1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xen time implementation.
4 *
5 * This is implemented in terms of a clocksource driver which uses
6 * the hypervisor clock as a nanosecond timebase, and a clockevent
7 * driver which uses the hypervisor's timer mechanism.
8 *
9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10 */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28
29 #include "xen-ops.h"
30
31 /* Minimum amount of time until next clock event fires */
32 #define TIMER_SLOP 100000
33
34 static u64 xen_sched_clock_offset __read_mostly;
35
36 /* Get the TSC speed from Xen */
xen_tsc_khz(void)37 static unsigned long xen_tsc_khz(void)
38 {
39 struct pvclock_vcpu_time_info *info =
40 &HYPERVISOR_shared_info->vcpu_info[0].time;
41
42 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
43 return pvclock_tsc_khz(info);
44 }
45
xen_clocksource_read(void)46 static u64 xen_clocksource_read(void)
47 {
48 struct pvclock_vcpu_time_info *src;
49 u64 ret;
50
51 preempt_disable_notrace();
52 src = &__this_cpu_read(xen_vcpu)->time;
53 ret = pvclock_clocksource_read(src);
54 preempt_enable_notrace();
55 return ret;
56 }
57
xen_clocksource_get_cycles(struct clocksource * cs)58 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
59 {
60 return xen_clocksource_read();
61 }
62
xen_sched_clock(void)63 static u64 xen_sched_clock(void)
64 {
65 return xen_clocksource_read() - xen_sched_clock_offset;
66 }
67
xen_read_wallclock(struct timespec64 * ts)68 static void xen_read_wallclock(struct timespec64 *ts)
69 {
70 struct shared_info *s = HYPERVISOR_shared_info;
71 struct pvclock_wall_clock *wall_clock = &(s->wc);
72 struct pvclock_vcpu_time_info *vcpu_time;
73
74 vcpu_time = &get_cpu_var(xen_vcpu)->time;
75 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
76 put_cpu_var(xen_vcpu);
77 }
78
xen_get_wallclock(struct timespec64 * now)79 static void xen_get_wallclock(struct timespec64 *now)
80 {
81 xen_read_wallclock(now);
82 }
83
xen_set_wallclock(const struct timespec64 * now)84 static int xen_set_wallclock(const struct timespec64 *now)
85 {
86 return -ENODEV;
87 }
88
xen_pvclock_gtod_notify(struct notifier_block * nb,unsigned long was_set,void * priv)89 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
90 unsigned long was_set, void *priv)
91 {
92 /* Protected by the calling core code serialization */
93 static struct timespec64 next_sync;
94
95 struct xen_platform_op op;
96 struct timespec64 now;
97 struct timekeeper *tk = priv;
98 static bool settime64_supported = true;
99 int ret;
100
101 now.tv_sec = tk->xtime_sec;
102 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103
104 /*
105 * We only take the expensive HV call when the clock was set
106 * or when the 11 minutes RTC synchronization time elapsed.
107 */
108 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109 return NOTIFY_OK;
110
111 again:
112 if (settime64_supported) {
113 op.cmd = XENPF_settime64;
114 op.u.settime64.mbz = 0;
115 op.u.settime64.secs = now.tv_sec;
116 op.u.settime64.nsecs = now.tv_nsec;
117 op.u.settime64.system_time = xen_clocksource_read();
118 } else {
119 op.cmd = XENPF_settime32;
120 op.u.settime32.secs = now.tv_sec;
121 op.u.settime32.nsecs = now.tv_nsec;
122 op.u.settime32.system_time = xen_clocksource_read();
123 }
124
125 ret = HYPERVISOR_platform_op(&op);
126
127 if (ret == -ENOSYS && settime64_supported) {
128 settime64_supported = false;
129 goto again;
130 }
131 if (ret < 0)
132 return NOTIFY_BAD;
133
134 /*
135 * Move the next drift compensation time 11 minutes
136 * ahead. That's emulating the sync_cmos_clock() update for
137 * the hardware RTC.
138 */
139 next_sync = now;
140 next_sync.tv_sec += 11 * 60;
141
142 return NOTIFY_OK;
143 }
144
145 static struct notifier_block xen_pvclock_gtod_notifier = {
146 .notifier_call = xen_pvclock_gtod_notify,
147 };
148
xen_cs_enable(struct clocksource * cs)149 static int xen_cs_enable(struct clocksource *cs)
150 {
151 vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152 return 0;
153 }
154
155 static struct clocksource xen_clocksource __read_mostly = {
156 .name = "xen",
157 .rating = 400,
158 .read = xen_clocksource_get_cycles,
159 .mask = CLOCKSOURCE_MASK(64),
160 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
161 .enable = xen_cs_enable,
162 };
163
164 /*
165 Xen clockevent implementation
166
167 Xen has two clockevent implementations:
168
169 The old timer_op one works with all released versions of Xen prior
170 to version 3.0.4. This version of the hypervisor provides a
171 single-shot timer with nanosecond resolution. However, sharing the
172 same event channel is a 100Hz tick which is delivered while the
173 vcpu is running. We don't care about or use this tick, but it will
174 cause the core time code to think the timer fired too soon, and
175 will end up resetting it each time. It could be filtered, but
176 doing so has complications when the ktime clocksource is not yet
177 the xen clocksource (ie, at boot time).
178
179 The new vcpu_op-based timer interface allows the tick timer period
180 to be changed or turned off. The tick timer is not useful as a
181 periodic timer because events are only delivered to running vcpus.
182 The one-shot timer can report when a timeout is in the past, so
183 set_next_event is capable of returning -ETIME when appropriate.
184 This interface is used when available.
185 */
186
187
188 /*
189 Get a hypervisor absolute time. In theory we could maintain an
190 offset between the kernel's time and the hypervisor's time, and
191 apply that to a kernel's absolute timeout. Unfortunately the
192 hypervisor and kernel times can drift even if the kernel is using
193 the Xen clocksource, because ntp can warp the kernel's clocksource.
194 */
get_abs_timeout(unsigned long delta)195 static s64 get_abs_timeout(unsigned long delta)
196 {
197 return xen_clocksource_read() + delta;
198 }
199
xen_timerop_shutdown(struct clock_event_device * evt)200 static int xen_timerop_shutdown(struct clock_event_device *evt)
201 {
202 /* cancel timeout */
203 HYPERVISOR_set_timer_op(0);
204
205 return 0;
206 }
207
xen_timerop_set_next_event(unsigned long delta,struct clock_event_device * evt)208 static int xen_timerop_set_next_event(unsigned long delta,
209 struct clock_event_device *evt)
210 {
211 WARN_ON(!clockevent_state_oneshot(evt));
212
213 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214 BUG();
215
216 /* We may have missed the deadline, but there's no real way of
217 knowing for sure. If the event was in the past, then we'll
218 get an immediate interrupt. */
219
220 return 0;
221 }
222
223 static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224 .name = "xen",
225 .features = CLOCK_EVT_FEAT_ONESHOT,
226
227 .max_delta_ns = 0xffffffff,
228 .max_delta_ticks = 0xffffffff,
229 .min_delta_ns = TIMER_SLOP,
230 .min_delta_ticks = TIMER_SLOP,
231
232 .mult = 1,
233 .shift = 0,
234 .rating = 500,
235
236 .set_state_shutdown = xen_timerop_shutdown,
237 .set_next_event = xen_timerop_set_next_event,
238 };
239
xen_vcpuop_shutdown(struct clock_event_device * evt)240 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241 {
242 int cpu = smp_processor_id();
243
244 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245 NULL) ||
246 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247 NULL))
248 BUG();
249
250 return 0;
251 }
252
xen_vcpuop_set_oneshot(struct clock_event_device * evt)253 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254 {
255 int cpu = smp_processor_id();
256
257 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258 NULL))
259 BUG();
260
261 return 0;
262 }
263
xen_vcpuop_set_next_event(unsigned long delta,struct clock_event_device * evt)264 static int xen_vcpuop_set_next_event(unsigned long delta,
265 struct clock_event_device *evt)
266 {
267 int cpu = smp_processor_id();
268 struct vcpu_set_singleshot_timer single;
269 int ret;
270
271 WARN_ON(!clockevent_state_oneshot(evt));
272
273 single.timeout_abs_ns = get_abs_timeout(delta);
274 /* Get an event anyway, even if the timeout is already expired */
275 single.flags = 0;
276
277 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278 &single);
279 BUG_ON(ret != 0);
280
281 return ret;
282 }
283
284 static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285 .name = "xen",
286 .features = CLOCK_EVT_FEAT_ONESHOT,
287
288 .max_delta_ns = 0xffffffff,
289 .max_delta_ticks = 0xffffffff,
290 .min_delta_ns = TIMER_SLOP,
291 .min_delta_ticks = TIMER_SLOP,
292
293 .mult = 1,
294 .shift = 0,
295 .rating = 500,
296
297 .set_state_shutdown = xen_vcpuop_shutdown,
298 .set_state_oneshot = xen_vcpuop_set_oneshot,
299 .set_next_event = xen_vcpuop_set_next_event,
300 };
301
302 static const struct clock_event_device *xen_clockevent =
303 &xen_timerop_clockevent;
304
305 struct xen_clock_event_device {
306 struct clock_event_device evt;
307 char name[16];
308 };
309 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310
xen_timer_interrupt(int irq,void * dev_id)311 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312 {
313 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314 irqreturn_t ret;
315
316 ret = IRQ_NONE;
317 if (evt->event_handler) {
318 evt->event_handler(evt);
319 ret = IRQ_HANDLED;
320 }
321
322 return ret;
323 }
324
xen_teardown_timer(int cpu)325 void xen_teardown_timer(int cpu)
326 {
327 struct clock_event_device *evt;
328 evt = &per_cpu(xen_clock_events, cpu).evt;
329
330 if (evt->irq >= 0) {
331 unbind_from_irqhandler(evt->irq, NULL);
332 evt->irq = -1;
333 }
334 }
335
xen_setup_timer(int cpu)336 void xen_setup_timer(int cpu)
337 {
338 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339 struct clock_event_device *evt = &xevt->evt;
340 int irq;
341
342 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343 if (evt->irq >= 0)
344 xen_teardown_timer(cpu);
345
346 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347
348 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349
350 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353 xevt->name, NULL);
354 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355
356 memcpy(evt, xen_clockevent, sizeof(*evt));
357
358 evt->cpumask = cpumask_of(cpu);
359 evt->irq = irq;
360 }
361
362
xen_setup_cpu_clockevents(void)363 void xen_setup_cpu_clockevents(void)
364 {
365 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366 }
367
xen_timer_resume(void)368 void xen_timer_resume(void)
369 {
370 int cpu;
371
372 if (xen_clockevent != &xen_vcpuop_clockevent)
373 return;
374
375 for_each_online_cpu(cpu) {
376 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377 xen_vcpu_nr(cpu), NULL))
378 BUG();
379 }
380 }
381
382 static const struct pv_time_ops xen_time_ops __initconst = {
383 .sched_clock = xen_sched_clock,
384 .steal_clock = xen_steal_clock,
385 };
386
387 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
388 static u64 xen_clock_value_saved;
389
xen_save_time_memory_area(void)390 void xen_save_time_memory_area(void)
391 {
392 struct vcpu_register_time_memory_area t;
393 int ret;
394
395 xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
396
397 if (!xen_clock)
398 return;
399
400 t.addr.v = NULL;
401
402 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
403 if (ret != 0)
404 pr_notice("Cannot save secondary vcpu_time_info (err %d)",
405 ret);
406 else
407 clear_page(xen_clock);
408 }
409
xen_restore_time_memory_area(void)410 void xen_restore_time_memory_area(void)
411 {
412 struct vcpu_register_time_memory_area t;
413 int ret;
414
415 if (!xen_clock)
416 goto out;
417
418 t.addr.v = &xen_clock->pvti;
419
420 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
421
422 /*
423 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
424 * register the secondary time info with Xen or if we migrated to a
425 * host without the necessary flags. On both of these cases what
426 * happens is either process seeing a zeroed out pvti or seeing no
427 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
428 * if 0, it discards the data in pvti and fallbacks to a system
429 * call for a reliable timestamp.
430 */
431 if (ret != 0)
432 pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
433 ret);
434
435 out:
436 /* Need pvclock_resume() before using xen_clocksource_read(). */
437 pvclock_resume();
438 xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
439 }
440
xen_setup_vsyscall_time_info(void)441 static void xen_setup_vsyscall_time_info(void)
442 {
443 struct vcpu_register_time_memory_area t;
444 struct pvclock_vsyscall_time_info *ti;
445 int ret;
446
447 ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
448 if (!ti)
449 return;
450
451 t.addr.v = &ti->pvti;
452
453 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
454 if (ret) {
455 pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
456 free_page((unsigned long)ti);
457 return;
458 }
459
460 /*
461 * If primary time info had this bit set, secondary should too since
462 * it's the same data on both just different memory regions. But we
463 * still check it in case hypervisor is buggy.
464 */
465 if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
466 t.addr.v = NULL;
467 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
468 0, &t);
469 if (!ret)
470 free_page((unsigned long)ti);
471
472 pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
473 return;
474 }
475
476 xen_clock = ti;
477 pvclock_set_pvti_cpu0_va(xen_clock);
478
479 xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
480 }
481
xen_time_init(void)482 static void __init xen_time_init(void)
483 {
484 struct pvclock_vcpu_time_info *pvti;
485 int cpu = smp_processor_id();
486 struct timespec64 tp;
487
488 /* As Dom0 is never moved, no penalty on using TSC there */
489 if (xen_initial_domain())
490 xen_clocksource.rating = 275;
491
492 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
493
494 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
495 NULL) == 0) {
496 /* Successfully turned off 100Hz tick, so we have the
497 vcpuop-based timer interface */
498 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
499 xen_clockevent = &xen_vcpuop_clockevent;
500 }
501
502 /* Set initial system time with full resolution */
503 xen_read_wallclock(&tp);
504 do_settimeofday64(&tp);
505
506 setup_force_cpu_cap(X86_FEATURE_TSC);
507
508 /*
509 * We check ahead on the primary time info if this
510 * bit is supported hence speeding up Xen clocksource.
511 */
512 pvti = &__this_cpu_read(xen_vcpu)->time;
513 if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
514 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
515 xen_setup_vsyscall_time_info();
516 }
517
518 xen_setup_runstate_info(cpu);
519 xen_setup_timer(cpu);
520 xen_setup_cpu_clockevents();
521
522 xen_time_setup_guest();
523
524 if (xen_initial_domain())
525 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
526 }
527
xen_init_time_ops(void)528 void __init xen_init_time_ops(void)
529 {
530 xen_sched_clock_offset = xen_clocksource_read();
531 pv_ops.time = xen_time_ops;
532
533 x86_init.timers.timer_init = xen_time_init;
534 x86_init.timers.setup_percpu_clockev = x86_init_noop;
535 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
536
537 x86_platform.calibrate_tsc = xen_tsc_khz;
538 x86_platform.get_wallclock = xen_get_wallclock;
539 /* Dom0 uses the native method to set the hardware RTC. */
540 if (!xen_initial_domain())
541 x86_platform.set_wallclock = xen_set_wallclock;
542 }
543
544 #ifdef CONFIG_XEN_PVHVM
xen_hvm_setup_cpu_clockevents(void)545 static void xen_hvm_setup_cpu_clockevents(void)
546 {
547 int cpu = smp_processor_id();
548 xen_setup_runstate_info(cpu);
549 /*
550 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
551 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
552 * early bootup and also during CPU hotplug events).
553 */
554 xen_setup_cpu_clockevents();
555 }
556
xen_hvm_init_time_ops(void)557 void __init xen_hvm_init_time_ops(void)
558 {
559 /*
560 * vector callback is needed otherwise we cannot receive interrupts
561 * on cpu > 0 and at this point we don't know how many cpus are
562 * available.
563 */
564 if (!xen_have_vector_callback)
565 return;
566
567 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
568 pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
569 return;
570 }
571
572 xen_sched_clock_offset = xen_clocksource_read();
573 pv_ops.time = xen_time_ops;
574 x86_init.timers.setup_percpu_clockev = xen_time_init;
575 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
576
577 x86_platform.calibrate_tsc = xen_tsc_khz;
578 x86_platform.get_wallclock = xen_get_wallclock;
579 x86_platform.set_wallclock = xen_set_wallclock;
580 }
581 #endif
582
583 /* Kernel parameter to specify Xen timer slop */
parse_xen_timer_slop(char * ptr)584 static int __init parse_xen_timer_slop(char *ptr)
585 {
586 unsigned long slop = memparse(ptr, NULL);
587
588 xen_timerop_clockevent.min_delta_ns = slop;
589 xen_timerop_clockevent.min_delta_ticks = slop;
590 xen_vcpuop_clockevent.min_delta_ns = slop;
591 xen_vcpuop_clockevent.min_delta_ticks = slop;
592
593 return 0;
594 }
595 early_param("xen_timer_slop", parse_xen_timer_slop);
596