1 /******************************************************************************
2 * Client-facing interface for the Xenbus driver. In other words, the
3 * interface between the Xenbus and the device-specific code, be it the
4 * frontend or the backend of that driver.
5 *
6 * Copyright (C) 2005 XenSource Ltd
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
31 */
32
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49
50 #include "xenbus.h"
51
52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53
54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55
56 struct xenbus_map_node {
57 struct list_head next;
58 union {
59 struct {
60 struct vm_struct *area;
61 } pv;
62 struct {
63 struct page *pages[XENBUS_MAX_RING_PAGES];
64 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 void *addr;
66 } hvm;
67 };
68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 unsigned int nr_handles;
70 };
71
72 struct map_ring_valloc {
73 struct xenbus_map_node *node;
74
75 /* Why do we need two arrays? See comment of __xenbus_map_ring */
76 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
77 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
78
79 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
80 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
81
82 unsigned int idx;
83 };
84
85 static DEFINE_SPINLOCK(xenbus_valloc_lock);
86 static LIST_HEAD(xenbus_valloc_pages);
87
88 struct xenbus_ring_ops {
89 int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info,
90 grant_ref_t *gnt_refs, unsigned int nr_grefs,
91 void **vaddr);
92 int (*unmap)(struct xenbus_device *dev, void *vaddr);
93 };
94
95 static const struct xenbus_ring_ops *ring_ops __read_mostly;
96
xenbus_strstate(enum xenbus_state state)97 const char *xenbus_strstate(enum xenbus_state state)
98 {
99 static const char *const name[] = {
100 [ XenbusStateUnknown ] = "Unknown",
101 [ XenbusStateInitialising ] = "Initialising",
102 [ XenbusStateInitWait ] = "InitWait",
103 [ XenbusStateInitialised ] = "Initialised",
104 [ XenbusStateConnected ] = "Connected",
105 [ XenbusStateClosing ] = "Closing",
106 [ XenbusStateClosed ] = "Closed",
107 [XenbusStateReconfiguring] = "Reconfiguring",
108 [XenbusStateReconfigured] = "Reconfigured",
109 };
110 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
111 }
112 EXPORT_SYMBOL_GPL(xenbus_strstate);
113
114 /**
115 * xenbus_watch_path - register a watch
116 * @dev: xenbus device
117 * @path: path to watch
118 * @watch: watch to register
119 * @callback: callback to register
120 *
121 * Register a @watch on the given path, using the given xenbus_watch structure
122 * for storage, and the given @callback function as the callback. Return 0 on
123 * success, or -errno on error. On success, the given @path will be saved as
124 * @watch->node, and remains the caller's to free. On error, @watch->node will
125 * be NULL, the device will switch to %XenbusStateClosing, and the error will
126 * be saved in the store.
127 */
xenbus_watch_path(struct xenbus_device * dev,const char * path,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *))128 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
129 struct xenbus_watch *watch,
130 bool (*will_handle)(struct xenbus_watch *,
131 const char *, const char *),
132 void (*callback)(struct xenbus_watch *,
133 const char *, const char *))
134 {
135 int err;
136
137 watch->node = path;
138 watch->will_handle = will_handle;
139 watch->callback = callback;
140
141 err = register_xenbus_watch(watch);
142
143 if (err) {
144 watch->node = NULL;
145 watch->will_handle = NULL;
146 watch->callback = NULL;
147 xenbus_dev_fatal(dev, err, "adding watch on %s", path);
148 }
149
150 return err;
151 }
152 EXPORT_SYMBOL_GPL(xenbus_watch_path);
153
154
155 /**
156 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
157 * @dev: xenbus device
158 * @watch: watch to register
159 * @callback: callback to register
160 * @pathfmt: format of path to watch
161 *
162 * Register a watch on the given @path, using the given xenbus_watch
163 * structure for storage, and the given @callback function as the callback.
164 * Return 0 on success, or -errno on error. On success, the watched path
165 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
166 * kfree(). On error, watch->node will be NULL, so the caller has nothing to
167 * free, the device will switch to %XenbusStateClosing, and the error will be
168 * saved in the store.
169 */
xenbus_watch_pathfmt(struct xenbus_device * dev,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *),const char * pathfmt,...)170 int xenbus_watch_pathfmt(struct xenbus_device *dev,
171 struct xenbus_watch *watch,
172 bool (*will_handle)(struct xenbus_watch *,
173 const char *, const char *),
174 void (*callback)(struct xenbus_watch *,
175 const char *, const char *),
176 const char *pathfmt, ...)
177 {
178 int err;
179 va_list ap;
180 char *path;
181
182 va_start(ap, pathfmt);
183 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
184 va_end(ap);
185
186 if (!path) {
187 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
188 return -ENOMEM;
189 }
190 err = xenbus_watch_path(dev, path, watch, will_handle, callback);
191
192 if (err)
193 kfree(path);
194 return err;
195 }
196 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
197
198 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
199 const char *, ...);
200
201 static int
__xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state,int depth)202 __xenbus_switch_state(struct xenbus_device *dev,
203 enum xenbus_state state, int depth)
204 {
205 /* We check whether the state is currently set to the given value, and
206 if not, then the state is set. We don't want to unconditionally
207 write the given state, because we don't want to fire watches
208 unnecessarily. Furthermore, if the node has gone, we don't write
209 to it, as the device will be tearing down, and we don't want to
210 resurrect that directory.
211
212 Note that, because of this cached value of our state, this
213 function will not take a caller's Xenstore transaction
214 (something it was trying to in the past) because dev->state
215 would not get reset if the transaction was aborted.
216 */
217
218 struct xenbus_transaction xbt;
219 int current_state;
220 int err, abort;
221
222 if (state == dev->state)
223 return 0;
224
225 again:
226 abort = 1;
227
228 err = xenbus_transaction_start(&xbt);
229 if (err) {
230 xenbus_switch_fatal(dev, depth, err, "starting transaction");
231 return 0;
232 }
233
234 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state);
235 if (err != 1)
236 goto abort;
237
238 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
239 if (err) {
240 xenbus_switch_fatal(dev, depth, err, "writing new state");
241 goto abort;
242 }
243
244 abort = 0;
245 abort:
246 err = xenbus_transaction_end(xbt, abort);
247 if (err) {
248 if (err == -EAGAIN && !abort)
249 goto again;
250 xenbus_switch_fatal(dev, depth, err, "ending transaction");
251 } else
252 dev->state = state;
253
254 return 0;
255 }
256
257 /**
258 * xenbus_switch_state
259 * @dev: xenbus device
260 * @state: new state
261 *
262 * Advertise in the store a change of the given driver to the given new_state.
263 * Return 0 on success, or -errno on error. On error, the device will switch
264 * to XenbusStateClosing, and the error will be saved in the store.
265 */
xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state)266 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
267 {
268 return __xenbus_switch_state(dev, state, 0);
269 }
270
271 EXPORT_SYMBOL_GPL(xenbus_switch_state);
272
xenbus_frontend_closed(struct xenbus_device * dev)273 int xenbus_frontend_closed(struct xenbus_device *dev)
274 {
275 xenbus_switch_state(dev, XenbusStateClosed);
276 complete(&dev->down);
277 return 0;
278 }
279 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
280
xenbus_va_dev_error(struct xenbus_device * dev,int err,const char * fmt,va_list ap)281 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
282 const char *fmt, va_list ap)
283 {
284 unsigned int len;
285 char *printf_buffer;
286 char *path_buffer;
287
288 #define PRINTF_BUFFER_SIZE 4096
289
290 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
291 if (!printf_buffer)
292 return;
293
294 len = sprintf(printf_buffer, "%i ", -err);
295 vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
296
297 dev_err(&dev->dev, "%s\n", printf_buffer);
298
299 path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
300 if (path_buffer)
301 xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
302
303 kfree(printf_buffer);
304 kfree(path_buffer);
305 }
306
307 /**
308 * xenbus_dev_error
309 * @dev: xenbus device
310 * @err: error to report
311 * @fmt: error message format
312 *
313 * Report the given negative errno into the store, along with the given
314 * formatted message.
315 */
xenbus_dev_error(struct xenbus_device * dev,int err,const char * fmt,...)316 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
317 {
318 va_list ap;
319
320 va_start(ap, fmt);
321 xenbus_va_dev_error(dev, err, fmt, ap);
322 va_end(ap);
323 }
324 EXPORT_SYMBOL_GPL(xenbus_dev_error);
325
326 /**
327 * xenbus_dev_fatal
328 * @dev: xenbus device
329 * @err: error to report
330 * @fmt: error message format
331 *
332 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
333 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
334 * closedown of this driver and its peer.
335 */
336
xenbus_dev_fatal(struct xenbus_device * dev,int err,const char * fmt,...)337 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
338 {
339 va_list ap;
340
341 va_start(ap, fmt);
342 xenbus_va_dev_error(dev, err, fmt, ap);
343 va_end(ap);
344
345 xenbus_switch_state(dev, XenbusStateClosing);
346 }
347 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
348
349 /**
350 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
351 * avoiding recursion within xenbus_switch_state.
352 */
xenbus_switch_fatal(struct xenbus_device * dev,int depth,int err,const char * fmt,...)353 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
354 const char *fmt, ...)
355 {
356 va_list ap;
357
358 va_start(ap, fmt);
359 xenbus_va_dev_error(dev, err, fmt, ap);
360 va_end(ap);
361
362 if (!depth)
363 __xenbus_switch_state(dev, XenbusStateClosing, 1);
364 }
365
366 /**
367 * xenbus_grant_ring
368 * @dev: xenbus device
369 * @vaddr: starting virtual address of the ring
370 * @nr_pages: number of pages to be granted
371 * @grefs: grant reference array to be filled in
372 *
373 * Grant access to the given @vaddr to the peer of the given device.
374 * Then fill in @grefs with grant references. Return 0 on success, or
375 * -errno on error. On error, the device will switch to
376 * XenbusStateClosing, and the error will be saved in the store.
377 */
xenbus_grant_ring(struct xenbus_device * dev,void * vaddr,unsigned int nr_pages,grant_ref_t * grefs)378 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
379 unsigned int nr_pages, grant_ref_t *grefs)
380 {
381 int err;
382 int i, j;
383
384 for (i = 0; i < nr_pages; i++) {
385 unsigned long gfn;
386
387 if (is_vmalloc_addr(vaddr))
388 gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr));
389 else
390 gfn = virt_to_gfn(vaddr);
391
392 err = gnttab_grant_foreign_access(dev->otherend_id, gfn, 0);
393 if (err < 0) {
394 xenbus_dev_fatal(dev, err,
395 "granting access to ring page");
396 goto fail;
397 }
398 grefs[i] = err;
399
400 vaddr = vaddr + XEN_PAGE_SIZE;
401 }
402
403 return 0;
404
405 fail:
406 for (j = 0; j < i; j++)
407 gnttab_end_foreign_access_ref(grefs[j], 0);
408 return err;
409 }
410 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
411
412
413 /**
414 * Allocate an event channel for the given xenbus_device, assigning the newly
415 * created local port to *port. Return 0 on success, or -errno on error. On
416 * error, the device will switch to XenbusStateClosing, and the error will be
417 * saved in the store.
418 */
xenbus_alloc_evtchn(struct xenbus_device * dev,evtchn_port_t * port)419 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
420 {
421 struct evtchn_alloc_unbound alloc_unbound;
422 int err;
423
424 alloc_unbound.dom = DOMID_SELF;
425 alloc_unbound.remote_dom = dev->otherend_id;
426
427 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
428 &alloc_unbound);
429 if (err)
430 xenbus_dev_fatal(dev, err, "allocating event channel");
431 else
432 *port = alloc_unbound.port;
433
434 return err;
435 }
436 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
437
438
439 /**
440 * Free an existing event channel. Returns 0 on success or -errno on error.
441 */
xenbus_free_evtchn(struct xenbus_device * dev,evtchn_port_t port)442 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
443 {
444 struct evtchn_close close;
445 int err;
446
447 close.port = port;
448
449 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
450 if (err)
451 xenbus_dev_error(dev, err, "freeing event channel %u", port);
452
453 return err;
454 }
455 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
456
457
458 /**
459 * xenbus_map_ring_valloc
460 * @dev: xenbus device
461 * @gnt_refs: grant reference array
462 * @nr_grefs: number of grant references
463 * @vaddr: pointer to address to be filled out by mapping
464 *
465 * Map @nr_grefs pages of memory into this domain from another
466 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs
467 * pages of virtual address space, maps the pages to that address, and
468 * sets *vaddr to that address. Returns 0 on success, and -errno on
469 * error. If an error is returned, device will switch to
470 * XenbusStateClosing and the error message will be saved in XenStore.
471 */
xenbus_map_ring_valloc(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)472 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
473 unsigned int nr_grefs, void **vaddr)
474 {
475 int err;
476 struct map_ring_valloc *info;
477
478 *vaddr = NULL;
479
480 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
481 return -EINVAL;
482
483 info = kzalloc(sizeof(*info), GFP_KERNEL);
484 if (!info)
485 return -ENOMEM;
486
487 info->node = kzalloc(sizeof(*info->node), GFP_KERNEL);
488 if (!info->node)
489 err = -ENOMEM;
490 else
491 err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr);
492
493 kfree(info->node);
494 kfree(info);
495 return err;
496 }
497 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
498
499 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
500 * long), e.g. 32-on-64. Caller is responsible for preparing the
501 * right array to feed into this function */
__xenbus_map_ring(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,grant_handle_t * handles,struct map_ring_valloc * info,unsigned int flags,bool * leaked)502 static int __xenbus_map_ring(struct xenbus_device *dev,
503 grant_ref_t *gnt_refs,
504 unsigned int nr_grefs,
505 grant_handle_t *handles,
506 struct map_ring_valloc *info,
507 unsigned int flags,
508 bool *leaked)
509 {
510 int i, j;
511
512 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
513 return -EINVAL;
514
515 for (i = 0; i < nr_grefs; i++) {
516 gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags,
517 gnt_refs[i], dev->otherend_id);
518 handles[i] = INVALID_GRANT_HANDLE;
519 }
520
521 gnttab_batch_map(info->map, i);
522
523 for (i = 0; i < nr_grefs; i++) {
524 if (info->map[i].status != GNTST_okay) {
525 xenbus_dev_fatal(dev, info->map[i].status,
526 "mapping in shared page %d from domain %d",
527 gnt_refs[i], dev->otherend_id);
528 goto fail;
529 } else
530 handles[i] = info->map[i].handle;
531 }
532
533 return 0;
534
535 fail:
536 for (i = j = 0; i < nr_grefs; i++) {
537 if (handles[i] != INVALID_GRANT_HANDLE) {
538 gnttab_set_unmap_op(&info->unmap[j],
539 info->phys_addrs[i],
540 GNTMAP_host_map, handles[i]);
541 j++;
542 }
543 }
544
545 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j));
546
547 *leaked = false;
548 for (i = 0; i < j; i++) {
549 if (info->unmap[i].status != GNTST_okay) {
550 *leaked = true;
551 break;
552 }
553 }
554
555 return -ENOENT;
556 }
557
558 /**
559 * xenbus_unmap_ring
560 * @dev: xenbus device
561 * @handles: grant handle array
562 * @nr_handles: number of handles in the array
563 * @vaddrs: addresses to unmap
564 *
565 * Unmap memory in this domain that was imported from another domain.
566 * Returns 0 on success and returns GNTST_* on error
567 * (see xen/include/interface/grant_table.h).
568 */
xenbus_unmap_ring(struct xenbus_device * dev,grant_handle_t * handles,unsigned int nr_handles,unsigned long * vaddrs)569 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
570 unsigned int nr_handles, unsigned long *vaddrs)
571 {
572 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
573 int i;
574 int err;
575
576 if (nr_handles > XENBUS_MAX_RING_GRANTS)
577 return -EINVAL;
578
579 for (i = 0; i < nr_handles; i++)
580 gnttab_set_unmap_op(&unmap[i], vaddrs[i],
581 GNTMAP_host_map, handles[i]);
582
583 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
584
585 err = GNTST_okay;
586 for (i = 0; i < nr_handles; i++) {
587 if (unmap[i].status != GNTST_okay) {
588 xenbus_dev_error(dev, unmap[i].status,
589 "unmapping page at handle %d error %d",
590 handles[i], unmap[i].status);
591 err = unmap[i].status;
592 break;
593 }
594 }
595
596 return err;
597 }
598
xenbus_map_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)599 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
600 unsigned int goffset,
601 unsigned int len,
602 void *data)
603 {
604 struct map_ring_valloc *info = data;
605 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
606
607 info->phys_addrs[info->idx] = vaddr;
608 info->addrs[info->idx] = vaddr;
609
610 info->idx++;
611 }
612
xenbus_map_ring_hvm(struct xenbus_device * dev,struct map_ring_valloc * info,grant_ref_t * gnt_ref,unsigned int nr_grefs,void ** vaddr)613 static int xenbus_map_ring_hvm(struct xenbus_device *dev,
614 struct map_ring_valloc *info,
615 grant_ref_t *gnt_ref,
616 unsigned int nr_grefs,
617 void **vaddr)
618 {
619 struct xenbus_map_node *node = info->node;
620 int err;
621 void *addr;
622 bool leaked = false;
623 unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
624
625 err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages);
626 if (err)
627 goto out_err;
628
629 gnttab_foreach_grant(node->hvm.pages, nr_grefs,
630 xenbus_map_ring_setup_grant_hvm,
631 info);
632
633 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
634 info, GNTMAP_host_map, &leaked);
635 node->nr_handles = nr_grefs;
636
637 if (err)
638 goto out_free_ballooned_pages;
639
640 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
641 PAGE_KERNEL);
642 if (!addr) {
643 err = -ENOMEM;
644 goto out_xenbus_unmap_ring;
645 }
646
647 node->hvm.addr = addr;
648
649 spin_lock(&xenbus_valloc_lock);
650 list_add(&node->next, &xenbus_valloc_pages);
651 spin_unlock(&xenbus_valloc_lock);
652
653 *vaddr = addr;
654 info->node = NULL;
655
656 return 0;
657
658 out_xenbus_unmap_ring:
659 if (!leaked)
660 xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs);
661 else
662 pr_alert("leaking %p size %u page(s)",
663 addr, nr_pages);
664 out_free_ballooned_pages:
665 if (!leaked)
666 xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
667 out_err:
668 return err;
669 }
670
671 /**
672 * xenbus_unmap_ring_vfree
673 * @dev: xenbus device
674 * @vaddr: addr to unmap
675 *
676 * Based on Rusty Russell's skeleton driver's unmap_page.
677 * Unmap a page of memory in this domain that was imported from another domain.
678 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
679 * xenbus_map_ring_valloc (it will free the virtual address space).
680 * Returns 0 on success and returns GNTST_* on error
681 * (see xen/include/interface/grant_table.h).
682 */
xenbus_unmap_ring_vfree(struct xenbus_device * dev,void * vaddr)683 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
684 {
685 return ring_ops->unmap(dev, vaddr);
686 }
687 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
688
689 #ifdef CONFIG_XEN_PV
map_ring_apply(pte_t * pte,unsigned long addr,void * data)690 static int map_ring_apply(pte_t *pte, unsigned long addr, void *data)
691 {
692 struct map_ring_valloc *info = data;
693
694 info->phys_addrs[info->idx++] = arbitrary_virt_to_machine(pte).maddr;
695 return 0;
696 }
697
xenbus_map_ring_pv(struct xenbus_device * dev,struct map_ring_valloc * info,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)698 static int xenbus_map_ring_pv(struct xenbus_device *dev,
699 struct map_ring_valloc *info,
700 grant_ref_t *gnt_refs,
701 unsigned int nr_grefs,
702 void **vaddr)
703 {
704 struct xenbus_map_node *node = info->node;
705 struct vm_struct *area;
706 bool leaked = false;
707 int err = -ENOMEM;
708
709 area = get_vm_area(XEN_PAGE_SIZE * nr_grefs, VM_IOREMAP);
710 if (!area)
711 return -ENOMEM;
712 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
713 XEN_PAGE_SIZE * nr_grefs, map_ring_apply, info))
714 goto failed;
715 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
716 info, GNTMAP_host_map | GNTMAP_contains_pte,
717 &leaked);
718 if (err)
719 goto failed;
720
721 node->nr_handles = nr_grefs;
722 node->pv.area = area;
723
724 spin_lock(&xenbus_valloc_lock);
725 list_add(&node->next, &xenbus_valloc_pages);
726 spin_unlock(&xenbus_valloc_lock);
727
728 *vaddr = area->addr;
729 info->node = NULL;
730
731 return 0;
732
733 failed:
734 if (!leaked)
735 free_vm_area(area);
736 else
737 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
738
739 return err;
740 }
741
xenbus_unmap_ring_pv(struct xenbus_device * dev,void * vaddr)742 static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr)
743 {
744 struct xenbus_map_node *node;
745 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
746 unsigned int level;
747 int i;
748 bool leaked = false;
749 int err;
750
751 spin_lock(&xenbus_valloc_lock);
752 list_for_each_entry(node, &xenbus_valloc_pages, next) {
753 if (node->pv.area->addr == vaddr) {
754 list_del(&node->next);
755 goto found;
756 }
757 }
758 node = NULL;
759 found:
760 spin_unlock(&xenbus_valloc_lock);
761
762 if (!node) {
763 xenbus_dev_error(dev, -ENOENT,
764 "can't find mapped virtual address %p", vaddr);
765 return GNTST_bad_virt_addr;
766 }
767
768 for (i = 0; i < node->nr_handles; i++) {
769 unsigned long addr;
770
771 memset(&unmap[i], 0, sizeof(unmap[i]));
772 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
773 unmap[i].host_addr = arbitrary_virt_to_machine(
774 lookup_address(addr, &level)).maddr;
775 unmap[i].dev_bus_addr = 0;
776 unmap[i].handle = node->handles[i];
777 }
778
779 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
780
781 err = GNTST_okay;
782 leaked = false;
783 for (i = 0; i < node->nr_handles; i++) {
784 if (unmap[i].status != GNTST_okay) {
785 leaked = true;
786 xenbus_dev_error(dev, unmap[i].status,
787 "unmapping page at handle %d error %d",
788 node->handles[i], unmap[i].status);
789 err = unmap[i].status;
790 break;
791 }
792 }
793
794 if (!leaked)
795 free_vm_area(node->pv.area);
796 else
797 pr_alert("leaking VM area %p size %u page(s)",
798 node->pv.area, node->nr_handles);
799
800 kfree(node);
801 return err;
802 }
803
804 static const struct xenbus_ring_ops ring_ops_pv = {
805 .map = xenbus_map_ring_pv,
806 .unmap = xenbus_unmap_ring_pv,
807 };
808 #endif
809
810 struct unmap_ring_hvm
811 {
812 unsigned int idx;
813 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
814 };
815
xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)816 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
817 unsigned int goffset,
818 unsigned int len,
819 void *data)
820 {
821 struct unmap_ring_hvm *info = data;
822
823 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
824
825 info->idx++;
826 }
827
xenbus_unmap_ring_hvm(struct xenbus_device * dev,void * vaddr)828 static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr)
829 {
830 int rv;
831 struct xenbus_map_node *node;
832 void *addr;
833 struct unmap_ring_hvm info = {
834 .idx = 0,
835 };
836 unsigned int nr_pages;
837
838 spin_lock(&xenbus_valloc_lock);
839 list_for_each_entry(node, &xenbus_valloc_pages, next) {
840 addr = node->hvm.addr;
841 if (addr == vaddr) {
842 list_del(&node->next);
843 goto found;
844 }
845 }
846 node = addr = NULL;
847 found:
848 spin_unlock(&xenbus_valloc_lock);
849
850 if (!node) {
851 xenbus_dev_error(dev, -ENOENT,
852 "can't find mapped virtual address %p", vaddr);
853 return GNTST_bad_virt_addr;
854 }
855
856 nr_pages = XENBUS_PAGES(node->nr_handles);
857
858 gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
859 xenbus_unmap_ring_setup_grant_hvm,
860 &info);
861
862 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
863 info.addrs);
864 if (!rv) {
865 vunmap(vaddr);
866 xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
867 }
868 else
869 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
870
871 kfree(node);
872 return rv;
873 }
874
875 /**
876 * xenbus_read_driver_state
877 * @path: path for driver
878 *
879 * Return the state of the driver rooted at the given store path, or
880 * XenbusStateUnknown if no state can be read.
881 */
xenbus_read_driver_state(const char * path)882 enum xenbus_state xenbus_read_driver_state(const char *path)
883 {
884 enum xenbus_state result;
885 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
886 if (err)
887 result = XenbusStateUnknown;
888
889 return result;
890 }
891 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
892
893 static const struct xenbus_ring_ops ring_ops_hvm = {
894 .map = xenbus_map_ring_hvm,
895 .unmap = xenbus_unmap_ring_hvm,
896 };
897
xenbus_ring_ops_init(void)898 void __init xenbus_ring_ops_init(void)
899 {
900 #ifdef CONFIG_XEN_PV
901 if (!xen_feature(XENFEAT_auto_translated_physmap))
902 ring_ops = &ring_ops_pv;
903 else
904 #endif
905 ring_ops = &ring_ops_hvm;
906 }
907