1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-direct.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #define XEN_SWIOTLB_ERROR_CODE	(~(dma_addr_t)0x0)
57 
58 static char *xen_io_tlb_start, *xen_io_tlb_end;
59 static unsigned long xen_io_tlb_nslabs;
60 /*
61  * Quick lookup value of the bus address of the IOTLB.
62  */
63 
64 static u64 start_dma_addr;
65 
66 /*
67  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
68  * can be 32bit when dma_addr_t is 64bit leading to a loss in
69  * information if the shift is done before casting to 64bit.
70  */
xen_phys_to_bus(phys_addr_t paddr)71 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
72 {
73 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
74 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
75 
76 	dma |= paddr & ~XEN_PAGE_MASK;
77 
78 	return dma;
79 }
80 
xen_bus_to_phys(dma_addr_t baddr)81 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
82 {
83 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
84 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
85 	phys_addr_t paddr = dma;
86 
87 	paddr |= baddr & ~XEN_PAGE_MASK;
88 
89 	return paddr;
90 }
91 
xen_virt_to_bus(void * address)92 static inline dma_addr_t xen_virt_to_bus(void *address)
93 {
94 	return xen_phys_to_bus(virt_to_phys(address));
95 }
96 
check_pages_physically_contiguous(unsigned long xen_pfn,unsigned int offset,size_t length)97 static int check_pages_physically_contiguous(unsigned long xen_pfn,
98 					     unsigned int offset,
99 					     size_t length)
100 {
101 	unsigned long next_bfn;
102 	int i;
103 	int nr_pages;
104 
105 	next_bfn = pfn_to_bfn(xen_pfn);
106 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
107 
108 	for (i = 1; i < nr_pages; i++) {
109 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
110 			return 0;
111 	}
112 	return 1;
113 }
114 
range_straddles_page_boundary(phys_addr_t p,size_t size)115 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
116 {
117 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
118 	unsigned int offset = p & ~XEN_PAGE_MASK;
119 
120 	if (offset + size <= XEN_PAGE_SIZE)
121 		return 0;
122 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
123 		return 0;
124 	return 1;
125 }
126 
is_xen_swiotlb_buffer(dma_addr_t dma_addr)127 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
128 {
129 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
130 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
131 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
132 
133 	/* If the address is outside our domain, it CAN
134 	 * have the same virtual address as another address
135 	 * in our domain. Therefore _only_ check address within our domain.
136 	 */
137 	if (pfn_valid(PFN_DOWN(paddr))) {
138 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
139 		       paddr < virt_to_phys(xen_io_tlb_end);
140 	}
141 	return 0;
142 }
143 
144 static int max_dma_bits = 32;
145 
146 static int
xen_swiotlb_fixup(void * buf,size_t size,unsigned long nslabs)147 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
148 {
149 	int i, rc;
150 	int dma_bits;
151 	dma_addr_t dma_handle;
152 	phys_addr_t p = virt_to_phys(buf);
153 
154 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
155 
156 	i = 0;
157 	do {
158 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
159 
160 		do {
161 			rc = xen_create_contiguous_region(
162 				p + (i << IO_TLB_SHIFT),
163 				get_order(slabs << IO_TLB_SHIFT),
164 				dma_bits, &dma_handle);
165 		} while (rc && dma_bits++ < max_dma_bits);
166 		if (rc)
167 			return rc;
168 
169 		i += slabs;
170 	} while (i < nslabs);
171 	return 0;
172 }
xen_set_nslabs(unsigned long nr_tbl)173 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
174 {
175 	if (!nr_tbl) {
176 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
177 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
178 	} else
179 		xen_io_tlb_nslabs = nr_tbl;
180 
181 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
182 }
183 
184 enum xen_swiotlb_err {
185 	XEN_SWIOTLB_UNKNOWN = 0,
186 	XEN_SWIOTLB_ENOMEM,
187 	XEN_SWIOTLB_EFIXUP
188 };
189 
xen_swiotlb_error(enum xen_swiotlb_err err)190 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
191 {
192 	switch (err) {
193 	case XEN_SWIOTLB_ENOMEM:
194 		return "Cannot allocate Xen-SWIOTLB buffer\n";
195 	case XEN_SWIOTLB_EFIXUP:
196 		return "Failed to get contiguous memory for DMA from Xen!\n"\
197 		    "You either: don't have the permissions, do not have"\
198 		    " enough free memory under 4GB, or the hypervisor memory"\
199 		    " is too fragmented!";
200 	default:
201 		break;
202 	}
203 	return "";
204 }
xen_swiotlb_init(int verbose,bool early)205 int __ref xen_swiotlb_init(int verbose, bool early)
206 {
207 	unsigned long bytes, order;
208 	int rc = -ENOMEM;
209 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
210 	unsigned int repeat = 3;
211 
212 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
213 retry:
214 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
215 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
216 	/*
217 	 * Get IO TLB memory from any location.
218 	 */
219 	if (early)
220 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
221 	else {
222 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
223 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
224 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
225 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
226 			if (xen_io_tlb_start)
227 				break;
228 			order--;
229 		}
230 		if (order != get_order(bytes)) {
231 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
232 				(PAGE_SIZE << order) >> 20);
233 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
234 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
235 		}
236 	}
237 	if (!xen_io_tlb_start) {
238 		m_ret = XEN_SWIOTLB_ENOMEM;
239 		goto error;
240 	}
241 	xen_io_tlb_end = xen_io_tlb_start + bytes;
242 	/*
243 	 * And replace that memory with pages under 4GB.
244 	 */
245 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
246 			       bytes,
247 			       xen_io_tlb_nslabs);
248 	if (rc) {
249 		if (early)
250 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
251 		else {
252 			free_pages((unsigned long)xen_io_tlb_start, order);
253 			xen_io_tlb_start = NULL;
254 		}
255 		m_ret = XEN_SWIOTLB_EFIXUP;
256 		goto error;
257 	}
258 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
259 	if (early) {
260 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
261 			 verbose))
262 			panic("Cannot allocate SWIOTLB buffer");
263 		rc = 0;
264 	} else
265 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
266 
267 	if (!rc)
268 		swiotlb_set_max_segment(PAGE_SIZE);
269 
270 	return rc;
271 error:
272 	if (repeat--) {
273 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
274 					(xen_io_tlb_nslabs >> 1));
275 		pr_info("Lowering to %luMB\n",
276 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
277 		goto retry;
278 	}
279 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
280 	if (early)
281 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
282 	else
283 		free_pages((unsigned long)xen_io_tlb_start, order);
284 	return rc;
285 }
286 
287 static void *
xen_swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)288 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
289 			   dma_addr_t *dma_handle, gfp_t flags,
290 			   unsigned long attrs)
291 {
292 	void *ret;
293 	int order = get_order(size);
294 	u64 dma_mask = DMA_BIT_MASK(32);
295 	phys_addr_t phys;
296 	dma_addr_t dev_addr;
297 
298 	/*
299 	* Ignore region specifiers - the kernel's ideas of
300 	* pseudo-phys memory layout has nothing to do with the
301 	* machine physical layout.  We can't allocate highmem
302 	* because we can't return a pointer to it.
303 	*/
304 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
305 
306 	/* On ARM this function returns an ioremap'ped virtual address for
307 	 * which virt_to_phys doesn't return the corresponding physical
308 	 * address. In fact on ARM virt_to_phys only works for kernel direct
309 	 * mapped RAM memory. Also see comment below.
310 	 */
311 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
312 
313 	if (!ret)
314 		return ret;
315 
316 	if (hwdev && hwdev->coherent_dma_mask)
317 		dma_mask = hwdev->coherent_dma_mask;
318 
319 	/* At this point dma_handle is the physical address, next we are
320 	 * going to set it to the machine address.
321 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
322 	 * to *dma_handle. */
323 	phys = *dma_handle;
324 	dev_addr = xen_phys_to_bus(phys);
325 	if (((dev_addr + size - 1 <= dma_mask)) &&
326 	    !range_straddles_page_boundary(phys, size))
327 		*dma_handle = dev_addr;
328 	else {
329 		if (xen_create_contiguous_region(phys, order,
330 						 fls64(dma_mask), dma_handle) != 0) {
331 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
332 			return NULL;
333 		}
334 	}
335 	memset(ret, 0, size);
336 	return ret;
337 }
338 
339 static void
xen_swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr,unsigned long attrs)340 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
341 			  dma_addr_t dev_addr, unsigned long attrs)
342 {
343 	int order = get_order(size);
344 	phys_addr_t phys;
345 	u64 dma_mask = DMA_BIT_MASK(32);
346 
347 	if (hwdev && hwdev->coherent_dma_mask)
348 		dma_mask = hwdev->coherent_dma_mask;
349 
350 	/* do not use virt_to_phys because on ARM it doesn't return you the
351 	 * physical address */
352 	phys = xen_bus_to_phys(dev_addr);
353 
354 	if (((dev_addr + size - 1 <= dma_mask)) ||
355 	    range_straddles_page_boundary(phys, size))
356 		xen_destroy_contiguous_region(phys, order);
357 
358 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
359 }
360 
361 /*
362  * Map a single buffer of the indicated size for DMA in streaming mode.  The
363  * physical address to use is returned.
364  *
365  * Once the device is given the dma address, the device owns this memory until
366  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
367  */
xen_swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)368 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
369 				unsigned long offset, size_t size,
370 				enum dma_data_direction dir,
371 				unsigned long attrs)
372 {
373 	phys_addr_t map, phys = page_to_phys(page) + offset;
374 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
375 
376 	BUG_ON(dir == DMA_NONE);
377 	/*
378 	 * If the address happens to be in the device's DMA window,
379 	 * we can safely return the device addr and not worry about bounce
380 	 * buffering it.
381 	 */
382 	if (dma_capable(dev, dev_addr, size) &&
383 	    !range_straddles_page_boundary(phys, size) &&
384 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
385 		(swiotlb_force != SWIOTLB_FORCE)) {
386 		/* we are not interested in the dma_addr returned by
387 		 * xen_dma_map_page, only in the potential cache flushes executed
388 		 * by the function. */
389 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
390 		return dev_addr;
391 	}
392 
393 	/*
394 	 * Oh well, have to allocate and map a bounce buffer.
395 	 */
396 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
397 
398 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
399 				     attrs);
400 	if (map == SWIOTLB_MAP_ERROR)
401 		return XEN_SWIOTLB_ERROR_CODE;
402 
403 	dev_addr = xen_phys_to_bus(map);
404 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
405 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
406 
407 	/*
408 	 * Ensure that the address returned is DMA'ble
409 	 */
410 	if (dma_capable(dev, dev_addr, size))
411 		return dev_addr;
412 
413 	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
414 	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
415 
416 	return XEN_SWIOTLB_ERROR_CODE;
417 }
418 
419 /*
420  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
421  * match what was provided for in a previous xen_swiotlb_map_page call.  All
422  * other usages are undefined.
423  *
424  * After this call, reads by the cpu to the buffer are guaranteed to see
425  * whatever the device wrote there.
426  */
xen_unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)427 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
428 			     size_t size, enum dma_data_direction dir,
429 			     unsigned long attrs)
430 {
431 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
432 
433 	BUG_ON(dir == DMA_NONE);
434 
435 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
436 
437 	/* NOTE: We use dev_addr here, not paddr! */
438 	if (is_xen_swiotlb_buffer(dev_addr)) {
439 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
440 		return;
441 	}
442 
443 	if (dir != DMA_FROM_DEVICE)
444 		return;
445 
446 	/*
447 	 * phys_to_virt doesn't work with hihgmem page but we could
448 	 * call dma_mark_clean() with hihgmem page here. However, we
449 	 * are fine since dma_mark_clean() is null on POWERPC. We can
450 	 * make dma_mark_clean() take a physical address if necessary.
451 	 */
452 	dma_mark_clean(phys_to_virt(paddr), size);
453 }
454 
xen_swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)455 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
456 			    size_t size, enum dma_data_direction dir,
457 			    unsigned long attrs)
458 {
459 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
460 }
461 
462 /*
463  * Make physical memory consistent for a single streaming mode DMA translation
464  * after a transfer.
465  *
466  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
467  * using the cpu, yet do not wish to teardown the dma mapping, you must
468  * call this function before doing so.  At the next point you give the dma
469  * address back to the card, you must first perform a
470  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
471  */
472 static void
xen_swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)473 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
474 			size_t size, enum dma_data_direction dir,
475 			enum dma_sync_target target)
476 {
477 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
478 
479 	BUG_ON(dir == DMA_NONE);
480 
481 	if (target == SYNC_FOR_CPU)
482 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
483 
484 	/* NOTE: We use dev_addr here, not paddr! */
485 	if (is_xen_swiotlb_buffer(dev_addr))
486 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
487 
488 	if (target == SYNC_FOR_DEVICE)
489 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
490 
491 	if (dir != DMA_FROM_DEVICE)
492 		return;
493 
494 	dma_mark_clean(phys_to_virt(paddr), size);
495 }
496 
497 void
xen_swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)498 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
499 				size_t size, enum dma_data_direction dir)
500 {
501 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
502 }
503 
504 void
xen_swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)505 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
506 				   size_t size, enum dma_data_direction dir)
507 {
508 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
509 }
510 
511 /*
512  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
513  * concerning calls here are the same as for swiotlb_unmap_page() above.
514  */
515 static void
xen_swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)516 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
517 			   int nelems, enum dma_data_direction dir,
518 			   unsigned long attrs)
519 {
520 	struct scatterlist *sg;
521 	int i;
522 
523 	BUG_ON(dir == DMA_NONE);
524 
525 	for_each_sg(sgl, sg, nelems, i)
526 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
527 
528 }
529 
530 /*
531  * Map a set of buffers described by scatterlist in streaming mode for DMA.
532  * This is the scatter-gather version of the above xen_swiotlb_map_page
533  * interface.  Here the scatter gather list elements are each tagged with the
534  * appropriate dma address and length.  They are obtained via
535  * sg_dma_{address,length}(SG).
536  *
537  * NOTE: An implementation may be able to use a smaller number of
538  *       DMA address/length pairs than there are SG table elements.
539  *       (for example via virtual mapping capabilities)
540  *       The routine returns the number of addr/length pairs actually
541  *       used, at most nents.
542  *
543  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
544  * same here.
545  */
546 static int
xen_swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)547 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
548 			 int nelems, enum dma_data_direction dir,
549 			 unsigned long attrs)
550 {
551 	struct scatterlist *sg;
552 	int i;
553 
554 	BUG_ON(dir == DMA_NONE);
555 
556 	for_each_sg(sgl, sg, nelems, i) {
557 		phys_addr_t paddr = sg_phys(sg);
558 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
559 
560 		if (swiotlb_force == SWIOTLB_FORCE ||
561 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
562 		    !dma_capable(hwdev, dev_addr, sg->length) ||
563 		    range_straddles_page_boundary(paddr, sg->length)) {
564 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
565 								 start_dma_addr,
566 								 sg_phys(sg),
567 								 sg->length,
568 								 dir, attrs);
569 			if (map == SWIOTLB_MAP_ERROR) {
570 				dev_warn(hwdev, "swiotlb buffer is full\n");
571 				/* Don't panic here, we expect map_sg users
572 				   to do proper error handling. */
573 				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
574 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
575 							   attrs);
576 				sg_dma_len(sgl) = 0;
577 				return 0;
578 			}
579 			dev_addr = xen_phys_to_bus(map);
580 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
581 						dev_addr,
582 						map & ~PAGE_MASK,
583 						sg->length,
584 						dir,
585 						attrs);
586 			sg->dma_address = dev_addr;
587 		} else {
588 			/* we are not interested in the dma_addr returned by
589 			 * xen_dma_map_page, only in the potential cache flushes executed
590 			 * by the function. */
591 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
592 						dev_addr,
593 						paddr & ~PAGE_MASK,
594 						sg->length,
595 						dir,
596 						attrs);
597 			sg->dma_address = dev_addr;
598 		}
599 		sg_dma_len(sg) = sg->length;
600 	}
601 	return nelems;
602 }
603 
604 /*
605  * Make physical memory consistent for a set of streaming mode DMA translations
606  * after a transfer.
607  *
608  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
609  * and usage.
610  */
611 static void
xen_swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)612 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
613 		    int nelems, enum dma_data_direction dir,
614 		    enum dma_sync_target target)
615 {
616 	struct scatterlist *sg;
617 	int i;
618 
619 	for_each_sg(sgl, sg, nelems, i)
620 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
621 					sg_dma_len(sg), dir, target);
622 }
623 
624 static void
xen_swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)625 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
626 			    int nelems, enum dma_data_direction dir)
627 {
628 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
629 }
630 
631 static void
xen_swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)632 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
633 			       int nelems, enum dma_data_direction dir)
634 {
635 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
636 }
637 
638 /*
639  * Return whether the given device DMA address mask can be supported
640  * properly.  For example, if your device can only drive the low 24-bits
641  * during bus mastering, then you would pass 0x00ffffff as the mask to
642  * this function.
643  */
644 static int
xen_swiotlb_dma_supported(struct device * hwdev,u64 mask)645 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
646 {
647 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
648 }
649 
650 /*
651  * Create userspace mapping for the DMA-coherent memory.
652  * This function should be called with the pages from the current domain only,
653  * passing pages mapped from other domains would lead to memory corruption.
654  */
655 static int
xen_swiotlb_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)656 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
657 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
658 		     unsigned long attrs)
659 {
660 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
661 	if (xen_get_dma_ops(dev)->mmap)
662 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
663 						    dma_addr, size, attrs);
664 #endif
665 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
666 }
667 
668 /*
669  * This function should be called with the pages from the current domain only,
670  * passing pages mapped from other domains would lead to memory corruption.
671  */
672 static int
xen_swiotlb_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size,unsigned long attrs)673 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
674 			void *cpu_addr, dma_addr_t handle, size_t size,
675 			unsigned long attrs)
676 {
677 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
678 	if (xen_get_dma_ops(dev)->get_sgtable) {
679 #if 0
680 	/*
681 	 * This check verifies that the page belongs to the current domain and
682 	 * is not one mapped from another domain.
683 	 * This check is for debug only, and should not go to production build
684 	 */
685 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
686 		BUG_ON (!page_is_ram(bfn));
687 #endif
688 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
689 							   handle, size, attrs);
690 	}
691 #endif
692 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size);
693 }
694 
xen_swiotlb_mapping_error(struct device * dev,dma_addr_t dma_addr)695 static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr)
696 {
697 	return dma_addr == XEN_SWIOTLB_ERROR_CODE;
698 }
699 
700 const struct dma_map_ops xen_swiotlb_dma_ops = {
701 	.alloc = xen_swiotlb_alloc_coherent,
702 	.free = xen_swiotlb_free_coherent,
703 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
704 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
705 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
706 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
707 	.map_sg = xen_swiotlb_map_sg_attrs,
708 	.unmap_sg = xen_swiotlb_unmap_sg_attrs,
709 	.map_page = xen_swiotlb_map_page,
710 	.unmap_page = xen_swiotlb_unmap_page,
711 	.dma_supported = xen_swiotlb_dma_supported,
712 	.mmap = xen_swiotlb_dma_mmap,
713 	.get_sgtable = xen_swiotlb_get_sgtable,
714 	.mapping_error	= xen_swiotlb_mapping_error,
715 };
716