULK;
3105 			break;
3106 		}
3107 		switch (urb->dev->speed) {
3108 		case USB_SPEED_LOW:
3109 			speed = CVMX_USB_SPEED_LOW;
3110 			break;
3111 		case USB_SPEED_FULL:
3112 			speed = CVMX_USB_SPEED_FULL;
3113 			break;
3114 		default:
3115 			speed = CVMX_USB_SPEED_HIGH;
3116 			break;
3117 		}
3118 		/*
3119 		 * For slow devices on high speed ports we need to find the hub
3120 		 * that does the speed translation so we know where to send the
3121 		 * split transactions.
3122 		 */
3123 		if (speed != CVMX_USB_SPEED_HIGH) {
3124 			/*
3125 			 * Start at this device and work our way up the usb
3126 			 * tree.
3127 			 */
3128 			struct usb_device *dev = urb->dev;
3129 
3130 			while (dev->parent) {
3131 				/*
3132 				 * If our parent is high speed then he'll
3133 				 * receive the splits.
3134 				 */
3135 				if (dev->parent->speed == USB_SPEED_HIGH) {
3136 					split_device = dev->parent->devnum;
3137 					split_port = dev->portnum;
3138 					break;
3139 				}
3140 				/*
3141 				 * Move up the tree one level. If we make it all
3142 				 * the way up the tree, then the port must not
3143 				 * be in high speed mode and we don't need a
3144 				 * split.
3145 				 */
3146 				dev = dev->parent;
3147 			}
3148 		}
3149 		pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3150 					  usb_pipeendpoint(urb->pipe), speed,
3151 					  le16_to_cpu(ep->desc.wMaxPacketSize)
3152 					  & 0x7ff,
3153 					  transfer_type,
3154 					  usb_pipein(urb->pipe) ?
3155 						CVMX_USB_DIRECTION_IN :
3156 						CVMX_USB_DIRECTION_OUT,
3157 					  urb->interval,
3158 					  (le16_to_cpu(ep->desc.wMaxPacketSize)
3159 					   >> 11) & 0x3,
3160 					  split_device, split_port);
3161 		if (!pipe) {
3162 			usb_hcd_unlink_urb_from_ep(hcd, urb);
3163 			spin_unlock_irqrestore(&usb->lock, flags);
3164 			dev_dbg(dev, "Failed to create pipe\n");
3165 			return -ENOMEM;
3166 		}
3167 		ep->hcpriv = pipe;
3168 	} else {
3169 		pipe = ep->hcpriv;
3170 	}
3171 
3172 	switch (usb_pipetype(urb->pipe)) {
3173 	case PIPE_ISOCHRONOUS:
3174 		dev_dbg(dev, "Submit isochronous to %d.%d\n",
3175 			usb_pipedevice(urb->pipe),
3176 			usb_pipeendpoint(urb->pipe));
3177 		/*
3178 		 * Allocate a structure to use for our private list of
3179 		 * isochronous packets.
3180 		 */
3181 		iso_packet = kmalloc_array(urb->number_of_packets,
3182 					   sizeof(struct cvmx_usb_iso_packet),
3183 					   GFP_ATOMIC);
3184 		if (iso_packet) {
3185 			int i;
3186 			/* Fill the list with the data from the URB */
3187 			for (i = 0; i < urb->number_of_packets; i++) {
3188 				iso_packet[i].offset =
3189 					urb->iso_frame_desc[i].offset;
3190 				iso_packet[i].length =
3191 					urb->iso_frame_desc[i].length;
3192 				iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3193 			}
3194 			/*
3195 			 * Store a pointer to the list in the URB setup_packet
3196 			 * field. We know this currently isn't being used and
3197 			 * this saves us a bunch of logic.
3198 			 */
3199 			urb->setup_packet = (char *)iso_packet;
3200 			transaction = cvmx_usb_submit_isochronous(usb,
3201 								  pipe, urb);
3202 			/*
3203 			 * If submit failed we need to free our private packet
3204 			 * list.
3205 			 */
3206 			if (!transaction) {
3207 				urb->setup_packet = NULL;
3208 				kfree(iso_packet);
3209 			}
3210 		}
3211 		break;
3212 	case PIPE_INTERRUPT:
3213 		dev_dbg(dev, "Submit interrupt to %d.%d\n",
3214 			usb_pipedevice(urb->pipe),
3215 			usb_pipeendpoint(urb->pipe));
3216 		transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3217 		break;
3218 	case PIPE_CONTROL:
3219 		dev_dbg(dev, "Submit control to %d.%d\n",
3220 			usb_pipedevice(urb->pipe),
3221 			usb_pipeendpoint(urb->pipe));
3222 		transaction = cvmx_usb_submit_control(usb, pipe, urb);
3223 		break;
3224 	case PIPE_BULK:
3225 		dev_dbg(dev, "Submit bulk to %d.%d\n",
3226 			usb_pipedevice(urb->pipe),
3227 			usb_pipeendpoint(urb->pipe));
3228 		transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3229 		break;
3230 	}
3231 	if (!transaction) {
3232 		usb_hcd_unlink_urb_from_ep(hcd, urb);
3233 		spin_unlock_irqrestore(&usb->lock, flags);
3234 		dev_dbg(dev, "Failed to submit\n");
3235 		return -ENOMEM;
3236 	}
3237 	urb->hcpriv = transaction;
3238 	spin_unlock_irqrestore(&usb->lock, flags);
3239 	return 0;
3240 }
3241 
octeon_usb_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3242 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3243 				  struct urb *urb,
3244 				  int status)
3245 {
3246 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3247 	unsigned long flags;
3248 	int rc;
3249 
3250 	if (!urb->dev)
3251 		return -EINVAL;
3252 
3253 	spin_lock_irqsave(&usb->lock, flags);
3254 
3255 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3256 	if (rc)
3257 		goto out;
3258 
3259 	urb->status = status;
3260 	cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3261 
3262 out:
3263 	spin_unlock_irqrestore(&usb->lock, flags);
3264 
3265 	return rc;
3266 }
3267 
octeon_usb_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3268 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3269 					struct usb_host_endpoint *ep)
3270 {
3271 	struct device *dev = hcd->self.controller;
3272 
3273 	if (ep->hcpriv) {
3274 		struct octeon_hcd *usb = hcd_to_octeon(hcd);
3275 		struct cvmx_usb_pipe *pipe = ep->hcpriv;
3276 		unsigned long flags;
3277 
3278 		spin_lock_irqsave(&usb->lock, flags);
3279 		cvmx_usb_cancel_all(usb, pipe);
3280 		if (cvmx_usb_close_pipe(usb, pipe))
3281 			dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3282 		spin_unlock_irqrestore(&usb->lock, flags);
3283 		ep->hcpriv = NULL;
3284 	}
3285 }
3286 
octeon_usb_hub_status_data(struct usb_hcd * hcd,char * buf)3287 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3288 {
3289 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3290 	struct cvmx_usb_port_status port_status;
3291 	unsigned long flags;
3292 
3293 	spin_lock_irqsave(&usb->lock, flags);
3294 	port_status = cvmx_usb_get_status(usb);
3295 	spin_unlock_irqrestore(&usb->lock, flags);
3296 	buf[0] = port_status.connect_change << 1;
3297 
3298 	return buf[0] != 0;
3299 }
3300 
octeon_usb_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3301 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3302 				  u16 wIndex, char *buf, u16 wLength)
3303 {
3304 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3305 	struct device *dev = hcd->self.controller;
3306 	struct cvmx_usb_port_status usb_port_status;
3307 	int port_status;
3308 	struct usb_hub_descriptor *desc;
3309 	unsigned long flags;
3310 
3311 	switch (typeReq) {
3312 	case ClearHubFeature:
3313 		dev_dbg(dev, "ClearHubFeature\n");
3314 		switch (wValue) {
3315 		case C_HUB_LOCAL_POWER:
3316 		case C_HUB_OVER_CURRENT:
3317 			/* Nothing required here */
3318 			break;
3319 		default:
3320 			return -EINVAL;
3321 		}
3322 		break;
3323 	case ClearPortFeature:
3324 		dev_dbg(dev, "ClearPortFeature\n");
3325 		if (wIndex != 1) {
3326 			dev_dbg(dev, " INVALID\n");
3327 			return -EINVAL;
3328 		}
3329 
3330 		switch (wValue) {
3331 		case USB_PORT_FEAT_ENABLE:
3332 			dev_dbg(dev, " ENABLE\n");
3333 			spin_lock_irqsave(&usb->lock, flags);
3334 			cvmx_usb_disable(usb);
3335 			spin_unlock_irqrestore(&usb->lock, flags);
3336 			break;
3337 		case USB_PORT_FEAT_SUSPEND:
3338 			dev_dbg(dev, " SUSPEND\n");
3339 			/* Not supported on Octeon */
3340 			break;
3341 		case USB_PORT_FEAT_POWER:
3342 			dev_dbg(dev, " POWER\n");
3343 			/* Not supported on Octeon */
3344 			break;
3345 		case USB_PORT_FEAT_INDICATOR:
3346 			dev_dbg(dev, " INDICATOR\n");
3347 			/* Port inidicator not supported */
3348 			break;
3349 		case USB_PORT_FEAT_C_CONNECTION:
3350 			dev_dbg(dev, " C_CONNECTION\n");
3351 			/* Clears drivers internal connect status change flag */
3352 			spin_lock_irqsave(&usb->lock, flags);
3353 			usb->port_status = cvmx_usb_get_status(usb);
3354 			spin_unlock_irqrestore(&usb->lock, flags);
3355 			break;
3356 		case USB_PORT_FEAT_C_RESET:
3357 			dev_dbg(dev, " C_RESET\n");
3358 			/*
3359 			 * Clears the driver's internal Port Reset Change flag.
3360 			 */
3361 			spin_lock_irqsave(&usb->lock, flags);
3362 			usb->port_status = cvmx_usb_get_status(usb);
3363 			spin_unlock_irqrestore(&usb->lock, flags);
3364 			break;
3365 		case USB_PORT_FEAT_C_ENABLE:
3366 			dev_dbg(dev, " C_ENABLE\n");
3367 			/*
3368 			 * Clears the driver's internal Port Enable/Disable
3369 			 * Change flag.
3370 			 */
3371 			spin_lock_irqsave(&usb->lock, flags);
3372 			usb->port_status = cvmx_usb_get_status(usb);
3373 			spin_unlock_irqrestore(&usb->lock, flags);
3374 			break;
3375 		case USB_PORT_FEAT_C_SUSPEND:
3376 			dev_dbg(dev, " C_SUSPEND\n");
3377 			/*
3378 			 * Clears the driver's internal Port Suspend Change
3379 			 * flag, which is set when resume signaling on the host
3380 			 * port is complete.
3381 			 */
3382 			break;
3383 		case USB_PORT_FEAT_C_OVER_CURRENT:
3384 			dev_dbg(dev, " C_OVER_CURRENT\n");
3385 			/* Clears the driver's overcurrent Change flag */
3386 			spin_lock_irqsave(&usb->lock, flags);
3387 			usb->port_status = cvmx_usb_get_status(usb);
3388 			spin_unlock_irqrestore(&usb->lock, flags);
3389 			break;
3390 		default:
3391 			dev_dbg(dev, " UNKNOWN\n");
3392 			return -EINVAL;
3393 		}
3394 		break;
3395 	case GetHubDescriptor:
3396 		dev_dbg(dev, "GetHubDescriptor\n");
3397 		desc = (struct usb_hub_descriptor *)buf;
3398 		desc->bDescLength = 9;
3399 		desc->bDescriptorType = 0x29;
3400 		desc->bNbrPorts = 1;
3401 		desc->wHubCharacteristics = cpu_to_le16(0x08);
3402 		desc->bPwrOn2PwrGood = 1;
3403 		desc->bHubContrCurrent = 0;
3404 		desc->u.hs.DeviceRemovable[0] = 0;
3405 		desc->u.hs.DeviceRemovable[1] = 0xff;
3406 		break;
3407 	case GetHubStatus:
3408 		dev_dbg(dev, "GetHubStatus\n");
3409 		*(__le32 *)buf = 0;
3410 		break;
3411 	case GetPortStatus:
3412 		dev_dbg(dev, "GetPortStatus\n");
3413 		if (wIndex != 1) {
3414 			dev_dbg(dev, " INVALID\n");
3415 			return -EINVAL;
3416 		}
3417 
3418 		spin_lock_irqsave(&usb->lock, flags);
3419 		usb_port_status = cvmx_usb_get_status(usb);
3420 		spin_unlock_irqrestore(&usb->lock, flags);
3421 		port_status = 0;
3422 
3423 		if (usb_port_status.connect_change) {
3424 			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3425 			dev_dbg(dev, " C_CONNECTION\n");
3426 		}
3427 
3428 		if (usb_port_status.port_enabled) {
3429 			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3430 			dev_dbg(dev, " C_ENABLE\n");
3431 		}
3432 
3433 		if (usb_port_status.connected) {
3434 			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3435 			dev_dbg(dev, " CONNECTION\n");
3436 		}
3437 
3438 		if (usb_port_status.port_enabled) {
3439 			port_status |= (1 << USB_PORT_FEAT_ENABLE);
3440 			dev_dbg(dev, " ENABLE\n");
3441 		}
3442 
3443 		if (usb_port_status.port_over_current) {
3444 			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3445 			dev_dbg(dev, " OVER_CURRENT\n");
3446 		}
3447 
3448 		if (usb_port_status.port_powered) {
3449 			port_status |= (1 << USB_PORT_FEAT_POWER);
3450 			dev_dbg(dev, " POWER\n");
3451 		}
3452 
3453 		if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3454 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3455 			dev_dbg(dev, " HIGHSPEED\n");
3456 		} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3457 			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3458 			dev_dbg(dev, " LOWSPEED\n");
3459 		}
3460 
3461 		*((__le32 *)buf) = cpu_to_le32(port_status);
3462 		break;
3463 	case SetHubFeature:
3464 		dev_dbg(dev, "SetHubFeature\n");
3465 		/* No HUB features supported */
3466 		break;
3467 	case SetPortFeature:
3468 		dev_dbg(dev, "SetPortFeature\n");
3469 		if (wIndex != 1) {
3470 			dev_dbg(dev, " INVALID\n");
3471 			return -EINVAL;
3472 		}
3473 
3474 		switch (wValue) {
3475 		case USB_PORT_FEAT_SUSPEND:
3476 			dev_dbg(dev, " SUSPEND\n");
3477 			return -EINVAL;
3478 		case USB_PORT_FEAT_POWER:
3479 			dev_dbg(dev, " POWER\n");
3480 			/*
3481 			 * Program the port power bit to drive VBUS on the USB.
3482 			 */
3483 			spin_lock_irqsave(&usb->lock, flags);
3484 			USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3485 					cvmx_usbcx_hprt, prtpwr, 1);
3486 			spin_unlock_irqrestore(&usb->lock, flags);
3487 			return 0;
3488 		case USB_PORT_FEAT_RESET:
3489 			dev_dbg(dev, " RESET\n");
3490 			spin_lock_irqsave(&usb->lock, flags);
3491 			cvmx_usb_reset_port(usb);
3492 			spin_unlock_irqrestore(&usb->lock, flags);
3493 			return 0;
3494 		case USB_PORT_FEAT_INDICATOR:
3495 			dev_dbg(dev, " INDICATOR\n");
3496 			/* Not supported */
3497 			break;
3498 		default:
3499 			dev_dbg(dev, " UNKNOWN\n");
3500 			return -EINVAL;
3501 		}
3502 		break;
3503 	default:
3504 		dev_dbg(dev, "Unknown root hub request\n");
3505 		return -EINVAL;
3506 	}
3507 	return 0;
3508 }
3509 
3510 static const struct hc_driver octeon_hc_driver = {
3511 	.description		= "Octeon USB",
3512 	.product_desc		= "Octeon Host Controller",
3513 	.hcd_priv_size		= sizeof(struct octeon_hcd),
3514 	.irq			= octeon_usb_irq,
3515 	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
3516 	.start			= octeon_usb_start,
3517 	.stop			= octeon_usb_stop,
3518 	.urb_enqueue		= octeon_usb_urb_enqueue,
3519 	.urb_dequeue		= octeon_usb_urb_dequeue,
3520 	.endpoint_disable	= octeon_usb_endpoint_disable,
3521 	.get_frame_number	= octeon_usb_get_frame_number,
3522 	.hub_status_data	= octeon_usb_hub_status_data,
3523 	.hub_control		= octeon_usb_hub_control,
3524 	.map_urb_for_dma	= octeon_map_urb_for_dma,
3525 	.unmap_urb_for_dma	= octeon_unmap_urb_for_dma,
3526 };
3527 
octeon_usb_probe(struct platform_device * pdev)3528 static int octeon_usb_probe(struct platform_device *pdev)
3529 {
3530 	int status;
3531 	int initialize_flags;
3532 	int usb_num;
3533 	struct resource *res_mem;
3534 	struct device_node *usbn_node;
3535 	int irq = platform_get_irq(pdev, 0);
3536 	struct device *dev = &pdev->dev;
3537 	struct octeon_hcd *usb;
3538 	struct usb_hcd *hcd;
3539 	u32 clock_rate = 48000000;
3540 	bool is_crystal_clock = false;
3541 	const char *clock_type;
3542 	int i;
3543 
3544 	if (!dev->of_node) {
3545 		dev_err(dev, "Error: empty of_node\n");
3546 		return -ENXIO;
3547 	}
3548 	usbn_node = dev->of_node->parent;
3549 
3550 	i = of_property_read_u32(usbn_node,
3551 				 "clock-frequency", &clock_rate);
3552 	if (i)
3553 		i = of_property_read_u32(usbn_node,
3554 					 "refclk-frequency", &clock_rate);
3555 	if (i) {
3556 		dev_err(dev, "No USBN \"clock-frequency\"\n");
3557 		return -ENXIO;
3558 	}
3559 	switch (clock_rate) {
3560 	case 12000000:
3561 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3562 		break;
3563 	case 24000000:
3564 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3565 		break;
3566 	case 48000000:
3567 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3568 		break;
3569 	default:
3570 		dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3571 			clock_rate);
3572 		return -ENXIO;
3573 	}
3574 
3575 	i = of_property_read_string(usbn_node,
3576 				    "cavium,refclk-type", &clock_type);
3577 	if (i)
3578 		i = of_property_read_string(usbn_node,
3579 					    "refclk-type", &clock_type);
3580 
3581 	if (!i && strcmp("crystal", clock_type) == 0)
3582 		is_crystal_clock = true;
3583 
3584 	if (is_crystal_clock)
3585 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3586 	else
3587 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3588 
3589 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3590 	if (!res_mem) {
3591 		dev_err(dev, "found no memory resource\n");
3592 		return -ENXIO;
3593 	}
3594 	usb_num = (res_mem->start >> 44) & 1;
3595 
3596 	if (irq < 0) {
3597 		/* Defective device tree, but we know how to fix it. */
3598 		irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3599 
3600 		irq = irq_create_mapping(NULL, hwirq);
3601 	}
3602 
3603 	/*
3604 	 * Set the DMA mask to 64bits so we get buffers already translated for
3605 	 * DMA.
3606 	 */
3607 	i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
3608 	if (i)
3609 		return i;
3610 
3611 	/*
3612 	 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3613 	 * IOB priority registers.  Under heavy network load USB
3614 	 * hardware can be starved by the IOB causing a crash.  Give
3615 	 * it a priority boost if it has been waiting more than 400
3616 	 * cycles to avoid this situation.
3617 	 *
3618 	 * Testing indicates that a cnt_val of 8192 is not sufficient,
3619 	 * but no failures are seen with 4096.  We choose a value of
3620 	 * 400 to give a safety factor of 10.
3621 	 */
3622 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3623 		union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3624 
3625 		pri_cnt.u64 = 0;
3626 		pri_cnt.s.cnt_enb = 1;
3627 		pri_cnt.s.cnt_val = 400;
3628 		cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3629 	}
3630 
3631 	hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3632 	if (!hcd) {
3633 		dev_dbg(dev, "Failed to allocate memory for HCD\n");
3634 		return -1;
3635 	}
3636 	hcd->uses_new_polling = 1;
3637 	usb = (struct octeon_hcd *)hcd->hcd_priv;
3638 
3639 	spin_lock_init(&usb->lock);
3640 
3641 	usb->init_flags = initialize_flags;
3642 
3643 	/* Initialize the USB state structure */
3644 	usb->index = usb_num;
3645 	INIT_LIST_HEAD(&usb->idle_pipes);
3646 	for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3647 		INIT_LIST_HEAD(&usb->active_pipes[i]);
3648 
3649 	/* Due to an errata, CN31XX doesn't support DMA */
3650 	if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3651 		usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3652 		/* Only use one channel with non DMA */
3653 		usb->idle_hardware_channels = 0x1;
3654 	} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3655 		/* CN5XXX have an errata with channel 3 */
3656 		usb->idle_hardware_channels = 0xf7;
3657 	} else {
3658 		usb->idle_hardware_channels = 0xff;
3659 	}
3660 
3661 	status = cvmx_usb_initialize(dev, usb);
3662 	if (status) {
3663 		dev_dbg(dev, "USB initialization failed with %d\n", status);
3664 		usb_put_hcd(hcd);
3665 		return -1;
3666 	}
3667 
3668 	status = usb_add_hcd(hcd, irq, 0);
3669 	if (status) {
3670 		dev_dbg(dev, "USB add HCD failed with %d\n", status);
3671 		usb_put_hcd(hcd);
3672 		return -1;
3673 	}
3674 	device_wakeup_enable(hcd->self.controller);
3675 
3676 	dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3677 
3678 	return 0;
3679 }
3680 
octeon_usb_remove(struct platform_device * pdev)3681 static int octeon_usb_remove(struct platform_device *pdev)
3682 {
3683 	int status;
3684 	struct device *dev = &pdev->dev;
3685 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3686 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3687 	unsigned long flags;
3688 
3689 	usb_remove_hcd(hcd);
3690 	spin_lock_irqsave(&usb->lock, flags);
3691 	status = cvmx_usb_shutdown(usb);
3692 	spin_unlock_irqrestore(&usb->lock, flags);
3693 	if (status)
3694 		dev_dbg(dev, "USB shutdown failed with %d\n", status);
3695 
3696 	usb_put_hcd(hcd);
3697 
3698 	return 0;
3699 }
3700 
3701 static const struct of_device_id octeon_usb_match[] = {
3702 	{
3703 		.compatible = "cavium,octeon-5750-usbc",
3704 	},
3705 	{},
3706 };
3707 MODULE_DEVICE_TABLE(of, octeon_usb_match);
3708 
3709 static struct platform_driver octeon_usb_driver = {
3710 	.driver = {
3711 		.name		= "octeon-hcd",
3712 		.of_match_table = octeon_usb_match,
3713 	},
3714 	.probe      = octeon_usb_probe,
3715 	.remove     = octeon_usb_remove,
3716 };
3717 
octeon_usb_driver_init(void)3718 static int __init octeon_usb_driver_init(void)
3719 {
3720 	if (usb_disabled())
3721 		return 0;
3722 
3723 	return platform_driver_register(&octeon_usb_driver);
3724 }
3725 module_init(octeon_usb_driver_init);
3726 
octeon_usb_driver_exit(void)3727 static void __exit octeon_usb_driver_exit(void)
3728 {
3729 	if (usb_disabled())
3730 		return;
3731 
3732 	platform_driver_unregister(&octeon_usb_driver);
3733 }
3734 module_exit(octeon_usb_driver_exit);
3735 
3736 MODULE_LICENSE("GPL");
3737 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3738 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3739